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Highlights  Abstract  

▪ GSWOA is integrated to optimize VMD 

decomposition, significantly suppressing 

background noise and providing high-quality 

input for reliable feature extraction and fault 

diagnosis. 

▪ An improved refined composite multiscale 

entropy (IRCMSE) method is proposed to 

accurately extract and distinguish diverse gear 

fault features, enhancing both diagnostic 

precision and stability. 

▪ The proposed method demonstrates strong 

noise robustness and generalization across 

variable-speed and variable-load conditions, 

validated on both public and real-world 

datasets. 

 Wind turbine gearboxes face alternating loads and complex noise over 

prolonged operation, leading to vibration signals affected by noise, 

nonlinearity, and non-stationarity. These challenges complicate fault 

diagnosis. This study proposes a novel approach, combining a modified 

whale optimization algorithm (GSWOA) to optimize variational mode 

decomposition (VMD) parameters and an improved refined composite 

multiscale sample entropy (IRCMSE) method. The approach enhances 

VMD decomposition, mitigating mode mixing and boundary artifacts. 

An advanced coarse-graining process generates IRCMSE-based 

features, improving sensitivity to weak fault signatures. These features 

are fed into a CNN-BiLSTM model, leveraging CNN for spatial feature 

extraction and BiLSTM for temporal behavior modeling, enabling 

precise fault classification. Experiments on the WFD-1000 wind turbine 

gearbox platform show superior performance in signal reconstruction, 

feature discrimination, and fault detection, highlighting the method’s 

robustness under complex operational conditions. 
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1. Introduction 

The gearbox, as a vital transmission unit in wind turbine 

systems, is essential for sustaining efficient power generation 

and ensuring long-term operational reliability. It transforms 

low-speed, high-torque mechanical energy into input suitable 

for electrical conversion, all while enduring complex and 

variable loading conditions, fluctuating ambient environments, 

and extended service durations[1]. Such operating scenarios 

render the gearbox vulnerable to a range of structural 

degradations, including gear wear, fatigue-induced cracking, 

and tooth breakage—failures that can induce abrupt shutdowns 

and result in significant economic impact[2]. 

Among various monitoring signals, vibration data are 

particularly advantageous in fault diagnosis due to their 

sensitivity to structural deviations and their ability to capture 

nuanced dynamic behavior. Compared with thermal or acoustic 

emission signals, vibration responses provide more 

comprehensive insight into meshing dynamics and internal 

structural alterations. However, the inherent complexity of 

gearbox architecture and the strong coupling among internal 

components lead to vibration signals that are nonlinear, non-
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stationary, and frequently corrupted by harmonic interference 

and stochastic noise[3]. These characteristics impose substantial 

challenges on effective signal analysis and fault pattern 

recognition. As such, the pursuit of accurate and robust fault 

diagnosis techniques—capable of operating under real-world, 

variable working conditions—remains both a theoretical 

necessity and a pressing engineering concern[4]. 

Enhancing the precision of feature extraction and improving 

fault classification accuracy requires the application of effective 

preprocessing techniques to suppress background noise and 

highlight signal components related to mechanical degradation. 

Among conventional signal decomposition approaches, 

Empirical Mode Decomposition (EMD) has been widely 

employed in the analysis of nonlinear and non-stationary 

vibration data[5]. However, its tendency to induce mode mixing 

often compromises both the interpretability and consistency of 

the decomposed results. To address this issue, several improved 

variants—such as Ensemble EMD (EEMD), Complementary 

EEMD (CEEMD)[6], and CEEMD with Adaptive Noise 

(CEEMDAN)—have been proposed, introducing controlled 

noise and ensemble averaging to reduce mode aliasing[7]. 

Despite these enhancements, the core limitations of EMD 

remain unresolved due to their reliance on its intrinsic 

algorithmic structure. 

An alternative strategy, Variational Mode Decomposition 

(VMD), formulated within a variational optimization 

framework, allows for the decomposition of signals into a set of 

finite-bandwidth intrinsic mode functions while inherently 

avoiding mode overlap and boundary distortions. This 

formulation not only improves mode separation but also offers 

superior resilience to noise interference, making it well-suited 

for vibration signals characterized by structural complexity and 

interference from multiple dynamic sources. Nevertheless, the 

diagnostic performance of VMD depends critically on the 

proper configuration of its primary parameters, including the 

number of decomposition modes and the penalty factor. 

Inadequate parameter settings may lead to suboptimal feature 

extraction and diminished fault identification reliability. 

Therefore, the development of an adaptive and computationally 

efficient strategy for parameter tuning remains a key challenge 

in maximizing the effectiveness of VMD-based diagnostic 

frameworks[8]. 

To address the issues of over- or under-decomposition 

caused by improper settings of the mode number K and the 

penalty factor αin Variational Mode Decomposition (VMD), 

existing studies primarily adopt two categories of approaches: 

empirical adjustment and intelligent optimization. Traditional 

strategies typically fix α and then adjust K incrementally based 

on subjective evaluation of the decomposition results. However, 

this trial-and-error process is highly experience-dependent, 

time-consuming, and unsuitable for complex signal 

environments. To achieve adaptive parameter selection, a Fault-

Information-Guided VMD (FIVMD) method has been 

proposed[9], which constructs a statistical model using fault 

cyclic characteristics and the Ratio of Feature Component 

Amplitude (RFCA) to autonomously determine VMD 

parameters[10]. Although this method demonstrates good 

performance in weak feature extraction, it suffers from high 

computational complexity. With the advancement of swarm 

intelligence optimization algorithms, methods such as Particle 

Swarm Optimization (PSO)[11], Grey Wolf Optimizer 

(GWO)[12], Slime Mould Algorithm (SMA)[13], Harris Hawks 

Optimization (HHO)[14], and Whale Optimization Algorithm 

(WOA) have been widely applied to VMD parameter tuning[15]. 

Among them, GWO-based VMD has shown strong 

performance in suppressing mode mixing and improving fault 

recognition accuracy, while SMA-VMD and HHO-VMD have 

demonstrated excellent denoising and feature enhancement 

capabilities. Comprehensive analysis indicates that swarm 

intelligence algorithms significantly improve the scientific rigor 

and robustness of VMD parameter selection, thereby enhancing 

the effectiveness of vibration signal preprocessing under 

complex backgrounds. Based on these insights, this study 

employs VMD as the signal decomposition tool and introduces 

an advanced swarm intelligence optimization strategy to 

achieve adaptive parameter tuning, thereby improving the 

overall performance of subsequent feature extraction and fault 

diagnosis.  

In order to enhance the discriminative power of extracted 

features, particularly when classifying closely related fault 

categories, the characterization of signal complexity plays  

a pivotal role. Entropy-based methods have been widely 

adopted in vibration signal analysis due to their ability to 

quantify dynamic irregularities. Conventional approaches such 
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as Sample Entropy (SE), Approximate Entropy (APE)[16], and 

Energy Entropy (EE) have demonstrated effectiveness in 

extracting fault-related information[17]. However, these 

techniques are limited by their reliance on single-scale analysis, 

which restricts their ability to capture multi-scale behaviors 

inherent in mechanical systems[18]. 

To address this shortcoming, multiscale entropy (MSE) 

theory was introduced, allowing entropy measurements to 

extend across multiple time scales. Among its variants, 

Multiscale Sample Entropy has achieved notable results in 

practical diagnostics. Nonetheless, standard MSE is known to 

suffer from information degradation due to the coarse-graining 

process, which reduces sensitivity to localized fluctuations. To 

mitigate this issue, Refined Composite Multiscale Sample 

Entropy (RCMSE) was proposed[19], offering improved 

stability and feature preservation by refining the averaging 

mechanism used in coarse-graining. While RCMSE has shown 

improved performance in analyzing vibration signals, its 

effectiveness declines when the signal is heavily contaminated 

by noise or when fault characteristics are weak and difficult to 

isolate. In such cases, further enhancement of the entropy model 

becomes necessary to ensure reliable feature extraction and 

robust classification performance under challenging diagnostic 

conditions. 

