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Highlights  Abstract  

▪ MCTEGNN: A novel graph neural network for 

complex industrial fault diagnosis. 

▪ Multi-connected graph captures 

comprehensive spatial-temporal dependencies. 

▪ Moving-pooling GNN effectively extracts 

local spatial-temporal features. 

▪ Decay matrix enhances graph accuracy by 

considering temporal distances. 

▪ Superior performance on TE, TFF and BF 

dataset validates the model's effectiveness. 

 In modern industry, the complex system scale is large and the process 

variables are highly coupled. Traditional fault diagnosis methods are 

inherently challenged in their ability to effectively integrate information, 

leading to inappropriate feature representations and inaccurate diagnosis 

outcomes. To address these issues, this paper proposes a Multi-

Connected Temporal Encoding Graph Neural Network (MCTEGNN). 

For multi-connected graph construction, by additionally considering the 

correlation between different sensors at different timestamps and 

connecting sensors between all timestamps, a multi-connected graph can 

be formed to achieve comprehensive dependency modeling. Multi-

connected graph convolution captures local dependencies by utilizing 

moving windows and time pooling, and then learns advanced features to 

use the moving pool GNN. The proposed method improves the problem 

of incomplete modeling caused by low efficiency in capturing data 

relationships. The experimental results on the TE, TFF and BF dataset 

demonstrate the effectiveness of the proposed MCTEGNN for faults 

diagnosis. 
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1. Introduction 

The advancement of equipment integration technology in the 

industrial sector has led to a notable increase in the maintenance 

costs associated with operating industrial systems and processes 

in manufacturing facilities. This is due to the growing number 

of sensors and instruments that are required for effective 

monitoring and control [1-3]. Given the complex interaction and 

intricate connections between the various components, the 

occurrence of a fault in a specific position may result in the 

generation of anomalous readings across multiple 

interconnected components, potentially leading to disruptions 

in the overall operation of the industrial system. Therefore, it is 

necessary to accurately and timely identify the type of fault and 

take corresponding measures. In order to enhance the efficiency, 

reliability, and safety of the system, research on diagnosing the 

above-mentioned faults in industry has always been highly 

concerned. 

Considering its physical sequential property together with 

multiple instrument sensor data, complex industry data exhibits 
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a distinctive Spatial-Temporal (ST) dependencies, including 

temporal correlations between timestamps and spatial 

correlations between sensors at each timestamp. In addition, the 

occurrence of different faults can result in the generation of 

anomalous signals from various components, thereby 

complicating the process of discerning the relationships 

between them for industrial operators. Given the above two 

points, previous manual methods relied on the experience and 

intuition of operators. This often resulted in failure to meet the 

requirements for rapid and precise fault diagnosis when faced 

with highly automated and integrated modern industrial systems. 

In order to address this situation, it is essential to implement an 

effective fault diagnosis system. This system would be capable 

of supervising industrial processes, replacing traditional manual 

detection methods and reducing costs, thereby protecting 

industrial infrastructure. 

At the present time, the principal methods for diagnosing 

faults in complex industrial processes are the model-driven and 

data-driven methods [4-6]. Due to the slow time-varying, 

distributed parameter, nonlinear, and strong coupling 

characteristics of complex processes, it is difficult to obtain 

accurate mathematical models, resulting in suboptimal 

performance of model driven methods [7]. In the current 

information age, process data in systems is abundant and easily 

accessible. Therefore, data-driven methods have become an 

important direction for dealing with such problems [8]. 

Numerous studies have demonstrated that the diagnosis of 

faults in complex industrial processes is fundamentally  

a classification problem that employs multivariate time-series 

signals [9]. Therefore, in order to diagnose and analyze faults, 

it was necessary to rely on the deep architecture of the multi-

layer nonlinear data processing unit in the deep learning 

algorithm for feature extraction [10]. There are complex 

interactions among components. For example, if a certain part 

of the system fails, multiple components related to it will 

generate abnormal signals [11]. The combination of data from 

multiple components facilitates more effective fault diagnosis. 

It is therefore essential that, in order to achieve efficient fault 

diagnosis, the interactions between multiple components are 

extracted and the hidden information and patterns in time series 

signals are learned [12]. The majority of traditional data-driven 

fault diagnosis methods place significant emphasis on the 

signals of several independent components within industrial 

systems[13]. However, this approach often fails to consider the 

interactions between different components, which can lead to 

limitations in the utilization of extracted features [14]. 

In order to explore the complex interactions between 

components, the introduction of graph neural network methods 

with topological structures can achieve modeling of the 

interactions between variables [15-16]. Generally, structural 

attribute diagrams are used to describe industrial process data 

[17], where each component corresponds to a node, and the 

edges between nodes represent interaction relationships, which 

can be learned based on the mathematical characteristics of 

component signals [18]. The signals emitted by the component 

in response to different fault conditions are distinct, as are the 

edges that are learned. Then different topological graph 

structures are obtained [19-20]. The above is the basic idea of 

using graph-based methods for fault diagnosis. 

Therefore, it is very crucial to develop a graph-based 

approach that can effectively represent the information 

contained in component signals and the interactions between 

components. This can enable the accurate identification of the 

topology structure of different fault modes. A multitude of 

methodologies based on graph neural networks have been put 

forth. Wang et al. [21] employed the short-time Fourier 

transform on vibration data in order to create a spatial-temporal 

graph for the purpose of bearing fault diagnosis. Li et al. [22] 

constructed an affinity graph based on the similarity of the 

vibration signal and proposed a multi-receptive Graph Neural 

Network (GNN) for fault diagnosis under node classification 

tasks. The aforementioned graph-based methods and models 

have made considerable headway in the domain of fault 

detection, thereby fostering a plethora of novel insights. 

