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Highlights  Abstract  

▪ Innovative neural network structure with a 

differential layer. 

▪ A universal method suitable for various types 

of neural networks. 

▪ Achieved sharper reconstructions with 

enhanced structural detail and fidelity. 

▪ Validated on real-world reactor data using a 16-

transducer UST system. 

▪ Suitable for industrial monitoring under 

limited and noisy measurement conditions. 

 Ultrasonic tomography (UST) represents a powerful non-invasive 

diagnostic technique for monitoring and analyzing internal processes 

within industrial reactors. Despite its potential, UST-based 

reconstructions are often challenged by the ill-posed nature of the 

inverse problem, limited measurements, and the presence of noise. To 

address these limitations, this study introduces a novel differential neural 

network architecture that enhances conventional deep learning models 

by incorporating a specialized differential layer. This layer processes two 

parallel input streams and operates on their residuals, thereby amplifying 

subtle variations in the data critical for accurate tomographic 

reconstructions. This study aims to empirically validate the concept of 

the efficacy of differentiated architecture. Reconstruction performance 

was evaluated using established quantitative metrics. Results 

demonstrate that models incorporating the differential layer consistently 

outperform their standard counterparts, delivering higher resolution, 

improved structural integrity, and superior noise robustness. The 

universality and efficiency of the differential architecture across both 

sequential and spatial models highlight its applicability to a wide range 

of inverse imaging problems in industrial settings. 
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1. Introduction 

Tomography is a group of imaging techniques that allow non-

invasive analysis of the internal structure of objects and systems. 

Tomographic techniques used in nondestructive testing include 

electrical impedance tomography (EIT), electrical capacitance 

tomography (ECT), ultrasonic tomography (UST), optical 

tomography (OT), and X-ray computed tomography. EIT is 

based on the measurement of the electrical conductivity of the 

object to be examined and is used in medicine and the study of 

conductive materials [20, 27]. ECT uses the measurement of 

electrical capacitance between electrodes, which is useful in the 

analysis of multiphase flows and chemical processes [15, 39, 

40]. UST, on the other hand, is based on the propagation of 
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ultrasonic waves through the medium under test, providing 

detailed information on the structure and properties of the object 

[3, 4]. Optical tomography encompasses a range of imaging 

techniques that use light to non-invasively examine the internal 

structure of objects. One prominent type, optical coherence 

tomography (OCT), provides high-resolution cross-sectional 

images and is widely used in ophthalmology, dermatology, 

cardiology, and materials science for microstructure analysis 

[11, 16, 30]. X-ray computed tomography employs X-rays to 

generate detailed cross-sectional images of an object. It is 

widely used in medical diagnostics, industrial inspection, and 

material analysis, providing high-resolution imaging of internal 

structures without the need for physical sectioning [22, 45]. 

These various tomographic techniques enable researchers and 

engineers to analyze internal structures non-invasively, each 

method being suited to specific materials, environments, and 

applications. 

UST is an effective, non-intrusive imaging method 

extensively utilized in industrial settings to observe the internal 

structures of reactors and fluid environments [8, 37]. It is 

essential in guaranteeing operational safety, enhancing 

processes, and identifying irregularities in different industrial 

systems. Through the examination of ultrasonic wave 

propagation within a medium, UST allows for the 

reconstruction of spatial distributions of acoustic parameters, 

providing important understanding of the internal conditions of 

industrial reactors [17]. 

By passing high-frequency ultrasonic waves through an 

industrial process medium and monitoring how their behavior 

changes as they travel, UST operates. The physical and 

chemical characteristics of the medium these waves travel 

through determine whether they are transmitted, reflected, 

refracted, or scattered [23, 38]. The way these waves interact 

with their environment is significantly influenced by factors 

such as the material composition, flow dynamics, and structural 

imperfections inside reactors, pipelines, or pressure containers 

[25]. Without having physical access to the system, UST makes 

it possible to recreate intricate representations that show interior 

conditions by recording and processing these interactions. 

UST can be used in industry for monitoring multiphase flow 

dynamics, where gas-liquid and solid-liquid interactions affect 

efficiency. Visualizing and quantifying phase distribution, flow 

patterns, and turbulence help engineers improve process 

performance and resolve inefficiencies [21, 24].  Image-based 

tomographic techniques have also been applied to investigate 

the dynamic behavior of gas bubbles, providing complementary 

insights into local flow parameters and spatial characteristics 

[31].  In addition to improving process control, tracking is 

important for preventing failures and making processes better. 

Preventing machine problems is important because they can 

stop production. UST helps lower these risks and makes 

processes more efficient by finding problems in how things flow.  

UST is also useful for finding structural damage in essential 

structures like pressure vessels, pipelines, and reactors. These 

structures experience harsh conditions over time, which can 

lead to rust, wear and tear, and even cracks [5, 6]. By enabling 

predictive maintenance and lowering the chance of catastrophic 

failure, UST offers a non-invasive way to identify these flaws 

early [12, 26, 36]. In addition to its important role in preventing 

failures, tomography is a major contributor to process 

optimization. It helps enterprises to improve productivity on  

a number of levels by providing real-time information regarding 

turbulence and phase interactions. Through the reduction of 

cycles, the reduction of material consumption, and the 

enhancement of automation in process control, these insights 

help to minimize production costs. These enhancements 

subsequently facilitate the advancement of high-performance, 

sustainable, and cost-effective industrial operations [13, 18, 33].  

