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Highlights  Abstract  

▪ A remaining useful life prediction method 

based on mixed Copula functions is proposed. 

▪ A stochastic degradation model considering 

multiple degradation modes is established. 

▪ Comparative analysis shows that the proposed 

method results in smaller prediction errors. 

 To address the issue of distorted correlation characterization in existing 

multivariate correlation-based remaining useful life (RUL) prediction 

methods for degrading equipment—caused by relying solely on a single 

Copula function to model interdependencies among multiple 

degradation features—this paper proposes an RUL prediction method 

based on mixed Copula functions. First, a stochastic degradation model 

incorporating multiple degradation modes is established based on the 

Wiener process. Second, a mixed Copula function composed of linear 

combinations of Gumbel, Clayton, and Frank Copulas is constructed to 

capture the complex correlations among degradation features, and a 

stepwise maximum likelihood method is employed to estimate the model 

parameters. Finally, validation through simulated degradation datasets, 

LED lighting system degradation data, and metal crack propagation data 

demonstrates that the proposed method achieves smaller prediction 

errors and higher accuracy compared to existing single Copula-based 

methods, confirming its superiority. 
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1. Introduction 

With the continuous development of high-tech, modern 

industrial equipment is evolving towards high automation and 

integration. Due to the comprehensive effects of factors such as 

vibration impacts, operating condition transitions, mechanical 

wear, chemical erosion, load variations, and energy 

consumption throughout their lifecycles, these types of 

equipment inevitably experience degradation in performance 

and health status, eventually leading to equipment failure and 

even causing irreparable loss of life and property. If the RUL of 

equipment can be predicted before failure, and appropriate 

maintenance strategies can be adopted accordingly, catastrophic 

accidents can be effectively avoided, thereby achieving the 

goals of cost reduction and property protection [1-3]. As a core 

technology of prognostics and health management, RUL 

prediction is the prerequisite and foundation for making 

scientifically informed maintenance decisions for equipment. 

Therefore, accurately predicting the RUL of equipment to 

reduce the risk of sudden failures holds significant theoretical 

significance and engineering practical value [4,5]. 

Existing literature categorizes methods for predicting 
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equipment lifetime into two main groups: physics-based 

methods and data-driven methods [6-8]. Physics-based methods 

utilize the knowledge of equipment's mechanical dynamics 

combined with monitoring data to predict lifetime, primarily 

relying on specific physical models of the equipment. However, 

due to unclear failure mechanisms and diverse failure modes of 

most equipment, it is challenging to establish accurate physical 

models, thereby limiting the applicability of physics-based 

methods in lifetime prediction [9-10]. Data-driven lifetime 

prediction methods do not require knowledge of the equipment's 

physical model, they directly utilize monitoring data or 

historical degradation data of similar equipment to estimate 

lifetime, thus attracting significant attention from scholars both 

domestically and internationally [11-13]. 

Due to the high randomness of the degradation failure 

process of the equipment, most existing studies adopt stochastic 

processes to describe the performance degradation process, 

believing that stochastic processes can more accurately depict 

the trajectory of equipment performance degradation. Among 

these, modeling methods based on Wiener processes have been 

used widely in degradation modeling and lifetime prediction 

due to their favorable mathematical properties [14-27]. The 

Wiener process is a stochastic process extensively used for 

features with increasing or decreasing non-monotonic 

characteristics. In practical applications, the non-monotonic 

characteristics of degradation data arise from differences in 

equipment loads and variations in internal and external 

environments, making Wiener processes suitable for 

degradation modeling and lifetime prediction of equipment.  

In response to the characteristic of equipment degradation 

trajectories exhibiting linear degradation, Kahle et al. [14] 

proposed a simple linear Wiener process degradation model, 

providing parameter estimation methods and definitions for 

equipment lifetime. Wang et al. [15] introduced a RUL 

prediction method for metallized film capacitors based on the 

linear Wiener process. Li et al. [16] addressed variations in 

performance among different units in the same batch of 

equipment due to factors such as processing techniques, design 

errors, and functional differences. They proposed a linear 

Wiener process that considers the randomness of drift 

parameters for predicting the lifetime of momentum wheels. Si 

et al. [17] considering measurement errors as a source of 

uncertainty, derived the PDF for RUL using Bayesian inference 

and the EM algorithm. Peng et al. [18] proposed a linear Wiener 

degradation model with a drift factor following a skew-normal 

distribution for predicting the RUL of equipment. In cases 

where the degradation trajectory of equipment displays linear 

segments, Zhang et al. [19] proposed a two-stage linear Wiener 

process, successfully applied to predicting the RUL of batteries. 

Guan et al. [20] introduced a two-stage linear Wiener process 

that accounts for measurement errors, aimed at predicting the 

RUL of bearings. 

The linear Wiener degradation model is only applicable to 

situations where the degradation trajectory has a linear trend, 

whereas the degradation trajectories of most equipment are 

characterized by nonlinearity. In order to improve the generality 

of Wiener process degradation models, many scholars have 

proposed nonlinear Wiener process degradation models. Si et al. 

[21] addressed nonlinear issues by presenting two common 

forms of nonlinear degradation models—exponential and power 

functions—and derived analytical expressions for lifetime and 

remaining useful life PDFs. Tang et al. [22] developed  

a nonlinear model with measurement errors, building on 

existing nonlinear degradation models to address measurement 

error issues in degradation data. Peng et al. [23] proposed  

a novel nonlinear degradation model that combines power 

function degradation with linear degradation models for 

predicting the RUL of laser generators, based on existing linear 

and power function degradation model. Yu et al. [24] 

established a general nonlinear Wiener process model 

considering three sources of uncertainty, deriving the remaining 

useful life PDF and calculating estimates of RUL. Long et al. 

[25] created a state-space model for nonlinear Wiener processes 

and proposed a stochastic mixed system approach, improving 

the accuracy of RUL prediction. Lin et al. [26] proposed a two-

stage nonlinear Wiener process degradation modeling method, 

considering that the degradation rate of equipment may vary 

across different time periods, thereby enhancing the accuracy of 

lifetime prediction. Hu et al. [27] proposed a general form of the 

two-stage nonlinear Wiener process degradation modeling 

method and validated its effectiveness using data from high-

pressure pulse capacitors. 

In predicting the RUL of equipment, current research 

primarily focuses on utilizing a single performance indicator of 
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the equipment for such predictions. However, for most 

equipment, relying solely on a single performance indicator 

makes it difficult to fully and accurately reflect the state of 

health status and degradation process of the equipment. 

Therefore, in order to reflect the state of health of the equipment 

as fully as possible, it is essential to fully utilize multiple 

performance indicators of the equipment. Among them, 

utilizing two performance indicators for predicting the RUL 

forms the foundation for research on predicting the RUL of 

equipment on the basis of multiple performance indicators. 

Therefore, scholars have already investigated methods for 

predicting the RUL of equipment based on bivariate stochastic 

processes, assuming a certain correlation exists between the 

degradation processes of the two performance indicators of the 

equipment. They introduce Copula functions to describe the 

correlation characteristics between indicators and establish 

degradation models on the basis of bivariate stochastic 

processes. Copula functions are tools used to characterize the 

correlation between variables, known for their simplicity in 

modeling, flexible application, and wide range of uses [28-29].  

For multi-dimensional linear degradation equipment, Jin et 

al. [30] established a corresponding linear Wiener process 

degradation model for bearing's binary performance indicators 

and the marginal distribution of RUL. Then, using the Copula 

function, they combined the marginal distributions to obtain the 

joint distribution function of the equipment, achieving the 

prediction of the bearing's RUL. Similarly, Dai et al. [31] 

established a binary linear Wiener process degradation model 

based on the Copula function for the RUL prediction of nickel-

cadmium batteries. Qi et al. [32] proposed a binary linear 

Wiener degradation model with two correlated performance 

indicators based on the Copula function and applied Bayesian 

theory to implement the online prediction of the RUL of 

onboard transformer oil-paper insulation in high-speed trains. 

For multi-dimensional nonlinear degradation equipment, Dong 

et al. [33] proposed a nonlinear Wiener process based on binary 

time-scale transformations, using the Frank Copula function to 

combine the marginal distributions and obtain the joint failure 

distribution function, which was used for the failure prediction 

of dry-type hollow reactor encapsulation materials. Zhao et al. 

[34] proposed two common binary nonlinear Wiener random 

process models, one based on power function and the other on 

exponential function, for the RUL prediction of transformer oil-

paper insulation using the Copula function.  

Current research indicates that existing methods for 

predicting the RUL of multi-degradation equipment 

predominantly rely on single Copula functions to characterize 

correlations between different features. However, a single 

Copula function can only represent a single type of dependency 

(e.g., symmetric, upper-tail, or lower-tail correlation), while 

complex dependencies exist among degradation data of 

different performance metrics in practical equipment. The 

exclusive use of a single Copula function in real-world 

applications may lead to mischaracterization of the dependency 

structure between different performance degradations, thereby 

increasing RUL prediction errors. To address these limitations, 

this paper innovatively proposes a method employing mixed 

Copula functions to characterize dependencies among different 

equipment performance metrics. A Wiener process-based 

degradation model incorporating multiple degradation modes is 

established, where mixed Copula functions are utilized to 

describe inter-performance dependencies. Leveraging the 

properties of Wiener processes and the definition of first hitting 

time (FHT), analytical expressions for lifetime and RUL 

probability density functions are derived for joint distributions 

constructed with different mixed Copula functions. A two-step 

maximum likelihood estimation method is implemented to 

estimate the unknown parameters of the model. The 

effectiveness and practicality of the proposed methodology are 

validated through simulated degradation data, LED lighting 

system datasets, and metal crack degradation data. 

2. Degradation modeling  

2.1. Single-performance degradation model  

The Wiener process has been used widely in RUL prediction 

studies due to its incorporation of Brownian motion (BM) for 

effectively handling non-monotonic processes. Let 𝑋(𝑡) denote 

the monitored degradation value at time t, the degradation 

process can be modeled as follows [35]: 

𝑋(𝑡) = 𝑋(0) + 𝑎𝜙𝑖(𝑡, 𝑏) + 𝛿𝐵𝐵(𝑡)        (1) 

In this context, 𝑋(0) represents the initial state of the 

degradation process, and for computational simplicity, it is 

commonly hypothesized that the initial state 𝑋(0) =

0.𝐵(𝑡)denotes the standard Brownian motion. 𝑎𝜙𝑖(𝑡, 𝑏)stands 
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for the drift term of degradation, 𝑎  represents the drift 

coefficient. Due to variations in usage environments and 

processing materials among similar equipment, there exist 

certain differences in the degradation trajectories of each 

equipment. Therefore, in modeling performance degradation, 

the drift coefficient  𝑎  is regarded as a random variable, 

satisfying 𝑎~𝑁(𝜇𝑎, 𝛿𝑎
2) , to account for individual differences 

among equipment. 𝑏  is a fixed parameter describing the 

commonalities among similar equipment. 𝛿𝐵 represents the 

diffusion coefficient, with the assumption that the parameters  

𝑎 , 𝑏 and  𝛿𝐵 are mutually independent to simplify analysis. 

Eq. (1) represents a common form based on the Wiener 

degradation model, and different degradation patterns can be 

described by different drift terms. For instance, if the drift term 

is represented as 𝜙(𝑡, 𝑏) = 𝑡 , Eq. (1) becomes a linear 

degradation model, widely applied in RUL prediction studies 

[14-20]. In this paper, a RUL prediction method based on the 

Wiener process is proposed, which contains multiple 

degradation models, mainly including three typical degradation 

models, namely, linear function(𝑀1), power function(𝑀2) and 

exponential function (𝑀3) , i.e., 𝜙𝑖(𝑡, 𝑏) =

(𝜙1(𝑡, 𝑏), 𝜙2(𝑡, 𝑏), 𝜙3(𝑡, 𝑏)) = (𝑡, 𝑡𝑏 , 𝑒𝑥𝑝(𝑏𝑡)) .Specific 

Wiener process degradation models can be expressed 

as: 𝑀1 : 𝑋(𝑡) = 𝑎𝑡 + 𝛿𝐵𝐵(𝑡) , 𝑀2 : 𝑋(𝑡) = 𝑎𝑡𝑏 +

𝛿𝐵𝐵(𝑡),𝑀3:𝑋(𝑡) = 𝑎 𝑒𝑥𝑝(𝑏𝑡) + 𝛿𝐵𝐵(𝑡). 

2.2. Copula function theory 

Copula functions are a class of functions that connect the 

distribution functions of multiple random variables with their 

respective marginal distribution functions, and are therefore 

also referred to as connection functions. Taking binary variables 

as an example, its practical significance lies in connecting the 

marginal distribution and joint distribution of two random 

variables, establishing a mapping relationship between marginal 

and joint distributions, and separating the study of marginal and 

joint distributions. Sklar's theorem is an existence theorem for 

Copula functions. Its basic content is: if 𝐻(𝑥, 𝑦) is a bivariate 

joint distribution function with continuous marginal 

distributions 𝐹(𝑥)  and 𝐺(𝑦) , then a unique Copula function 

𝐶( )  exists such that 𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)) . Instead, if 

𝐶( ) is a Copula function ,𝐹(𝑥) and 𝐺(𝑦) are two arbitrary 

CDFs, then the function 𝐻(𝑥, 𝑦)defined by the above equation 

must be a joint distribution function, and the corresponding 

marginal distributions are precisely 𝐹(𝑥) and 𝐺(𝑦)  [36]. 

