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Highlights  Abstract  

▪ Hilbert transform is used for feature extraction 

and data dimensionality reduction. 

▪ Multi-scale feature extraction is realized by 

constructing variable step size volume block. 

▪ Highlight important features through reverse 

attention mechanism. 

▪ Multiple source features are fused as the final 

feature tensor. 

 The three-phase inverter plays a pivotal role in various fields such as 

modern industry, rail transit, and aerospace.  However, early parametric 

fault diagnosis of inverter switching devices faces challenges due to 

redundant feature data and the subtle differences in fault features across 

different degradation levels.  To overcome these issues, we propose a 

novel method called HTISFF-VSPWN for parametric fault diagnosis. 

Our approach involves extracting key characteristics from the three-

phase voltage and current data of the inverter using the Hilbert 

transform.  Following this, we train the model after dimension reduction. 

Experimental results conducted on SIC MOSFETs parametric fault data 

reveal that HTISFF-VSPWN outperforms other methods.  Compared to 

1DCNN, 1DCNN-LSTM, DRSN, IWOA-1DCNN-LSTM and MTF-

SPCNN, our method achieves a diagnostic accuracy improvement of 

3.69%, 2.81%, 1.6%, 0.67% and 0.92% respectively.  The diagnostic 

time was reduced by 64s, 106s, 120s, 182s and 99s compared with the 

comparison method. 
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1. Introduction 

Three-phase inverters are integral in modern industries, 

converting DC power to AC voltage with variable frequency 

and amplitude 1. Power semiconductor devices like insulated-

gate bipolar transistors (IGBTs) and metal-oxide-semiconductor 

field-effect transistors (MOSFETs) serve as primary switches in 

these inverters 23. Ensuring their stable operation is crucial for 

the inverters’ proper functioning. Statistics indicate that 

approximately 38% of faults in power equipment are 

attributable to these switching devices 4. 

Faults in power switching devices primarily fall into two 

categories: Structural Hard Failures (SHF) and Parametric Soft 

Failures (PSF) 5. SHF typically manifests as Short Circuit 

Faults (SCF) and Open Circuit Faults (OCF) 6. SCF leads to 

rapid increases in voltage and current over a short period, while 

OCF can be detected by circuit breakers and converted to an 

open circuit state. Therefore, research on fault diagnosis 

methods for OCF holds greater significance than for SCF. 

Diagnostic methods for OCF generally fall into two types: 
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model-based and data-driven methods. Model-based 

approaches require understanding the dynamic characteristics 

and operational mechanisms of the system to establish accurate 

mathematical models. Residual signals are then analyzed based 

on input and output signal detections for fault diagnosis 7. 

However, these methods heavily rely on system model accuracy 

and are susceptible to parameter variations, which may result in 

lower fault diagnosis accuracy. In contrast, data-driven 

intelligent diagnosis methods aim to extract fault features from 

extensive historical data. These methods employ intelligent 

diagnostic techniques to establish mappings between fault 

features and fault modes without relying on precise system 

models, thereby enhancing diagnostic accuracy 8. For instance, 

Q.Y. Wang et al. proposed an open circuit fault diagnosis 

method for inverters using mean value voltage combined with 

Extreme Learning Machines (ELM). Their approach focuses on 

analyzing fault characteristics related to OCF in traction 

inverters, utilizing mean voltage signals for rapid fault detection. 