UST is important in the analysis of fluid mixing processes 

in industrial systems. Numerous chemical reactions and 

material processing operations necessitate uniform mixing to 

guarantee product consistency and optimize yield [47]. UST 

allows engineers to assess mixing efficiency and make real-time 

adjustments by visualizing the flow and dispersion of 

components. It delivers feedback on critical parameters like 

temperature, density, and phase distribution, maintaining 

process stability. Monitoring and controlling these parameters 

in real time enhances decision-making, safety, and process 

optimization [1, 2]. 

The use of deep learning methodologies, specifically 

convolutional neural networks (CNNs) [14, 29, 34] and long 

short-term memory (LSTM) networks [10, 44, 46], has resulted 

in a transformative change in ultrasonic tomography (UST) by 

markedly improving image reconstruction, defect identification, 
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and process oversight. Traditional tomographic techniques 

often struggle with the inverse problem due to limited 

measurement availability, which hinders the achievement of 

high-resolution imaging [7]. CNNs, designed to autonomously 

extract spatial characteristics from pictures, have become  

a crucial tool in improving tomographic reconstruction by 

optimizing edge detection, reducing artifacts, and increasing 

noise resilience. By leveraging multiple convolutional layers, 

these networks have the capacity to discern intricate patterns in 

ultrasonic signals, thereby facilitating more precise phase 

distribution analysis in multiphase flow monitoring and 

structural integrity assessments.  

The combination of CNNs with wavelet transformations has 

been shown to effectively suppress noise and enhance edge 

detection in images. This method captures intricate local 

characteristics and minimizes background noise, leading to 

crisper and more accurate edge maps [43]. The integration of 

adaptive variational mode decomposition with CNNs has 

demonstrated high accuracy in denoising ultrasonic signals, 

achieving an accuracy rate of 93.94% in distinguishing different 

signal-to-noise ratio combinations [41]. Convolutional neural 

networks have been utilized for effective noise filtering and the 

reduction of prevalent artifacts, including shadowing and 

reverberation in ultrasonic images, thereby enhancing image 

fidelity and spatial resolution [42]. Enhanced CNN 

architectures that incorporate attention mechanisms and 

encoder-decoder structures improve the resolution of low-

frequency ultrasonic images while preserving structural and 

textural information, thereby enhancing edge contour definition 

[19]. 

LSTM networks, on the other hand, are particularly effective 

in handling sequential UST data, making them well-suited for 

applications that require tracking changes over time. Given that 

industrial UST is frequently employed for real-time monitoring 

of dynamic processes, such as the detection of flow instabilities 

in pipelines or gradual material degradation, LSTMs are capable 

of analyzing temporal dependencies in ultrasonic signals. This 

feature facilitates enhanced trend analysis, anomaly detection, 

and predictive maintenance, assuring the identification of 

structural flaws before they escalate into significant 

breakdowns. Engineers can predict future system behavior by 

training LSTMs using previous records, facilitating the 

optimization of operational parameters and the avoidance of 

expensive downtime [9]. 

The utilization of bidirectional LSTM networks alongside 

automatic alignment methods has been shown to enhance the 

precision and efficacy of equipment monitoring [28]. In the 

context of oil and gas pipelines, LSTMs optimized with the 

dung beetle optimization algorithm have been shown to enhance 

detection accuracy and reduce detection time, thereby 

demonstrating the model's capacity for rapid and precise 

classification of pipeline data features [35]. Furthermore, 

LSTM networks in conjunction with autoencoders have been 

employed for the purpose of leak detection within water supply 

systems [32].  

The progress in the field of UST, especially with the 

incorporation of neural networks like CNN and LSTM, has 

resulted in significant improvements in the quality of image 

reconstruction. This advancement has enabled a more precise 

representation of the internal parameters of the examined 

structures. However, tomographic reconstruction has 

considerable difficulties because of the limited number of input 

data, the impact of measurement noise, and the occurrence of 

artifacts that might undermine the precision of the outcomes. 

Therefore, it is necessary to constantly improve computational 

methods that will increase precision and robustness to noise. 

1.2. Motivation, novelty and paper structure 

The reconstruction of internal structures in industrial systems 

via ultrasonic tomography (UST) poses significant challenges 

owing to the intrinsic boundaries of inverse issues. The 

limitations generally arise from the limited availability of 

measurements, the existence of noise, and the difficulty in 

obtaining high-resolution imaging. Traditional algorithmic 

methods, including iterative reconstruction techniques, face 

challenges in yielding accurate results under these situations. 

The emergence of deep learning techniques, especially 

convolutional neural networks (CNNs) and long short-term 

memory (LSTM) networks, has resulted in significant progress 

in image reconstruction through improved feature extraction, 

noise reduction, and anomaly identification. Nonetheless, 

current models have difficulties in thoroughly resolving the 

inverse problem, particularly when subtle changes in the input 

data require accurate capture and interpretation. 
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To address the previously mentioned limitations, this study 

introduces differential layer – a novel neural network element 

of architecture that improves the quality of any model (e.g., 

CNN, LSTM), regardless of the layer structure used in it. The 

proposed solution enables specialized tracking of subtle 

changes between parallel information flows, which ultimately 

facilitates more precise parameter estimation and reduces the 

information deficit. The central part of the architecture, which 

is the final layers of the model, transforms the difference into 

the output solution of the inverse problem under consideration. 

The main innovation lies in the difference layer, in which the 

outputs of the two branches are subtracted from each other. This 

approach allows the network to focus on the residuals, capturing 

and amplifying subtle variations in the data that are often 

overlooked by conventional models. 

This architecture uses two parallel branches of a neural 

network, fed with identical input, which then process the data 

independently.  The obtained results are passed to the 

differential layer, where they are subtracted, allowing the model 

to operate on the value resulting from the difference (residual).  