Assuming random variables𝑋 and 𝑌are correlated, let the joint 

distribution function of the two-dimensional random 

variable (𝑋, 𝑌) be represented as 𝐻(𝑥, 𝑦) , with marginal 

distributions 𝐹(𝑥) and 𝐺(𝑦) respectively. According to Sklar's 

theorem, a Copula function 𝐶( ) exists such that  

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦))          (2) 

If 𝐹(𝑥) and 𝐺(𝑦) are continuous, then 𝐶( ) is uniquely 

determined. The PDFs of 𝐻(𝑥, 𝑦)obtained through the Copula 

function is given by:  

ℎ(𝑥, 𝑦) = 𝑐(𝐹(𝑥), 𝐺(𝑦))𝑓(𝑥)𝑔(𝑥)         (3) 

where 𝑐(𝑢, 𝑣) =
𝜕𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
 , 𝑢 = 𝐹(𝑥) , 𝑣 = 𝐺(𝑦) . Here, 

𝑐( ) represents the PDF of the Copula function 𝐶( ) , 

𝑓(𝑥) and 𝑔(𝑦) are the PDFs of the marginal distributions 

𝐹(𝑥)and𝐺(𝑦), respectively. The Archimedean Copula function 

family is an important component of many types of Copula 

functions. Due to its simple construction and strong variability, 

it has been widely used. Three common Archimedean binary 

Copula functions are shown in the following Table 1.

Table 1. Three common Archimedean binary Copula functions. 

Function name Probability density function 𝑐(𝑢, 𝑣; 𝛼) Distribution function 𝐶(𝑢, 𝑣; 𝛼) Parameter range 

Frank Copula 
𝛼(1 − 𝑒−𝛼)𝑒−𝛼(𝑢+𝑣)

[(𝑒−𝛼𝑢 − 1)(𝑒−𝛼𝑣 − 1) − (1 − 𝑒−𝛼)]2
 −

1

𝛼
𝑙𝑛 (1 +

(𝑒−𝛼𝑢 −1)(𝑒−𝛼𝑣 − 1)

(𝑒−𝛼 −1)
)  𝛼 ∈ 𝑅\{0} 

Clayton Copula (1 + 𝛼)(𝑢𝑣)−𝛼−1(𝑢−𝛼 + 𝑣−𝛼 − 1)−2−
1
𝛼 (𝑢−𝛼 + 𝑣−𝛼 − 1)−

1
𝛼 𝛼 ∈ (1, ∞) 

Function name Probability density function 𝑐(𝑢, 𝑣; 𝛼) Distribution function 𝐶(𝑢, 𝑣; 𝛼) Parameter range 

Gumbel Copula 

𝑒𝑥𝑝 {−[(− 𝑙𝑛 𝑢)𝛼 + (− 𝑙𝑛 𝑣)𝛼]
1
𝛼} (𝑙𝑛 𝑢 . 𝑙𝑛 𝑣)𝛼−1

𝑢𝑣[(− 𝑙𝑛 𝑢)𝛼 + (− 𝑙𝑛 𝑣)𝛼]2−
1
𝛼

 

× {[(− 𝑙𝑛 𝑢)𝛼 + (− 𝑙𝑛 𝑣)𝛼]
1
𝛼 + 𝛼 − 1} 

𝑒𝑥𝑝 {−[(− 𝑙𝑛 𝑢)𝛼 + (− 𝑙𝑛 𝑣)𝛼]
1
𝛼} 𝛼 ∈ [1, ∞) 
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Among them, 𝛼 represents the parameter of the correlation 

dependence direction. When𝛼 > 0 , it indicates that there is  

a positive correlation between variables; when𝛼 < 0, it means 

there is a negative correlation between variables; when 𝛼 → 0, 

it means the variables tend to be independent. In order to 

illustrate the difference between the three Archimedean binary 

Copula functions, the paper takes 𝛼 = 2 and plots the PDF of 

each of the three Copula functions as shown in Fig.1.

  
(a) Frank Copula's PDF (b) Clayton Copula's PDF 

 

(c) Gumbel Copula's PDF 

Fig.1. PDF graphs of three Copula functions. 

From the PDF graphs of the aforementioned Copula 

functions, it can be observed that different Copula functions 

depict correlation differently. The Frank Copula is suitable for 

modeling symmetric dependence structures between variables, 

while the Clayton Copula effectively characterizes asymmetric 

lower-tail dependence, and the Gumbel Copula excels in 

describing asymmetric upper-tail dependence. Therefore, 

relying solely on a single Copula function to integrate data in 

practical applications may lead to distorted or inaccurate 

representations of the true dependency structure, particularly 

when the data exhibit complex or multi-modal dependence 

patterns. To address this, considering a mixture of multiple 

Copula functions becomes necessary. Such a mixed Copula 

function can better describe the dependence in the data and fuse 

the data more effectively. 

The model of the binary mixed Copula function is as follows: 

𝐶(𝑢1, 𝑢2) = ∑ 𝑘𝑖𝐶𝑖(𝑢1, 𝑢2; 𝛼𝑖)
𝑠
𝑖=1           (4) 

where 𝐶𝑖(𝑢1, 𝑢2; 𝛼𝑖)  is a known Copula function, 𝛼𝑖  is the 

corresponding parameter, 𝑘𝑖is the weight coefficient, and 0 ≤

𝑘𝑖 ≤ 1 , ∑ 𝑘𝑖
𝑠
𝑖=1 = 1 . Research indicates that mixed Copula 

functions remain Copula functions [37]. 

3. Lifetime prediction  

3.1. Lifetime prediction of single performance 

degradation data  

This paper adopts the concept of FHT to define the equipment 

lifetime, which means that when the equipment's performance 

degradation process  {𝑋(𝑡), 𝑡 ≥ 0}  first equals or exceeds the 

preset failure threshold 𝜔 , the equipment is considered to have 

failed [38,39], and the corresponding time is then considered as 

the equipment's lifetime. Based on the concept of FHT, lifetime  

T can be defined as  
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𝑇 = 𝑖𝑛𝑓{𝑡: 𝑋(𝑡) ≥ 𝜔|𝑋(0) < 𝜔}         (5) 

Without loss of generality, let the failure threshold 𝜔 > 0 . 

According to references [21] and [34], the lifetime PDF and 

distribution function of 𝑀1,𝑀2,and 𝑀3 are as follows: 

(1) The PDF and distribution function of the lifetime 

corresponding to the degradation model 𝑀1  are as 

follows: 

𝑓𝑇(𝑡) ≅
𝜔

√2𝜋𝑡3(𝛿𝑎
2𝑡+𝛿𝐵

2 )

𝑒𝑥𝑝 {−
(𝜔−𝜇𝑎𝑡)2

2𝑡(𝛿𝑎
2𝑡+𝛿𝐵

2 )
}       (6) 

𝐹𝑇(𝑡) = Φ(
𝜇𝑎𝑡−𝜔

√𝛿𝑎
2𝑡2+𝛿𝐵

2 𝑡

) + 𝑒𝑥𝑝 {
2𝜇𝑎𝜔

𝛿𝐵
2 +

2𝛿𝑎
2𝜔2

𝛿𝐵
4 }Φ(−

2𝛿𝑎
2𝜔𝑡+𝛿𝐵

2 (𝜇𝑎𝑡+𝜔)

𝛿𝐵
2√𝛿𝑎

2𝑡2+𝛿𝐵
2 𝑡

) (7) 

(2) The PDF and distribution function of the lifetime 

corresponding to the degradation model 𝑀2  are as 

follows:

𝑓𝑇(𝑡) ≅
1

√2𝜋𝑡3(𝛿𝑎
2𝑡2𝑏−1+𝛿𝐵

2 )

(𝜔 − (𝑡𝑏 − 𝑏𝑡𝑏)
𝜔𝛿𝑎

2𝑡2𝑏−1+𝜇𝑎𝛿𝐵
2

𝛿𝑎
2𝑡2𝑏−1+𝛿𝐵

2 ) 𝑒𝑥𝑝 {−
(𝜔−𝜇𝑎𝑡𝑏)

2

2𝑡(𝛿𝑎
2𝑡2𝑏−1+𝛿𝐵

2 )
}           (8) 

𝐹𝑇(𝑡) = 1 − 𝛷 (
𝜔−𝜇𝑎𝑡𝑏

√𝛿𝑎
2𝑡2𝑏+𝛿𝐵

2 𝑡

) + 𝑒𝑥𝑝 {
2𝜇𝑎𝜔𝑡𝑏

𝛿𝐵
2 𝑡

+
2𝛿𝑎

2𝜔2𝑡2𝑏

𝛿𝐵
4 𝑡2 }𝛷 (−

2𝛿𝑎
2𝜔𝑡2𝑏+𝛿𝐵

2 𝑡(𝜇𝑎𝑡𝑏+𝜔)

𝛿𝐵
2 𝑡√𝛿𝑎

2𝑡2𝑏+𝛿𝐵
2 𝑡

)           (9) 

 

(3) The PDF and distribution function of the lifetime 

corresponding to the degradation model 𝑀3  are as 

follows:

𝑓𝑇(𝑡) ≅
1

√2𝜋𝑡2(𝛿𝑎
2(𝑒𝑥𝑝(𝑏𝑡)−1)2+𝛿𝐵

2 𝑡)

(𝜔 − 𝛽(𝑡)
𝜔𝛿𝑎

2(𝑒𝑥𝑝(𝑏𝑡)−1)+𝜇𝑎𝛿𝐵
2 𝑡

𝛿𝑎
2(𝑒𝑥𝑝(𝑏𝑡)−1)2+𝛿𝐵

2 𝑡
) × 𝑒𝑥𝑝 {−

(𝜔−𝜇𝑎(𝑒𝑥𝑝(𝑏𝑡)−1))
2

2(𝛿𝑎
2(𝑒𝑥𝑝(𝑏𝑡)−1)2+𝛿𝐵

2 𝑡)
}    (10) 

with𝛽(𝑡) = 𝑒𝑥𝑝(𝑏𝑡) − 𝑏𝑡 𝑒𝑥𝑝(𝑏𝑡) − 1. 

𝐹𝑇(𝑡) = 1 − 𝛷 (
𝜔−𝜇𝑎 𝑒𝑥𝑝(𝑏𝑡)

√𝛿𝑎
2(𝑒𝑥𝑝(𝑏𝑡))2+𝛿𝐵

2 𝑡

) + 𝑒𝑥𝑝 {
2𝜇𝑎𝜔 𝑒𝑥𝑝(𝑏𝑡)

𝛿𝐵
2 𝑡

+
2𝛿𝑎

2𝜔2(𝑒𝑥𝑝(𝑏𝑡))2

𝛿𝐵
4 𝑡2 } × 𝛷 (−

2𝛿𝑎
2𝜔(𝑒𝑥𝑝(𝑏𝑡))2+𝛿𝐵

2 𝑡(𝜇𝑎 𝑒𝑥𝑝(𝑏𝑡)+𝜔)

𝛿𝐵
2 𝑡√𝛿𝑎

2(𝑒𝑥𝑝(𝑏𝑡))2+𝛿𝐵
2 𝑡

)  (11) 

 

In the above equations, 𝛷(. ) denotes the cumulative 

distribution function of the standard normal distribution. 𝜇𝑎and 

𝛿𝑎
2 represent the mean and variance of the drift coefficient 𝑎 , 

which follows a normal distribution. The proof process for Eqs. 

(7), (9), and (11) is shown in Appendix A. 

For the current time 𝑡𝑖, according to the concept of FHT, the 

RUL of the equipment can be defined as 

𝐿𝑡𝑖
= 𝑖𝑛𝑓{𝑙𝑡𝑖 > 0: 𝑋(𝑙𝑡𝑖 + 𝑡𝑖) ≥ 𝜔}  (12) 

where 𝑙𝑡𝑖  represents the RUL of the equipment at time 𝑡𝑖 . 

Similarly, according to the literature [21], the remaining useful 

life PDFs of 𝑀1 , 𝑀2 , and 𝑀3 can be obtained, and RUL 

probability distribution functions of the three models are also 

deduced as shown below: 

(1) The PDF and distribution function of the RUL 

corresponding to the degradation model 𝑀1  are as 

follows: 

𝑓(𝑙𝑡𝑖) ≅
𝜔−𝑋(𝑡𝑖)

√2𝜋𝑙𝑡𝑖
3 (𝛿𝐵

2+𝑙𝑡𝑖
𝛿𝑎

2)
𝑒𝑥𝑝 (−

(𝜔−𝑋(𝑡𝑖)−𝜇𝑎𝑙𝑡𝑖
)
2

2𝑙𝑡𝑖
(𝛿𝐵

2+𝑙𝑡𝑖𝛿𝑎
2)

)   (13)

𝐹(𝑙𝑡𝑖) = 1 − 𝛷 (
𝜔−𝑋(𝑡𝑖)−𝜇𝑎𝑙𝑡𝑖

√𝑙𝑡𝑖
𝛿𝐵

2+𝑙𝑡𝑖
2 𝛿𝑎

2
) + 𝑒𝑥𝑝 {

2𝜇𝑎(𝜔−𝑋(𝑡𝑖))

𝛿𝐵
2 +

2𝛿𝑎
2(𝜔−𝑋(𝑡𝑖))

2

𝛿𝐵
4 } × 𝛷 (−

2𝛿𝑎
2(𝜔−𝑋(𝑡𝑖))𝑙𝑡𝑖+𝛿𝐵

2(𝜇𝑎𝑙𝑡𝑖+𝜔−𝑋(𝑡𝑖))

𝛿𝐵
2√𝛿𝑎

2𝑙𝑡𝑖
2 +𝛿𝐵

2 𝑙𝑡𝑖

)       (14) 

(2) The PDF and distribution function of the RUL 

corresponding to the degradation model 𝑀2  are as 

follows:

𝑓(𝑙𝑡𝑖) =
1

√2𝜋𝑙𝑡𝑖
3 (𝛿𝐵

2 𝑙𝑡𝑖
+𝛿𝑎

2(𝛾(𝑙𝑡𝑖
))

2
)

(𝜔𝑡𝑖
− (𝛾(𝑙𝑡𝑖) − 𝑏𝑙𝑡𝑖(𝑙𝑡𝑖 + 𝑡𝑖)

𝑏−1
))

𝛿𝑎
2𝛾(𝑙𝑡𝑖

)𝜔𝑡𝑖
+𝜇𝑎𝛿𝐵

2 𝑙𝑡𝑖

𝛿𝑎
2(𝛾(𝑙𝑡𝑖

))
2
+𝛿𝐵

2 𝑙𝑡𝑖

× 𝑒𝑥𝑝 (−
(𝜔𝑡𝑖

−𝜇𝑎𝛾(𝑙𝑡𝑖
))

2

2(𝛿𝐵
2 𝑙𝑡𝑖

+(𝛾(𝑙𝑡𝑖
))