Subsequently, fault feature vectors are extracted from stator 

currents and an offline-trained ELM model is employed for 

online diagnostic testing, achieving effective fault diagnosis 9, 

However, when the external environmental noise is significant, 

the ELM exhibits a diminished capacity to extract fault features 

from the current, leading to reduced robustness of the model in 

such scenarios. Similarly, Q. Sun et al. developed a Hybrid 

Convolutional Neural Network (HCNN) model comprising 

one-dimensional (1D-CNN) and two-dimensional (2D-CNN) 

convolutional neural networks. They utilized preprocessed 

three-phase current signal spectra as input data for HCNN 

model training. Their approach culminates in the realization of 

OCF diagnosis in inverters through fully connected layers, 

demonstrating robust diagnostic capabilities 10, the 

implementation of a hybrid model exacerbates the extraction of 

redundant features to some extent, thereby hindering the 

model's ability to perform efficient fault diagnosis. B.Y. Song et 

al. [11] proposed to optimize the hyperparameters of 

bidirectional LSTM by particle swarm optimization algorithm, 

aiming to achieve accurate diagnosis in the case of limited 

samples, but there were problems of low diagnostic efficiency 

and unclear performance of the model in parametric fault 

diagnosis. 

In fact, the diagnosis of SHF primarily serves as a corrective 

action post-incident. By accurately identifying the fault type and 

location, the impact on the safe and stable operation of the 

power system, once the fault has occurred, can be substantial 12. 

Typically, SHF is preceded by PSF. Real-time monitoring and 

defect diagnosis of switch tube health based on PSF can forecast 

SHF risks in advance, enabling preemptive isolation measures 

to prevent actual faults 13. I. Bandyopadhyay et al. 14 

conducted feature extraction through time-domain computation 

and utilized a support vector machine classifier to identify early 

faults based on motor current characteristics. This method 

achieves accurate early fault diagnosis but does not assess fault 

severity. Y.Y. Jiang et al. 15 employed Variational Mode 

Decomposition (VMD) to decompose parameters into multiple 

components, applying wavelet transform (WT) to extract 

wavelet energies from each mode component for fault feature 

extraction and dimensionality reduction. Despite achieving high 

diagnostic accuracy using CNN, this approach does not address 

noise interference in the diagnostic model. Z.Y. Li et al. 16 

proposed an inverter switch tube health diagnosis method 

combining Gram Angle Field (GAF) with a parallel CNN. 

Voltage and current signals from the inverter output are 

converted into 2D feature images using GAF, albeit with 

potential feature loss during image conversion. Y.B. Cui et al. 

[17] utilized the Gram angular compound field to map the 

inverter voltage signal, thereby generating a two-dimensional 

feature image that was subsequently processed using AlexNet 

for feature extraction. The final diagnostic result was produced 

by the Softmax layer. While these methods effectively leverage 

the feature extraction capabilities of two-dimensional 

diagnostic models, they overlook the issue of feature loss during 

image conversion, particularly in noisy environments where 

fault information can be obscured by noise, leading to 

diminished model robustness. 

Furthermore, data-driven diagnostic models are highly 

reliant on the effectiveness of training data, leading existing 

models to often utilize the characteristic data of diagnostic 

subjects directly for model training. This approach neglects the 

significance of dimensionality reduction, resulting in redundant 

training data that complicates model training and prolongs 

diagnosis time. Additionally, the inherent structure of the model 

significantly influences diagnostic efficiency; repeated 

extraction of similar information can lead to increased feature 
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extraction times when dealing with large datasets. 

This paper proposed a PSF diagnosis model for inverters 

based on Hilbert transform interval sampling feature fusion 

(HTISFF) and variable step size parameter weighting network 

(VSPWN), aiming to achieve accurate diagnosis while 

considering the influence of noise on the diagnostic model. The 

model extracts instantaneous frequency and amplitude features 

from the three-phase voltage and current signals at the output of 

the inverter by using HT. These extracted features are fused 

after interval sampling and utilized as input features for the 

diagnostic model. 

The VSPWN is constructed with a variable step size 

weighting module and a reverse attention mechanism, which 

effectively extracts features of different scales from the input 

features. Finally, the PSF diagnosis of the three-phase inverter 

is realized through a fully connected layer. 

The main contributions of this paper can be summarized as 

follows: 

1) The HT is employed to extract features from the voltage 

and current signals from three-phase inverter individually. 