This quantity reflects the indeterminacy characteristic of a wide 

class of inverse problems. The differential architecture does not 

aim to replace existing models; rather, it enhances their 

performance. The incorporation of the differential architecture 

into CNNs and LSTMs has the potential to enhance the models' 

capacity to discern subtle variations in input data. 

In the framework of inverse problems, such tomographic 

reconstruction, input data usually shows noise or 

incompleteness. Under such conditions, the two branches can 

give different aspects of the absent or corrupted information top 

priority, resulting in complementary but different 

representations. Moreover affecting the differential signal is the 

modeling of approximation effects. Mathematical models often 

provide simplified versions of difficult physical systems in 

useful industrial environments. By stressing systematic 

deviations, the differential processing framework helps to 

reduce the effect of these approximations and guarantees the 

dependability and accuracy of the resulting data interpretation. 

By means of exploration of alternative feature spaces, the 

architecture can naturally inspire several possible solutions, so 

avoiding redundancy in data interpretation and guaranteeing  

a more complete knowledge of the input. This work aims to 

empirically confirm the hypothesis on the efficiency of the so-

called differential architecture. 

2. Materials and Methods 

2.1. Hardware 

At the Netrix SA research and development lab, a team 

developed and constructed a prototype ultrasonic tomography 

(UST) system for monitoring industrial processes (Figure 1). 

           

(a) (b) 

Figure 1. UST tomograph connected to the reactor model (a), reactor model with an ultrasonic sensor system (b). 

The tomography system was based on an experimental 

model of a water-filled reactor containing various submerged 

objects (Figure 2). The UST system operates by analyzing 

variations in time-of-flight (TOF) measurements, which reflect 

the acoustic properties of the medium. 
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Figure 2. Cross-section of the reactor model at the height of the transducers. 

The measurement apparatus utilized 16 ultrasonic 

transducers arranged to function in both transmission and 

reception modes. This configuration facilitated a thorough 

examination of acoustic wave propagation within the medium. 

The reconstruction procedure employed time-of-flight (TOF) 

analysis to ascertain the temporal delay of ultrasonic signals 

passing through several pairs of transducers. The quantity of 

TOF measurements was determined by the system 

configuration, with the total number of independent 

measurements adhering to equation (1). For n = 16 transducers, 

this results in exactly 120 independent measurements 

𝑀 =
𝑛2 − 𝑛

2
 (1) 

where 𝑛  is the number of transducers. The UST system is 

engineered as a compact and portable device featuring 

sophisticated signal gathering and processing capabilities. It 

functions in two primary modes: full waveform mode, 

delivering raw data for comprehensive analysis, and 

transmission mode, offering processed time-of-flight and 

amplitude information. The lowered data size in transmission 

mode facilitates real-time imaging at 4 frames per second (fps), 

in contrast to 0.08 fps in full-waveform mode. 

The system hardware is composed of 84 measurement 

channels, which are distributed across multiple acquisition 

boards. These boards are interconnected by a FD-CAN bus, 

which facilitates the transmission of data and the coordination 

of activities among all the boards. This module allows 

communication with a control panel via a Raspberry Pi 4B, 

which has a touch screen. Each transducer functions as both a 

transmitter and a receiver, thereby capturing variations in 

acoustic wave propagation along distinct transmission paths. 

The strategic positioning of these transducers along the 

perimeter of the reactor facilitates full volumetric coverage and 

enables precise localization of submerged objects in a liquid 

medium. The system incorporates advanced signal processing 

electronics, including, but not limited to, a variable sampling 

rate analog-to-digital converter (ADC), multi-stage harmonic 

filtering, and programmable gain amplification. A dedicated 

high voltage generator produces square waveforms up to ±100V 

for the purpose of optimal transducer excitation. The data 

acquisition unit facilitates the concurrent measurement of each 

excitation cycle, ensuring a high degree of data acquisition 

efficiency. 

In order to enhance the precision of the reconstructions, 

reference measurements were initially conducted in an 

environment devoid of objects to establish a baseline for 

subsequent analyses. The introduction of objects into the reactor 

resulted in alterations to the measured TOF values, enabling the 

system to generate contrast-enhanced images that delineate 

object boundaries and spatial distributions. The UST system, 

which is housed in a portable enclosure, is particularly well 

suited for utilization in industrial environments, offering high-

resolution imaging for process monitoring and anomaly 

detection in liquid-filled reactors. 

2.2. Simulation environment 

The inverse problem in UST involves estimating the internal 

acoustic properties of the medium from external ultrasonic data. 
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The primary challenge of this inverse problem stems from its 

ill-posed nature, allowing fluctuations in the input data to result 

in considerable differences in the reconstructed image. Inverse 

problems inherently lack uniqueness; they require mathematical 

regularization techniques to yield stable and physically relevant 

solutions. In the context of UST, the inverse problem is 

addressed by reconstructing a picture from limited and noisy 

time-of-flight measurements, a process that necessitates 

advanced numerical methods.   

Finite element numerical simulations (FEM – finite element 

method) were conducted to model ultrasonic wave propagation 

in the reactor to overcome these problems. The FEM-based 

methodology produced a comprehensive depiction of acoustic 

wave interactions, encompassing diffraction, scattering, and 

multipath effects, which are essential for precise modeling of 

the TOF measurements utilized in picture reconstruction. The 

simulation environment was precisely adjusted to replicate 

authentic material qualities, boundary conditions, and signal 

distortions, thus guaranteeing that the computational model 

accurately represented the experimental settings. 

An initial measurement was taken in an environment 

without objects to set a baseline TOF distribution. Then, objects 

were submerged into the reactor, altering the characteristics of 

wave propagation and resulting in TOF variations. These 

changes created crucial contrast for image reconstruction, 

allowing for the definition of object boundaries and spatial 

distributions. 