2
𝛿𝑎

2)

) (15) 

with𝜔𝑡𝑖
= 𝜔 − 𝑋(𝑡𝑖),𝛾(𝑙𝑡𝑖) = (𝑙𝑡𝑖 + 𝑡𝑖)

𝑏
− 𝑡𝑖

𝑏. 
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𝐹(𝑙𝑡𝑖) = 1 − 𝛷 (
𝜔−𝑋(𝑡𝑖)−𝜇𝑎𝑙𝑡𝑖

𝑏

√𝑙𝑡𝑖𝛿𝐵
2+𝑙𝑡𝑖

2𝑏𝛿𝑎
2
) + 𝑒𝑥𝑝 {

2𝜇𝑎(𝜔−𝑋(𝑡𝑖))𝑙𝑡𝑖
𝑏

𝛿𝐵
2 𝑙𝑡𝑖

+
2𝛿𝑎

2(𝜔−𝑋(𝑡𝑖))
2
𝑙𝑡𝑖
2𝑏

𝛿𝐵
4 𝑙𝑡𝑖

2 } × 𝛷 (−
2𝛿𝑎

2(𝜔−𝑋(𝑡𝑖))𝑙𝑡𝑖
2𝑏+𝛿𝐵

2 𝑙𝑡𝑖(𝜇𝑎𝑙𝑡𝑖
𝑏 +𝜔−𝑋(𝑡𝑖))

𝛿𝐵
2 𝑙𝑡𝑖√𝛿𝑎

2𝑙𝑡𝑖
2𝑏+𝛿𝐵

2 𝑙𝑡𝑖

) (16) 

(3) The PDF and distribution function of the RUL 

corresponding to the degradation model 𝑀3  are as 

follows:

𝑓(𝑙𝑡𝑖) =
1

√2𝜋𝑙𝑡𝑖
2 (𝛿𝐵

2 𝑙𝑡𝑖
+𝛿𝑎

2(𝛾(𝑙𝑡𝑖
))

2
)

(𝜔𝑡𝑖
− 𝛽(𝑙𝑡𝑖))

𝛿𝑎
2𝛾(𝑙𝑡𝑖

)𝜔𝑡𝑖
+𝜇𝑎𝛿𝐵

2 𝑙𝑡𝑖

𝛿𝑎
2(𝛾(𝑙𝑡𝑖

))
2
+𝛿𝐵

2 𝑙𝑡𝑖

𝑒𝑥𝑝 (−
(𝜔𝑡𝑖

−𝜇𝑎𝛾(𝑙𝑡𝑖
))

2

2(𝛿𝐵
2 𝑙𝑡𝑖+(𝛾(𝑙𝑡𝑖

))
2
𝛿𝑎

2)

)    (17) 

with 𝜔𝑡𝑖
= 𝜔 − 𝑋(𝑡𝑖),𝛾(𝑙𝑡𝑖) = 𝑒𝑥𝑝 (𝑏(𝑙𝑡𝑖 + 𝑡𝑖)) − 𝑒𝑥𝑝(𝑏𝑡𝑖),𝛽(𝑙𝑡𝑖) = (1 − 𝑏𝑙𝑡𝑖) 𝑒𝑥𝑝 (𝑏(𝑙𝑡𝑖 + 𝑡𝑖)) − 𝑒𝑥𝑝(𝑏𝑡𝑖). 

𝐹(𝑙𝑡𝑖) = 1 − 𝛷 (
(𝜔−𝑋(𝑡𝑖))−𝜇𝑎 𝑒𝑥𝑝(𝑏𝑙𝑡𝑖

)

√𝛿𝑎
2(𝑒𝑥𝑝(𝑏𝑙𝑡𝑖

))
2
+𝛿𝐵

2 𝑙𝑡𝑖

) + 𝑒𝑥𝑝 {
2𝜇𝑎(𝜔−𝑋(𝑡𝑖)) 𝑒𝑥𝑝(𝑏𝑙𝑡𝑖

)

𝛿𝐵
2 𝑙𝑡𝑖

+
2𝛿𝑎

2(𝜔−𝑋(𝑡𝑖))
2
(𝑒𝑥𝑝(𝑏𝑙𝑡𝑖

))
2

𝛿𝐵
4 𝑙𝑡𝑖

2 } ×

                                                                     𝛷 (−
2𝛿𝑎

2(𝜔−𝑋(𝑡𝑖))(𝑒𝑥𝑝(𝑏𝑙𝑡𝑖
))

2
+𝛿𝐵

2 𝑙𝑡𝑖(𝜇𝑎(𝑒𝑥𝑝(𝑏𝑙𝑡𝑖
))+𝜔−𝑋(𝑡𝑖))

𝛿𝐵
2 𝑙𝑡𝑖

√𝛿𝑎
2(𝑒𝑥𝑝(𝑏𝑙𝑡𝑖

))
2
+𝛿𝐵

2 𝑙𝑡𝑖
2

)                                                         (18) 

The method of proving the RUL probability distribution 

function for models 𝑀1,𝑀2,and 𝑀3 is shown in Appendix B. 

3.2. Lifetime prediction of dual performance degradation 

data  

This section focuses on equipment with two performance 

indicators and investigates methods for predicting equipment 

lifetime based on a bivariate Wiener process degradation model. 

It is initially required that the performance indicators of the 

equipment meet the following assumptions:  

Assumption 1: The degradation processes of the two 

performance indicators of the equipment can be modeled using 

Wiener processes with linear or nonlinear.  

Assumption 2: For the same equipment, the monitoring 

time and intervals of the two performance indicators remain 

synchronous.  

Assumption 3: There exists correlation in the degradation 

of the two performance indicators, and this correlation can be 

reasonably described using a certain bivariate Copula function. 

To predict the lifetime of equipment with dual performance 

degradation, let 𝑋(𝑡) = {𝑋1(𝑡), 𝑋2(𝑡)} denote the degradation 

values of the two performance indicators of the equipment at 

time 𝑡 , and let the failure threshold be denoted by 𝜔 =

(𝜔1, 𝜔2) .When either of the performance indicators 

in 𝑋(𝑡) exceeds its corresponding failure threshold, the 

equipment is considered to have failed. Therefore, the lifetime 

of the equipment with two performance indicators can be 

defined as: 

𝑇 = 𝑖𝑛𝑓{𝑡: 𝑋1(𝑡) ≥ 𝜔1𝑜𝑟𝑋2(𝑡) ≥ 𝜔2}      (19) 

After obtaining the PDFs of lifetime for the two 

performance indicators of the equipment separately, according 

to Sklar's theorem, there must exist a Copula function that can 

be used to analyze the correlation between the two performance 

indicators. The joint PDF of the lifetime of the two performance 

indicators can be obtained through the following equation:  

𝑓𝑇
𝑢𝑛𝑖𝑜𝑛(𝑡) = 𝑓𝑇

1(𝑡) + 𝑓𝑇
2(𝑡) − 𝑐(𝐹𝑇

1(𝑡), 𝐹𝑇
2(𝑡); 𝛼)𝑓𝑇

1(𝑡)𝑓𝑇
2(𝑡)  (20) 

where 𝑓𝑇
1(𝑡)  and 𝑓𝑇

2(𝑡)  are the PDFs of lifetime of the two 

performance indicators. 𝐹𝑇
1(𝑡) and 𝐹𝑇

2(𝑡) are the distribution 

functions of lifetime of the two performance indicators, 

respectively. 𝑓𝑇
𝑢𝑛𝑖𝑜𝑛(𝑡)represents the joint PDF of lifetime, and 

𝑐(𝐹𝑇
1(𝑡), 𝐹𝑇

2(𝑡); 𝛼) is the PDF of 𝐶(𝐹𝑇
1(𝑡), 𝐹𝑇

2(𝑡); 𝛼). 

Similarly, according to the concept of FHT, the RUL of 

equipment with two performance indicators can be defined as:  

𝐿𝑡𝑖
= 𝑖𝑛𝑓{𝑙𝑡𝑖 > 0: 𝑋1(𝑙𝑡𝑖 + 𝑡𝑖) ≥ 𝜔1𝑜𝑟𝑋2(𝑙𝑡𝑖 + 𝑡𝑖) ≥ 𝜔2}(21) 

where  𝑙𝑡𝑖 is the RUL of equipment at time 𝑡𝑖 , when the PDFs 

of RUL of the two performance indicators of equipment are 

obtained separately, the joint PDF of RUL of the two 

performance indicators can be obtained through the following 

equation: 

𝑓𝑢𝑛𝑖𝑜𝑛(𝑙𝑡𝑖) = 𝑓1(𝑙𝑡𝑖) + 𝑓2(𝑙𝑡𝑖) − 𝑐(𝐹1 (𝑙𝑡𝑖), 𝐹
2(𝑙𝑡𝑖); 𝛼)𝑓1(𝑙𝑡𝑖)𝑓

2(𝑙𝑡𝑖)    (22) 

In the equation, 𝑓1(𝑙𝑡𝑖)and 𝑓2(𝑙𝑡𝑖)are the PDFs of the RUL 

of the two performance indicators. 𝐹1 (𝑙𝑡𝑖) and𝐹2 (𝑙𝑡𝑖)  are the 

distribution functions of CDFs of the RUL of the two 

performance indicators, respectively. 𝑓𝑢𝑛𝑖𝑜𝑛(𝑙𝑡𝑖)represents the 
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joint PDF of RUL. 

4. Parameter estimation  

Due to the large number of parameters to be estimated, the 

stepwise maximum likelihood estimation method has the 

advantages of simple calculation and clear process, so the 

stepwise maximum likelihood estimation method is used to 

estimate the parameters in the model [40]. From the 

aforementioned degradation model, it can be seen that the 

parameters to be estimated are two performance indicators 

corresponding to the parameters 𝛩 = (𝜇𝑎, 𝛿𝑎, 𝛿𝐵, 𝑏)  in the 

degradation model and 𝛼 in the Copula function, respectively. 

It can be inferred that all parameters to be estimated can be 

divided into two parts for stepwise estimation. The first part 

consists of the drift coefficient 𝑎 and the diffusion coefficient 

𝛿𝐵within the degradation model. The second part comprises the 

parameter 𝛼within the Copula function. 𝛩 = (𝜇𝑎, 𝛿𝑎, 𝛿𝐵, 𝑏) can 

be estimated by utilizing the measured values of their respective 

performance indicators combined with the maximum likelihood 

method. Suppose 𝑋𝑖(𝑡𝑗)represents the performance degradation 

value measured by equipment 𝑖  at time 𝑡𝑗, then the degradation 

trajectory can be expressed as follows: 

𝑋𝑖(𝑡𝑗) = 𝑎𝑖𝜙(𝑡𝑗 , 𝑏) + 𝛿𝐵𝐵(𝑡𝑗)       (23) 

where 1 < 𝑖 ≤ 𝑛, 1 < 𝑗 ≤ 𝑚 , let 𝑋𝑖 =

(𝑋𝑖(𝑡1), 𝑋𝑖(𝑡2),⋯ , 𝑋𝑖(𝑡𝑚))
′
, 𝑋 = (𝑋1

′ , 𝑋2
′ , ⋯ , 𝑋𝑛

′ )′, and 

𝑡 = (𝑡1, 𝑡2, ⋯ , 𝑡𝑚)′ . 𝑋𝑖  follows a multivariate normal 

distribution, with its mean and variance being: 

𝜇0 = 𝜇𝑎𝑡,∑ = 𝛿𝑎
2𝑡𝑡′ + 𝛺        (24) 

with 

Ω = 𝛿𝐵
2𝑄      (25) 

𝑄 =

[
 
 
 
 
𝑡1 𝑡1 𝑡1 ⋯ 𝑡1
𝑡1 𝑡2 𝑡2 ⋯ 𝑡2
𝑡1 𝑡2 𝑡3 ⋯ 𝑡3
⋮ ⋮ ⋮ ⋱ ⋮
𝑡1 𝑡2 𝑡3 ⋯ 𝑡𝑚]

 
 
 
 

      (26) 

Estimation of the unknown parameters (𝜇𝑎, 𝛿𝑎, 𝛿𝐵, 𝑏) in the 

degradation model using the maximum likelihood method, 

based on the assumption of independence between degradation 

measurements of different equipment, the log-likelihood 

function is: 

𝑙(𝑌) = −
𝑚𝑛 𝑙𝑛(2𝜋)

2
−

𝑛

2
𝑙𝑛|𝛴| −

1

2
∑ (𝑋𝑖 − 𝜇𝑎𝑡)′𝛴−1𝑛

𝑖=1 (𝑋𝑖 − 𝜇𝑎𝑡)(27) 

with 

⌊Σ⌋ = ⌊Ω⌋(1 + 𝛿𝑎
2𝑡′Ω−1𝑡), Σ−1 = Ω−1 𝛿𝑎

2

1+𝛿𝑎
2𝑡′Ω−1𝑡

Ω−1𝑡𝑡′Ω−1 (28) 

Taking the first-order partial derivatives of the above 

equation with respect to 𝜇𝑎 and 𝛿𝑎  respectively, and setting 

them equal to zero, we can obtain:  

𝜇𝑎

∧
=

∑ 𝑡′𝛺−1𝑋𝑖
𝑛
𝑖=1

𝑛𝑡′𝛺−1𝑡
        (29) 

𝛿
∧

𝑎
2 =

1

𝑛(𝑡′𝛺−1𝑡)2
∑ (𝑋𝑖 − 𝜇𝑎

∧
𝑡)

′
𝑛
𝑖=1 𝛺−1𝑡𝑡′ (𝑋𝑖 − 𝜇𝑎

∧
𝑡) −

1

𝑡′𝛺−1𝑡
 (30) 

Substituting Eqs. (29) and (30) into Eq. (27), we get:

𝑙(𝑏, 𝛿𝐵) = −
𝑚𝑛 𝑙𝑛(2𝜋)