The extracted features are then sampled at intervals 

according to the data acquisition frequency to reduce the 

data scale. Ultimately, the voltage and current features, 

post-interval sampling, are concatenated to serve as the 

input for the diagnostic model; 

2) A two-layer convolutional approach is utilized to construct 

variable step-size blocks (where the convolutional kernel 

sizes and strides of the dual-layer convolution are 

mismatched), enabling multi-scale feature extraction. 

Important features post the variable step-size blocks are 

then highlighted through the reverse attention mechanism. 

The highlighted feature data is weighted as the output of 

the variable step-size weighting module to enhance the 

diagnostic accuracy of the model. 

The specific flow of PSF diagnosis model for three-phase 

inverter power switching device is shown in Fig 1. 
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Fig. 1. PSF diagnostic flow chart of three-phase inverter power 

switch device 

2. Proposed Method 

Due to minimal differences in PSF of voltage and current 

signals among various degrees of three-phase inverters, 

effectively extracting features for the diagnostic model poses 

challenges. To utilize fault features effectively, it is crucial to 

ensure feature distinctiveness while reducing data volume. We 

proposed using HT to extract instantaneous frequency and 

amplitude features from the original three-phase voltage and 

current signals, followed by interval sampling based on the data 

acquisition frequency. After sampling, the voltage and current 

characteristics are segmented as input features for the diagnostic 

model VSPWN. 

A. Hilbert transform interval sampling feature fusion 

1) Hilbert transform 

The frequency of non-stationary signals varies over time, 

and traditional time-frequency analysis techniques can only 

capture the overall characteristics of the signal within a window, 

lacking the ability to depict instantaneous signal characteristics 

at specific moments. Instantaneous frequency provides detailed 

local signal characteristics at each moment, varying with time 

and obtainable through HT of the signal. 

a) Perform a HT on the signal 𝜇(𝑡): 

𝜇̂(𝑡) =
1

𝜋
∫

𝜇(𝜏)

𝑡 − 𝜏

∞

−∞

𝑑𝜏 = 𝜇(𝑡) ∗
1

𝜋𝑡
(1) 

Therefore, it can be inferred that the HT transformation of 

the signal is equivalent to the output of the signal through a 
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linear system with an impulse response 
1

𝜋𝑡
 , accurately 

representing the instantaneous characteristics of the signal. 

Following HT transformation, the amplitude of each frequency 

component remains unchanged, while the phase shifts by 90°. 

b) Construction the analytic signal of 𝜇(𝑡): 

𝑧(𝑡) = 𝜇(𝑡) + 𝑗𝜇̂(𝑡) = 𝑎(𝑡)𝑒𝑗𝜃(𝑡) (2) 

𝑎(𝑡)  and 𝜃(𝑡)  are the instantaneous amplitude and 

instantaneous phase of the analytic signal: 

𝑎(𝑡) = √𝜇2(𝑡) + 𝜇̂2(𝑡) (3) 

𝜃(𝑡) = arctan (
𝜇̂(𝑡)

𝜇(𝑡)
) (4) 

Through instantaneous phase, the instantaneous angular 

frequency ω(t) of the signal can be obtained: 

𝜔(𝑡) =
𝑑𝜃(𝑡)

𝑑𝑡
(5) 

c) Therefore, the instantaneous frequency can be obtained 

from formula 1. 

𝑣(𝑡) =
1

2𝜋
𝜔(𝑡) =

1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
(6) 

Since the voltage and current data of three-phase inverters 

can express the device state through the amplitude and 

frequency of the waveform, the extraction of the instantaneous 

frequency and instantaneous amplitude of the above data 

through HT is conducive to magnify the state changes of three-

phase inverters caused by device parametric faults. 

2) Feature data interval sampling 

After applying HT, the characteristic data of the three-phase 

voltage and current from the three-phase inverter expanded 

from the original 3 columns to 6 columns. This increase in data 

volume raises the complexity of training the diagnostic model. 