Once vibration signal features have been extracted and 

transformed into structured feature vectors, the subsequent 

classification stage becomes pivotal for effective fault 

identification. In this context, both traditional machine learning 

algorithms and modern deep learning frameworks have been 

widely explored in rotating machinery diagnostics. Among 

these, convolutional neural networks (CNNs) with residual 

mechanisms and bidirectional long short-term memory 

(BiLSTM) networks have demonstrated significant advantages 

in capturing spatial hierarchies and temporal dependencies, 

respectively—leading to enhanced recognition of complex fault 

signatures[20]. 

Despite their promising performance, the deployment of 

deep learning architectures in industrial scenarios often 

encounters practical constraints[21]. One notable limitation is 

the dependency on large-scale labeled datasets, which are 

frequently unavailable in real-world settings due to cost and 

time constraints. Moreover, conventional neural models such as 

probabilistic neural networks (PNN) and backpropagation 

neural networks (BPNN)[22], although effective under certain 

conditions, exhibit reduced generalization capability owing to 

their sensitivity to initial weights and intricate parameter 

configuration. The high computational burden and extended 

training time associated with deep models further restrict their 

use in applications requiring rapid response or real-time 

processing[23]. 

To address these challenges, a hybrid model integrating 

CNN and BiLSTM is proposed in this study. By leveraging the 

spatial abstraction capability of CNNs and the temporal learning 

strength of BiLSTM networks, the framework aims to improve 

diagnostic accuracy while maintaining robustness under 

complex and variable operating environments. This architecture 

is specifically tailored for fault detection in wind turbine 

gearboxes, with the goal of achieving reliable, efficient, and 

scalable diagnostic performance across diverse industrial 

conditions. 

In summary, wind turbine gearboxes operate under harsh 

conditions involving cyclic loads and alternating mechanical 

stress, where diverse fault types and persistent noise 

significantly hinder accurate diagnosis. These challenges 

complicate both feature extraction and fault identification, 

limiting the effectiveness of traditional methods. To address this, 

an integrated diagnostic framework is proposed, combining 

Variational Mode Decomposition (VMD) with parameter 

optimization via an improved Whale Optimization Algorithm 

(GSWOA), and enhanced feature representation through  

a refined Composite Multiscale Sample Entropy (IRCMSE) 

model. Experimental validation confirms the framework’s 

superior capability in identifying gear transmission faults with 

high precision, offering a robust and scalable solution for 

condition monitoring under complex operational environments.  

The main contributions of this study are as follows: 

（1）This study introduces a signal preprocessing strategy 

based on the GSWOA-VMD-WAT framework, aiming to 

enhance diagnostic reliability under noisy conditions. The 

approach identifies and eliminates signal components 

exhibiting low correlation and minimal energy contribution 

relative to the original vibration signal. By selectively 

attenuating irrelevant background interference, the method 

improves the clarity of fault-related features and establishes  
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a cleaner input foundation for subsequent feature extraction and 

classification stages.  

（2）A refined version of the traditional RCMSE algorithm 

is introduced to improve the reliability of feature extraction 

from nonlinear and non-stationary signals. The enhanced 

approach effectively captures stable and informative 

characteristics within the vibration responses of wind turbine 

gearboxes, thereby providing a robust foundation for high-

precision fault identification.  

（3）An integrated fault diagnosis framework is 

constructed by combining GSWOA-VMD for signal 

decomposition, IRCMSE for feature extraction, and a CNN–

BiLSTM architecture for classification. The proposed method is 

validated through a series of experiments and comparative 

evaluations, demonstrating its effectiveness and superior 

diagnostic performance.  

The remainder of this paper is organized into five sections. 

Section 2 introduces the core theoretical foundations supporting 

this work, namely Variational Mode Decomposition (VMD), 

Improved Refined Composite Multiscale Sample Entropy 

(IRCMSE), the enhanced Whale Optimization Algorithm 

(GSWOA), and the combined CNN–BiLSTM model. Section 3 

describes the construction of the proposed fault diagnosis 

framework designed for wind turbine gearboxes. Section 4 

presents experimental validation and comparative analysis 

based on data obtained from the Wind Turbine Drivetrain 

Diagnostic Simulator (WFD-1000). Lastly, Section 5 offers  

a summary of the findings and outlines the conclusions drawn 

from the study.  

2. Relevant theoretical foundations 

2.1. VMD decomposition of vibration signals 

Variational Mode Decomposition (VMD) is fundamentally 

based on solving a constrained variational problem[24], in 

which the original signal is decomposed into a predefined set of 

Intrinsic Mode Functions (IMFs) by minimizing an objective 

functional. The mathematical formulation of this optimization 

model is expressed as follows:  

{
min{ωm}，{um} {∑ ‖∂t [(∂(t) +

j

πt
) um(t)

∗] e−jωm‖
m

}

s. t.∑um = f

(1) 

Here, um  denotes each Intrinsic Mode Function (IMF), and 

ωm  represents its corresponding center frequency. To convert 

the constrained variational problem into an unconstrained form, 

a balancing parameter α  and a Lagrange multiplier λ  are 

introduced: 

{
  
 

  
 ζ = ‖f(t) −∑ um(t)

m
‖
2

2

φ = α∑ ‖∂t [(σ(t) +
j

πt
)
∗

um(t)] e
−jtωm‖

2

2
+ ζ

m

λ({um}, {ωm}, λ) = φ + {λt, f(t) +∑um(t)}

(2) 

The computational procedure of VMD is summarized as 

follows: 

Step 1: Initialize the iteration by updating the counter n =

n + 1 

Step 2: Update um using the following equation: 

um
n+1(ω) =

f(ω) − ∑ um(ω) +
λ(ω)
2i≠m

1 + 2α(ω − ωm)
2

 (3) 

Step 3: Update ωm sing: 

ωk
n+1 =

∫ ω∗|um(ω)|
2du

∞

0

∫ |um(ω)|
2du

∞

0

(4) 

Step 4: Update λ using the following equation: 

λn+1(ω) = λn(ω) + ε |f(ω) −∑um
n+1(ω)| (5) 

Step 5: If the convergence criterion is satisfied, terminate 

the iteration. 

∑ ‖um
n+1 − um

n ‖2
2

m
< v (6) 

2.2. GSWOA-VMD Joint Wavelet Thresholding Noise 

Reduction 

The performance of Variational Mode Decomposition (VMD) 

is highly sensitive to its parameters, particularly the number of 

modes K and the penalty factor α. To enable adaptive and 

efficient parameter selection, this paper proposes a Grey Wolf 

Strategy-enhanced Whale Optimization Algorithm (GSWOA), 

which performs global optimization of the parameter pair (K, α). 

GSWOA integrates the spiral updating mechanism of the 

Whale Optimization Algorithm (WOA) with the α–β–δ 

leadership hierarchy from the Grey Wolf Optimizer (GWO). In 

each iteration, the three best-performing agents (α, β, and δ) 

guide the position updates of the remaining agents, thereby 

enhancing search diversity and convergence stability. 