2
−

𝑛

2
−

𝑛

2
𝑙𝑛|𝛺| −

1

2
[∑ 𝑋𝑖

′𝛺𝑋𝑖
𝑛
𝑖=1 −

∑ (𝑡′𝛺−1𝑋𝑖)
2𝑛

𝑖=1

𝑡′𝛺−1𝑡
] −

𝑛

2
𝑙𝑛 [

∑ (𝑡′𝛺−1𝑋𝑖)
2𝑛

𝑖=1

𝑛𝑡′𝛺−1𝑡
−

∑ (𝑡′𝛺−1𝑋𝑖)
2𝑛

𝑖=1

𝑛2𝑡′𝛺−1𝑡
]      (31) 

By maximizing Eq. (31), we can obtain estimates for 𝛿𝐵 and 

𝑏, and then substituting them into Eqs. (29) and (30) allows us 

to compute estimates for 𝜇𝑎 and 𝛿𝑎 .To estimate the 

parameters 𝛼 in the Copula function, assuming there are N 

equipment, each undergoing M measurements. Let 

𝑋𝑘𝑖(𝑡𝑖𝑗)represent the measurement of the i-th equipment at time 

𝑡𝑖𝑗 , where 𝑖 = 1,2,⋯𝑁， 𝑗 = 1,2,⋯ 𝑀 ,and𝑘 = 1,2 .Then the 

experimental data for the k-th performance degradation value 

can be represented as: 

𝑋𝑘(𝑡) = [

𝑋𝑘1(𝑡11) 𝑋𝑘1(𝑡12) ⋯ 𝑋𝑘1(𝑡1𝑀)

𝑋𝑘2(𝑡21) 𝑋𝑘2(𝑡22) ⋯ 𝑋𝑘2(𝑡2𝑀)
⋮ ⋮ ⋮ ⋮

𝑋𝑘𝑁(𝑡𝑁1) 𝑋𝑘𝑁(𝑡𝑁2) ⋯ 𝑋𝑘𝑁(𝑡𝑁𝑀)

]     (32) 

The increment of the k-th performance degradation value of 

the i-th equipment in the time interval [𝑡𝑖𝑗−1, 𝑡𝑖𝑗] is 𝛥𝑋𝑘𝑖 =

𝑋𝑘𝑖(𝑡𝑖𝑗) − 𝑋𝑘𝑖(𝑡𝑖𝑗−1) . 𝛥𝜙𝑘(𝑡𝑖𝑗) = 𝛥𝜙𝑘(𝑡𝑖𝑗) − 𝛥𝜙𝑘(𝑡𝑖𝑗−1) , 

𝛥𝑡𝑖𝑗 = 𝛥𝑡𝑖𝑗 − 𝛥𝑡𝑖𝑗−1 , 𝛥𝑥𝑘𝑖 = 𝑥𝑘𝑖(𝑡𝑖𝑗) − 𝑥𝑘𝑖(𝑡𝑖𝑗−1) . By the 

nature of the Wiener process, it follows that 𝛥𝑋𝑘𝑖 ∼

𝑁(𝑎𝑘𝛥𝜙𝑘(𝑡𝑖𝑗), 𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗) .Therefore, the PDF of the increment 

of the performance degradation value 𝛥𝑋𝑘𝑖 is: 

𝑓(𝛥𝑥𝑘𝑖|𝑎𝑘) =
1

√2𝜋𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗

𝑒𝑥𝑝 (−
(𝛥𝑥𝑘𝑖−𝑎𝑘𝛥𝜙𝑘(𝑡𝑖𝑗))

2

2𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗

)     (33) 

When 𝑎𝑘is a random variable and follows𝑎𝑘 ∼ 𝑁(𝜇𝑎𝑘 , 𝛿𝑎𝑘
2 ), its 

corresponding PDF is 

𝑓(𝑎𝑘) =
1

√2𝜋𝛿𝑎𝑘
2

𝑒𝑥𝑝 (−
(𝑎𝑘−𝜇𝑎𝑘)2

2𝛿𝑎𝑘
2 )      (34) 

Using the law of total probability for continuous random 

variables, we can get: 
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𝑓(𝛥𝑥𝑘𝑖) = ∫ 𝑓(𝛥𝑥𝑘𝑖|𝑎𝑘)
+∞

−∞
𝑓(𝑎𝑘)𝑑𝑎𝑘 =

1

√𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗+𝛿𝑎𝑘

2 𝛥𝜙𝑘
2(𝑡𝑖𝑗)

𝑒𝑥𝑝 (−
(𝛥𝑥𝑘𝑖−𝜇𝑘𝛥𝜙𝑘(𝑡𝑖𝑗))

2

2(𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗+𝛿𝑎𝑘

2 𝛥𝜙𝑘
2(𝑡𝑖𝑗))

)        (35) 

Meanwhile, the PDF of the degradation increment value 

𝛥𝑋𝑘𝑖can be represented by its cumulative distribution function 

𝐹(𝛥𝑥𝑘𝑖) = 𝛷 (
𝛥𝑥𝑘𝑖−𝜇𝑎𝑘𝛥𝑡𝑖𝑗

𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗+𝛿𝑎𝑘

2 𝛥𝜙𝑘
2(𝑡𝑖𝑗)

)       (36) 

When considering two performance degradation characteristics 

of the equipment, according to Sklar's theorem, there exists a 

Copula function 𝐶(. )such that:  

𝐻(𝛥𝑋1𝑖, 𝛥𝑋2𝑖) = 𝐶(𝐹(𝛥𝑥1𝑖), 𝐹(𝛥𝑥2𝑖))      (37) 

Thus, the maximum likelihood function of the performance 

degradation data can be obtained as:

𝐿(𝛼) = Π𝑁
𝑖=1 Π𝑀

𝑗=1 𝑐(𝐹(𝛥𝑥1𝑖), 𝐹(𝛥𝑥2𝑖)) Π2
𝑘=1 𝑓(𝛥𝑥𝑘) =

Π𝑁
𝑖=1 Π𝑀

𝑗=1 𝑐 (𝛷 (
𝛥𝑥1𝑖−𝜇𝑎1𝛥𝑡𝑖𝑗

𝛿𝐵1
2 𝛥𝑡𝑖𝑗+𝛿𝑎1

2 𝛥𝜙1
2(𝑡𝑖𝑗)

) , 𝛷 (
𝛥𝑥2𝑖−𝜇𝑎2𝛥𝑡𝑖𝑗

𝛿𝐵2
2 𝛥𝑡𝑖𝑗+𝛿𝑎2

2 𝛥𝜙2
2(𝑡𝑖𝑗)

)) − Π2
𝑘=1

1

√𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗+𝛿𝑎𝑘

2 𝛥𝜙𝑘
2(𝑡𝑖𝑗)

𝑒𝑥𝑝 (−
(𝛥𝑥𝑘𝑖−𝜇𝑘𝛥𝜙𝑘(𝑡𝑖𝑗))

2

2(𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗+𝛿𝑎𝑘

2 𝛥𝜙𝑘
2(𝑡𝑖𝑗))

)  (38) 

Taking the logarithm of Eq. (38) on both sides yields:

𝑙𝑜𝑔(𝐿(𝛼)) = ∑ ∑ 𝑙𝑜𝑔 𝑐 (𝛷 (
𝛥𝑥1𝑖−𝜇𝑎1𝛥𝑡𝑖𝑗

𝛿𝐵1
2 𝛥𝑡𝑖𝑗+𝛿𝑎1

2 𝛥𝜙1
2(𝑡𝑖𝑗)

) , 𝛷 (
𝛥𝑥2𝑖−𝜇𝑎2𝛥𝑡𝑖𝑗

𝛿𝐵2
2 𝛥𝑡𝑖𝑗+𝛿𝑎2

2 𝛥𝜙2
2(𝑡𝑖𝑗)

))𝑀
𝑗=1

𝑁
𝑖=1 −

1

2
∑ ∑ ∑ 𝑙𝑜𝑔 (𝛿𝐵𝑘

2 𝛥𝑡𝑖𝑗 +2
𝑘=1

𝑀
𝑗=1

𝑁
𝑖=1

                                                      𝛿𝑎𝑘
2 𝛥𝜙𝑘

2(𝑡𝑖𝑗)) − ∑ ∑ ∑ 𝑙𝑜𝑔 (
(𝛥𝑥𝑘𝑖−𝜇𝑘𝛥𝜙𝑘(𝑡𝑖𝑗))

2

2(𝛿𝐵𝑘
2 𝛥𝑡𝑖𝑗+𝛿𝑎𝑘

2 𝛥𝜙𝑘
2(𝑡𝑖𝑗))

)2
𝑘=1

𝑀
𝑗=1

𝑁
𝑖=1              (39) 

The unknown parameter 𝛼  in the model is estimated by 

maximizing Eq. (39). In this paper, the “Fminsearch” function 

in Matlab, which is a multidimensional search method, is used 

to achieve this. 

5. Simulation experiment study 

This section will validate the practicality and effectiveness of 

the proposed method using simulated data, real LED lighting 

system data, and crack degradation data from metal equipment. 

Since different Copula functions used in modeling will yield 

different prediction results, selecting a Copula function with 

good goodness of fit is crucial based on practical scenarios. This 

paper employs the Akaike Information Criterion (AIC),  

a widely applicable standard for measuring the goodness of fit 

of statistical models, for Copula function selection. Thus, the 

AIC can be used to choose an appropriate Copula function [41]. 

𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿 + 2𝑚        (40) 

where 𝑙𝑛 𝐿  is the logarithmic maximum likelihood function 

value corresponding to the model, m is the number of 

parameters in the model. A smaller AIC value indicates a better 

fit, meaning that the Copula function with the lowest AIC value 

is considered the best choice. 

In order to more intuitively demonstrate the predictive 

performance of the degradation model, the total mean square 

error (TMSE), root mean square error (RMSE) and mean 

absolute error (MAE) are further calculated for different 

degradation models using different prediction methods [26]. 

The TMSE can be calculated from the mean square error. 

𝑀𝑆𝐸𝑘 = ∫ (𝑙𝑘 − 𝑙𝑘̃)
2∞

0
𝑓𝐿𝑘⌊𝑋1:𝑘

(𝐿𝑘⌊𝑋1:𝑘)𝑑𝑙𝑘      (41) 

where 𝑙𝑘 and 𝑙𝑘
~

 represent the actual and predicted RUL of the 

equipment at time 𝑡𝑘 , respectively.𝑓𝐿𝑘|𝑋1:𝑘
(𝐿𝑘|𝑋1:𝑘) represents 

the PDF of RUL of the equipment . From this, we can calculate 

the TMSE. 

𝑇𝑀𝑆𝐸 =
∑ 𝑀𝑆𝐸𝑘

𝑛
𝑘=1

𝑛
         (42) 

where 𝑛 is the total number of predicted points. N represents the 

total number of experimental samples. TMSE is widely used in 

the field of degradation modeling to evaluate the fitting 

accuracy of models. The minimum TMSE value corresponds to 

the best fitting accuracy and is therefore commonly used as  

a criterion for model selection [42]. RMSE is one of the 

common metrics used to assess the accuracy of predictive 

models. It measures the degree of deviation between the 

predicted value and the true value, and is calculated as the 

square root of the sum of the squares of the differences between 

the predicted value and the true value. The smaller the value of 

RMSE is, the smaller the prediction error of the model is, and 

the better the predictive ability of the model, which is calculated 

as follows: 
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𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (𝑙𝑘 − 𝑙𝑘

∼

)
2

𝑛
𝑘=1        (43) 

MAE is a metric used to assess the accuracy of prediction 

models. It is the average of the absolute differences between 

predicted values and actual values. The specific calculation 

formula is: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑙𝑘 − 𝑙𝑘

∼

|𝑛
𝑘=1         (44) 

The smaller the MAE, the closer the predicted values are to 

the true values, indicating higher predictive accuracy of the 

model. 

5.1. Simulation experiment data 

To verify the RUL prediction effectiveness of the method 

proposed in this paper, we discretized model 𝑀1 and simulated 

30 sets of degradation data. We assumed the parameters in the 

degradation model to be 𝜇𝑎 = 0.1 , 𝛿𝑎 = 0.01 , and 𝛿𝑏 =

0.5 .Each sample is observed 24 times, with observation 

intervals of 5 hours. The simulation data are shown in Fig.2. To 

illustrate that the equipment has two performance degradation 

characteristics, we divide the simulated degradation data into 

two groups, each representing one type of performance 

degradation data for the equipment.

 
 

(a) Degradation data of performance Ⅰ (b) Degradation data of performance II 

Fig. 2. Simulation degradation data of M1. 

To compare the differences in RUL prediction between 

single-performance and dual-performance degradation data, 

this study also simulates and analyzes RUL prediction results 

using two single-performance degradation datasets, designated 

as Method I and Method II, respectively. The dual-performance 

degradation models constructed using a single Frank Copula 

function, Clayton Copula function, and Gumbel Copula 

function are labeled as Method III, Method IV, and Method V, 

respectively. For the mixed Copula function approaches: 

The model integrating Frank Copula function and Clayton 

Copula function is denoted as Method VI; 

The model combining Frank Copula function and Gumbel 

Copula function is designated as Method VII; 

The model merging Clayton Copula function and Gumbel 

Copula function is labeled as Method VIII; 

The mixed model incorporating Frank Copula function, 

Clayton Copula function, and Gumbel Copula function is 

identified as Method IX. 

By applying the degradation data to the aforementioned 

methods, the unknown parameters in each model are estimated 

using a two-step maximum likelihood estimation method, with 

results summarized in Table 2. 

 

Table 2. Parameter estimates for different Copula functions 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  0.0001 1 - - -814.8203 1631.6410 

Clayton 1.0500e-05 - 1 - -814.8206 1631.6412 

Gumbel 1.09895 - - 1 -814.8330 1631.6660 

k1Frank+ k2Clayton 5.0000e-11 0.0200 0.9800 - -20.4287 46.8574 

k1Frank+ k3Gumbel 1.0000 3.9098e-04 - 0.9996 -493.1649 992.3298 

k2Clayton+ k3Gumbel  1.0000 - 2.1441e-16 1.0000 -783.9734 1573.9468 

k1Frank+ k2Clayton+ k3Gumbel 1.0000 8.9873e-05 0.0018 0.9981 -784.1568 1576.3136 
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Based on Table 2, it can be observed that the parameter 

values estimated using different Copula functions vary 

significantly. The log-likelihood values obtained from using  

a single Copula function are all lower than those derived from 

any mixed Copula function. Furthermore, the AIC values 

estimated with a single Copula function are greater than those 

estimated using any mixed Copula function. Therefore, the 

mixed Copula function model should be prioritized for 

predicting the RUL of equipment. The estimated parameters are 

substituted into their corresponding remaining useful life PDFs, 

and the resulting curves are plotted as shown below.