However, they still exhibit limitations in their capacity to model 

spatial-temporal variables. The prevailing approach to graph-

based methods is to construct a separate graph for each 

timestamp, subsequently employing time encoders to capture 

the temporal relationships between these graphs. The 

independent processing of information between different time 

points results in the objective division of complete spatial and 

temporal relationships. Previous fault diagnosis methods fail to 

account for the correlation between different sensors at different 

time points, which constrains their capacity to learn effective 
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representations and real interactions. This results in suboptimal 

modeling accuracy when confronted with the aforementioned 

complex coupling problems. The correlations they frequently 

neglect are pivotal for modeling comprehensive spatial-

temporal dependencies within industrial data [23-24], which 

exhibit intricate physical coupling relationships and temporal 

correlations [25]. We consider a complex industry fault 

detection scenario in which a temperature sensor at the inlet of 

the reactor is highly correlated with a pressure sensor located 

within the reactor. The time required for material flow means 

that temperature changes at the inlet of the reactor will not be 

immediately reflected in the internal pressure [26-27]. In the 

event of a sudden increase in the temperature of the raw material, 

the sensor at the inlet is the first to detect this change. However, 

it takes a certain amount of time for this alteration to affect the 

pressure within the reactor [28]. In this case, the two sensors are 

highly correlated at the same timestamp, and the temperature in 

the initial moments also influences the pressure readings for 

subsequent moments. This results in correlations between 

different sensors at different timestamps [29-30]. The 

constraints of graph construction and graph convolution render 

existing methods incapable of accurately discerning the 

interrelationships between disparate sensors at disparate time 

points [31]. This restricts their capacity to construct 

comprehensive ST dependencies within intricate multivariate 

industrial process data [32]. It is necessary to develop a graph 

structure that can comprehensively consider the relationship 

between different industrial sensor signals at different time 

points. 

To solve the above limitation, a novel method called Multi-

Connected Temporal Encoding Graph Neural Network 

(MCTEGNN) is proposed, which consists of two key 

components: multi-connected graph construction and moving-

pooling graph convolution. For graph construction, a multi-

connected graph is introduced to establish full connections 

between all sensors across all timestamps. This approach allows 

us to consider the correlations between sensing variables that do 

not directly generate a significant relationship. The process 

commences with the partitioning of each industrial signal 

sample into discrete patches, with each patch corresponding to 

a specific timestamp. The sensors situated across all patches are 

fully connected through dot-product computations. In order to 

enhance the multi-connected graph, a decay matrix has been 

devised on the basis of the temporal distances between the 

aforementioned patches, with greater correlations being 

attributed to those situated in closer proximity. 

Conventional graph-based approaches predominantly focus 

on two dependency types: intra-timestamp spatial correlations 

and inter-timestamp temporal continuity. The two relationships 

are often modeled separately. This fragmented modeling 

paradigm fails to capture cross-timestamp spatial-temporal 

interactions (sensor A at t and sensor B at t+Δt), which are 

critical for industrial processes with material/energy flow delays. 

Our unified graph architecture overcomes this limitation 

through full connectivity, enabling holistic modeling of delayed 

process interactions inherent in complex systems. 

Then moving-pooling graph convolution has been devised 

with the objective of effectively capturing the ST dependencies 

within the multi-connected graph. A moving-pooling GNN 

layer is proposed, which employs moving windows of  

a specified size to slide along patches. In each window, graph 

convolution is employed to facilitate the updating of node 

features through edge propagation. Subsequently, a temporal 

pooling operation is applied to obtain high-level sensor features. 

Following the application of multiple parallel layers of moving 

pooling GNN, the updated sensor features are acquired. These 

are then stacked and mapped in order to obtain the final 

representations. 

The main contributions of our work are summarized as 

follows: 

First, A multi-connected spatial-temporal graph is put forth 

as a means of explicitly modeling the correlations between 

sensors across all timestamps. The construction of a temporal 

distance-based decay matrix facilitates the enhancement of the 

graph, thereby enabling the effective modeling of the 

comprehensive spatial-temporal dependencies intrinsic to 

industrial time series data. 

Second, a moving-pooling GNN layer is proposed as  

a means of effectively capturing the spatial-temporal 

dependencies inherent to the constructed graph, thereby 

facilitating the learning of effective representations. The 

method introduces a moving window for the consideration of 

local spatial-temporal dependencies, which is then followed by 

a temporal pooling operation for the extraction of high-level 
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features. 

Third, A series of comprehensive experiments have been 

conducted to demonstrate the effectiveness of our method for 

effectively modeling and capturing the intricate dependencies 

inherent to industrial data. Experiments on three datasets 

demonstrate the effectiveness of MCTEGNN. A comparison 

with existing fault diagnosis algorithms demonstrates that the 

MCTEGNN model exhibits enhanced stability in classification 

and superior generalization ability. 

The remaining content of this article is organized as follows: 

Section 2 elaborates on relevant formulas and preliminary 

knowledge; Section 3 illustrates the framework of the proposed 

MCTEGNN fault diagnosis method; In Section 4, the 

experimental results obtained on complex industrial process 

datasets were analyzed to verify their effectiveness and 

reliability; Finally, the conclusion of this article is drawn in 

Section 5. 

2. Formulation and Preliminaries 

2.1. GNN for Multivariate Time-Series 

In order to more effectively learn the feature representation of 

multivariate time series data, it is necessary to incorporate 

spatial dependencies between nodes [33]. To achieve this,  

a common approach is to leverage GNN, which typically 

involves the combination of GNN with other temporal encoders 

[34-35], such as 1DCNN. The general form of a graph 

convolution operation can be expressed as follows: 

ℎ(𝑙+1) = 𝜎(𝑊(𝑙) ⋅ MEAN𝑖∈𝑁(𝑗)(ℎ𝑖
(𝑙)

) + 𝑏(𝑙))        

(1) 

where ℎ(𝑙) represents the node features at layer l, N (j) denotes 

the neighbors of node j ,and σ is a non-linear activation function. 