Additionally, GSWOA introduces time-dependent control 
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parameters A(t) and C(t), which dynamically adjust as the 

iteration progresses to regulate the search scope and speed at 

different stages: 

A(t) = Amin − (
Amax−Amin

T
) ∙ t          (7) 

C(t) = Cmin + (
Cmax − Cmin

T
) ∙ t (8) 

To further mitigate the risk of premature convergence,  

a perturbation mechanism is embedded into the position 

updating process: 

Xi
t+1 = Xi

t + εc ⋅ sin (
πt

T
) ⋅ (

Xα
t + Xβ

t + Xδ
t

3
− Xi

t) (9) 

where 𝑋𝑖
𝑡 denotes the position of the i-th agent at iteration t, and 

𝜀𝑐 is the perturbation coefficient (set to 0.01). 

To evaluate the quality of VMD decomposition and guide 

the search process, a composite fitness function is defined as: 

F(K, α) = −λ1 ⋅
∑ ∫ |Si(f)|

2fm+nfr+Δf

fm−Δf
K
i=1 df

∑ ∫K
i=1 |Si(f)|

2df
+ λ2 ⋅

1

K(K − 1)
∑ρ

i≠j

(Si, Sj) (10)

 

where 𝑆𝑖(𝑓) represents the spectrum of the i-th Intrinsic Mode 

Function (IMF). The first term quantifies the energy 

concentration within the meshing frequency and its sidebands, 

while the second term reflects the degree of mode decoupling 

via the mean Pearson correlation among IMFs. The weighting 

coefficients are set as 𝜆1   0.7 and 𝜆2  0.3, respectively. The 

search ranges are defined as K∈[3,8] and α∈[1000,5000], with 

a maximum number of iterations T 100. Early stopping is 

triggered when the fitness improvement remains below 1e-4 for 

10 consecutive iterations. 

The optimal parameter pair (K , α) obtained by GSWOA is 

then applied to the VMD process for signal decomposition. IMF 

components with significant energy and strong temporal 

correlation are retained for signal reconstruction. To further 

reduce high-frequency noise in the reconstructed signal, an 

adaptive wavelet thresholding method is employed. The 

complete denoising process is formulated as: 

ŵj(k) =

{
 
 

 
 sgn (wj(k)) ⋅ (|wj(k)| − λj),  if |wj(k)| > λj

0,  otherwise 
,

 λj =
MAD

0.6745
⋅ √2logN

(11) 

The fundamental workflow of GSWOA-VMD combined 

with wavelet-based adaptive thresholding denoising is 

illustrated in Figure 1[25]. Initially, vibration signals acquired 

from the experimental platform undergo preprocessing, 

including DC component removal and normalization, to 

improve signal consistency and computational efficiency. The 

key parameters of Variational Mode Decomposition, namely the 

number of decomposition modes K and the penalty factor α, are 

adaptively optimized using GSWOA, which iteratively searches 

for the configuration that yields the most effective 

decomposition structure. Once optimization is complete, VMD 

is applied to decompose the signal into a series of narrow-band 

components. Each resulting Intrinsic Mode Function (IMF) is 

then assessed in terms of its energy content and correlation with 

the original signal. Components meeting the selection criteria 

are retained and reconstructed to suppress noise, thereby 

enhancing the quality of time-domain signal representation.  

 

Fig.1. GSWOA-VMD Joint Wavelet Thresholding Noise Reduction Flowchart. 
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2.3. Relying on IRCMSE to fully and adequately extract 

fault characteristics 

2.3.1. Multi-scale sample entropy 

Multiscale Sample Entropy (MSE) extends the single-scale 

analysis of Sample Entropy (SE) to multiple time scales, 

enabling the extraction of potentially valuable information 

embedded in complex signals. The basic computational 

procedure of MSE is as follows: 

Step 1: Let X = {xi, i = 1,2, … , N} denote the original time 

series. The corresponding coarse-grained sequence is 

constructed by applying the following transformation procedure. 

{
 
 

 
 
yj
τ =

1

τ
∑ xi

jτ

i=(j−1)τ+1

, 1 ≤ j ≤ T                          

 T = ⌈
N

τ
⌉            

(12) 

where τ = 1,2, …  is the scale factor, and T  
N

τ
  represents the 

length of the coarse-grained time series. For a given scale factor 

𝜏 , the corresponding coarse-grained time series is denoted as 

yτ = {y1
τ, y2

τ, … , yT
τ}. 

Step 2: For a given scale factor 𝜏, reconstruct the coarse-

grained time series yτ into embedding vectors in dimensions m 

and m+1, respectively: 

 {

Zi
(m) = {yi

τ, yi+λ
τ , … , yi+(m−1)λ

τ }

Zi
(m+1) = {yi

τ, yi+λ
τ , … , yi+mλ

τ }

1 ≤ i ≤ T −m + 1

                            (13) 

where m is the embedding dimension, typically set to 1 or 2, and 

𝜆 is the time delay, usually set to 1. 

Step 3: For each i, compute the distance d between Zi
τ and 

all other Zi
τ in the mmm-dimensional space: 

{
d[zi

τ, zj
τ] = max{|zi

τ − zj
τ|}

k = 0,1, … , τ
i, j = 1,2, … , T − m + 1, i ≠ j

                                (14) 

Step 4: The selection of the similarity tolerance parameter r 

plays a critical role in the stability of Multiscale Entropy (MSE) 

computation. Choosing a value that is either too small or too 

large can significantly distort the entropy estimation. To 

maintain consistency across varying signal magnitudes, r is 

typically defined as a fraction of the standard deviation of the 

original time series X, commonly ranging from 0.1 to 0.25 times 

SD(X). Given a coarse-grained sequence, the number of vector 

pairs [zi
τ, zj

τ]  for which the distance ∑[zi
τ, zj

τ]  is less than the 

threshold r is determined. This count is normalized by 𝑇 −𝑚 to 

yield the quantity Bi
m(r). Aggregating over all template vectors 

produces the average similarity count Bm(r), as defined by the 

following formulation: 

{
 
 

 
 Bi

m(r) =
1

T − m
∑d[zi

τ, zj
τ] < r

Bm(r) =
1

T −m + 1
∑Bi

m(r)

i, j = 1,2, … , T − m + 1, i ≠ j

(15) 

Step 5: Based on the previous embedding dimension m, 

increase the dimension by one and repeat Steps 3 and 4 to obtain 

the value of Bm+1(r). 

Step 6: Finally, the value of Multiscale Entropy (MSE) is 

calculated using the obtained Bm(r) and Bm+1(r). 

EMSE(X, τ,m, r) = lim
T→∞

{−ln
Bm+1(r)

Bm(r)
} (16) 

When T is a finite value, the Sample Entropy (SampEn) is 

calculated as follows: 

𝐸MSE(𝑋, 𝜏,𝑚, 𝑟) = −ln
𝐵𝑚+1(𝑟)

𝐵𝑚(𝑟)
(17) 

While Sample Entropy (SE) quantifies the complexity of a 

time series at a single resolution, Multiscale Entropy (MSE) 

extends this analysis across multiple temporal scales, allowing 

for a more comprehensive assessment of dynamic behavior. 

This multi-scale perspective addresses a key limitation of SE, 

which may fail to capture long-range dependencies or hidden 

features when confined to the original resolution. Despite these 

improvements, MSE is not without its shortcomings. During the 

coarse-graining stage, temporal correlations among data points 

are often neglected, potentially leading to the loss of critical 

information. Moreover, when applied to short-length signals 

with large scale factors, the method may yield undefined 

entropy values due to insufficient data points in the 

downsampled sequences.  

2.3.2. Refined Composite Multiscale Entropy (RCMSE) 

Methodology 

To overcome the limitations associated with traditional 

Multiscale Entropy (MSE), the Refined Composite Multiscale 

Entropy (RCMSE) approach has been introduced. This method 

enhances the conventional coarse-graining process by 

generating a sequence of refined sub-series under a given scale 

factor τ. Specifically, for each position in the original time series, 

a local segment of length τis extracted, and its mean is computed 
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to form an element of the coarse-grained sequence. The starting 

index is incrementally advanced by one data point at a time until 

the end of the series is reached, resulting in a set of overlapping 

subsequences. This refined coarse-graining procedure improves 

feature preservation across scales and offers a more accurate 

representation of the signal’s dynamic structure. The 

corresponding computational procedure is outlined below.  