  
(a) PDF curves of RUL predicted by method Ⅰ (b) PDF curves of RUL predicted by method II 

Fig.3. PDF curves of RUL predicted by the single performance degradation data. 

  
(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 

 

(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 4. PDF curves of RUL predicted by single Copula functions. 
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(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  
(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.5. PDF curves of RUL predicted by mixed Copula functions. 

 

Fig.6. RUL curves predicted by different methods. 

As illustrated in Figs. 3, 4, and 5, the RUL of the equipment 

can be predicted using single performance degradation data, two 

performance degradation data based on a single Copula function, 

or a mixed Copula function, yet the outcomes vary distinctly, 

the PDF curves of RUL predicted by single Copula functions 

and mixed Copula functions (with two performance degradation 

datasets) are notably higher and sharper than those from single 

degradation data, reflecting reduced prediction uncertainty due 

to more comprehensive utilization of degradation information 

for enhanced accuracy. While the PDF curves from single and 

mixed Copula functions appear visually similar, their key 

divergence lies in the error between predicted and actual RUL. 

As can be seen from Fig. 6, compared to RUL prediction 

methods using single performance degradation data or a single 

Copula function, the hybrid Copula function-based method 

proposed in this paper yields predicted RUL values closer to the 

actual values. To quantitatively evaluate prediction errors, this 

study calculates TMSE, RMSE, and MAE values, as detailed in 

Table 3.
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Table 3. Errors of different prediction methods. 

Method TMSE RMSE MAE 

Performance I (I) 8.2360e+03 1.0651e+03 27.0926 

Performance II (II) 8.7205e+03 1.2485e+03 29.9124 

Frank (Ⅲ) 4.4263e+03 279.3134 14.2076 

Clayton (Ⅳ) 4.4289e+03 279.5082 14.2091 

Gumbel (Ⅴ) 4.4290e+03 279.5096 14.2092 

k1Frank+ k2Clayton (Ⅵ) 2.7058e+03 264.8426 13.8784 

k1Frank+ k3Gumbel (Ⅶ) 3.6891e+03 267.5347 13.9660 

k2Clayton+ k3Gumbel (Ⅷ) 4.0515e+03 268.2546 13.9884 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 4.1632e+03 269.9203 14.0330 

 

  

(a) TMSE values for different methods (b) RMSE values for different methods 

 

(c) MAE values for different methods 

Fig. 7. Comparison of prediction errors across different methods. 

From Table 3 and Fig.7, it can be seen that the prediction 

errors vary according to the method used. The RUL prediction 

errors based on the two performance degradation data using 

single Copula and mixed Copula functions are smaller than 

those based on single performance degradation data, and the 

RUL prediction errors based on the mixed Copula functions are 

lower than those based on the single Copula functions. Among 

the nine RUL prediction methods, predictions based on the 

mixed Copula function combines Frank Copula and Clayton 

Copula yield the smallest TMSE, RMSE, and MAE values, 

indicating that this method is particularly suitable for the 

degradation data, resulting in minimal prediction errors and the 

most accurate outcomes. This method can be selected based on 

the AIC value. Additionally, Table 3 shows that the TMSE, 
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RMSE, and MAE values predicted by the mixed Copula 

function of Frank Copula, Clayton Copula, and Gumbel Copula 

are greater than those predicted by any other two mixed Copula 

functions, suggesting that having a larger variety of mixed 

Copula functions in practical applications does not necessarily 

lead to better results, but rather that specific selections should 

be made based on requirements. 

After discretizing model 𝑀2, 30 sets of degradation data are 

generated through simulation. Assuming that the parameters in 

the degraded model are 𝜇𝑎 = 0.1 ,𝛿𝑎 = 0.01 ,𝛿𝑏 = 0.05 , and 

𝑏 = 0.02, respectively. Each sample is observed 24 times with 

a time interval of 5 hours, the simulation data are shown in Fig. 

7. In order to illustrate that the equipment has two performance 

degradation characteristics, the simulated degradation data are 

divided into two groups, which represent the two performance 

degradation data of the equipment.

  
(a) Degradation data of performance Ⅰ (b) Degradation data of performance II 

Fig. 8. Simulation degradation data of M2 

 

The parameters in the degradation model are estimated by 

substituting the above two performance degradation data into 

different methods using the stepwise maximum likelihood 

method, as shown in Table 4.

Table 4. Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  1.6653e-16 1 - - 243.6016 -485.2032 

Clayton 1.0996e-15 - 1 - 240.7715 -479.5430 

Gumbel 1.9975 - - 1 227.7007 -453.4014 

k1Frank+ k2Clayton 1.7764e-15 0.9984 0.0016 - 252.8338 -499.6676 

k1Frank+ k3Gumbel 1.0000 0.9424 - 0.0576 256.7494 -507.4988 

k2Clayton+ k3Gumbel  1.0000 - 0.9424 0.0576 264.0263 -522.0526 

k1Frank+ k2Clayton+ k3Gumbel 1.0000 0.0000 0.8824 0.1176 261.3849 -514.7698 

 

From Table 4, it can be observed that the log-likelihood 

values estimated using single Copula functions are lower than 

those estimated by any mixed Copula function. Furthermore, 

the AIC and BIC values estimated by the single Copula function 

are consistently higher than those for mixed Copula functions. 

Therefore, mixed Copula function models should be prioritized 

for predicting the RUL of the equipment. The estimated 

parameters are substituted into the corresponding PDFs of RUL 

for different methods, and the resulting graphs are shown below.
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(a) PDF curves of RUL predicted by performance Ⅰ (b) PDF curves of RUL predicted by performance II 

Fig.9. PDF curves of RUL predicted by the single performance degradation data. 

  
(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 

 

(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 10. PDF curves of RUL predicted by single Copula functions. 
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(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  
(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.11. PDF curves of RUL predicted by mixed Copula functions. 

 

 

Fig.12. RUL curves predicted by different methods. 

From Figs. 9, 10, and 11, it can be seen that both single 

performance degradation data and the two performance 

degradation datasets based on single Copula and mixed Copula 

functions can predict the RUL of equipment. As the number of 

measurement points increases, the curves of remaining useful 

life PDFs become higher and sharper, indicating a gradual 

decrease in prediction uncertainty. Notably, the remaining 

useful life PDF curves predicted using single Copula and mixed 

Copula functions are higher and sharper than those predicted 

using single performance degradation data, suggesting that the 

predictions made using single Copula and mixed Copula 

functions exhibit lower uncertainty. The differences between the 

PDF curves predicted using single Copula and mixed Copula 

functions remain small, with the main distinction being the 

varying errors between the predicted and actual RUL. It can be 

seen from Fig.12 that compared with the RUL prediction 

methods using single performance degradation data and a single 

Copula function, the RUL values predicted by the proposed 
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RUL prediction method based on the hybrid Copula function in 

this paper are still closer to the actual RUL values. The TMSE, 

RMSE, and MAE values corresponding to different methods are 

shown in Table 5.

Table 5. Errors of different prediction methods. 

Method TMSE RMSE MAE 

Performance I (I) 7.4495e+04 3.6250e+03 47.2338 

Performance II (II) 8.0899e+04 3.6528e+03 49.5831 

Frank (Ⅲ) 6.8977e+04 2.3963e+03 44.2321 

Clayton (Ⅳ) 6.8984e+04 2.3967e+03 44.2350 

Gumbel (Ⅴ) 7.1108e+04 2.4022e+03 44.2827 

k1Frank+ k2Clayton (Ⅵ) 6.8981e+04 2.3803e+03  44.0514 

k1Frank+ k3Gumbel (Ⅶ) 6.8980e+04 2.3601e+03 43.9850 

k2Clayton+ k3Gumbel (Ⅷ) 6.8976e+04 2.3518e+03 43.9722 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 6.8978e+04 2.3557e+03 43.9817 

 

  

(a) TMSE values for different methods (b) RMSE values for different methods 

 

(c) MAE values for different methods 

Fig. 13. Comparison of prediction errors across different methods. 

From Table 5 and Fig.13, it is evident that the RUL errors 

predicted based on both single Copula and mixed Copula 

functions for two performance degradation datasets are lower 

than those predicted using single performance degradation data. 

Among these, the TMSE, RMSE, and MAE values predicted 

using the mixed Copula function are all lower than those 
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predicted using the single Copula function and single 

performance degradation data. Among the above nine RUL 

prediction methods, the method based on the mixed Copula 

function composed of Clayton Copula and Gumbel Copula has 

the smallest values of TMSE, RMSE, and MAE, and also has 

the smallest corresponding AIC value, indicating. its optimal 

suitability for the analyzed degradation data. The values of 

TMSE, RMSE, and MAE predicted by the mixed Copula 

function composed of Frank Copula, Clayton Copula, and 

Gumbel Copula are larger than those predicted by the mixed 

Copula function composed of Clayton Copula and Gumbel 

Copula. This again demonstrates that in practical RUL 

predictions, having more types of mixed Copula functions is not 

necessarily better; specific selection is required. 

After discretizing model 𝑀3, 30 sets of degradation data are 

generated through simulation. It is assumed that the parameters 

in the degradation model are 𝜇𝑎 = 1,𝛿𝑎 = 20,𝛿𝑏 = 1, and 𝑏 =

0.01. Each sample is observed 24 times, with a time interval of 

5 hours, and the simulation data are shown in Fig.14. Similarly, 

the simulated degradation data are divided into two groups, 

representing two types of performance degradation data for the 

equipment.

  
(a) Degradation data of performance Ⅰ (b) Degradation data of performance II 

Fig. 14. Simulation degradation data of M3 

The simulated degradation data for 𝑀3 are substituted into 

different predictive methods, using the stepwise maximum 

likelihood method to estimate the parameters in the model, as 

shown in Table 6.

Table 6. Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  7.7696 1 - - -730.5116 1463.0232 

Clayton 3.1831 - 1 - -743.2890 1488.5780 

Gumbel 2.6636 - - 1 -741.9119 1485.8238 

k1Frank+ k2Clayton 5.0000e-11 0.2000 0.8000 - -658.8697 1323.7394 

k1Frank+ k3Gumbel 1.0000 0.1681 - 0.8319 -411.4020 828.8040 

k2Clayton+ k3Gumbel  2.9716 - 0.3951 0.6049 -684.1968 1374.3936 

k1Frank+k2Clayton+k3Gumbel 4.8943 6.5979e-16 0.9999 5.3373e-16 -719.6916 1447.3832 

 

From Table 6, it can be seen that the log-likelihood values 

estimated by a mixed Copula function are higher than those 

estimated by a single Copula function. The AIC values for any 

mixed Copula function are lower than those for any single 

Copula function. Therefore, the mixed Copula function method 

is preferred for predicting the RUL of equipment. The estimated 

parameters are substituted into the corresponding remaining 

useful life PDFs for different methods, and their graphs are 

shown below.
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(a) PDF curves for RUL predicted by performance Ⅰ (b) PDF curves of RUL predicted by performance II 

Fig.15. PDF curves of RUL predicted by the single performance degradation data. 

  
(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 

 

(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 16. PDF curves of RUL predicted by single Copula functions. 
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(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  
(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.17. PDF curves of RUL predicted by mixed Copula functions. 

 

Fig.18. RUL curves predicted by different methods. 

From the above graphs, it is evident that the remaining 

useful life PDF curves based on single Copula and mixed 

Copula functions for the two performance degradation data are 

higher and sharper than those based on single performance 

degradation data, indicating that the predictions made using 

single Copula and mixed Copula functions have lower 

uncertainty regarding the RUL. As can be seen from Fig.18, the 

RUL values predicted by the hybrid Copula function-based 

method proposed in this paper are closer to the actual values. 

The TMSE, RMSE, and MAE values predicted by different 

methods are presented in Table 7 

 

 

 

.
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Table 7. Errors of different prediction methods. 

Method TMSE RMSE MAE 

Performance I (I) 9.2496e+04 7.8617e+03 78.1786 

Performance II (II) 9.4665e+04 8.8624e+03 79.6017 

Frank (Ⅲ) 7.9411e+04 7.5816e+03 65.1711 

Clayton (Ⅳ) 8.5164e+04 7.5858e+03 65.1848 

Gumbel (Ⅴ) 8.0594e+04 7.5818e+03 65.1720 

k1Frank+ k2Clayton (Ⅵ) 7.0932e+04 6.9956e+03 63.0637 

k1Frank+ k3Gumbel (Ⅶ) 7.0533e+04 6.9955e+03 63.0635 

k2Clayton+ k3Gumbel (Ⅷ) 7.1832e+04 6.9991e+03 63.0832 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 7.3125e+04 6.9998e+03 63.1159 

 

  

(a) TMSE values for different methods (b) RMSE values for different methods 

 

(c) MAE values for different methods 

Fig. 19. Comparison of prediction errors across different methods. 

From Table 7 and Fig.19, it is observed that the TMSE, 

RMSE, and MAE values predicted by the mixed Copula 

function method are lower than those predicted by the single 

Copula function and single performance degradation data. 

Among the aforementioned RUL prediction methods, the 

TMSE, RMSE, and MAE values predicted by the mixed Copula 
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function composed of Frank Copula and Gumbel Copula are the 

smallest. This indicates that this degradation data is better suited 

for this method, resulting in smaller prediction errors and 

greater accuracy. 

5.2. LED lighting system data 

Recently, LED lighting systems have attracted widespread 

attention due to their high efficiency, low energy consumption 

and long lifetime. Considering different usage functions such as 

lighting and color change, LED lighting systems may exhibit 

multiple distinct performance degradation characteristics. Since 

these characteristics are influenced by the same stress factors 

(such as current), they are not independent of each other. 