MEANrepresents averaging the features of neighboring nodes. 

Subsequently, GNNs are employed to capture the spatial 

dependencies. The spatial dependency can be modeled as 

follows: 

𝐻(𝑙+1) = ReLU(𝑊(𝑙) ⋅ MEAN(𝐻(𝑙) ⋅ 𝐴) + 𝑏(𝑙))       (2) 

Where 𝐻(𝑙) are activation value matrix of node features in layer 

l, A is the adjacency matrix of the graph, and 𝑊(𝑙) and 𝑏(𝑙) are 

the learnable parameters. GraphSleepNet [36] also introduced 

the concept of sequential graphs. In order to extract temporal 

features, HAGCN [37] employed an LSTM. These features 

were then used to construct graphs, which were subsequently 

subjected to further processing by a GNN. These researchers 

have made a notable impact by employing GNN to identify 

spatial dependencies within MTS data [38]. 

2.2. Positional Encoding 

Positional encoding is a critical and fundamental component in 

the Transformer model, which is a type of deep learning 

architecture commonly used for sequence-to-sequence tasks 

such as machine translation and language understanding. The 

Transformer model does not inherently capture the order of the 

sequence elements. To address this issue, positional encodings 

are incorporated into the input embeddings, thereby providing 

the model with information regarding the relative or absolute 

position of the tokens within the sequence. 

The positional encodings are typically generated through the 

application of sine and cosine functions at different frequencies. 

The process commences with the generation of a range of 

positions that correspond to the sequence length. This range is 

then employed in the computation of the encoding for each 

dimension of the embedding. For each position, a sinusoidal 

pattern is created, wherein the frequency of the sine and cosine 

functions decreases as the dimension index increases. The 

interleaving of these sine and cosine functions allows for the 

creation of a comprehensive representation of the positions 

within the sequence, which can then be learned by the model. 

Assuming we have a sequence with a length of len and each 

element of the sequence has a dimension of dmodel. The 

position encoding can be represented as a len × dmodel  matrix, 

where each element is calculated by the following formula: 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)         (3) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

100002(𝑖+1)/𝑑model
)        (4) 

Among them, pos refers to the position index within the 

sequence, and i denotes the dimension index. The resulting 

encodings are subsequently incorporated into the token 

embeddings, which are then fed into the Transformer’s encoder 

layers. This incorporation of positional encodings enables the 

model to comprehend the context and order of the sequence 

elements. 

In practice, the model learns to integrate these positional 

signals with the semantic information derived from the 

embeddings in order to make predictions. This method of 
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positional encoding has been demonstrated to be highly 

effective in enabling the Transformer model to handle long-

range dependencies in sequences. 

3. METHODOLOGY 

3.1. Model Overview 

Fig. 1 illustrates the comprehensive framework of the proposed 

method. The MCTEGNN is designed to integrate the dynamic 

characteristics of temporal sequences with the spatial structural 

information, thereby facilitating a precise analysis of industrial 

processes. Given an industrial data sample, initial processing 

involves dividing the signal of each sensor into multiple patches, 

with each patch aligned with its respective timestamp. Each 

segmented patch is then processed by an encoder module to 

extract intrinsic features at the sensor level. Subsequently,  

a position encoding mechanism is adopted with the objective of 

integrating temporal contextual information into the sensor 

features of different patches, thereby ensuring that the relative 

position of sensor data in the time series is taken into account. 

Next, the construction of multi-connected graph is introduced 

to achieve comprehensive interconnection between sensors 

across patches and capture interactions through the calculation 

of the vector dot product of sensors. 

 

Figure 1. The overall structure of MCTEGNN. 

In order to simulate the correlation between different time 

nodes in a real system, an attenuation matrix is introduced, 

taking into account the time distance difference between patches. 

This reflects the attenuation effect of time on the relationship 

between different time nodes, thereby more realistically 

simulating the situation in real industrial processes. Next,  

a moving-pooling GNN is proposed to capture the ST 

dependencies from complex industrial systems embedded in the 

multi-connected graph. We have devised a method of moving 

windows that traverse along patches. This is then applied to 

GNN operations within each individual window range, with the 

aim of capturing fine-grained spatial-temporal dynamics in the 

data by processing and integrating information segment by 

segment. After capturing the spatial-temporal dependencies 

within each window, the sensor features are updated. 

Subsequently, a temporal pooling operation is applied to extract 

high-order representations of these sensor features. Finally, the 

features are input into the classification output layer to obtain 

the results of subsequent diagnostic tasks. The specifics of the 

aforementioned methodologies will be elucidated in subsequent 

chapters. 
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3.2. Graph Construction 

3.2.1. Fully-Connected Graph Construction 

Given an industrial sequence data sample 𝑋 ∈ ℝ𝑁×𝐿, the signals 

of each sensor are segmented into multiple discrete patches. 

Using a patch denoted by size f , we create{𝑋𝑡}𝑡=1
�̂�   from 𝑋 , 

where   is the patch index representing a specific timestamp, and 

each 𝑋𝑡 ∈ ℝ𝑁×𝐿. L denotes the number of segmented patches, 

calculated as 

�̂� = [
𝐿

𝑓
]        (5) 

where [·] represents the truncation operation to approximate the 

nearest integer, thereby dividing the time series into uniformly 

sized discrete intervals.  

Each X   contains segmented signals from n sensors, i.e. 

𝑋𝑡 = {𝑥𝑡,𝑖}𝑖=1

𝑁
           (6) 

where 𝑥𝑡,𝑖 ∈ ℝ𝑓 . Subsequently, an encoder 𝑓𝑐(⋅ |𝑊𝑐)  is 

employed to process the segmented signals within each window, 

encoding relevant information for the subsequent feature 

learning stage. 𝑊𝑐 is a set of learnable weight parameters for the 

encoder. Encoders work at the granularity level of individual 

sensors to learn intrinsic features of industrial signals, i.e. 