Step 1: Coarse-grain the original time series 𝑋 = {𝑥𝑖 , 𝑖 =

1,2, … , 𝑁} at the scale factor τ. The refined coarse-grained time 

series is obtained by calculating the average of τ consecutive 

data points starting from each data point of the original series. 

The process is defined by the following equation: 

{
 
 

 
 

𝑦𝑗,𝑘
𝜏 =

1

𝜏
∑ 𝑥𝑖

𝑗𝜏+𝑘−1

𝑖=(𝑗−1)𝜏+𝑘

1 ≤ 𝑗 ≤
𝑁

𝜏
, 1 ≤ 𝑘 ≤ 𝜏

                                            (18) 

Step 2: For all refined coarse-grained sequences 𝑦𝑗
𝜏 

obtained at the scale factor τ, calculate the Sample Entropy (SE) 

for each sequence. Subsequently, compute the average of these 

entropy values to obtain the RCMSE at scale τ. The calculation 

is expressed as follows: 

𝐸RCMSE(𝑥, 𝜏,𝑚, 𝑟) =
1

𝜏
∑(−ln

𝜂𝑘,𝜏
𝑚+1

𝜂𝑘,𝜏
𝑚 )

𝜏

𝑘=1

      (19) 

2.3.3. Improved Fine Composite Multiscale Sample 

Entropy 

Refined Composite Multiscale Entropy (RCMSE) is a widely 

used technique for measuring time series complexity. In its 

standard formulation, the multiscale coarse-graining process 

typically employs arithmetic averaging across non-overlapping 

segments of the original signal. While this averaging 

mechanism can partially preserve structural information, it also 

inevitably suppresses high-energy transient components—such 

as impulsive responses—thereby degrading diagnostic 

sensitivity, especially in complex systems such as wind turbine 

gearboxes. 

To enhance the representation of fault-related transient 

behaviors, this study introduces an Improved RCMSE 

(IRCMSE) algorithm that fundamentally reconstructs the 

coarse-graining phase. The method incorporates a cross-

sampling strategy and an energy-driven selection mechanism, 

both of which are designed to retain amplitude-dominant 

dynamics and improve scale-wise adaptivity. 

In the proposed approach, for a given scale factor τ, the 

original time series is no longer averaged within fixed-length 

windows. Instead, it is decomposed into τ interleaved 

subsequences, which together form a candidate pool for coarse-

grained representation. Distinct from traditional schemes, this 

method evaluates the diagnostic potential of each subsequence 

using its root mean square (RMS) value as an energy-based 

criterion. The subsequence exhibiting the highest RMS is 

selected as the representative sequence for the current scale. 

Figure 2 illustrates the construction of the k-th refined segment 

when τ   2. This selective strategy mitigates the dilution of 

informative content and significantly enhances sensitivity to 

high-frequency impulsive events.

 

Fig. 2. Conventional and improved coarse-graining methods. 
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Moreover, to counteract the sample degradation and 

information loss typically observed in standard RCMSE at 

larger scale factors, the IRCMSE method further introduces  

a composite-scale enhancement mechanism. Specifically, at 

each scale τ, τ mutually independent subsequences are 

constructed from the original signal. These are then coarse-

grained using scale factors ranging from 1 to τ, and the 

corresponding entropy values are computed in parallel. This 

composite representation effectively delays information decay 

and improves the completeness and robustness of feature 

characterization across multiscale domains. 

In summary, IRCMSE achieves substantial improvements in 

response capability to impulsive and nonstationary signals 

through dual structural enhancements in both the coarse-

graining procedure and multiscale decomposition framework. It 

thereby provides high-fidelity, high-resolution feature support 

for downstream fault pattern recognition tasks. 

2.4. CNN–BiLSTM-Driven Framework for Intelligent 

Fault Diagnosis 

Following the denoising and initial feature extraction stages, 

effective fault identification requires a model capable of 

interpreting the temporal and spatial complexities inherent in 

vibration signals. In this work, a composite deep neural network 

is constructed by integrating a Convolutional Neural Network 

(CNN) with a Bidirectional Long Short-Term Memory 

(BiLSTM) module. The input to the network is a two-

dimensional feature matrix derived from the IRCMSE stage, 

with dimensions N×T, where N denotes the number of feature 

channels and T represents the temporal length. The CNN 

subnetwork is composed of two one-dimensional convolutional 

layers, employing 1×3 and 1×5 kernels with 16 and 32 output 

channels, respectively. Each layer uses ReLU activation and is 

followed by max-pooling to reduce dimensionality while 

preserving local discriminative structures such as sideband 

modulations and impulsive shock patterns. The resulting feature 

maps are then fed into a two-layer BiLSTM network, with each 

layer comprising 128 hidden units and operating in both 

temporal directions to capture contextual dependencies. 

Dropout layers with a rate of 0.5 are inserted between BiLSTM 

layers to prevent overfitting. A fully connected layer and  

a Softmax classifier are appended to produce multi-class fault 

predictions. The model is trained using the cross-entropy loss 

function and optimized via the Adam algorithm with an initial 

learning rate of 0.001, a batch size of 64, and a maximum of 200 

epochs. Training and validation sets are partitioned in an 8:2 

ratio, and early stopping is employed to monitor validation 

performance and avoid overfitting. By combining local spatial 

abstraction with robust temporal modeling, the proposed CNN-

BiLSTM architecture offers high adaptability for complex fault 

diagnosis under nonstationary industrial conditions. The full 

model architecture is illustrated in Figure 3.

 

Fig.3. Flowchart of the CNN-BILSTM model. 
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3. Overall technical line of the paper 

Based on the above theoretical foundation, this paper proposes 

a gearbox fault diagnosis method based on GSWOA-optimized 

VMD and improved RCMSE. The process flow is shown in 

Figure 4, and the specific steps are as follows:

 

Fig.4. The route on fault classification process of wind turbine gearbox.  

1. Vibration acceleration signals for various types of 

faults are collected using the WFD-1000 experimental 

platform. 

2. In order to reduce the impact of strong background 

noise, the fault signals are preprocessed using the 

GSWOA-VMD combined with wavelet threshold 

denoising model, resulting in K IMFs. The IMFs that 

have a high correlation coefficient and energy 

contribution rate with the original signal are selected 

and retained to reconstruct the signal. 

3. The IRCMSE values of the reconstructed signal at 

different scale factors are calculated to form the initial 

feature data. The initial features are then combined 

using the T-SNE method, and the visualized results are 

compared to obtain the final features. 

4. Based on the denoising of the original data and the 

feature extraction results, the feature data is divided 

into two parts. The CNN-BiLSTM model is trained 

using the training dataset, and then the test dataset is 

input into the trained CNN-BiLSTM model for 

accurate classification of various gearbox faults. 

4. Experimentation and Analysis 

To validate the proposed diagnostic strategy, experimental 

verification is conducted using two independent datasets. One 

is the widely recognized motor bearing fault dataset from Case 

Western Reserve University (CWRU), which serves as  

a standard benchmark in the field of rotating machinery 

diagnostics. The other dataset comprises gearbox fault signals 

collected from the Wind Turbine Drivetrain Simulator Fault 
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Diagnosis Comprehensive Experimental Platform. These data 

sources enable a comprehensive assessment of the diagnostic 

method that integrates Variational Mode Decomposition (VMD) 

optimized through the Grey Wolf–enhanced Whale 

Optimization Algorithm (GSWOA), along with feature 

extraction using Improved Refined Composite Multiscale 

Sample Entropy (IRCMSE).  