Therefore, it is important to carry out the RUL prediction of 

LED lighting systems based on multiple performance 

degradation characteristics. This study conducts further 

research based on the data provided in reference [43], which 

primarily includes degradation data for two performance 

aspects: LED lighting and color conversion, as shown in Fig.20. 

The failure threshold for the illumination data is set at 𝜔1 = 50, 

while that for the color conversion data is defined as 𝜔2 = 45. 

  
(a) Lighting data (b) Color conversion data 

Fig.20. LED degradation data. 

To validate the superiority of the proposed method, the 

aforementioned degradation data are applied to three 

degradation models: 𝑀1 , 𝑀2 , and 𝑀3  for verification and 

analysis. 

A. Degradation model M1 

The lighting data and color conversion data are incorporated 

into the RUL prediction methods corresponding to different 

Copula function forms based on degradation model 𝑀1 . The 

unknown parameters in the model are estimated using  

a stepwise maximum likelihood method, as shown in Table 8.

Table 8. Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  1.6653e-16 1 - - -25.8643 53.7286 

Clayton 1.0500e-05 - 1 - -17.7551 37.5102 

Gumbel 29.5789 - - 1 -66.6140 135.2280 

k1Frank+ k2Clayton 1.0000 4.0074e-04 0.9996 - 0.8671 4.2658 

k1Frank+ k3Gumbel 1.0000 2.17477 - 0.9998 0.8766 4.2468 

k2Clayton+ k3Gumbel  29.5797 - 0.9999 8.0078e-05 0.8139 4.3722 

k1Frank+ k2Clayton+ k3Gumbel 1.0000 0.9988 9.5678e-04 1.9780e-04 0.8458 6.3084 

 

It can be seen from Table 8 that the values of the log - 

likelihood function estimated by single Copula functions are all 

smaller than those corresponding to any mixed Copula 

functions. Among them, the mixed Copula function composed 

of Frank Copula and Gumbel Copula has the largest log - 

likelihood function value. Moreover, the AIC values estimated 
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by any mixed Copula functions are all smaller than those 

estimated by single Copula functions. Specifically, the mixed 

Copula function composed of Frank Copula and Gumbel 

Copula has the smallest AIC value. Therefore, the method based 

on mixed Copula functions should be preferentially selected to 

predict the RUL of LEDs. In particular, the mixed Copula 

function composed of Frank Copula and Gumbel Copula should 

be chosen. Substitute the above - estimated parameters into their 

respective corresponding probability density functions of the 

RUL, and the graphs are shown as follows.

  
(a) PDF curves for RUL predicted by lighting data (b) PDF curves of RUL predicted by color conversion data 

Fig.21. PDF curves of RUL predicted by the single performance degradation data. 

  
(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 

 

(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 22. PDF curves of RUL predicted by single Copula functions. 
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(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  

(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.23. PDF curves of RUL predicted by mixed Copula functions. 

 

Fig.24. RUL curves predicted by different methods. 

As illustrated in the figures above, RUL of LEDs can be 

predicted using single-performance degradation data as well as 

dual-performance degradation data modeled with either single 

Copula functions or mixed Copula functions. The RUL 

probability density function curves generated by dual-

performance degradation data (employing single or mixed 

Copula functions) exhibit significantly higher and sharper peaks 

compared to those derived from single-performance 

degradation data, indicating reduced uncertainty and enhanced 

precision in RUL predictions when leveraging dual-

performance frameworks. Notably, the RUL probability density 

function curves produced by single Copula and mixed Copula 

models show minimal visual divergence. The key distinction 

lies in the prediction errors between the predicted RUL of LEDs 

and the actual RUL. As can be seen from Fig. 24, compared to 

methods predicting the RUL of LEDs using single performance 

degradation data or a single Copula function, the hybrid Copula 

function-based method proposed in this paper yields predicted 

RUL values for LEDs that are closer to their actual values. To 

provide a more intuitive demonstration of prediction errors for 
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various methods, this paper calculates the TMSE, RMSE, and MAE values for different methods, as shown in Table 9.

Table 9. Errors of different prediction methods. 

Method TMSE RMSE MAE 

Lighting data (Ⅰ) 9.2023e+03 994.2004 24.8316 

Color conversion data (Ⅱ) 9.0090e+03 981.6278 23.7192 

Frank (Ⅲ) 4.9588e+03 466.1903 16.5037 

Clayton (Ⅳ) 4.4387e+03 467.4019 16.4547 

Gumbel (Ⅴ) 5.1751e+03 471.1080 17.2589 

k1Frank+ k2Clayton (Ⅵ) 3.9165e+03 464.8463 15.0555 

k1Frank+ k3Gumbel (Ⅶ) 3.4041e+03 464. 4083 15.0344 

k2Clayton+ k3Gumbel (Ⅷ) 4.4362e+03 466.0343 15.0829 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 4.1233e+03 465.8463 15.0685 

 

  

(a) TMSE values for different methods (b) RMSE values for different methods 

 

(c) MAE values for different methods 

Fig. 25. Comparison of prediction errors across different methods. 

The analysis of Table 9 and Fig. 25 reveals that the 

prediction errors for the RUL of LEDs, using data from both 

lighting and color degradation, are smaller than those predicted 

using single-performance degradation data. Furthermore, the 

RUL prediction errors based on the mixed Copula function are 

consistently lower than those derived from a single Copula 
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function. Among the nine RUL prediction methods analyzed, 

the mixed Copula function combining Frank Copula and 

Gumbel Copula exhibits the lowest TMSE, MAE, and RMSE 

values, indicating that LED degradation data is more suitable 

for this approach. This finding aligns with the earlier results 

based on the AIC value. Meanwhile, it can be seen from Table 

9 that the values of TMSE, MAE, and RMSE predicted by the 

mixed Copula function composed of Frank Copula, Clayton 

Copula, and Gumbel Copula are larger than those predicted by 

any other two-component mixed Copula functions. This further 

demonstrates that in the RUL prediction of actual equipment, a 

greater number of mixed Copula functions does not necessarily 

lead to more accurate prediction results. Instead, the specific 

types of mixed Copula functions need to be selected according 

to the characteristics of the degradation data. 

B. Degradation model M2 

The LED degradation data are incorporated into the RUL 

prediction methods based on degradation model 𝑀2  with 

different Copula functions. The unknown parameters in the 

models are estimated using a two-step maximum likelihood 

estimation method, and the results are summarized in Table 10.

Table 10.Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  1.0500e-06 1 - - -1186.2419 2374.4838 

Clayton 0.0152 - 1 - -1203.4046 2408.8092 

Gumbel 3.0461 - - 1 -1218.3193 2438.6386 

k1Frank+ k2Clayton 0.6602 0.7884 0.2116 - -404.6535 815.3070 

k1Frank+ k3Gumbel 20.4432 0.1201 - 0.8799 -639.5522 1285.1044 

k2Clayton+ k3Gumbel  1.0152 - 0.9998 0.0002 -1032.2012 2070.4024 

k1Frank+ k2Clayton+ k3Gumbel 1.6602 0.0045 7.6821e-06 0.9954 -228.2098 464.4196 

 

The table indicates that the log-likelihood function values 

estimated by single Copula functions are lower than those 

corresponding to any mixed Copula function. The AIC values 

estimated from single Copula functions are also higher than 

those from any mixed Copula function. Therefore, mixed 

Copula functions should be prioritized for predicting the RUL 

of LEDs. By substituting the estimated parameters into the 

PDFs of the RUL corresponding to various methods, the 

resulting graphs are displayed below. 

  
(a) PDF curves for RUL predicted by lighting data (b) PDF curves of RUL predicted by color conversion data 

Fig.26. PDF curves of RUL predicted by the single performance degradation data. 
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(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 

 

(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 27. PDF curves of RUL predicted by single Copula functions. 

  
(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 
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(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.28. PDF curves of RUL predicted by mixed Copula functions. 

Table 11.Errors of different prediction methods. 

Method TMSE RMSE MAE 

Lighting data (Ⅰ)  1.1074e+04 1.2987e+03 32.7539 

Color conversion data (Ⅱ) 1.0504e+04 1.1725e+03 28.4964 

Frank (Ⅲ)  9.2063e+03 1.0184e+03 22.4452 

Clayton (Ⅳ) 9.5709e+03 1.0484e+03  22.6283 

Gumbel (Ⅴ)  9.9406e+03 1.1498e+03 22.8663 

k1Frank+ k2Clayton (Ⅵ)  8.1568e+03 655.8787 21.5636 

k1Frank+ k3Gumbel (Ⅶ) 8.6658e+03 666.7068 22.1501 

k2Clayton+ k3Gumbel (Ⅷ) 9.0533e+03 788.0997 22.1767 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 7.4652e+03 645.6840 21.3614 

 

Figs. 26, 27, and 28 illustrate that as the number of 

measurement points increases, the PDF curves for the RUL 

become higher and sharper, indicating a gradual reduction in 

prediction uncertainty. Specifically, the PDF curves predicted 

by single Copula and mixed Copula functions are higher and 

sharper, suggesting lower uncertainty in predictions using these 

methods. From Fig. 29, we can see the RUL values for LEDs 

predicted using the hybrid Copula function-based method are 

closer to their actual values. The TMSE, RMSE, and MAE 

values corresponding to each prediction method are 

summarized in Table 11. 

 
 

Fig.29. RUL curves predicted by different methods. 

From Table 11 and Fig. 30, it is evident that the TMSE, 

RMSE, and MAE values predicted by the mixed Copula 

function method are lower than those predicted by a single 

Copula function and single-performance degradation data.  

Among the nine LED remaining useful life prediction 

methods described above, the mixed Copula function composed 

of Frank Copula, Clayton Copula, and Gumbel Copula yields 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

the smallest TMSE, RMSE, and MAE values, indicating that 

this method has the smallest prediction error. Therefore, among 

the RUL prediction methods corresponding to different Copula 

functions associated with the degradation model 𝑀2, the mixed 

Copula function composed of Frank Copula, Clayton Copula, 

and Gumbel Copula should be preferentially selected to predict 

the RUL of LEDs.

  
(a) TMSE values for different methods (b) RMSE values for different methods 

 

(c) MAE values for different methods 

Fig. 30. Comparison of prediction errors across different methods. 

C. Degradation model M3 

The LED degradation data are incorporated into the RUL 

prediction methods based on the degradation model 𝑀3  with 

different Copula functions. The parameters in the model are 

estimated using the stepwise maximum likelihood method, as 

shown in Table 12.

Table 12.Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  2.0500e-13 1 - - -3.4763 8.9526 

Clayton 1.0500e-04 - 1 - -2.2053 6.4106 

Gumbel 10.0000 - - 1 -3.4730 9.9460 

k1Frank+ k2Clayton 3.9616e-10 0.0651 0.9349 - 5.4436 -4.8872 

k1Frank+ k3Gumbel 1.0000 6.0939e-33 - 1.0000 23.7442 -41.4884 

k2Clayton+ k3Gumbel  69.3083 - 0.4641 0.5359 10.9455 -15.8910 

k1Frank+ k2Clayton+ k3Gumbel 1.0000 0.1077 0.0157 0.8766 26.9640 -45.9280 
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From Table 12, it can be observed that the mixed Copula 

function composed of Frank Copula, Clayton Copula, and 

Gumbel Copula has the largest log-likelihood function value 

and the smallest AIC value estimated by this mixed Copula 

function. A comparison of Tables 8, 10, and 12 further shows 

that the mixed Copula function composed of these three Copula 

functions in Table 12 still yields the largest log-likelihood 

function value and the smallest AIC value. Therefore, among 

the three degradation models 𝑀1,𝑀2, and 𝑀3, the mixed Copula 

function composed of Frank Copula, Clayton Copula, and 

Gumbel Copula corresponding to model 𝑀3 should be 

preferentially selected for predicting the RUL of LEDs. 

Substitute the above-estimated parameters into their respective 

RUL probability density functions, and the graphs are shown as 

follows.

 
 

(a) PDF curves for RUL predicted by lighting data (b) PDF curves of RUL predicted by color conversion data 

Fig.31. PDF curves of RUL predicted by the single performance degradation data. 

 
 

(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 

 

(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 32. PDF curves of RUL predicted by single Copula functions. 
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(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  
(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.33. PDF curves of RUL predicted by mixed Copula functions. 

 

 

Fig.34. RUL curves predicted by different methods. 

From the graphs above, it can be seen that the PDF curves 

for the RUL predicted by degradation model 𝑀3 is higher and 

sharper than those predicted by models 𝑀1 and 𝑀2, indicating 

that the RUL predicted by model 𝑀3  has less uncertainty. 

Among the different Copula functions corresponding to 

degradation model 𝑀3, the PDF curves for the RUL predicted 

using single Copula and mixed Copula functions are higher and 

sharper than those predicted using single performance 

degradation data, suggesting that the predictions using single 

Copula and mixed Copula functions have lower uncertainty. 

The reduction of uncertainty in RUL estimation is crucial for 

equipment prognosis and health management, as it can lower 

maintenance costs and increase the confidence in decision-

making results [44]. Meanwhile, as shown in Fig.34, the RUL 

values for LEDs predicted using the hybrid Copula function-

based method are closer to their actual values. To compare the 

prediction errors of different methods, TMSE, RMSE, and 

MAE values corresponding to each method are calculated, as 

shown in Table 13.



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

Table 13.Errors of different prediction methods. 

Method TMSE RMSE MAE 

Lighting data (Ⅰ)  3.0309e+03 311.8699 15.5166 

Color conversion data (Ⅱ) 4.0419e+03 433.0662 18.4866  

Frank (Ⅲ)  2.5572e+03 116.2486 10.1074 

Clayton (Ⅳ)  2.1644e+03 104.7042 9.4801 

Gumbel (Ⅴ)  2.3702e+03 115.9133 10.0892 

k1Frank+ k2Clayton (Ⅵ)  1.5608e+03 79.6613 7.4456 

k1Frank+ k3Gumbel (Ⅶ) 1.1048e+03 70.5354 6.5532 

k2Clayton+ k3Gumbel (Ⅷ) 1.3151e+03 72.0298 7.1667 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 1.0877e+03 49.8730    6.2508 

 

  

(a) TMSE values for different methods (b) RMSE values for different methods 

 

(c) MAE values for different methods 

Fig. 35. Comparison of prediction errors across different methods. 