𝑥𝑡,𝑖
′ = 𝑓𝑐(𝑥𝑡,𝑖|𝑊𝑐)           (7) 

In addition, in order to maintain the sequence order between 

patches, i.e. the inherent relative positional information between 

patches. Positional encoding is adopted to ensure that the model 

considers the temporal arrangement of data points. 

Specifically, for the i-th sensor {𝑥𝑡,𝑖
′ }

𝑖=1

�̂�
  , positional 

encoding, as shown in Eq. (9), is introduced into sensor features, 

e.g. 

𝑧𝑡,𝑖 = 𝑓𝑝(𝑡) + 𝑥𝑡,𝑖
′           (8) 

representing the sensor features enhanced by the 

incorporation of positional information. By using this 

processing method, the intrinsic features of sensor information 

are combined with their relative positions in the time series. 

Here, m denotes the m-th feature of sensor features. 

𝑝𝑡⃗⃗  ⃗
(𝑚)

= 𝑓𝑝(𝑡)
(𝑚): = {

𝑠𝑖𝑛(𝑤𝑘 ⋅ 𝑡),𝑚 = 2𝑘,
𝑐𝑜𝑠(𝑤𝑘 ⋅ 𝑡),𝑚 = 2𝑘 + 1.

}       (9) 

By utilizing sensor features obtained across multiple patches, 

the correlation between different sensors at different time points 

is additionally taken into account, and a multi-connected graph 

is further constructed to interconnect all sensors across these 

patches, thereby providing a more comprehensive and dynamic 

representation of complex industrial system behavior. It is 

assumed that sensors within the same industry that are highly 

correlated should exhibit similar characteristics, and thus their 

features should be proximate in the feature space. This allows 

us to employ the concept of similarity as a means of quantifying 

the degree of correlation between sensors. It can be posited that 

the higher the degree of similarity between the features 

exhibited by the sensors, the stronger the correlation between 

them. 

In this instance, a straightforward and efficacious 

measurement approach, namely the dot product, is employed to 

ascertain the degree of similarity between the feature vectors of 

two sensors, which are defined as follows: 

𝑒𝑡𝑟,𝑖𝑗 = 𝑔𝑠(𝑧𝑡,𝑖)(𝑔𝑠(𝑧𝑟,𝑗))
𝑇       (10) 

where      ∈ [1  Lˆ] and i  j ∈ [1  N]. The dot product avoids the 

computational overhead of repeated L2-norm calculations 

required for cosine similarity. Moreover, the gradient of dot 

product can help avoid the gradient explosion/disappearance 

caused by denominator in cosine similarity. Here, the function 

𝑔𝑠(𝑧) = 𝑧𝑊𝑠  is used to enhance the expressive power of the 

model, where 𝑊𝑠 is a learnable weight matrix. In addition, the 

softmax function constrains the value of correlation to a closed 

interval of [0,1]. 

Finally, the multi-connected graph 𝒢 = (𝑍, 𝐸)  is derived, 

where 

𝑍 = {{𝑧𝑡,𝑖}𝑖=1

𝑁
}
𝑡=1

�̂�

        (11) 

and 

𝐸 = {{𝑒𝑡𝑟,𝑖𝑗}𝑖,𝑗=1

𝑁
}
𝑡,𝑟=1

�̂�

        (12) 

E represents the adjacency matrix of the multi-connected 

graph, which quantifies the correlation between sensors across 

all patches and comprehensively models the inherent  

dependencies of industrial time series. The graph G not only 

includes the temporal correlation of sequential dependencies 

between different timestamps and the spatial correlation 

between sensors within the same timestamp, but also the 

correlation between different sensors at different timestamps. 

The combination of these three relationships enables us to 

construct a comprehensive model of the ST correlation in 
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multivariate industrial time series data in detail, which is crucial 

for accurately interpreting the inherent complex interactions 

and patterns in multivariate industrial time series data, thereby 

enhancing the predictive ability and analytical depth of graph-

based methods. 

3.2.2. Decay Matrix 

The multi-connected graph G is constructed based on sensor 

similarity across patches only, without accounting for temporal 

distances between sensors across these patches. Motivated by 

this, a decay matrix has been developed which incorporates 

temporal distances between sensors, with the objective of 

enhancing the precision of the graph G . The dimension of this 

adjacent matrix is𝐸 ∈ ℝ(3×4)×(3×4) . In this matrix, each row 

represents the connections between sensors across all patches. 

The initial four columns illustrate the interconnectivity between 

sensors within the same patch. Due to the fact that these data 

come from industrial instrument data with the same timestamp 

and are influenced by the same physical processes or conditions 

occurring at specific time points, they should exhibit stronger 

correlation than data in patches with different timestamps and 

should be represented with higher correlation values in the 

adjacency matrix.  

As the values of these sensors are located at different relative 

time positions, their correlation with 𝑧𝑇−1,1 should decay, and 

the time difference should be quantified by the decay rate. As 

the temporal gap widens, the correlation estimation between 

sensors will naturally further decrease, measured by 𝛿2  to 

accurately simulate the weakening of the influence of farther 

industrial parameters on each other over time. We formulate the 

decay matrix 

𝐶 = {{𝑐𝑡𝑟,𝑖𝑗}𝑖,𝑗=1

𝑁
}
𝑡,𝑟=1

�̂�

        (13) 

where each element 𝑐𝑡𝑟,𝑖𝑗 = 𝛿𝑡−𝑟. This matrix is employed to 

refine and enhance the correlations between sensors across 

patches, yielding 𝑒𝑡𝑟,𝑖𝑗 = 𝑒𝑡𝑟,𝑖𝑗𝑐𝑡𝑟,𝑖𝑗  corrected to scale the initial 

correlation. 