4.1. Case Western Reserve University Bearing Dataset 

The bearing fault dataset from Case Western Reserve University 

(CWRU), obtained under constant speed and load conditions, 

serves as a benchmark for the preliminary evaluation of the 

proposed GSWOA-VMD-IRCMSE-CNN-BiLSTM diagnostic 

model. A schematic overview of the test apparatus used in the 

CWRU experiments is presented in Figure 5. 

 

Fig. 5. CWRU experimental setup. 

The dataset configuration includes a sampling frequency of 

12 kHz, ten distinct operational states, and 300 samples per state, 

with each sample containing 2048 data points representative of 

fault conditions. To evaluate the noise resilience of the proposed 

method, artificial noise corresponding to a −30 dB signal-to-

noise ratio is superimposed on the raw signals. Details of the 

experimental setup and operating conditions are provided in 

Table 1.  

In the experiment, the authors focus on the ability to 

recognize early weak faults in bearings for fault classification, 

in order to validate the performance of the proposed method for 

multi-level classification of wind turbine bearing faults. The 

authors conduct comparative experiments with the following 

models: EEMD+IRCMSE+CNN-BiLSTM,  

GSWOA-VMD+RCMSE+CNN-BiLSTM,  

WOA-VMD+IRCMSE+CNN-BiLSTM, and  

GSWOA-VMD+IRCMSE+CNN-BiLSTM. The test and 

validation sets were divided in a 4:1 ratio. The test results are 

shown in Figure 6.

Table 1. Experimental Working Conidtions. 

Fault type Rotational speed （rpm） Bearing dimensions (inch) Type code 

Normal state 

1797 

0.007 1 

Inner ring failure 0.007 2 

Rolling body failure 0.007 3 

Outer ring failure 0.007 4 

Inner ring failure 0.014 5 

Rolling body failure 0.014 6 

Outer ring failure 0.014 7 

Inner ring failure 0.021 8 

Rolling body failure 0.021 9 

Outer ring failure 0.021 10 

Fan end bearing

Electric motor

Drive end bearing

Torque 
transducer 
& encoder Dynamometer
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Fig.6. Case Western Reserve University Bearing Test Bench. 

Figure 6 illustrates the classification performance of the 

GSWOA-VMD-IRCMSE-CNN-BiLSTM model, which 

achieves an accuracy of 99%, demonstrating its strong 

capability in identifying bearing fault categories even under 

high-noise conditions. To comprehensively assess the model’s 

robustness, additional experiments are conducted using 

identical fault categories with varying levels of superimposed 

mixed noise at signal-to-noise ratios (SNR) of −30 dB, 0 dB, 

and 30 dB. This setup enables a systematic evaluation of the 

model's resistance to noise-induced degradation. The outcomes 

under different noise conditions are presented in Figure 7. 

The confusion matrices under varying signal-to-noise ratio 

(SNR) conditions, as depicted in Figure 7, provide insight into 

the classification capabilities of the proposed model. When 

subjected to high levels of noise (SNR   −30 dB), the model 

achieves an overall accuracy of 92.91%, indicating a strong 

capacity to retain diagnostic performance despite significant 

interference. With moderate noise (SNR   0 dB), classification 

accuracy improves to 99.46%, effectively distinguishing nearly 

all fault categories with minimal misclassification. Even under 

low-noise conditions (SNR   30 dB), the model maintains  

a high accuracy of 93.18%, confirming its consistency across  

a range of operational environments. These findings highlight 

the robustness and adaptability of the GSWOA-VMD-

IRCMSE-CNN-BiLSTM architecture, supporting its practical 

applicability in scenarios involving background interference 

and weak fault detection. 

 

 

Fig. 7. Comparison of Noise Resistance Performance. 
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4.2. Experimental Dataset from the WFD-1000 Wind 

Turbine Drivetrain Simulator 

4.2.1. Design of experiments 

To validate the effectiveness of the proposed method, this paper 

analyzes gearbox fault signals collected from the WFD-1000 

experimental platform. Five operating conditions are set: 

normal, wear, tooth breakage, tooth missing, and combined 

faults. The experimental platform is the WFD-1000 wind 

turbine fault simulation system, consisting of a motor, coupling, 

parallel shaft, and planetary gearbox (see Figure 8). A servo 

motor provides the drive, with the speed controlled by the upper 

computer software, and the load current is manually adjusted. 

An IEPE-type CT1005L accelerometer with a sampling 

frequency of 20,480 Hz and sensitivity of 50 mV/g is used, 

installed on the output shaft bearing seat to collect acceleration 

signals in the X and Y axes. The Y-axis signal is selected as the 

research object in this study. For each operating condition, 120 

samples are collected, each with a duration of 1 second, at a 

speed of 1200 rpm and load current of 0.2 A.

 

Fig. 8. WFD-1000 Wind turbine gearbox vibration signal acquisition platform. 

4.2.2. GSWOA-VMD-WAT based preprocessing process 

To enhance the quality of fault-related features while mitigating 

background noise, the GSWOA-VMD-WAT preprocessing 

framework is applied to the raw vibration signals collected 

under different working conditions. To assess its denoising 

effectiveness and generalizability, three representative 

scenarios are selected: (a) missing tooth fault at 1000 rpm with 

a load current of 0.2 A, (b) missing tooth fault at 1200 rpm and 

0.4 A, and (c) gear wear fault at 1000 rpm with 0.3 A. The 

performance of the preprocessing model is quantitatively 

evaluated using signal-to-noise ratio (SNR), root mean square 

error (RMSE), and structural similarity index (SSIM), along 

with spectral analysis to assess signal fidelity. The detailed 

parameter settings and corresponding results are summarized in 

Table 2. The outcome of this preprocessing step ensures the 

availability of high-integrity signal inputs for downstream 

feature extraction and classification tasks.  

The calculation formula for the signal-to-noise ratio (SNR) 

is: 

SNR = 10 log10 (
∑ x2[n]N
n=1

∑ (x[n] − x̂[n])2N
n=1

) (20) 

In the formula, x[n] represents the original signal, 

x̂[n] represents the denoised signal, and N is the length of the 

signal. 

The calculation formula for the root mean square (RMS) is: 

RMSE = √
1

N
∑(x[n] − x̂[n])2
N

n=1

(21) 

The calculation formula for the Structural Similarity Index 

(SSIM) is: 

servomotor

Acquisition card

host computer
Parallel shaft

gearboxes Magnetic
particle brake

Control panels Planetary gearboxes

Wind turbine fans
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SSIM(x, x̂) =
(2μxμx̂ + C1)(2σxx̂ + C2)

(μx
2 + μx̂

2 + C1)(σX
2 + σX̂

2 + C2)
(22) 

In this formulation, μx and μμx̂ denote the mean values of 

the original and denoised signals, respectively. The variances of 

the original and denoised signals are given by σX
2  and σX̂

2 , while 

σxx̂   represents their mutual covariance. Constants C1 and C2 

are introduced to stabilize the calculation in cases where the 

denominators approach zero, and are typically assigned small 

positive values. 

C1 = (K1L)
2, C2 = (K2L)

2   (23) 

In this context, K1 and K2 are two small positive constants 

used to avoid instability when denominators are near zero; their 

typical values are set to 0.01 and 0.03, respectively. The term L 

denotes the dynamic range of the signal. As the signal-to-noise 

ratio (SNR) increases, a marked reduction in the root mean 

square error (RMSE) is observed, while the structural similarity 

index (SSIM) tends toward unity. This behavior suggests that 

the proposed denoising approach is capable of effectively 

suppressing noise while retaining critical features of the original 

signal, thereby facilitating accurate signal reconstruction.