Considering the difficulties of image reconstruction based 

on TOF measurements, the algorithm solving the inverse 

problem used a mixture of iterative reconstruction methods, 

regularization techniques and optimization-based strategies to 

obtain a stable solution. Iterative approaches such as Algebraic 

Reconstruction Technique (ART) and Simultaneous Iterative 

Reconstruction Technique (SIRT) were used to gradually 

increase the estimated velocity distribution. The considered 

reconstruction methods were updated through iterations, where 

these iterations were based on the differences between the actual 

and simulated TOF values. To further increase the stability, 

regularization methods such as Tikhonov regularization, which 

imposed a smoothness constraint to reduce noise, and Total 

Variation Minimization (TVM), which minimized artifacts 

(blurred edges, streaks, rings around objects, false signals in the 

reconstruction, etc.) while preserving the edge information, 

were used. In addition, optimization-based approaches such as 

gradient descent and conjugate gradient techniques were used 

to minimize the discrepancy between experimental and 

simulated TOF. A forward finite element model allowed for an 

initial approximation of the TOF values, refined by iterative 

minimization of the error function 

𝐸 = ∑ 𝑇𝑂𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖 − 𝑇𝑂𝐹𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖

𝑀

𝑖=1

 (2) 

where 𝑇𝑂𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖  represents the real experimental 

measurements, and 𝑇𝑂𝐹𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖  denotes the estimated values 

obtained from the numerical model. 

The reconstruction procedure was carried out in MATLAB 

R2025 utilizing the EIDORS v3.12 toolbox, a renowned open-

source platform for electrical and acoustic tomography. The 

processing steps included cleaning and adjusting the TOF data, 

simulating how waves move using FEM, and solving problems 

by repeatedly improving the reconstruction methods. This 

iterative approach allowed for a more accurate representation of 

the underlying structures, ultimately enhancing the quality of 

the reconstructed images. By refining the algorithms and 

incorporating advanced techniques, the team aimed to achieve 

greater precision in the tomographic results. 

2.3. Data preparation for the predictive model and 

differential neural network architecture 

To support the reconstruction of ultrasound tomographic images, 

a dataset of 35,000 samples was developed to simulate real-

world measurement conditions. Of these, 33,000 cases were 

used for training, while the remaining 2,000 were reserved for 

testing. Each measurement vector consisted of 120 values 

representing the TOF differences of the ultrasound waves 

propagating between specific transducer pairs. Image 

reconstruction was performed on a high-resolution 

computational grid of 4,096 pixels. The reconstruction 

methodology was based on solving the forward problem by 

comparing actual TOF measurements with simulated data 

generated using the finite element method (FEM).  

The aim of this study is to empirically verify the hypothesis 

regarding the effectiveness of the so-called differential 

architecture. The design utilizes two parallel branches of  

a neural network, fed with an identical input, which then process 
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the data independently. The results obtained from this process 

are then transferred to a differential layer, where they undergo 

subtraction. This subtraction process enables the model to 

operate on the value that results from the difference, also known 

as the remainder. This value is indicative of the vagueness 

characteristic of a wide class of inverse problems. It is important 

to note that the primary objective of this study is not to devise  

a novel model that will surpass other models in terms of 

effectiveness. Instead, the present study proposes a general 

mechanism of neural network architecture, termed the 

differential architecture, which enhances the quality of various 

models (e.g., CNN, LSTM), irrespective of the layer structure 

employed. 

To verify the proposed differential mechanism, two distinct 

neural network structures were used: LSTM and CNN. The 

standard LSTM model processes the input data sequentially. 

The configuration of this model is shown in Figure 3. It consists 

of an input layer, an LSTM block, followed by a fully connected 

and GELU activation layer. The differential LSTM model 

consists of a single input layer followed by two parallel 

branches. Each branch contains an LSTM block. At the end of 

one of the branches, a Differential block with scaling layer is 

applied which multiplies the output values of one branch of the 

LSTM block by −1 . Then, the outputs of both branches are 

combined using an addition operation, followed by a fully 

connected layer and then a GELU activation layer (Table 1).

 

Figure 3. Layers of the differential LSTM architecture model. 

Table 1. Layers of the differential LSTM architecture model. 

Layer Activations 

Sequence Input with 120 dimensions 120(C) × 1(B) × 1(T) 

LSTM structure block (left) –   

Scaling layer [multiply by (−1)] 4096(C) × 1(B) 

LSTM structure block (right) – 

Element-wise addition of 2 inputs 4096(C) × 1(B) 

4096 ly Connected 4096(C) × 1(B) 

GELU 4096(C) × 1(B) 
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The model with a CNN structure incorporates both 

architectures, which include a CNN structure block (see Figure 

4). The standard CNN model consists of an input layer, a CNN 

block, a fully connected layer, and a GELU activation function. 

The differential CNN model comprises a single input layer, 

followed by two parallel branches. Each branch contains a CNN 

structure block. At the end of one of the branches, a scaling layer 

with a factor of −1 is applied. The outputs of both branches are 

then combined using element-wise addition, followed by a fully 

connected layer and an activation function. Table 2 explains the 

individual layers of the differential CNN architecture model.

Table 2. Layers of the differential CNN architecture model. 

Layer descritpion Activations 

120 atures 120(C) × 1(B) 

CNN structure block (left) – 

Scaling layer [multiply by (−1)] 4096(C) × 1(B) 

CNN structure block (right) – 

Element-wise addition of 2 inputs 4096(C) × 1(B) 

4096 ly Connected 4096(C) × 1(B) 

GELU 4096(C) × 1(B) 

 

Figure 4. Layers of the differential CNN architecture model. 