3.2.3. Moving-pooling Graph Convolution 

The subsequent stage is to employ the constructed multi-

connected graph in order to capture the ST dependencies within 

complex industrial data for representation learning.  

A methodology that has been frequently employed in the 

processing of data sets is the application of graph convolution 

across the entire constructed graph. This approach may prove 

inadequate for effectively capturing the local ST dependencies 

within industrial process data with a large number of transient 

processes.  

In order to address the limitations, a moving pooling GNN 

is proposed, which incorporates a moving window to capture 

local ST dependencies and temporal pooling to extract high-

level features. Unlike standard pooling approaches that apply 

global aggregation over the entire sequence, the moving-

pooling operates within local temporal windows. For each 

window spanning M timestamps, we compute the average 

pooling only within the current window (e.g., 𝑡 ∈ [𝑤 −
𝑀

2
, 𝑤 +

𝑀

2
]  for window 𝑤 ). This preserves local temporal patterns 

critical for industrial fault diagnosis while avoiding over-

smoothing from global aggregation.  

Specifically, following previous works, a Message Passing 

Neural Network (MPNN), a variant of GNN, is utilized to 

capture the ST dependencies of the graph within each window. 

The MPNN comprises both a propagation and an update stage. 

During the propagation stage, the information from neighboring 

nodes is propagated into the central node. Given a central node 

𝑧𝑡,𝑖
𝑙   of the w-th window in the l-th layer, it has a set of 

neighboring nodes {{𝑧𝑟,𝑗
𝑙 }

𝑗=1

𝑁
}
𝑟=𝑤−

𝑚

2

𝑤+
𝑚

2
 across M patches in the 

same window, w represents the index of the window currently 

being processed. 

The central node has correlations with its neighbors as 

{{𝑒𝑡𝑟,𝑖𝑗
𝑙 }

𝑗=1

𝑁
}
𝑟=𝑤−

𝑚

2

𝑤+
𝑚

2
. After the propagation stage, we obtain the 

propagated features 

ℎ𝑡,𝑖
𝑙 = ∑ ∑ 𝑧𝑟,𝑗

𝑙𝑁
𝑗=1

𝑤+
𝑚

2

𝑟=𝑤−
𝑚

2

𝑒𝑡𝑟,𝑖𝑗
𝑙        (14) 

Then, the updating stage employs a non-linear function to 

update the propagated sensor features, i.e.,𝑧𝑡,𝑖
𝑙+1 = 𝑓𝑔(ℎ𝑡,𝑖

𝑙 |𝑊𝑔). 

Given the updated sensor features {𝑧𝑡,𝑖
𝑙+1}

𝑡=𝑤−
𝑀

2

𝑤+
𝑀

2  for the i-th 

sensor across M patches, temporal pooling is conducted using 

an average pooling strategy, yielding sensor features 

𝑧𝑤,𝑖
𝑙+1 = ∑ 𝑧𝑡,𝑖

𝑙+1𝑤+
𝑀

2

𝑡=𝑤−
𝑀

2

/𝑀         (15) 
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for the w-th window. Subsequently, the sensors are stacked 

across all windows, thereby creating a high-level multi-

connected graph that serves as the input for the subsequent layer. 

It should be noted that this study employs a single layer, 

whereby the sensor features obtained from each slide window 

are directly utilized for output purposes. 

The direct output of MCTEGNN is a representation vector 

for each input industrial time-series sample. For the subsequent 

fault diagnosis task, this representation serves as input to  

a softmax classifier, producing a probability distribution over 

fault classes. 

4. Results and Discussion 

In this section, the effectiveness of the proposed model 

MCTEGNN will be tested and comprehensively evaluated on 

three industrial datasets, and compared with other existing 

baseline models for fault diagnosis. 

4.1. Datasets Description 

1)Tennessee Eas man (TE) P ocess: The Tennessee Eastman 

Process, developed by Eastman Chemical Company, has gained 

considerable recognition as a popular simulation platform for 

the detection and diagnosis of faults. 

This dataset simulates actual chemical processes for 

anomaly detection and process adjustment. The entire process 

is comprised of five distinct operational units, including the 

reactor, condenser, gas-liquid separator, circulating compressor, 

and product stripping tower. Table 1 and Table 2 provide 

detailed information on each variable and fault type. The 

process flowchart is presented in Figure 2. 

This article employs a revised simulation model to generate 

experimental data, and further detailed information is available 

at [40]. Only the original 41 measurement values and 9 

manipulated variables are collected, and variables (5, 9, and 12) 

were excluded because they remained unchanged during the 

simulation process and therefore did not participate in the fault 

detection diagnosis calculation. For a normal state, the process 

was simulated for a period of 500 hours. In order to obtain  

a representative sample, the process was simulated 10 times for 

each fault state, with different random initial values. Each 

simulation lasted 100 hours. In each instance of the fault state 

simulation, the disturbance was introduced following the 

completion of eight hours of normal process operation. In 

particular, fault 6 will result in the process industry system 

being terminated after the introduction of interference for  

a period of seven hours. Consequently, each simulation of fault 

6 is limited to seven hours of fault data. The sampling interval 

has been established at three minutes. A single sample is 

constituted by a segment containing one hour of information. 

Subsequently, all samples were combined with the fault state 

and normal state, and a random selection was made of 80% for 

the training set and 20% for the testing set.

Table 1. Monitoring variables in TE process. 