Therefore, we reduced the dataset scale through interval 

sampling, as detailed in Fig 2. The reduced voltage and current 

feature data are concatenated along dimension 1. Specifically, 

the A-phase current data is sampled at intervals post-HT, 

resulting in retention of 8000 data points. 

 

Fig. 2. Schematic diagram of current data interval sampling 

B. Variable Step_size Parameter Weighting Network 

(VSPWN) 

1) Reverse Self-Attention (RSA) 

The differences in features among PSFs with varying 

degrees are minimal, posing challenges for the diagnostic model 

to effectively extract distinguishing characteristics. This 

limitation hinders the model's ability to accurately identify PSFs 

across different levels. To address this issue and enhance the 

effective extraction of subtle distinctions between PSFs, we 

propose a feature enhancement method: RSA (Relevance-

Sensitive Attention) can facilitate feature extraction by 

deliberately emphasizing significant attributes while 

diminishing less critical ones within the feature data. The 

specific process is illustrated in Figure 3. Following the 

application of RSA on the feature data from three-phase 

inverters, the significance of points indicative of device state 

changes will be amplified, thereby enabling more precise 

extraction of these distinct features by the model. 

For the input tensor 𝒙 = [𝑥1 𝑥2 ⋯ 𝑥𝑛] , Firstly, the 

proportion weight 𝑆𝑥𝑖
 is obtained from the input tensor by the 

Softmax function,  

𝑆𝑥𝑖
=

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1

(7) 

Then calculate the mean 𝑀𝑆𝑥𝑖
 for 𝑆𝑥𝑖

: 

0 1000 2000 3000 4000 5000 6000 7000 8000
-50

0

50

100

150

200

250

300

Hilbert transformation

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
X 10

6

0.50 1 1.5 2 2.5 3 3.5 4 4.5 5
X 10

6

0 1000 2000 3000 4000 5000 6000 7000 8000

Interval sampling



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

𝑀𝑆𝑥𝑖
=

∑ 𝑆𝑥𝑖

𝑛
𝑖=1

𝑛
(8) 

Pruning the original input tensor after reversal by 𝑀𝑆𝑥𝑖
: 

−𝑥𝑖 + 𝑀𝑆𝑥𝑖
(9) 

The tensors after pruning are reversed again, and then 

positive filtering is performed on the reversed tensors through 

ReLU, and then key features of the original tensors are 

highlighted through the filtered tensors: 

𝑚𝑎𝑥[𝑥𝑖 − 𝑀𝑆𝑥𝑖
, 0] + 𝑥𝑖 (10) 

 

Fig. 3. Flowchart of RSA 

2) Variable Step Size Parameter weighting module 

(VSPWM) 

The feature extraction process of the convolutional layer can 

be summarized as follows: data is intercepted using a frame of 

specified convolution kernel size to extract features with  

a specified stride. However, the features extracted vary with 

different convolutional kernel sizes and stride lengths.  

The convolution layer is mainly composed of several 

convolution kernels with local perception and parameter sharing 

characteristics. By performing convolution operations to extract 

the features of input data, multiple features can be learned and 

the computation parameters and computation amount can be 

reduced. 

𝑧𝑗
𝑙 = ∑ 𝑘𝑖𝑗

𝑙

𝑛

𝑖=1

∗ 𝑎𝑖
𝑙−1 + 𝑏𝑗

𝑙 (11) 

𝑧𝑗
𝑙  is the output feature vector after the 𝑗  convolution 

operation of layer 𝑙; 𝑘𝑖𝑗
𝑙  is the 𝑗-th convolution kernel on the 𝑖 

channel of layer 𝑙; 𝑎𝑖
𝑙−1 is the 𝑖 input feature vector of layer 𝑙; 

𝑏𝑗
𝑙 is the offset item, used to adjust the offset of the output of the 

convolution operation;∗ is the convolution operation.  

In the convolutional layer, the kernel size and strides 

collectively influence the dimensions of the output tensor from 

the convolutional layer. 

𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒 = (
𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑧𝑒 − 𝑘𝑒𝑟 𝑛 𝑎𝑙𝑠𝑖𝑧𝑒

𝑠𝑡𝑟𝑖𝑑𝑒𝑠
) + 1 (12) 

After the convolution operation, the activation function is 

used to realize the nonlinear transformation of each convolution 

output vector. At present, the activation function commonly 

used in convolutional neural networks is ReLU function, which 

has the advantages of high computational efficiency and fast 

convergence speed, and is defined as: 

𝑐𝑗
𝑙(𝑝) = 𝑚𝑎𝑥{0, 𝑧𝑗

𝑙(𝑝)} (13) 

Where 𝑐𝑗
𝑙(𝑝)  is the output and 𝑝  is the 𝑝 -th element in the 

output eigenvector after the convolution operation. And the 

batch normalization layer can reduce the risk of overfitting 

during model training by following steps: 

1) Calculate the mean of each dimension 

𝜇𝛽 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

(14) 

𝜇𝛽 is the dimensional average. 

2) Calculate the variance of each dimension 

𝜎𝛽
2 =

1

𝑚
∑(𝑥𝑖 − 𝜇𝛽)

𝑚

𝑖=1

2

(15) 

𝜎𝛽
2 is the dimensional variance. 

3) Each dimension of data is normalized 

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝛽

√𝜎𝛽
2 + 𝜀

(16)
 

𝑥̂𝑖 is the normalized processing value; 𝜀 is the value of the 

initialization parameter. 

Sometimes, a large stride can lead to feature loss, while  

a small stride may cause redundant feature extraction, resulting 

in information redundancy. In this paper, we proposed a multi-

scale feature extraction method that achieves multi-scale 

extraction of feature data by coordinating a small convolution 

kernel with a long volume layer and a large convolution kernel 

with a small volume layer, also utilizing a long volume layer. 

Furthermore, we implemented the mentioned operation through 

two branches, with the following distinction: the parameters of 

convolution layer 1 in branch 1 and convolution layer 2 in 

branch 2 correspond to each other; similarly, the parameters of 

convolution layer 2 in branch 1 and convolution layer 1 in 

branch 2 correspond to each other, thus avoiding feature loss 

due to excessive movement of the convolution kernel. Fig. 4. 

describes the operation of the two different convolution 

kernel_size and step collocation methods. The models have 
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different receptive fields through different convolution kernel 

move steps, and different convolution kernel sizes make each 

convolution focus on different features. The combination of the 

two enables the models to achieve effective feature extraction 

while having multiple receptive fields. 
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Fig. 4. Different Kernal_size and step collocation diagram 

The feature data extracted from both branches are combined 

using RSA and serve as the output feature of VSPWM. Its 

operational diagram is illustrated in Fig. 5. In subsequent usage, 

we will use (a, b) to describe the parameters of the VSPWM 

utilized, indicating that the convolution kernel size of branch 1 

is a, the step size of branch 2 is b, and the step size of branch 2 

is a. 

 

Fig. 5. VSPWM flow diagram 

C. Variable step size parameter weighting network 

The overall architecture of VSPWN is depicted in Fig. 6. 

Following HTISFF, the three-phase voltage and current signals 

from the inverter are utilized as input features for VSPWN. 

Subsequently, VSPWN conducts multi-scale feature extraction 

and feature enhancement using three sets of distinct parameters. 

The features are then concatenated through normalization, 

activation, and average pooling layers. The concatenated feature 

data is flattened directly via a flattening layer, enabling PSF 

diagnosis of the three-phase inverter through fully connected 

and dropout layers. 

 

Fig. 6. Overall architecture of VSPWN 

3. PSF Data Generation Of Three-Phase Inverter 

The common inverter system structure is shown in Fig. 7, which 

is generally composed of four parts: DC side, inverter bridge, 

LC filter circuit and load. 

 

Fig. 7. Inverter system topology 

Due to advancements in power electronic devices, the 

proportion of nonlinear loads in electrical systems is increasing. 