From Table 13 and Fig. 35, it can be observed that the RUL 

prediction errors based on single Copula functions and mixed 

Copula functions for two-performance degradation data are 

both smaller than those based on single-performance 

degradation data. Moreover, the RUL prediction errors based on 

mixed Copula functions are smaller than those based on single 

Copula functions. Among them, the mixed Copula function 

composed of Frank Copula, Clayton Copula, and Gumbel 
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Copula yields the lowest TMSE, RMSE, and MAE values, 

indicating minimal prediction error. Meanwhile, a comparison 

with previous prediction results shows that the TMSE, RMSE, 

and MAE values predicted by degradation model𝑀3  are all 

smaller than those predicted by models 𝑀1 and 𝑀2. Therefore, 

the mixed Copula function composed of Frank Copula, Clayton 

Copula, and Gumbel Copula corresponding to degradation 

model 𝑀3  should be preferentially selected for predicting the 

RUL of LEDs. This approach can thus obtain the most accurate 

prediction results and thereby reduce future equipment 

maintenance costs. 

5.3. Metal crack degradation data

  

(a) Degradation data PC1 (b) Degradation data PC2 

Fig. 36. Crack Degradation Data. 

 

Metal materials are widely used in the equipment 

manufacturing industry due to their excellent corrosion 

resistance, machinability, and weldability. Under prolonged 

fatigue loading, stress concentration areas in metal components 

are prone to fatigue damage, leading to crack initiation. Early-

stage cracks may further propagate under continuous service 

and cyclic loading conditions, ultimately resulting in structural 

fracture failures and significant safety risks. Therefore, 

employing rational technical approaches to predict the RUL of 

such components through fatigue crack performance parameters 

is critical for determining optimal maintenance schedules, 

enhancing reliability, and mitigating operational risks. This 

section utilizes crack growth data from platinum-based 

equipment for RUL prediction, with the original dataset sourced 

from Reference [45]. The dataset includes crack growth testing 

results from 21 identical equipment, measured at intervals of 

0.01 million cycles, and testing is terminated at 0.09 million 

cycles. To validate the effectiveness of the proposed 

methodology, 20 equipment are selected and divided into two 

groups, representing crack lengths at two distinct points on the 

equipment (both with an initial crack length of 0.9 inches). For 

analytical purposes, these crack lengths are treated as two 

performance metrics of the equipment, labeled PC1 and PC2, 

respectively, as illustrated in Fig. 36. The equipment is deemed 

failed if PC1 exceeds 1.6 inches or PC2 exceeds 1.3 inches. 

Similar assumptions have been applied in reliability analysis 

and RUL prediction studies of dual-degradation equipment 

[46,47]. 

The two groups of degradation data are incorporated into 

three degradation models ( 𝑀1 , 𝑀2 ,and 𝑀3 ) for validation 

analysis. 

A. Degradation model M1 

The two crack datasets are integrated into the degradation 

model 𝑀1 with different Copula functions. The unknown 

parameters in the model are estimated using the two-step 

maximum likelihood estimation method, and the results are 

summarized in Table 14.
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Table 14.Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  6.3000e-04 1 - - -1.3281e+03 2.6582e+03 

Clayton 2.0732 - 1 - -1.3076e+03 2.6172e+03 

Gumbel 10.5784 - - 1 -1.2956e+03 2.5932e+03 

k1Frank+ k2Clayton 5.7808 1.6229e-04 5.8572e-06 - -1.2473e+03 2.5006e+03 

k1Frank+ k3Gumbel  10.5785 1.0000 - 4.8012e-17 -1.2901e+03 2.5862e+03 

k2Clayton+ k3Gumbel  5.7808 - 1.0444e-04 0.9999 -1.1312e+03 2.2684e+03 

k1Frank+ k2Clayton+ k3Gumbel 1.8272 1.2465e-18 1.0000 3.7901e-20 -1.1320e+03 2.2700e+03 

 

  
(a) PDF curves for RUL predicted by PC1 (b) PDF curves of RUL predicted by PC2 

Fig.37. PDF curves of RUL predicted by the single performance degradation data. 

 

From Table 14, it can be seen that the log-likelihood function 

values estimated by single Copula functions are still all smaller 

than those corresponding to any mixed Copula function. Among 

them, the mixed Copula function composed of Clayton Copula 

and Gumbel Copula has the largest log-likelihood function 

value. The AIC values estimated by any mixed Copula function 

are all smaller than those estimated by single Copula functions, 

with the mixed Copula function composed of Clayton Copula 

and Gumbel Copula yielding the smallest AIC value. Therefore, 

the method based on mixed Copula functions should be 

preferentially selected for predicting the RUL of metal 

equipment—specifically, the mixed Copula function composed 

of Frank Copula and Gumbel Copula. Substitute the above 

parameters into their respective PDFs of RUL, and the graphs 

are shown as follows.

  
(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 
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(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 38. PDF curves of RUL predicted by single Copula functions. 

  
(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  
(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.39. PDF curves of RUL predicted by mixed Copula functions. 
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Fig.40. RUL curves predicted by different methods. 

From the aforementioned graphs, it can be observed that the 

RUL of metallic equipment can be predicted using three 

approaches: single performance degradation data, dual 

performance degradation data based on single Copula functions, 

and dual performance degradation data based on mixed Copula 

functions. The PDF curves of RUL predicted by dual 

performance degradation data (using either single Copula or 

mixed Copula functions) exhibit higher peaks and narrower 

spreads compared to those derived from single performance 

degradation data. This indicates that predictions based on dual 

performance degradation data with Copula functions 

demonstrate reduced uncertainty and improved accuracy. 

Furthermore, the PDF curves generated by the mixed Copula 

function show even higher peaks and sharper concentration than 

those from the single Copula function approach, suggesting that 

the mixed Copula method achieves the lowest prediction 

uncertainty. Notably, the mixed Copula function combining 

Clayton Copula and Gumbel Copula yields the minimal 

uncertainty among all methods. As can be seen from Fig.40, the 

RUL values for metal equipment predicted using the hybrid 

Copula function-based method proposed in this paper are closer 

to its actual values. To quantitatively compare prediction errors 

across different approaches, this paper calculates the TMSE, 

RMSE, and MAE values for each method, as shown in Table 15.

Table 15. Errors of different prediction methods. 

Method TMSE RMSE MAE 

PC1 (Ⅰ) 0.0575 0.0020 0.0374 

PC2(Ⅱ) 0.0447 0.0017 0.0344 

Frank (Ⅲ) 0.0412 0.0015 0.0327 

Clayton (Ⅳ) 0.0348 0.0014 0.0293 

Gumbel (Ⅴ) 0.0404 0.0016 0.0320 

k1Frank+ k2Clayton (Ⅵ) 0.0315 9.9541e-04 0.0259 

k1Frank+ k3Gumbel (Ⅶ) 0.0336 9.9629e-04 0.0264 

k2Clayton+ k3Gumbel (Ⅷ) 0.0302 8.1025e-04 0.0244 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 0.0310 8.8894e-04 0.0248 

 

  
(a) TMSE values for different methods (b) RMSE values for different methods 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

 

(c) MAE values for different methods 

Fig. 41. Comparison of prediction errors across different methods. 

As can be seen from Table 15 and Fig.41, among the nine 

RUL prediction methods described above, the mixed Copula 

function composed of the Frank Copula and Gumbel Copula 

yields the smallest TMSE, MAE, and RMSE values. This 

indicates that the degradation data is more suitable for this 

method, and the result is exactly consistent with the selection 

outcome of the AIC value mentioned earlier. Additionally, Table 

14 shows that the TMSE, RMSE, and MAE values obtained 

using mixed Copula functions are all smaller than those from 

single Copula functions and single-performance predictions. 

This demonstrates that the mixed Copula function, by fully 

utilizing multiple performance degradation data of the 

equipment, can predict the RUL more accurately and improve 

the prediction precision of RUL. 

B. Degradation model M2 

The two crack datasets are integrated into the degradation 

model 𝑀2 with different Copula functions. The unknown 

parameters in the model are estimated using the two-step 

maximum likelihood estimation method, and the results are 

summarized in Table 16.

Table 16. Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  1.5750e-05 1 - - -1.7943e+03 3.5906e+03 

Clayton 1.0500e-06 - 1 - -1.8475e+03 3.6970e+03 

Gumbel 5.0000 - - 1 1.7960e+03 3.5940e+03 

k1Frank+ k2Clayton 67.7065 1.0000 9.5442e-07 - -1.7914e+03 3.5848e+03 

k1Frank+ k3Gumbel 2.2867 1.0000 - 1.0561e-07 -1.7902e+03 3.5824e+03 

k2Clayton+ k3Gumbel  2.3625 - 0.0176 0.9824 -1.6377e+03 3.2774e+03 

k1Frank+ k2Clayton+ k3Gumbel 2.2866 0.9517 0.0473 0.0001 -1.7873e+03 3.5766e+03 

 

As can be seen from Table 16, the log-likelihood function 

values estimated using single Copula functions are all smaller 

than those corresponding to any mixed Copula function. 

Consequently, the AIC values for single Copula functions are 

all greater than those for any mixed Copula function. Therefore, 

the mixed Copula functions should be prioritized for predicting 

the RUL of equipment. Substituting the aforementioned 

estimated parameters into the PDFs of  RUL corresponding to 

different methods, the resulting graphs are plotted as shown 

below.
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(a) PDF curves for RUL predicted by PC1 (b) PDF curves of RUL predicted by PC2 

Fig.42. PDF curves of RUL predicted by the single performance degradation data. 

  
(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 

 

(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 43. PDF curves of RUL predicted by single Copula functions. 
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(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  
(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.44. PDF curves of RUL predicted by mixed Copula functions. 

 

Fig.45. RUL curves predicted by different methods. 

As illustrated in Figs. 42, 43, and 44, as the number of 

measurement points increases, the PDF curves of RUL become 

higher and sharper, indicating a gradual reduction in prediction 

uncertainty. The curves predicted using single Copula functions 

and mixed Copula functions exhibit even higher peaks and 

narrower spreads, demonstrating that these approaches yield 

lower uncertainty compared to other methods. Specifically, 

predictions using mixed Copula functions show even smaller 

uncertainty. A comparative analysis with the PDF curves 

predicted by model 𝑀2 further reveals that the uncertainty 

associated with 𝑀2 is greater than that of model 𝑀1. Therefore, 

the degradation data is more suitable for model 𝑀1 for RUL 

prediction, a conclusion also supported by comparative analysis 

of AIC values. Furthermore, as shown in Fig.45, the RUL values 

for metal equipment predicted using the hybrid Copula 

function-based method are closer to its actual values. For a 

quantitative evaluation, the TMSE, RMSE, and MAE 

values corresponding to each prediction method are calculated 

and summarized in Table 17. 
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Table 17. Errors of different prediction methods. 

Method TMSE RMSE MAE 

PC1 (Ⅰ) 0.0716 0.0031 0.0524 

PC2(Ⅱ) 0.0645 0.0023 0.0419 

Frank (Ⅲ) 0.0474  0.0015  0.0344 

Clayton (Ⅳ) 0.0602 0.0020 0.0400 

Gumbel (Ⅴ) 0.0513 0.0014 0.0340 

k1Frank+ k2Clayton (Ⅵ) 0.0459 0.0013 0.0335 

k1Frank+ k3Gumbel (Ⅶ) 0.0451 0.0012 0.0332 

k2Clayton+ k3Gumbel (Ⅷ) 0.0301 0.0010 0.0285 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 0.0413 0.0011 0.0311 

 

  

(a) TMSE values for different methods (b) RMSE values for different methods 

 

(c) MAE values for different methods 

Fig. 46. Comparison of prediction errors across different methods. 

As evident from Table 17 and Fig. 46, the TMSE, RMSE, 

and MAE values predicted by the mixed Copula function-based 

method are all smaller than those predicted using single Copula 

functions or single-performance degradation data. Among the 

nine RUL prediction methods evaluated, the mixed Copula 

function combining Clayton Copula and Gumbel Copula 

achieves the smallest TMSE, RMSE, and MAE values, 

indicating that this method yields the lowest prediction errors. 

Furthermore, a comparative analysis of the TMSE, RMSE, and 

MAE values in Table 15 and Table 17 reveals that model 

𝑀2 produces larger errors (higher TMSE, RMSE, and MAE 

values) compared to model 𝑀1 , demonstrating that model 𝑀1 

achieves superior prediction accuracy with smaller errors. This 

conclusion aligns with the earlier findings from the AIC value 
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comparison, reinforcing the consistency and reliability of the 

results. 

C. Degradation model M3 

The two crack datasets are integrated into the degradation 

model 𝑀3  with different Copula functions. The unknown 

parameters in the model are estimated using the two-step 

maximum likelihood estimation method, and the results are 

summarized in Table 18.

Table 18. Parameter estimates for different Copula functions. 

Copula 𝛼 k1 k2 k3 lnL AIC 

Frank  2.0500 1 - - -1.4547e+03 2.9114e+03 

Clayton  36.4974  - 1 - -1.4495e+03 2.9010e+03 

Gumbel 1.0966 - - 1 -1.4692e+03 2.9404e+03 

k1Frank+ k2Clayton 34.7648 0.2742 0.7258 - -1.4019e+03 2.8098e+03 

k1Frank+ k3Gumbel 1.2742   0.9778 - 0.0222 -1.3768e+03   2.7597e+03 

k2Clayton+ k3Gumbel  39.8976 - 6.6657e-16 1.0000 -1.3677e+03 2.7414e+03 

k1Frank+ k2Clayton+ k3Gumbel 16.8392 0.1017 0.8983 3.8044e-19 -1.3403e+03 2.6867e+03 

 

From Table 18, it can be observed that the mixed Copula 

function composed of Frank Copula, Clayton Copula, and 

Gumbel Copula achieves the largest log-likelihood function 

value and the smallest AIC value. Additionally, a comparative 

analysis of Tables 14, 16, and 18 reveals that the AIC values of 

model 𝑀3 (for both single Copula and mixed Copula functions) 

are smaller than those of model 𝑀2 but larger than those of 

model 𝑀1 . Therefore, among the three degradation models 

evaluated, the mixed Copula function corresponding to 

model𝑀1 should be prioritized for predicting the RUL of the 

metallic equipment. By substituting the aforementioned 

estimated parameters into their respective remaining useful life 

PDFs, the resulting graphs are plotted as shown below.