ID Description ID Description 

XMEAS1 A Feed (Flow 1) XMEAS28 Component F (Flow 6) 

XMEAS2 D Feed (Flow 2) XMEAS29 Component A (Flow 9) 

XMEAS3 E Feed (Flow 3) XMEAS30 Component B (Flow 9) 

XMEAS4 Total Feed (Flow 4) XMEAS31 Component C (Flow 9) 

XMEAS5 Recycle Flow Rate (Flow 8) XMEAS32 Component D (Flow 9) 

XMEAS6 Reactor Feed Rate (Flow 6) XMEAS33 Component E (Flow 9) 

XMEAS7 Reactor Pressure XMEAS34 Component F (Flow 9) 

XMEAS8 Reactor Level XMEAS35 Component G (Flow 9) 

XMEAS9 Reactor Temperature XMEAS36 Component H (Flow 9) 

XMEAS10 Emission Rate (Flow 9) XMEAS37 Component D (Flow 9) 

XMEAS11 Product Separator Temperature XMEAS38 Component E (Flow 9) 

XMEAS12 Product Separator Liquid Level XMEAS39 Component F (Flow 9) 

XMEAS13 Product Separator Pressure XMEAS40 Component G (Flow 9) 

XMEAS14 Product Separator Outlet Flow Rate (Flow 10) XMEAS41 Component H (Flow 9) 

XMEAS15 Stripping Tower Liquid Level XMV1 D Feed Flow Rate (Flow 2) 

XMEAS16 Stripping Tower Pressure XMV2 E Feed Flow Rate (Flow 3) 

XMEAS17 Stripping Tower Bottom Flow (Flow 11) XMV3 A Feed Flow Rate (Flow 1) 

XMEAS18 Stripping Tower Temperature XMV4 A and C Feed Total Flow Rate (Flow 2) 

XMEAS19 Stripping Tower Flow Rate XMV5 Compressor Recycle Valve 
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ID Description ID Description 

XMEAS20 Compressor Working Power XMV6 Emission Valve (Flow 9) 

XMEAS21 Reactor Cooling Water Outlet Temperature XMV7 Liquid Filling Flow Rate (Flow 10) 

XMEAS22 Separator Cooling Water Outlet Temperature XMV8 Tower Liquid Product Flow Rate (Flow 11) 

XMEAS23 Component A (Flow 6) XMV9 Stripping Tower Water Flow Valve 

XMEAS24 Component B (Flow 6) XMV10 Reactor Cooling Water Flow Rate 

XMEAS25 Component C (Flow 6) XMV11 Condenser Cooling Water Flow Rate 

XMEAS26 Component D (Flow 6) XMV12 Agitation Rate 

XMEAS27 Component E (Flow 6)   

Table 2. Fault descriptions in the TE process. 

ID Fault Description Type 

IDV1 A/C feed flow ratio changes, B content remains unchanged (Stream 4) Step 

IDV2 B content changes, A/C feed flow ratio remains unchanged (Stream 4) Step 

IDV3 Material D temperature changes Step 

IDV4 Reactor cooling water inlet temperature changes Step 

IDV5 Condenser cooling water inlet temperature changes Step 

IDV6 Material A loss (Stream 1) Step 

IDV7 Material C pressure loss (Stream 4) Random Variable 

IDV8 A, B, C composition changes (Stream 4) Random Variable 

IDV9 Material D temperature changes (Stream 2) Random Variable 

IDV10 Material C temperature changes (Stream 2) Random Variable 

IDV11 Reactor cooling water inlet temperature changes Random Variable 

IDV12 Condenser cooling water inlet temperature changes Slow Drift 

IDV13 Reaction kinetics characteristics change Sticky 

IDV14 Reactor cooling water valve stick Sticky 

IDV15 Condenser cooling water valve stick Sticky 

IDV16 Unknown Unknown 

IDV17 Unknown Unknown 

IDV18 Unknown Unknown 

IDV19 Unknown Unknown 

IDV20 Unknown Unknown 

Table 3 illustrates the sample sizes of the training and testing sets employed for the observed data presented in this article.  

Table 3. Fault type in the TE dataset. 

NO. Fault type Training samples Testing samples 

1 Fault 1-5&7-20 304000 76000 

2 Fault 6 1120 280 

3 Normal 16000 4000 

 

Figure 2. Process flow of the TE process. 
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2) Th ee-Phase Flow Facili y (TFF) P ocess: The Three-

Phase Flow Facility Process [41] designed by Cranfield 

University, is a realistic and complex industrial process platform 

in which the primary function is to obtain experimental data for 

fault diagnosis by providing controlled and measured flows of 

water, oil, and air to a pressurized system. This dataset contains 

normal states and six different fault states. We combine all 

normal and faulty subsamples and randomly take 70% as the 

training set and 30% as the testing set. The redivided dataset is 

shown in Table 4, which includes the fault types and the 

corresponding number of samples.

Table 4. Fault type in the TFF dataset. 

NO. Fault type Training samples Testing samples 

1 Air line blockage 127 67 

2 Water line blockage 121 51 

3 Top separator input blockage 307 126 

4 Open direct bypass 153 73 

5 Slugging conditions 75 30 

6 Pressurization of the 2” line 64 32 

7 Normal 478 190 

 

3) Blas  Fu nace (BF) P ocess: The modern large-scale 

blast furnace smelting process includes multiple key 

subsystems such as feeding system, hot blast furnace system, 

coal injection system, and blast furnace body. The blast furnace 

body consists of five parts: throat, body, belly, waist, and hearth. 

It is the core link of the ironmaking process, and its working 

principle is based on the top-down movement of furnace 

materials and the dynamic process of reverse continuous 

reduction of iron ore by gas flow from bottom to top. Blast 

furnace smelting is a complex dynamic process that involves 

multiple systems and reactions. The invisibility of its internal 

state, the complexity of its operational steps, and the 

intersection of physical and chemical processes make direct 

observation and evaluation of it a major challenge. In order to 

further verify the applicability of the proposed method in actual 

industrial environments, this study studied and explained the 

five sampled fault states based on actual process data collected 

and calculated from a large steel enterprise's blast furnace 

smelting site. The industrial parameters involved are shown in 

Table 5. The fault description and sample partitioning of this 

dataset are shown in Table 6. The proportion of the training set 

in this dataset is 70%, and the proportion of the testing set is 

30%.