As significant sources of harmonics, these loads introduce 

substantial harmonic currents, resulting in harmonic distortion 

of the output voltage. Given the periodic nature of these 

harmonics, which are multiples of the fundamental wave, 

repetitive control emerges as a viable strategy for system control. 

This paper focuses on a three-phase inverter utilizing SIC 

MOSFETs as power switching devices. It establishes  

a simulation platform in Simulink, employing S-Function to 

simulate both discrete and continuous systems. Fig. 8. illustrates 
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the construction of the inverter simulation system in Simulink. 

To leverage the benefits of SiC devices fully, the system's 

switching frequency is set to 30 kHz, with a control frequency 

of 60 kHz. This higher switching frequency allows the cutoff 

frequency of the LC filter circuit to be raised to 3 kHz, 

significantly reducing the volume of passive components in the 

system and enhancing its power density. 

The LC circuit parameters are designed to minimize the 

volume of passive devices: the filter inductance L = 0.0773 mH 

and the filter capacitance C = 36.5 μF. The system is rated at 

100 kVA.

 

Fig. 8. Overall simulation model of inverter.

Based on the mentioned three-phase inverter simulation 

model focusing on SIC MOSFETs, this study explores a PSF 

diagnosis model for power switching devices in three-phase 

inverters. By individually varying the MOSFET's on-resistance, 

we simulate various degrees of parametric faults, using Q1 in 

Fig 6 as an example. The on-resistance is set to a healthy state 

(7.5 mΩ) and different levels of PSF (10 mΩ, 50 mΩ, 75 mΩ, 

90 mΩ). 

Table 1 presents a comparison of modulated waveforms for 

phases A and B under different on-resistances. This comparison 

aims to clearly delineate differences in third harmonic 

amplitudes, total harmonic distortion (THD), and other 

waveform parameters across phases under varying on-

resistances.

Table 1. Comparison table of A and B phase modulated waves with different on-resistors 

On-resistance /mΩ 
Voltage amplitude of A phase modulated 

wave/THD/ third harmonic amplitude 

Voltage amplitude of B phase modulated 

wave/THD/ third harmonic amplitude 

7.5 338.4V/2.52%/6.467V 338.2V/2.66%/6.673V 

10 338.4V/2.52%/6.028V 337.5V/2.57%/6.162V 

50 341.9V/2.52%/6.076V 338.2V/2.67%/6.693V 

75 344.2V/2.51%/6.008V 337.2V/2.57%/6.172V 

90 345.4V/2.49%/5.919V 337.1V/2.57%/6.190V 

4. Model Structure Comparison Experiment 

To construct the most suitable model for PSF diagnosis of three-

phase inverters, comparative experiments were conducted using 

different structures of VSPWN. These experiments involved 

high-temporal-resolution sampling of original three-phase 

voltage and current data, resulting in three types of sampled data: 

2000, 4000, and 8000 data points, to investigate the impact of 

different data sizes on the diagnostic capability of the model 

post-sampling. Additionally, the effects of input model data 

types were compared, including the use of only three-phase 

voltage data, only three-phase current data, and both voltage and 

current data. 

When the fault data was used as input to the diagnostic 

model, the number of VSPWM within VSPWN was varied to 

study the influence of different VSPWM quantities on the 

model's performance. The specific diagnostic outcomes are 

illustrated in Fig. 9. to Fig. 15. During model training, data was 

segmented through overlapping sampling; each sample 
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contained 1000 data points, with a moving step size of 10. The 

VSPWM model featured 64 convolutional kernels, with a batch 

size of 4. The optimizer utilized was Adam, with a learning rate 

of 0.0001, and the loss function employed was Cross Entropy. 

Fig. 9. to Fig. 11. depict the utilization of VSPWM within 

VSPWN, where parameters (3,5), (4,6), and (5,7) are 

respectively applied. In these figures, 'C2000' denotes the use of 

original three-phase current data from the inverter, subjected to 

interval sampling post-HT processing. 'V2000' indicates the use 

of three-phase voltage data as the original feature set, while 

'VC2000' employs both three-phase voltage and current data. 