All neural networks analyzed were trained with the same 

parameters, which allows a fair comparison of their efficiency 

and the effectiveness of the training process. In the optimization 

process, the Adam algorithm was used to ensure that the weights 

of the models were effectively adapted to the training data. 

Although the maximum number of training epochs was set to 

3,000, an early stopping strategy was employed to prevent 

overfitting. Training was automatically terminated if no 
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improvement in the validation loss was observed for 20 

consecutive validation checks. This allowed the model to stop 

at the optimal point of generalization, before performance on 

the validation set began to degrade.  

To illustrate the training dynamics, Figure 5 presents the 

training curves for both CNN and LSTM models, in their 

standard and differential variants. Each subplot shows the 

evolution of training and validation loss across iterations. The 

left column displays the full loss scale, while the right column 

presents the same curves with rescaled y-axes to highlight the 

later convergence behavior. The red markers indicate the 

iteration at which early stopping was triggered. As seen in 

Figure 5a) and 5c), the differential models (LSTM and CNN, 

respectively) converged faster and reached lower final 

validation losses than their classical counterparts (Figure 5b) 

and 5d)). The validation loss consistently followed the training 

loss trend and did not increase, indicating that no overfitting 

occurred during training. This observation confirms the 

effectiveness of the regularization strategy employed and the 

superior generalization capability of the proposed differential 

architectures

a) 

  
b) 

  
c) 
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d) 

  
 full graph rescaled y-axis 

Figure 5. Training and validation loss curves for: a) differential LSTM architecture model, b) LSTM model, c) differential CNN 

architecture model, d) CNN model. 

The mini-batch size was 64, which allowed efficient use of 

computational resources and stabilization of the training 

process. The validation data were used to monitor the progress 

of the training, and the validation process was performed every 

100 iterations, allowing a continuous evaluation of the 

generalization capabilities of the models. The data samples were 

randomly mixed at each epoch, which counteracted the 

memorization of sequences and improved the generalization of 

the models to new data. 

A diverse set of quality standards (RMSE, PSNR, SSIM, and 

ICC) have been utilized to evaluate the precision of 

tomographic image reconstruction methods (refer to Table 3). 

These metrics evaluate the extent to which the reconstructed 

image approximates the original pattern, thereby offering 

valuable insights into the efficacy of the underlying algorithm. 

The Structural Similarity Index (SSIM) is a metric that 

evaluates the perceived quality of a reconstructed image by 

taking into account structural details, brightness, and contrast 

variations. Conversely, the Root Mean Squared Error (RMSE) 

places emphasis on absolute errors. RMSE is a frequently 

employed metric for evaluating the precision of the 

reconstructed image. The computation of RMSE involves 

determining the mean squared intensity differences between the 

reconstructed and pattern images over all pixels.

Table 3. Quality indicators for the evaluation of the models received. 

Quality metrics Formula Meaning of symbols 

Root Mean Square Error 

(RMSE) 
RMSE =  √∑

(�̂�𝑖 − 𝑦𝑖)2

𝐾

𝐾

𝑖=1

 

K - total number of pixels in the image 

𝑦𝑖  - the intensity of the i-th pixels in the 

pattern image 

�̂�𝑖 - the intensity of the i-th pixels in the 

reconstructed image  

𝜇�̂� , 𝜇𝑦 - the local means intensities of the 

reconstructed and pattern images 

𝜎�̂� , 𝜎𝑦  - the standard deviations of the 

reconstructed and pattern images 

𝜎�̂�𝑦  - the cross-covariance between the 

reconstructed and  images 

𝐶1 = (0.01 ∙ 𝐿)2  and 𝐶2 = (0.03 ∙ 𝐿)2   - 

stabilization constants  

L is set to 1 for normalized pixels values 

in the range (0,1).  

�̅�   - the average intensity values of the 

pattern image 

�̅̂�  - the average intensity values of the 

reconstructed image 

Structural Similarity Index 

(SSIM) 
SSIM =

(2𝜇�̂�𝜇y + C1)(2𝜎�̂�𝑦 + C2)

(𝜇�̂�
2 + 𝜇y

2 + C1)(𝜎�̂�
2 + 𝜎y

2 + C2)
 

Peak Signal-to-Noise Ratio 

(PSNR) 
PSNR = 10 ∙ log10(𝐾2/𝑀𝑆𝐸) + 50 

Image Correlation 

Coefficient (ICC) 

ICC =
∑ (𝑦𝑖 − �̅�)(�̂�𝑖 − �̅̂�)𝐾

𝑖=1

√∑ (𝑦𝑖 − �̅�)2𝐾
𝑖=1 ∑ (�̂�𝑖 − �̅̂�)

2𝐾
𝑖=1
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The Peak Signal-to-Noise Ratio (PSNR) is a metric that 

quantifies the maximum error between the reconstructed and 

original images on a logarithmic scale. The conventional 

𝑃𝑆𝑁𝑅𝑐𝑜𝑛𝑣   is defined for 8-bit images. In typical applications 

involving 8-bit images, PSNR values range between 30 and 50 

dB, with higher values indicating superior reconstruction 

quality. In the context of tomographic image reconstruction, the 

pixel intensity values differ significantly. Specifically, the 

reconstructed images comprise scalar values representing 

distinct physical materials: 0 for water and –1 for air. This 

results in a limited dynamic range and includes negative values, 

which can lead to numerically low or even negative PSNR 

values when using the standard formula. To address this 

limitation and enhance interpretability, we introduce a constant 

bias term: PSNR =  PSNR𝑐𝑜𝑛𝑣 + 50. 