Table 5. Variables in BF process. 

ID Description ID Description 

1 Furnace coke_Ad 17 Spray rate 

2 Furnace coke_Mt 18 Oxygen enrichment level 

3 Furnace coke_St 19 Furnace top pressure 

4 Injection of coal_Ad 20 Coke load 

5 Injection of coal_Fcad 21 Mean value of probe 

6 Injection of coal_St 22 Range of measuring tape 

7 abrasion resistance index 23 Material speed 

8 drum index 24 Standardized wind speed 

9 Strength of Charcoal Reaction_CSR 25 Hot air pressure 

10 Coke Reactivity_CRI 26 Mean throat temperature 

11 Coke compressive strength: M40 27 Temperature range of furnace throat 

12 Coke anti-wear index _ M10 28 Mean temperature of furnace top 

13 Coke batch weight 29 Range of furnace top temperature 

14 Ore batch weight 30 Gas utilization rate 

15 Hot air temperature 31 Total area of air outlet 

16 Supply air volume   
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Table 6. Fault type in the BF dataset. 

NO. Fault type Training samples Testing samples 

1 Fluctuations in supply air volume 830 357 

2 Abnormal mass fraction of fixed carbon in coal powder injection 571 246 

3 Abnormal supply of oxygen enrichment 2184 936 

4 Abnormal metallurgical coke 1092 468 

5 Furnace throat temperature fluctuation 1528 656 

 

In this article, the micro F1 score and macro F1 score are 

employed to validate the effectiveness of the proposed 

MCTEGNN and integrate five baseline methods for comparison, 

namely GAT [42], TAGCN [43], MRFGCN [44],IAGNN [44] 

and MTGNN [45]. Throughout the entirety of the training 

process, the optimizer is Adam, with an initial learning rate of 

0.0001. All networks, including the baseline methods, were 

implemented using Pytorch 2.0.1 and Python 3.8.2 on Ubuntu 

18.04, equipped with NVIDIA GeForce RTX 3090Ti GPU 

24GB of RAM. 

4.2. Classification Result Analysis of TE Experiment  

The detailed evaluation results of the complex industrial process 

time series dataset are shown in Table 7. We perform fault 

diagnosis classification on the TE dataset based on six graph 

neural deep learning models that can be used for industrial fault 

diagnosis. 

Comparing with the results of several baseline models 

including GAT, TAGCN, MRF-GCN, IAGNN and MTGNN, it 

can be observed that MCTEGNN achieved the best or 

comparable performance. From the classification results of 20 

faults and normal states that need to be diagnosed in the TE 

dataset, it can be seen that the proposed MCTEGNN achieves 

the best diagnostic accuracy among the six diagnostic methods 

in 16 fault categories. Compared with the baseline methods, the 

proposed MCTEGNN achieved the best classification results, 

with the highest micro F1 score of 0.9527, and the macro F1 

score is 0.9554. This provides further evidence of the 

effectiveness of the model proposed in this article. Figure 3 

illustrates the feature space distribution of the model data 

mapped to a low dimensional space before and after 

classification.

Table 7. Classification Accuracy (%) for Various Fault Types on The TE Dataset. 

Fault types GAT TAGCN IAGNN MRF-GCN MTGNN MCTEGNN 

Normal 82.8 91.18 89.95 84.59 82.38 89.54 

Fault 1 100 100 100 100 100 100 

Fault 2 98.12 99.94 100 100 100 100 

Fault 3 45.98 94.56 88.63 89.18 77.14  8.68 

Fault 4 99.85 99.62 99.61 100 100 100 

Fault 5 52.1 80.66 65.24 66.09 60.45 8 .31 

Fault 6 100 100 100 100 100 100 

Fault 7 99.85 100 100 100 100 100 

Fault 8 73.43 99.79 99.54 99.35 94.98   .81 

Fault 9 46.2 66.84 51.32 38.72 39.63  8.68 

Fault 10 74.45 97.19 97.51 97.06 94.02   .1  

Fault 11 93.48 99.72 99.15 99.68 79.79 100 

Fault 12 81.75 98.61 94.67 95.00 88.07  8.8  

Fault 13 77.92 96.85 96.18 96.93 87.52   .8  

Fault 14 99.85 100 100 100 90.52 100 

Fault 15 48.12 72.04 61.76 56.81 50.79 88. 3 

Fault 16 28.57 58.73 52.69 31.98 76.95 76.54 

Fault 17 93.1 96.55 94.49 97.11 89.27   .1  



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

Fault types GAT TAGCN IAGNN MRF-GCN MTGNN MCTEGNN 

Fault 18 67.85 96.01 95.63 94.64 88.84 95.85 

Fault 19 89.6 99.42 99.53 99.26 89.61 100 

Fault 20 91.97 97.34 96.02 97.30 95.59 97.19 

 

Figure 3. The visualization distribution of data features after classification by the model is shown using t-SNE graphs [39], where 

Figure (a) represents before classification and Figure (b) represents after classification. 

The significant improvement achieved in the results is that 

even for the most intricate faults (3, 5, 9, 15, and 16), the fault 

diagnosis rate of MCTEGNN has significantly improved 

compared to previous methods. The identification of these five 

types of faults has always been a challenging problem, with 

relatively low diagnostic accuracy achieved in existing models. 