Table 2. Preprocessing Operating Conditions and Statistical Indicators. 

Operating Conditions  

SNR 

 

RMSE 

 

SSIM 
Fault Types Rotational Speed Load 

Missing Tooth 1000 0.2A 17.885 0.059 0.922 

Missing Tooth 1200 0.4A 14.971 0.154 0.841 

Wear 1000 0.3A 17.805 0.042 0.937 

 

To provide an intuitive illustration of the quantitative 

indicators reported above, Figure 9 juxtaposes the vibration 

signals obtained under three representative operating 

conditions—(a) a missing-tooth fault at 1000 rpm and 0.2 A, (b) 

a missing-tooth fault at 1200 rpm and 0.4 A, and (c) gear-wear 

at 1000 rpm and 0.3 A. For each condition, the upper sub-figure 

displays the raw measurement (time waveform on the left and 

its corresponding frequency spectrum on the right), whereas the 

lower sub-figure presents the signal after the proposed 

GSWOA-VMD–wavelet-threshold (WT) preprocessing. This 

layout enables a direct, one-to-one visual comparison of the 

noise profile, harmonic structure, and impulsive components 

before and after denoising, thereby revealing how the proposed 

method selectively attenuates broadband interference while 

preserving fault-related signatures such as the 330 Hz meshing 

frequency and its harmonics. The figure therefore serves as the 

graphical counterpart to the statistical gains in SNR, RMSE, and 

SSIM reported in Table 2 and forms the visual basis for the 

cross-condition discussion that follows. 

A cross-condition comparison reveals that the signal 

preprocessing stage substantially improves the quality of 

diagnostic information by amplifying relevant frequency 

components, suppressing extraneous spectral elements, and 

enhancing the overall signal-to-noise ratio (SNR). This 

approach exhibits strong adaptability and resilience when 

applied to diverse gearbox fault scenarios, thereby establishing 

a reliable basis for downstream feature extraction and 

classification. As illustrated in Figure 9, the raw signal—

affected by both severe noise and periodic mechanical stress—

fails to clearly exhibit the fault characteristic frequency at 330 

Hz and its harmonics, underscoring the necessity and 

effectiveness of the preprocessing procedure. 

 

Operating conditions (b)
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Fig.9. Analysis of the effect of variable condition pretreatment. 

The preprocessed frequency-domain spectrum exhibits 

distinct characteristic frequency components and significant 

suppression of background noise, indicating excellent denoising 

performance. The key frequencies appear as sharp peaks with 

high amplitudes and exhibit typical harmonic features, 

reflecting the periodic impact characteristics of the wind turbine 

gearbox. The amplitudes of the harmonics gradually attenuate, 

consistent with the vibration patterns of gear faults. The 

background noise remains stable, with no introduction of 

spurious peaks or distortion, thereby validating the 

effectiveness of the proposed method and providing reliable 

support for subsequent fault identification. 

To further assess the denoising effectiveness and 

computational efficiency of the proposed method,  

a comparative analysis was performed between the GSWOA-

VMD approach and the widely used Ensemble Empirical Mode 

Decomposition (EEMD) technique. As shown in Figure 10, the 

FFT spectrum of the signal processed by GSWOA-VMD 

reveals a significantly lower noise floor across the entire 

frequency band, particularly in the high-frequency range, where 

fault-related harmonics become more prominent and sharply 

defined. In contrast, the spectrum obtained using EEMD still 

exhibits notable residual noise energy, especially in the low- and 

mid-frequency regions, which tends to obscure weak fault 

features and reduce the clarity of harmonic components. 

In terms of computational performance, the GSWOA-VMD 

method completes the decomposition process within 6.8 

seconds, whereas EEMD requires 24.5 seconds under the same 

experimental and hardware conditions. This comparison 

highlights the dual advantage of the proposed method—

enhanced signal clarity and reduced processing time—

demonstrating its practicality and applicability for high-

precision, real-time fault diagnosis tasks in complex mechanical 

systems such as wind turbine gearboxes.
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Fig. 10. Comparison of FFT spectrograms of preprocessing methods; (a) GSWOA-VMD; (b) EEMD. 

4.2.3. IRCMSE for feature extraction 

To ensure that multiscale entropy features are extracted only 

from the most informative signal components, the IRCMSE 

values of each intrinsic mode function (IMF) were calculated 

following GSWOA-VMD decomposition. The number of IMFs 

K is adaptively determined by the optimization algorithm and 

typically ranges from 5 to 7 under different operating conditions. 

Taking the “missing-tooth fault at 1000 rpm with 0.2 A load” as 

a representative example (where K 6), Table 3 lists the center 

frequency range and corresponding IRCMSE value for each 

IMF. The results show that IMF1 to IMF3 exhibit IRCMSE 

values greater than 0.80, indicating strong nonlinear and 

nonstationary dynamics, while IMF4 to IMF6 yield 

significantly lower entropy values (below 0.40), suggesting that 

they primarily contain low-frequency steady-state background 

or noise-dominated components. 

Based on statistical observations across multiple operating 

conditions, a unified threshold of IRCMSE > 0.40 was adopted 

to retain high-entropy modes for signal reconstruction and 

feature extraction. This entropy-driven selection strategy 

eliminates approximately 45% of low-informative IMFs on 

average, improving the reconstructed signal’s clarity and 

increasing the signal-to-noise ratio (SNR) by 8–12 dB. 

Moreover, it significantly reduces the dimensionality and 

computational load for the subsequent CNN–BiLSTM classifier. 

The use of IRCMSE as a quantitative selection criterion ensures 

consistency, robustness, and reproducibility across all test 

scenarios, and establishes a reliable foundation for the 

comparative entropy analysis that follows. 

 

Table 3. IRCMSE Values of IMF Components under a 

Representative Operating Condition 

IMF Index 
Center Frequency  

(Hz) 

IRCMSE  

Value 
Decision 

IMF1 298 – 362 0.94 Retained 

IMF2 180 – 240 0.88 Retained 

IMF3 110 – 170 0.83 Retained 

IMF4 60 – 105 0.37 Discarded 

IMF5 25 – 55 0.29 Discarded 

IMF6 < 25 0.12 Discarded 

To construct a feature dataset with high discriminative 

power and support accurate fault classification, the IRCMSE 

algorithm is utilized for extracting multi-scale entropy 

characteristics from the preprocessed signals. For comparative 

evaluation, the original RCMDE method is also included to 

benchmark the effectiveness of the proposed enhancement. Key 

parameters associated with both algorithms—including the 

scale factor s, number of quantization levels ccc, time delay t, 

and embedding dimension m—are detailed in Table 4. 

Table 4. Parameters of IRCMDE and RCMDE. 

s c t m 

20 6 1 2 

The discriminative capability of the proposed entropy 

method was assessed by computing IRCMSE and RCMSE 

values for reconstructed signals under different fault types, as 

illustrated in Figure 11. In panel (a), the IRCMSE curves exhibit 

clear and consistent separation across the entire scale factor 

range. Each fault condition follows a distinct entropy trajectory, 

with minimal inter-class overlap, indicating strong diagnostic 

sensitivity and robustness against multiscale noise. 

Conversely, the entropy patterns obtained using the original 

RCMSE method, shown in panel (b), demonstrate significant 

feature entanglement. The trajectories of all fault categories 
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converge closely, particularly beyond scale factor 6, leading to 

ambiguous class boundaries. In particular, conditions such as 

"Broken" and "Compound" faults become nearly 

indistinguishable. These results confirm that IRCMSE 

substantially enhances the discriminative power of multiscale 

entropy features compared to the standard RCMSE.