The Image Correlation Coefficient (ICC) is a metric that 

assesses the linear correlation between the pattern and 

reconstructed images, providing a reliable metric for evaluating 

the preservation of spatial distribution patterns. 

3. Results and discussion 

3.1. LSTM neural network 

The reconstruction results from both the LSTM neural network 

model and the differential LSTM architecture model across five 

cases are presented in Table 4. The selection of five cases for 

the purpose of comparative analysis is outlined below. The 

initial column displays the reference images, the second column 

presents the reconstructions made using the LSTM neural 

network model, and the final column displays the 

reconstructions generated by the differential LSTM architecture. 

The findings reveal that the reconstructions employing the 

differential LSTM architecture exhibit superior detail and a 

more precise alignment with the reference pattern in 

comparison to those generated by the standard LSTM model. 

Additionally, the images reconstructed using the differential 

architecture appear sharper, which enhances the visibility of key 

structural elements. This finding suggests that employing  

a differential architecture not only improves the accuracy and 

reliability of the reconstructions but also provides better visual 

clarity.

Table 4. Results of the reconstructions using LSTM and differential LSTM architecture models. 
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Table 5 shows a comparison of the reconstruction quality 

indicators from a standard LSTM model and a differential 

LSTM model. The columns present data related to specific cases, 

from Case #1 to Case #5, alongside an additional column that 

displays the average quality indicators. The rows are arranged 

according to the quality indicators. The results for each 

indicator from the standard LSTM model and the differential 

LSTM architecture model are presented.

Table 5. Comparison of reconstruction quality indicators for LSTM models. 

# Case #1 Case #2 Case #3 Case #4 Case #5 average 

RMSE 
LSTM model 134.58 206.24 170.31 163.25 251.87 185.25 

differential LSTM architecture model 74.8 115.94 83.5 103.92 156.3 106.89 

PSNR 
LSTM model 7.42 7.31 5.37 5.74 1.98 5.56 

differential LSTM architecture model 12.52 8.72 11.57 9.67 5.63 9.62 

SSIM 
LSTM model 0.46 0.5 0.47 0.46 0.55 0.48 

differential LSTM architecture model 0.51 0.57 0.52 0.49 0.58 0.53 

ICC 
LSTM model 0.97 0.93 0.95 0.95 0.92 0.95 

differential LSTM architecture model 0.99 0.98 0.99 0.98 0.97 0.98 

 

The analysis of the data presented in the table indicates that, 

with respect to RMSE, the differential LSTM model exhibits 

superior reconstruction quality in all test cases and in the 

averaged validation results. The mean RMSE for the differential 

model is 106.89, markedly lower than the 185.25 achieved by 

the regular LSTM model. The most significant improvement is 

observed in Case #2, where the RMSE reduced from 206.24 to 

115.94, confirming the effectiveness of the differential LSTM 

design in error reduction. A comparable trend is noted in the 

PSNR metric. Elevated PSNR values signify enhanced 

reconstruction quality, and the differential LSTM model 

achieved superior values relative to the conventional model 

across all test cases and in the aggregated results. The average 

PSNR score for the differential model is 9.62, indicating  

a significant improvement above the regular LSTM model's 

score of 5.56. The most notable discrepancy was noted in Case 

#3, where the differential model reached a PSNR of 11.57, in 

contrast to the standard model's 5.37. A further analysis of the 

SSIM index also indicates the superiority of the differential 

LSTM model. The SSIM values for the differential model 
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consistently surpass those of the standard model across all test 

scenarios and in the average validation outcomes. The mean 

SSIM value for the differential model is 0.53, indicating  

a significant improvement over the 0.48 attained with the 

conventional LSTM model. Case #2 exhibited the most 

substantial discrepancies, with the differential model achieving 

an SSIM value of 0.57, markedly exceeding the conventional 

model's score of 0.07. The ICC index further illustrates 

enhanced results for the differential LSTM model. Elevated ICC 

values indicate improved concordance and superior 

reconstruction quality. The differential LSTM model achieves 

an average ICC value of 0.98, whilst the conventional LSTM 

model attains a value of 0.95. The greatest significant 

improvement is observed in cases #2 and #5, where the ICC 

increased by 0.05. 

The superiority of the differential LSTM model over the 

standard LSTM model is evident from the results presented. The 

superiority is unequivocal in all examined reconstruction 

quality metrics. The differential model consistently achieves 

superior outcomes across all test cases and exhibits a substantial 

advantage in the averaged results of one hundred validation 

cases. 

3.2. CNN neural network 

Table 6 shows the reconstruction results obtained using both the 

CNN neural network model and the differential CNN 

architecture model for five examples. Compared to the standard 

CNN model, the reconstructions made with the differential 

CNN architecture have more details and are more aligned with 

the reference pattern. In addition, as can be seen in the figures, 

these reconstructions appear sharper, improving the visibility of 

key structural elements. This suggests that the use of  

a differential architecture not only improves accuracy and 

reliability, but also provides better visual quality in the 

reconstructed images.

Table 6. Results of the reconstructions using CNN and differential CNN architecture models. 

# Pattern CNN model 
differential CNN architecture 
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Table 7 presents, next to those of a differential CNN 

architecture model, the reconstruction quality indicators of a 

standard CNN model. The columns present details on the same 

five cases as for LSTM. A sixth column also includes the 

average quality indicators from five validation cases. The 

quality measuring criteria guide the arrangement of the rows. 

The results of the differential CNN architecture model and the 

standard CNN model are presented for every indicator.

Table 7. Comparison of reconstruction quality indicators for CNN models. 