For 'VC2000', interval sampling via HITS is conducted, 

retaining 2000 sampled points for each feature data, which are 

subsequently concatenated and fed into the diagnostic model. 

 

Fig. 9. Diagnosis results of VSPWM(3,5) 

 

Fig. 10. Diagnosis results of VSPWM(4,6) 

 

Fig. 5. Diagnosis results of VSPWM(5,7) 

In the experimental results diagrams, we comprehensively 

evaluated the diagnostic accuracy throughout the training 

process across various model structures. The figures 

respectively depict the final diagnostic accuracy, variance (std), 

upper bound of the confidence interval, next confidence interval, 

and mean diagnostic accuracy following 100 rounds of training. 

We take the overall diagnostic mean value of each model 

training process as the primary measurement, as it effectively 

reflects both the diagnostic capability and convergence speed of 

the training process. As observed in the experimental results 

figures, when the diagnostic model employs only three-phase 

current data as input features, the mean diagnostic accuracy 

generally surpasses that achieved with only three-phase voltage 

data. Notably, when model structures remain constant, utilizing 

both three-phase voltage and current signals yields superior 

diagnostic results compared to using either signal in isolation. 

Generally, when characteristic data is employed as the input 

data for the model, the diagnostic results obtained using the 

current data exhibit superior performance compared to those 

using voltage data. Furthermore, as the total amount of data 

increases after sampling, the model's performance demonstrates 

an upward trend. Nonetheless, due to the limited application of 

only one VSPWM at this juncture, an escalation in the input data 

size can impede the thorough extraction of features from the 

data. Consequently, this leads to feature redundancy and 

negatively impacts the model's overall performance. 

From Fig. 12. to Fig. 14. illustrated the diagnostic outcomes 

when two VSPWMs are employed in VASPN. These figures 

further demonstrate that employing three-phase current as input 

features enhances the diagnostic accuracy of the model by using 
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three-phase voltage alone. Moreover, integrating both three-

phase voltage and current signals concurrently consistently 

yields better results than using either signal independently. 

 

Fig. 6. Diagnosis results of VSPWM(3,5) (4,6) 

 

Fig. 7. Diagnosis results of VSPWM(3,5) (5,7) 

 

Fig. 8. Diagnosis results of VSPWM(3,5) (5,7) 

 

 

Similarly, when the input data type remains constant, the 

diagnostic performance of the model shows an upward trend 

with increasing data scale. At this point, when the parameters of 

VSPWM are set to (4,6) and (5,7), the overall performance of 

the model is noticeably inferior to that of the other two 

comparative models. However, the model utilizing VSPWM 

with parameters (3,5) demonstrates stable performance even 

with small-scale data under these conditions. Therefore, it is 

essential to further investigate the model performance when 

three different sets of VSPWM parameters are employed 

simultaneously. 

Fig. 15. illustrates the use of VSPWM three times in 

VSPWN with respective parameters (3,5), (4,6), and (5,7). 

When both voltage and current data were employed 

simultaneously, VSPWN achieved diagnostic accuracies of 

99.93%, 100%, and 100%, respectively. Throughout the entire 

training process, the average diagnostic accuracy of the 

corresponding model consistently outperformed other 

configurations. Therefore, the optimal final diagnostic model 

structure utilizes VSPWM three times within VSPWN, 

integrating both three-phase voltage and current data as primary 

feature inputs. 

 

Fig. 9. Diagnosis results of VSPWM(3,5) (4,6) (5,7) 

Moreover, to mitigate the influence of convolutional layer core 

counts and batch size on diagnostic accuracy during model 

training, we conducted comparative experiments across 

different channel configurations and batch sizes. 

Observationally, with consistent channel counts, the diagnostic 

accuracy of the model decreases as batch size increases. 