 

Fig.11. Comparison of sample distribution before and after model identification. 

To assess the robustness of the IRCMSE algorithm, 20 

independent feature sets were analyzed by computing their 

respective means and standard deviations. 

 

Fig.12. The means and standard deviations of IRCMSE and 

RCMSE. 

As shown in Figure 12, the distribution patterns of IRCMSE 

and RCMSE values—extracted from the reconstructed 

signals—reveal that IRCMSE produces more consistent results, 

as evidenced by its lower standard deviation. This suggests 

enhanced stability and reduced sensitivity to intra-class sample 

fluctuations when compared to the original RCMSE method. 

Building upon these findings, the initial feature dataset was 

established using IRCMSE outputs derived at a scale factor of 

20. To provide an interpretable view of fault feature separability, 

the t-distributed Stochastic Neighbor Embedding (t-SNE) 

algorithm is applied to reduce the dimensionality of the 

extracted feature vectors and embed them into a three-

dimensional space. As a probabilistic, nonlinear projection 

technique, t-SNE preserves local relational structures by 

minimizing the Kullback–Leibler divergence between the joint 

distributions of the original and projected data. Figure 13 

displays the results of the dimensionality reduction process, 

revealing clearly defined clusters with minimal overlap across 

different fault categories. These visualization outcomes confirm 

that t-SNE, when used in conjunction with IRCMDE-derived 

features, improves class discriminability and contributes to 

higher diagnostic reliability.  
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Fig.13. Comparison of feature fusion results. 

To rigorously evaluate the performance of the proposed 

GSWOA-VMD-IRCMSE-based feature extraction framework 

under complex signal conditions, this study incorporates both 

comparative and ablation experiments. The comparative 

evaluation focuses on measuring feature extraction accuracy 

and robustness by benchmarking the proposed method against 

alternative model configurations, including GSWOA-VMD-

RCMSE, WOA-VMD-IRCMSE, and EEMD-IRCMSE. Each of 

these variants is designed to isolate the influence of a specific 

component—namely, the entropy function, optimization 

strategy, and signal decomposition scheme, respectively. In 

parallel, a series of ablation experiments were conducted to 

further quantify the contribution of individual modules by 

systematically removing or substituting them. To complement 

the quantitative results, t-SNE is applied for dimensionality 

reduction and visualization, enabling direct comparison of 

feature distribution characteristics across models. The 

comparative visual outcomes are presented in Figure 14. 

 

Fig.14. Feature extraction effectiveness comparison of various methods. 

The GSWOA-VMD-IRCMSE framework brings together 

the enhanced optimization capacity of the improved whale 

optimization algorithm (GSWOA) and the signal 

decomposition strength of variational mode decomposition 

(VMD). By avoiding premature convergence, GSWOA 

facilitates more accurate parameter selection for VMD, thereby 

improving the quality of mode extraction across multiple 

frequency bands. VMD itself is well suited for analyzing non-
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stationary and nonlinear vibration signals, offering detailed 

modal representations that support subsequent feature analysis. 

When coupled with the improved refined composite multiscale 

entropy (IRCMSE), the system yields highly stable and 

distinguishable feature sets, achieving clear inter-class 

boundaries and superior classification performance. 

In contrast, the GSWOA-VMD-RCMSE combination 

replaces IRCMSE with the conventional RCMSE. While 

effective in some settings, this variant may fail to capture subtle 

dependencies between adjacent samples during coarse-graining. 

This shortcoming becomes especially pronounced when 

handling short-length signals or using large scale factors, 

leading to reduced entropy reliability and potential degradation 

in clustering accuracy. 

Similarly, the WOA-VMD-IRCMSE approach benefits 

from the advanced entropy measure but is hindered by the 

limited global search capability of the original WOA algorithm. 

This restriction affects the decomposition quality and 

undermines the ability to isolate meaningful multiscale 

components, resulting in less effective feature separation. 

Finally, although the EEMD-IRCMSE method maintains 

basic denoising performance, it lacks the capacity to preserve 

intricate signal structures across scales. As a result, its output 

features exhibit reduced discriminability between classes. 

Overall, the GSWOA-VMD-IRCMSE method demonstrates 

superior performance by integrating advanced optimization, 

robust decomposition, and refined entropy analysis—making it 

particularly well suited for high-precision fault diagnosis under 

complex operating conditions. 

4.2.4. Experimental Validation Using CNN–BiLSTM for 

Gearbox Fault Diagnosis 

Based on the previously extracted features, a final matrix 

comprising 600 samples and 3 attributes was generated. This 

dataset was randomly split into training and testing subsets 

using a 4:1 ratio. The training portion was employed to fit the 

CNN–BiLSTM model, while the test subset was used to 

evaluate its classification performance. As depicted in Figure 15, 

the model yielded an average accuracy of 100% across five 

distinct gearbox fault categories. These findings substantiate the 

effectiveness and reliability of the proposed diagnostic 

framework in accurately identifying multiple fault types under 

varied conditions.  

 

Fig.15. CNN-BiLSTM classification results. 

Given the non-stationary and uncertain nature of fault 

features arising from variable-speed operations and fluctuating 

load conditions in wind turbine gearboxes, traditional 

diagnostic techniques often exhibit reduced reliability under 

such complexities. To evaluate the adaptability of the proposed 

approach in more realistic and dynamic environments, a series 

of experiments were conducted under varying operational 

conditions. The test scenarios included five fault types—normal, 

wear, tooth breakage, tooth missing, and compound faults—

referred to as Fault Types 1 through 5. Rotational speeds were 

configured at 800, 1000, 1200, and 1400 rpm, while load levels 

were adjusted to 0.0 A, 0.1 A, 0.2 A, and 0.3 A, as outlined in 

Table 5. This design facilitates a thorough assessment of the 

model’s robustness across diverse working conditions. The 

classification results obtained under these variable speed and 

load configurations are presented in Figure 16.  

Table 5. Experimental Settings under Varying Operating 

Conditions 

Test 

Number 

Rotational speed

（rpm） 

Load Current

（A） 

Fault 

Type 

A 800 

0.2 

 

1-5 

B 1000 

C 1200 

D 1400 

E 

1200 

 

0 

F 0.1 

G 0.2 

H 0.3 
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(a) Variable speed experiment (constant load at 0.2 A) 

 

(b) Variable load experiment (constant speed at 1200 rpm) 

Fig.16. Experimental results of variable operating conditions. 

To thoroughly evaluate the proposed fault diagnosis strategy 

and highlight its comparative performance, five experimental 

configurations—comprising both benchmarking and ablation 

schemes—were implemented. All model parameters and data 

partitioning strategies were aligned with those used in earlier 

evaluations to ensure consistency. The corresponding diagnostic 

results are compiled in Table 5. Model performance was 

assessed using four widely accepted evaluation metrics: 

accuracy, precision, recall, and the F1 score. Here, accuracy 

reflects the overall classification effectiveness, while precision 

measures the proportion of correctly predicted positive cases for 

each fault type. Recall indicates the ability of the model to 

identify true fault instances, and the F1 score, defined as the 

harmonic mean of precision and recall, offers a balanced 

perspective—particularly useful in scenarios where fault data 

exhibit class imbalance. 

Table 6. Comparison Comparison of the effects of the 4 models. 