Metrics and models Case #1 Case #2 Case #3 Case #4 Case #5 average 

RMSE 
CNN model 140.67 178.98 156.39 202.52 220.89 179.89 

differential CNN architecture model 72.08 112.91 78.63 98.16 158.7 104.1 

PSNR 
CNN model 7.04 4.94 6.12 3.87 3.12 5.02 

differential CNN architecture model 12.84 7.5 12.09 9.64 5.99 9.61 

SSIM 
CNN model 0.43 0.46 0.43 0.41 0.52 0.45 

differential CNN architecture model 0.46 0.51 0.48 0.48 0.59 0.5 

ICC 
CNN model 0.98 0.95 0.97 0.96 0.94 0.96 

differential CNN architecture model 0.99 0.98 0.99 0.98 0.97 0.98 

 

The results presented in Table 7 clearly show the superiority 

of the differential CNN model over the standard CNN model in 

all evaluated reconstruction quality indicators. The differential 

model is characterized by lower reconstruction error, higher 

PSNR, better data structure preservation according to the SSIM 

index, and higher reconstruction consistency with real data 

according to the ICC index. The average results confirm that the 

advantage of the differential CNN model is not random, but 

systematic, making it a more effective approach in the analyzed 

reconstruction tasks. 

When applied to the inverse problem in ultrasonic 

tomography (UST), Figure 6 displays the average values of the 

reconstruction quality metrics for four model configurations: 

standard CNN, CNN with a difference layer (CNN Diff), LSTM 

with a difference layer (LSTM Diff), and standard LSTM. The 

information shows the mean outcomes of a thousand test cases. 

Better reconstruction performance is indicated by lower values 

of the root mean square error (RMSE), which is displayed in 

panel (a). It is evident that both architectures were greatly 

enhanced by the difference layer. For LSTM, the RMSE drops 

from 190.61 to 111.70, while for CNN, it drops from 187.88 to 

107.85. This evidence suggests that by lowering the error value, 

the subtraction operation successfully improves the model's 

accuracy. Better reconstruction fidelity is indicated by higher 

values of the peak signal-to-noise ratio (PSNR), which is 

displayed in panel (b). When the difference layer is added, the 

PSNR rises from 5.64 to 9.33 for LSTM and from 5.65 to 9.57 

for CNN. These findings demonstrate that models with 

differences produce reconstructions of higher quality, 

displaying tomographic data in a clearer and more distinct 

manner. 
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Figure 6. Average values of the metrics for LSTM vs LSTM Diff and CNN vs CNN Diff models covering 1000 test cases: (a) - 

average RMSE, (b) - average PSNR, (c) - average SSIM, (d) - average ICC 

The Structural Similarity Index Measure (SSIM), which 

gauges how structurally similar the reference and reconstructed 

images are thought to be, is displayed in panel (c). With the 

difference layer, the CNN rises from 0.51 to 0.55, and the LSTM 

model improves from 0.50 to 0.53. This experiment 

demonstrates once more how the difference layer helps to 

improve detail preservation in UST imaging. 

Lastly, the image correlation coefficient (ICC), a statistical 

indicator of dependability, is displayed in panel (d). After 

adding the difference term, the ICC rises from 0.94 to 0.96 for 

the LSTM architecture and from 0.96 to 0.98 for the CNN. 

These numbers demonstrate the reconstructed images' increased 

robustness and consistency across multiple samples. In 

conclusion, Figure 6 supports the earlier findings that the 

difference layer's integration into the CNN and LSTM 

architectures improves all assessed metrics, demonstrating its 

efficacy in resolving the inverse problem in ultrasound 

tomography. 

3.3. Comparison of differential LSTM and differential 

CNN architectures 

A comparison of the differential LSTM and differential CNN 

architectures reveals important differences in how well they 

reconstruct, highlighting their strengths based on the type of 

data and the reconstruction problems that arise in certain 

situations. Both architectures significantly outperform their 

standard counterparts in all measured quality metrics, but the 

way they handle reconstruction differs due to their structural 

characteristics. 

As reflected in the RMSE values, one of the most notable 

differences between the two architectures is how they handle 

error minimization. In most cases, the differential CNN model 

is better at reconstructing details than the differential LSTM 

model. This is especially true when high frequency details are 

important. As an example, in Case 3, the difference CNN model 

has a much lower RMSE than the normal CNN model. This 

suggests that its convolutional layers are very good at detecting 

spatial relationships in complicated structures. The differential 

LSTM model, on the other hand, is better than the standard 

model, but it reduces errors less significantly. This suggests that 

it may have problems with complex spatial dependencies, which 

are better handled by CNN. 

The differential LSTM model does a better job of keeping 

signals clear and reducing noise, as shown by the PSNR values, 

even though CNN is better at minimizing errors. In Case #1, the 
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differential LSTM model reconstructs patterns more accurately 

than the standard LSTM, especially in areas where structural 

continuity is important. The differential CNN model also 

improves the PSNR compared to its standard version. However, 

the difference is more pronounced when the LSTM model 

makes good use of sequential dependencies. 

Both architectures show improvements in their ability to 

maintain structural integrity as measured by SSIM. However, 

the CNN reconstructions tend to be sharper and more 

structurally coherent than the LSTM reconstructions. This effect 

is particularly evident in Case 5, where the differential CNN 

model is more effective at reconstructing fine structural 

elements than is the differential LSTM model. In contrast, the 

differential LSTM model still shows improvements over the 

standard version, but seems to struggle a bit more to capture 

intricate local details. This means that CNN's hierarchical 

feature extraction can help maintain structural consistency, 

especially when textures are complicated or there are many 

high-frequency changes. 

The ICC values indicate that the reconstructions align well 

with the reference data. The differential CNN model 

consistently exhibits robust correlations among various cases. 