Conversely, when batch size remains constant, increasing the 

number of channels enhances diagnostic accuracy. Ultimately, 
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our findings indicate that the optimal configuration for peak 

performance of the diagnostic model occurs at Channel=64 and 

Batch_size=4 

 

 

Fig. 10. Effects of different channels and Batch_size on the model.

To visually demonstrate the feature extraction capabilities of 

VSPWM with varying parameters, t-SNE analysis was 

conducted on the diagnostic process of the mentioned model, as 

depicted in Fig. 17. It is evident that significant differences exist 

among the extracted features when employing VSPWM 

parameters (3,5), (4,6), and (5,7). However, upon their 

integration, the t-SNE plots align closely with the features 

extracted solely by VSPWM with parameters (5,7). 

Furthermore, the diagnostic accuracy of the model is higher 

when employing a three-layer VSPWM compared to a single-

layer VSPWM, underscoring that VSPWM with diverse 

parameters effectively extracts varied feature information and 

mitigates the risk of overlooking less diverse features.

 

Fig. 11. The TSNE results of Feature.

5. Comparison With Other Methods 

To demonstrate the effectiveness of the proposed method in this 

paper, diagnostic experiments were conducted on three-phase 

inverter PSF using various diagnostic models applied to original 

three-phase voltage and current signals. Additionally, to assess 

the noise resistance of the model, white Gaussian noise of 

varying magnitudes was added to the data to simulate real-world 

noise interference during data acquisition. The diagnostic 

results are presented in Fig 18. 

To conduct comprehensive experimental verification, this 

paper selects several classical diagnostic models, including 

1DCNN, 1DCNN-LSTM, and the Deep Residual Shrinkage 

Network (DRSN). Additionally, several novel optimized 
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diagnostic models are included, such as IWOA-1DCNN-

LSTM[18], which leverages the improved Whale Optimization 

Algorithm to optimize the parameters of 1DCNN, and MTF-

SPCNN[19], which diagnoses using two-dimensional feature 

images. The diagnostic accuracy of the HTISFF-VSPWN 

proposed in this paper is the highest under both raw data and 

noisy conditions, surpassing that of the DRSN model by 1.15%, 

3.29%, and 0.37%, respectively. Notably, the proposed method 

requires only 60 seconds for each training round, which is 120 

seconds less than the 180 seconds needed for the DRSN and 182 

seconds less than that required for IWOA-1DCNN-LSTM. This 

efficiency can be attributed to the larger parameter values of the 

convolution layer in the IWOA-optimized 1DCNN, where an 

increase in the number of convolution kernels typically results 

in a longer diagnosis time. These findings underscore the 

superior performance of the proposed method. 

 

Fig. 12. Results compared with other methods. 

6. Conclusion 

This paper proposes a diagnostic model, HTISFF-VSPWN, for 

parametric faults in three-phase inverters. The diagnostic model 

takes the three-phase voltage and current signals as input data. 

These signals undergo Hilbert transformation and subsequent 

sampling at regular intervals. The resulting transformed data are 

then combined to form the input features for the VSPWN 

diagnostic model. Upon input, these features undergo multi-

scale convolution through two corresponding convolution 

layers to extract features of varying scales. Additionally,  

a reverse self-attention mechanism is employed to emphasize 

significant features while suppressing minor ones, thereby 

enabling effective extraction of distinguishing features between 

different degrees of PSF and enhancing diagnostic accuracy. 

Comparative analysis with other methods demonstrates that 

the proposed model achieves superior diagnostic accuracy and 

robustness under noisy conditions. The proposed VSPWN 

enhances model diagnostic efficiency while preserving critical 

features through the collaboration of convolutional layers with 

varying lengths that operate asynchronously. Future research 

should prioritize the development of a universal diagnostic 

model adaptable to diverse operational conditions, thereby 

enhancing its generalizability. Furthermore, exploring adaptive 

structural adjustments within the model presents an important 

avenue for investigation.
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