Models Training/Testing dataset Test Accuracy Test Precision Test Recall Test F1 score 

GSWOA-VMD+IRCMSE+CNN-BiLSTM 

400/100 

0.9889 0.9892 0.9754 0.9740 

GSWOA-VMD+RCMSE+CNN-BiLSTM, 0.9200 0.9331 0.9200 0.9213 

WOA-VMD+IRCMSE+CNN-BiLSTM 0.9095 0.9203 0.9095 0.9117 

EEMD+IRCMSE+CNN-BiLSTM 0.8698 0.8818 0.8698 0.8721 

GSWOA-VMD+IRCMSE+SVM 0.8227 0.8067 0.7963 0.8523 

GSWOA-VMD+IRCMSE+Transformer 0.9351 0.9446 0.9159 0.9278 

GSWOA-VMD+IRCMSE+CNN-

ATTENTION-LSTM 
0.9478 0.9562 0.9340 0.9445 
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As summarized in Table 6, the GSWOA-VMD–IRCMSE–

CNN-BiLSTM configuration consistently yields the highest 

scores across all performance indicators, including accuracy, 

precision, recall, and F1 score. This performance advantage 

reflects the effective integration of its constituent components, 

whose complementary roles and interactions are further 

examined in the following discussion.  

In our comprehensive comparative study, beyond the 

traditional EEMD + IRCMSE, WOA-VMD + IRCMSE and 

SVM-based approaches, we evaluated two leading deep‐

learning architectures: a four‐layer Transformer encoder with 

eight attention heads per layer and a feed-forward network 

dimension matched to our BiLSTM hidden size, and a hybrid 

CNN–Attention–LSTM model in which a channel‐wise 

attention module is interposed between two one‐dimensional 

convolutional layers and two BiLSTM layers. Under identical 

feature inputs, training hyperparameters (learning rate, batch 

size, epochs) and data splits, the Transformer model achieved 

93.51 % accuracy, 94.46 % precision, 91.59 % recall and  

a 92.78 % F1‐score, while the CNN–Attention–LSTM yielded 

94.78 % accuracy, 95.62 % precision, 93.40 % recall and  

a 94.45 % F1‐score. 

Mechanistically, the Transformer’s global self‐attention 

excels at capturing long‐range, multi‐scale dependencies but 

lacks dedicated local filtering or convolutional operations, 

rendering it less responsive to the transient impulse events and 

sideband modulations characteristic of gearbox vibration 

signals. Conversely, the CNN–Attention–LSTM enhances key 

feature channels via attention weighting, yet when presented 

with high-dimensional IRCMSE vectors its attention 

distributions can be diffused by noise, causing diagnostically 

critical low-energy features to be attenuated. By contrast, our 

GSWOA-VMD–IRCMSE–CNN-BiLSTM framework offers 

three core advantages: (1) the Whale Optimization Algorithm, 

enhanced with gravitational search, adaptively tunes VMD 

parameters to eliminate mode mixing and boundary artifacts; (2) 

IRCMSE’s energy-driven cross-sampling preserves impulsive 

signatures and delays information decay across scales; and (3) 

the subsequent combination of local convolutional feature 

extraction (CNN) with bidirectional temporal modeling 

(BiLSTM) delivers dual sensitivity to both transient shocks and 

long-range dynamics. 

Under the same training conditions, this integrated 

framework achieved 98.89 % accuracy, 98.92 % precision, 

97.54 % recall and a 97.40 % F1-score. Even in high-noise tests 

(SNR ≤ 0 dB), all metrics fluctuated by less than 1.1 %. These 

results not only quantify the marked improvements in accuracy 

and stability delivered by our method but also demonstrate that 

only an end-to-end design—“adaptive decomposition → 

refined entropy extraction → deep fusion”—can simultaneously 

capture global relational patterns and local impulse features, 

ensuring high-fidelity reconstruction and precise classification 

of fault modes under complex, non-stationary, noise-intensive 

operating conditions. 

5. Conclusions 

This study addresses the complex problem of fault diagnosis in 

wind turbine gearboxes operating under variable-speed and 

noise-intensive conditions, where traditional diagnostic 

approaches often struggle due to interference, incomplete 

feature representation, and reduced classification reliability. To 

mitigate these challenges, a multi-stage diagnostic strategy is 

developed, integrating signal preprocessing, feature extraction, 

and fault identification into a cohesive framework. The 

effectiveness of the proposed method is extensively validated 

on the WFD-1000 wind turbine simulation platform, yielding 

significant improvements in diagnostic performance. The key 

technical contributions of this work are summarized as follows.  

（1）To address the challenges of mode aliasing and 

boundary distortions commonly associated with standard 

Variational Mode Decomposition (VMD), an improved signal 

decomposition scheme is developed based on the Generalized 

Self-Adaptive Weighted Whale Optimization Algorithm 

(GSWOA). This hybrid optimization framework integrates the 

exploratory strengths of the Grey Wolf Optimizer (GWO) with 

the convergence acceleration capabilities of the Whale 

Optimization Algorithm (WOA), enabling dynamic and data-

driven adjustment of key VMD parameters. Through this 

adaptive strategy, more accurate separation of nonlinear and 

non-stationary vibration components is achieved. To further 

attenuate residual interference across a broad frequency 

spectrum, an adaptive thresholding scheme based on wavelet-

domain analysis is incorporated. In conjunction with the 

preceding decomposition process, this additional denoising step 
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enhances signal clarity and ensures that the input to subsequent 

feature extraction and classification modules is both stable and 

informative, even under complex and variable operating 

conditions.  

（2）To construct discriminative features from vibration 

signals, this study adopts the Improved Refined Composite 

Multiscale Entropy (IRCMSE) approach as an extension of the 

traditional RCMSE framework. By refining the entropy 

computation mechanism, IRCMSE enhances the stability of 

multiscale entropy estimation and increases responsiveness to 

weak dynamic variations that occur across time scales. These 

improvements enable more accurate characterization of 

nonlinear fault signatures under varying operational conditions, 

thereby providing a more robust basis for subsequent diagnostic 

analysis.  

（3）For the classification component, a hybrid neural 

architecture combining Convolutional Neural Networks (CNN) 

and Bidirectional Long Short-Term Memory (Bi-LSTM) layers 

is employed. Within this framework, CNN modules extract 

spatially resolved signal features, while Bi-LSTM units capture 

dynamic patterns along temporal sequences in both forward and 

backward directions. This structural synergy facilitates deep 

integration of spatial and temporal information. Performance 

evaluation on both publicly available datasets and vibration 

signals obtained from the WFD-1000 test platform confirms the 

model’s robustness to noise interference and its capacity to 

generalize across varying operational conditions, including 

fluctuations in speed and load.  

The proposed fault diagnosis framework presents  

a comprehensive integration of adaptive signal decomposition, 

entropy-based feature extraction, and sequence-aware deep 

learning for reliable classification of gearbox faults. Its 

diagnostic effectiveness has been thoroughly evaluated using 

both synthetic datasets and real measurement signals, yielding 

consistently high performance in terms of robustness and 

generalization. Owing to this combination of methodological 

rigor and empirical reliability, the framework shows strong 

potential for deployment in intelligent monitoring systems 

tailored to wind turbine gearboxes operating under variable and 

noise-prone conditions. 

Nevertheless, several limitations should be acknowledged. 

Although validation experiments were conducted using the 

WFD-1000 wind turbine simulator, the controlled environment 

does not fully capture the complexity and uncertainty inherent 

in actual wind farm operations. External influences such as 

fluctuating wind loads, electromagnetic disturbances, and 

cumulative mechanical wear—along with their coupled 

effects—were not explicitly modeled. Furthermore, manual 

control of load variation during testing introduced operational 

discontinuities that may not reflect the dynamic transitions 

observed in field scenarios, potentially impacting diagnostic 

consistency and stability. To enhance the model’s applicability 

under realistic conditions, future research will incorporate data 

streams from operational wind farms and leverage advanced test 

platforms with automated, high-resolution load regulation. 

These enhancements are expected to improve the system’s 

adaptability, responsiveness, and practical utility in real-world 

deployments.
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