In Case #4, the standard CNN model exhibited a lower ICC 

initially; however, the differential CNN model markedly 

enhanced the correlation with the reference data. The 

differential LSTM model enhances ICC values. Nonetheless, its 

performance is inferior to that of the CNN-based architecture in 

scenarios characterized by significant structural differences, 

exemplified by Case #2. This indicates that although LSTM is 

proficient in modeling sequential dependencies, CNN is more 

appropriate for tasks where spatial correlations are predominant. 

Both differential architectures significantly outperform their 

conventional counterparts. Nevertheless, particularly in the 

presence of intricate spatial connections, the differential CNN 

model appears superior in managing fine structural details, 

reducing mistakes, and preserving features. Concurrently, the 

differential LSTM model persists as a formidable option for 

applications where sequential linkages and signal continuity are 

paramount. The findings indicate that the selection between the 

two architectures ought to be determined by the characteristics 

of the data and the particular difficulties of the reconstruction 

task. 

3.4. Reconstructions with real data 

Table 8 compares the reconstructions obtained from real 

measurements using regular and differential models. The 

column titled "Ground Truth" contains photos from the top of 

the tank under investigation. The photos show different ways of 

arranging plastic tubes filled with air. The tubes are immersed 

in tap water. The tomographic reconstructions were 

postprocessed using the contourf function available in Matlab 

R2025. The contourf function serves as a tool for visualizing 

scalar fields defined over two-dimensional domains by 

generating filled contour plots. Given a scalar function 𝑓(𝑥, 𝑦), 

it computes isolines corresponding to specific levels 𝑐, where 

𝑓(𝑥, 𝑦) = 𝑐, and fills the regions between these contours with 

colors that represent the magnitude of 𝑓.  This approach 

facilitates the interpretation of spatial variations in the scalar 

field. 

Mathematically, the function operates on a grid defined by 

matrices 𝑿  and 𝒀 , which specify the coordinates over the 

domain, and a matrix 𝒁 containing the values of 𝑓(𝑥, 𝑦) at each 

grid point. If the contour levels are not explicitly provided, the 

function automatically selects them based on the range of values 

in 𝒁 , typically dividing this range into a default number of 

intervals. For each specified or automatically determined level, 

the function interpolates between grid points to identify the 

contour lines and then fills the regions between these lines with 

colors derived from the current colormap. The resulting plot 

provides a continuous representation of the scalar field's 

magnitude across the domain. In the context of tomographic 

image reconstruction, the contourf function proves particularly 

beneficial during the tuning and evaluation phases. 

Tomographic reconstruction algorithms, such as artificial neural 

networks, involve iterative processes and parameter 

adjustments to optimize image quality. Utilizing contourf 

allows to visualize the reconstructed images' scalar fields, 

highlighting regions of interest, artifacts, or inconsistencies that 

may arise due to parameter choices. Filled contour plots can 

accentuate the boundaries, aiding in the assessment of 

reconstruction fidelity. Moreover, the ability to overlay multiple 

contour plots or adjust transparency settings enables 

comparative analyses between different reconstruction methods 

or parameter sets, facilitating a more informed optimization 

process.
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Table 8. Comparison of the basic and differential models using real measurements. 

# Ground Truth CNN CNN diff LSTM LSTM diff 
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Reconstruction images show two color levels, 

distinguishing inclusions from the background. The most 

obvious inclusions are marked in black. Less obvious ones are 

marked in orange. Comparing tomographs made using LSTM 
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and CNN models in the classic and differential variants, it can 

be seen again that reconstructions made using models with 

differential architecture are more unambiguous. This is visible 

in all eight distributions studied and it does not matter whether 

the model used was LSTM or CNN. This proves the universality 

of the proposed differential concept. 

4. Conclusions 

This study has introduced and evaluated a novel differential 

neural network architecture designed to enhance the 

reconstruction quality in ultrasonic tomography (UST) applied 

to industrial reactors. By incorporating a differential layer that 

processes residual signals between two parallel neural network 

branches, the proposed architecture addresses key limitations 

associated with the ill-posed nature of inverse tomographic 

problems. This simple mechanism significantly improves the 

sensitivity of the model to subtle variations in input data,  

a feature particularly relevant to applications in process 

monitoring and structural diagnostics. 

Empirical results derived from both simulated and real-

world datasets demonstrate that the differential architecture 

consistently outperforms its conventional counterparts. 

Comparative assessments using standard metrics – RMSE, 

PSNR, SSIM, and ICC – indicate that both CNN and LSTM 

models integrated with the differential layer achieve better 

accuracy, structural fidelity, and robustness. In particular, the 

CNN-based differential model proves more effective in 

resolving complex spatial patterns, while the LSTM-based 

counterpart shows advantages in preserving temporal coherence 

and reducing noise. The universality of the differential approach 

is confirmed by its successful application across diverse 

network architectures and data modalities. 

The implementation of the differential mechanism has 

practical implications for industrial applications, where 

accurate and real-time reconstructions are essential for 

operational safety and optimization. The compact and portable 

UST system developed in this work, combined with the 

improved neural models, provides a viable solution for in situ 

diagnostics in reactor environments characterized by dynamic 

conditions and limited measurement accessibility. The 

differential neural network architecture represents a flexible and 

effective enhancement strategy for inverse problem-solving in 

tomography. It contributes not only to methodological 

advancements in imaging but also to the broader goal of 

increasing the reliability and efficiency of industrial process 

monitoring systems. Future research will focus on integrating 

the differential architecture with advanced deep learning models 

such as transformers and on extending its application to 

multimodal tomography. Additionally, exploring model 

compression techniques will be essential for real-time 

deployment in industrial environments with limited 

computational resources.
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