  
(a) PDF curves for RUL predicted by PC1 (b) PDF curves of RUL predicted by PC2 

Fig.47. PDF curves of RUL predicted by the single performance degradation data. 

  
(a) PDF curves of RUL predicted by method Ⅲ (b) PDF curves of RUL predicted by method Ⅳ 
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(c) PDF curves of RUL predicted by method Ⅴ 

Fig. 48. PDF curves of RUL predicted by single Copula functions. 

  
(a) PDF curves of RUL predicted by method Ⅵ (b) PDF curves of RUL predicted by method Ⅶ 

  
(c) PDF curves of RUL predicted by method Ⅷ (d) PDF curves of RUL predicted by method Ⅸ 

Fig.49. PDF curves of RUL predicted by mixed Copula functions. 
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Fig.50. RUL curves predicted by different methods. 

From the aforementioned figures, it can be observed that 

within model 𝑀3 , the PDF curves of RUL predicted by the 

mixed Copula function are higher and sharper than those 

derived from single Copula functions or single-performance 

degradation data. This once again demonstrates that predictions 

using the mixed Copula function exhibit lower uncertainty. 

Furthermore, comparative analysis with earlier sections reveals 

that the PDF curves predicted by model 𝑀1 are higher and 

sharper than those generated by models 𝑀2 and 𝑀3, indicating 

that model 𝑀1 achieves the smallest prediction uncertainty and 

is more suitable for degradation modeling and RUL of the 

metallic equipment. As shown in Fig. 50, the RUL values for 

metal equipment predicted using the hybrid Copula function-

based method are closer to its actual values. The corresponding 

TMSE, RMSE, and MAE values for each method are presented 

here in Table 19.

Table 19. Errors of different prediction methods. 

Method TMSE RMSE MAE 

PC1 (Ⅰ) 0.0702  0.0029 0.0470 

PC2(Ⅱ) 0.0541 0.0020 0.0381 

Frank (Ⅲ) 0.0464 0.0016 0.0336 

Clayton (Ⅳ) 0.0478  0.0017 0.0339 

Gumbel (Ⅴ) 0.0525  0.0018 0.0341 

k1Frank+ k2Clayton (Ⅵ) 0.0459 0.0015 0.0331 

k1Frank+ k3Gumbel (Ⅶ) 0.0435 0.0014 0.0325 

k2Clayton+ k3Gumbel (Ⅷ) 0.0402 0.0012 0.0300 

k1Frank+k2Clayton+k3Gumbel (Ⅸ) 0.0293 9.8821e-04 0.0280 

 

  

(a) TMSE values for different methods (b) RMSE values for different methods 
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(c) MAE values for different methods 

Fig. 51. Comparison of prediction errors across different methods. 

From Table 19 and Fig.51, it can be seen that the TMSE, 

RMSE, and MAE values predicted by the mixed Copula 

function-based method are smaller than those obtained using 

single Copula functions or single-performance degradation data. 

Among these, the mixed Copula function combining Frank 

Copula, Clayton Copula, and Gumbel Copula yields the 

smallest TMSE, RMSE, and MAE values, indicating the lowest 

prediction errors. Furthermore, a comparative analysis with 

earlier prediction results shows that the TMSE, RMSE, and 

MAE values predicted by degradation model 𝑀3 are larger than 

those of model 𝑀1 but smaller than those of model 𝑀2 . 

Therefore, the mixed Copula functions corresponding to 

degradation model 𝑀1 should be prioritized for predicting the 

RUL of the metallic equipment. This approach ensures more 

accurate predictions, thereby reducing long-term maintenance 

costs. 

6. Conclusion 

Given that the performance degradation process of equipment 

exhibits a dual-performance degradation phenomenon with  

a correlation between the two degradation metrics, using  

a single performance indicator is insufficient to fully reflect this 

degradation process. To address this, a binary Wiener process 

degradation model considering different degradation modes is 

proposed. By introducing Copula functions, the correlation 

between the two performance indicators of equipment is 

analyzed. Since different Copula functions depict correlation 

differently, this study presents a method based on mixed Copula 

functions to better integrate data and utilize the distinct 

characteristics of various Copula functions. Then, based on the 

properties of the Wiener process and Copula functions, 

analytical expressions for the joint PDFs of lifetime and RUL 

under different degradation models based on the FHT principle 

are derived in detail, and the unknown parameters in the 

degradation model are estimated using the two-step maximum 

likelihood estimation method. Finally, the proposed method is 

validated through simulation data, LED lighting data, and 

metallic equipment crack propagation data, and the prediction 

errors of the RUL using single-performance degradation data, 

single Copula functions, and mixed Copula functions under 

three different models are compared using TMSE, RMSE, and 

MAE values. The comparative analysis of the prediction errors 

indicates that the RUL prediction based on a mixed Copula 

function for two-performance degradation data yield the 

smallest errors, resulting in the lowest TMSE, RMSE, and MAE 

values and more accurate predictions. This research 

demonstrates that the proposed method has practical 

applicability, providing effective life information for equipment 

health status management and holding potential engineering 

value.
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Appendix A. Proof of Eqs. (7), (9), (11) 

In order to prove the lifetime probability distribution functions corresponding to the three different degradation models, a stochastic 

process {𝑍(𝑡), 𝑡 ≥ 0} is defined on the basis of a one-dimensional Wiener process 

𝑍(𝑡) = 𝑆𝑈𝑃
0≤𝑠≤𝑡

{𝑋(𝑠), 𝑠 ≥ 0}         (A.1) 

At any given time 𝑡 ≥ 0, 𝑍(𝑡) takes the maximum value of 𝑋(𝑡) during the time interval [0, 𝑡]. The probability density function of 

𝑍(𝑡) at time 𝑡 is 𝑔(𝑧, 𝑡). From the definition of {𝑧(𝑡), 𝑡 ≥ 0}, it is known that it is a monotonic stochastic process, and the probability 

of equipment not failing is  

𝑃(𝑇 > 𝑡) = 𝑃(𝑍(𝑡) < 𝜔) = ∫ 𝑔(𝑧, 𝑡)
𝜔

−∞
𝑑𝑧       (A.2) 

Using the Fokker-Planck equation one can obtain G in the form: 

𝑔(𝑧, 𝑡) =
1

𝛿𝐵√2𝜋𝑡
{𝑒𝑥𝑝 [−

(𝑧−𝑎𝜙(𝑡,𝑏))
2

2𝛿𝐵
2 𝑡

] − 𝑒𝑥𝑝 (
2𝑎𝜔

𝛿𝐵
2 ) 𝑒𝑥𝑝 [−

(𝑧−2𝜔−𝑎𝜙(𝑡,𝑏))
2

2𝛿𝐵
2 𝑡

]}    (A.3) 

Substituting Eq. (A.3) into Eq. (A.2) yields: 

𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = Φ(
𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
) − 𝑒𝑥𝑝 (

2𝜔𝑎

𝛿𝐵
2 )Φ(

−𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
)    (A.4) 

The distribution function of lifetime can be obtained from Eq. (A.4) as follows: 

𝐹(𝑡) = 1 − Φ(
𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
) + 𝑒𝑥𝑝 (

2𝜔𝑎

𝛿𝐵
2 )Φ(

−𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
)      (A.5)  

The distribution function expressed in the above equation does not take into account the randomness of the drift coefficient 𝑎. 

When the randomness of the drift coefficient 𝑎 is taken into account and 𝑎~𝑁(𝜇𝑎, 𝛿𝑎
2) is satisfied, the use of the full probability formula 

for Eq. (A.5) yields 

𝐹𝑇(𝑡) = ∫ 𝐹(𝑡)𝑝(𝑎)
+∞

−∞
𝑑𝑎 = 𝐸𝑎[𝐹(𝑡)]        (A.6) 

where 𝑝(𝑎) is the PDF of the random variable 𝑎, and 𝐸𝑎[. ] denotes the mathematical expectation of the random parameter 𝑎. To 

solve the expectation of the above equation, Theorem 1 is introduced. 

Theorem 1 ([48]) If 𝑍 ∼ 𝑁(𝜇, 𝛿2),𝜔, 𝑣, 𝐵, 𝐷 ∈ 𝑅,and𝐶 ∈ 𝑅+, then 

𝐸𝑧[𝑒𝑥𝑝{𝑣𝑍} Φ(𝐶 + 𝐷𝑍)] = 𝑒𝑥𝑝 {
𝑣2

2
𝛿2 + 𝑣𝜇} Φ(

𝐶+𝐷𝜇+𝐷𝑣𝛿2

√1+𝐷2𝛿2
)     (A.7) 

Based on Eq. (51) and Theorem 1, it can be concluded that: 

𝐹𝑇(𝑡) = 𝐸𝑎[𝐹(𝑡)] = 1 − 𝐸 [Φ (
𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
)] + 𝐸 [𝑒𝑥𝑝 (

2𝜔𝑎

𝛿𝐵
2 )Φ(

−𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
)] = 1 −𝐸1(𝑡) + 𝐸2(𝑡)     (A.8) 

If 𝑣 = 0 in Theorem 1, then 

𝐸𝑧[Φ(𝐶 + 𝐷𝑍)] = Φ(
𝐶+𝐷𝜇

√1+𝐷2𝛿2
)         (A.9) 

Let 𝐶 =
𝜔

𝛿𝐵√𝑡
,𝐷 = −

𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
. By combining Eq. (A.9), we can obtain 
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𝐸1(𝑡) = 𝐸 [Φ (
𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
)] = 𝐸[Φ(𝐶 + 𝐷𝑎)] = Φ(

𝐶+𝐷𝜇𝑎

√1+𝐷2𝛿𝑎
2
) = Φ(

𝜔−𝜇𝑎𝜙(𝑡,𝑏)

√𝛿𝑎
2𝜙2(𝑡,𝑏)+𝑡𝛿𝐵

2
)   (A.10) 

Similarly, it can be concluded that 

𝐸2(𝑡) = 𝐸 [𝑒𝑥𝑝 (
2𝜔𝑎

𝛿𝐵
2 )Φ(

−𝜔−𝑎𝜙(𝑡,𝑏)

𝛿𝐵√𝑡
)] = 𝑒𝑥𝑝 (

2𝜔𝜇𝑎𝜙(𝑡,𝑏)

𝛿𝐵
2 𝑡

+
2𝜔2𝛿𝑎

2𝜙2(𝑡,𝑏)

𝛿𝐵
4 𝑡2 )Φ(−

(𝜔+𝜇𝑎𝜙(𝑡,𝑏))𝛿𝐵
2 𝑡+2𝜔𝜙2(𝑡,𝑏)𝛿𝑎

2

𝛿𝐵
2 𝑡√𝛿𝐵

2 𝑡+𝛿𝑎
2𝜙2(𝑡,𝑏)

)  (A.11) 

Based on the above process, it can be concluded that 

𝐹𝑇(𝑡) = 1 − Φ(
𝜔−𝜇𝑎𝜙(𝑡,𝑏)

√𝛿𝑎
2𝜙2(𝑡,𝑏)+𝑡𝛿𝐵

2
) + 𝑒𝑥𝑝 (

2𝜔𝜇𝑎𝜙(𝑡,𝑏)

𝛿𝐵
2 𝑡

+
2𝜔2𝛿𝑎

2𝜙2(𝑡,𝑏)

𝛿𝐵
4 𝑡2 )Φ (−

(𝜔+𝜇𝑎𝜙(𝑡,𝑏))𝛿𝐵
2 𝑡+2𝜔𝜙2(𝑡,𝑏)𝛿𝑎

2

𝛿𝐵
2 𝑡√𝛿𝐵

2 𝑡+𝛿𝑎
2𝜙2(𝑡,𝑏)

)   (A.12) 

When 𝜙(𝑡, 𝑏) = (𝑡, 𝑡𝑏 , 𝑒𝑏𝑡), substituting them into Eq. (A.12) respectively yields the conclusions of Eqs. (7), (9), and (11). 

Appendix B Proof of Eqs. (16), (18), (20) 

Based on the relationship between lifetime and RUL and the reasoning process in Appendix A, the probability distribution function 

of RUL corresponding to the degradation model is known as 

𝐹(𝑙𝑡𝑖) = 1 − Φ

(

 
𝜔 − 𝑋(𝑡𝑖) − 𝜇𝑎𝜙(𝑙𝑡𝑖 , 𝑏)

√𝛿𝑎
2𝜙2(𝑙𝑡𝑖 , 𝑏) + 𝑙𝑡𝑖𝛿𝐵

2

)

 + 𝑒𝑥𝑝 (
2(𝜔 − 𝑋(𝑡𝑖))𝜇𝑎𝜙(𝑙𝑡𝑖 , 𝑏)

𝛿𝐵
2𝑙𝑡𝑖

+
2(𝜔 − 𝑋(𝑡𝑖))

2
𝛿𝑎

2𝜙2(𝑙𝑡𝑖 , 𝑏)

𝛿𝐵
4𝑙𝑡𝑖

2 ) 

× Φ(−
(𝜔−𝑋(𝑡𝑖)+𝜇𝑎𝜙(𝑙𝑡𝑖 ,𝑏

))𝛿𝐵
2 𝑙𝑡𝑖+2(𝜔−𝑋(𝑡𝑖))𝜙

2(𝑙𝑡𝑖 ,𝑏
)𝛿𝑎

2

𝛿𝐵
2 𝑙𝑡𝑖

√𝛿𝐵
2 𝑙𝑡𝑖+𝛿𝑎

2𝜙2(𝑙𝑡𝑖 ,𝑏
)

)    (B.1) 

When 𝜙(𝑙𝑡𝑖 , 𝑏) = (𝑙𝑡𝑖 , 𝑙𝑡𝑖
𝑏 , 𝑒𝑥𝑝(𝑏𝑙𝑡𝑖)), substituting them into Eq. (B.1) respectively yields the conclusions of Eqs. (16), (18), and (20). 

 