Overall, it can be seen from Table 7 that the results obtained by 

the proposed model are comparatively superior to those of the 

baselines. Through analysis, it can be concluded that the reason 

for the improvement is that the proposed model adopts an 

algorithm modeling that is more in line with the spatial-

temporal relationships between complex industrial process 

variables. The design of multi-connected graphs enables the 

model to comprehensively capture spatial-temporal 

dependencies in complex industrial data, thereby enhancing its 

capacity for generalization across different fault modes. Mobile 

pooling graph convolution also enables models to more 

effectively comprehend and process local patterns and dynamic 

changes in industrial time series data. This experiment serves to 

further demonstrate the powerful capabilities of MCTEGNN in 

data analysis and classification. 

Diagnostic accuracy for Faults 9 and 15 remains suboptimal 

compared to other faults due to their unique physical 

characteristics: Fault 9 manifests as gradual parameter shifts 

that are masked within normal process variations. The model's 

78.68% accuracy reflects challenges in distinguishing subtle, 

long-term trends from noise. Fault 15 exhibits complex 

nonlinear behavior, causing irregular parameter fluctuations. 

The 88.53% accuracy indicates residual difficulties in modeling 

these state transitions.

           

a)                                                                                                 (b) 
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(c)                                                                                                  (d) 

           

(e)                                                                                              (f) 

Figure 4. Confusion matrix of TE: (a)GAT, (b)TAGCN, (c)IAGNN, (d)MRF-GCN, (e)MTGNN,(f)MCTEGNN. 

Figure 4 illustrates the comparative results of confusion 

matrices under several models, with the true categories and 

predicted categories listed in the rows and columns of the matrix, 

respectively.  

 

Figure 5. Classification accuracy curve of MCTEGNN on  

TE dataset. 

Figure 5 and Figure 6 respectively illustrate the accuracy 

curve and training loss curve of the MCTEGNN model for fault 

classification on the TE dataset. The two curves not only 

demonstrate the performance changes during the model training 

process, but also reflect the stability and convergence at 

different training stages. Figure 7 presents a comparison of the 

classification accuracy F1 scores obtained through multiple 

experiments for several models. This comparison serves to 

further validate the superiority and robustness of the 

MCTEGNN model in the context of fault diagnosis in complex 

industrial processes. 

 

Figure 6. Training loss curve of MCTEGNN on TE dataset.
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Figure 7. Comparison of Micro F1 score bar charts for different models on the TE dataset. 

4.3. Classification Result Analysis of TFF Experiment  

The detailed evaluation results of the TFF dataset are shown in 

Table 8. We perform fault diagnosis classification on the TFF 

dataset based on six graph-based models that can be used for 

industrial fault diagnosis. 

Comparing with the results of several baseline models 

including GAT, TAGCN, MRF-GCN, IAGNN and MTGNN, it 

can be observed that MCTEGNN achieved the best or 

comparable performance. From the classification results of 6 

faults and normal states that need to be diagnosed in the TFF 

dataset, it can be seen that the proposed MCTEGNN achieves 

the best diagnostic accuracy among the six diagnostic methods. 

Compared with the baseline methods, the proposed MCTEGNN 

achieved the best classification results, with the highest micro 

F1 score of 0.94.77, and the macro F1 score is 0.9454. This 

provides further evidence of the effectiveness of the model 

proposed in this article. 

Table 8. Classification Accuracy (%) for Various Fault Types on The TFF Dataset. 

Fault types GAT TAGCN IAGNN MRF-GCN MTGNN MCTEGNN 

Normal 93.74 93.8 95.32 95.84 91.63  6.   

Fault 1 83.24 92.2 86.23 78.77 77.27 90.17 

Fault 2 67.83 91.36 95.28 87.84 71.25   .24 

Fault 3 90.42 92.8 95.94 9894.39 93.6  6.   

Fault 4 75.76 70.28 83.91 82.61 60.69 8 .   

Fault 5 81.35 64.69 84.69 84.7 64.69 8 .6  

Fault 6 42.22 53.8 75.67 50.67 38.17 81.43 

 

As shown in the comparison results in Table 8, the proposed 

MCTEGNN consistently outperforms the baseline model in 

multiple fault categories. This advantage stems from its clear 

consistency with the inherent coupling characteristics of 

industrial processes. These innovations collectively enhance the 

model's generalization ability under different fault modes, and 

their significant accuracy improvement validates this. The 

experiment has demonstrated the effectiveness of MCTEGNN 

in modeling complex industrial variable relationships for 

accurate fault diagnosis. 

Figure 8 illustrates the comparative results of confusion 

matrices under several models. It can be seen from the figures 

that the proposed model has achieved significant improvement 

in classification accuracy.  Figure 9 presents a comparison of 

the classification accuracy F1 scores obtained through multiple 

experiments for several models. 
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(a)                                                                               (b) 

           

(c)                                                                                 (d) 

           

 (e)                                                                                  (f) 

Figure 8. Confusion matrix of TFF: (a)GAT, (b)TAGCN, (c)IAGNN, (d)MRF-GCN, (e)MTGNN,(f)MCTEGNN. 

 

Figure 9. Comparison of Micro F1 score bar charts for different models on the TFF dataset. 
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4.3. Classification Result Analysis of  F Experiment 

The detailed evaluation results of the BF dataset are shown in 

Table 9. We perform fault diagnosis classification on the BF 

dataset based on five graph-based models that can be used for 

industrial fault diagnosis. Comparing with the results of several 

baseline models including GAT, TAGCN, MRF-GCN and 

MTGNN, it can be observed that MCTEGNN achieves optimal 

or comparable performance on this real industrial dataset. 

Figure 10 illustrates the comparative results of confusion 

matrices under several models.

Table 9. Classification Accuracy (%) for Various Fault Types on The BF Dataset. 

Fault types GAT TAGCN MRF-GCN MTGNN MCTEGNN 

Fault 1 63.28 64.78 67.83 73.04  8.36 

Fault 2 67.26 68.56 74.39 69.04 81. 4 

Fault 3 72.5 71.36 74.12 82.88 86.0  

Fault 4 64.35 66.35 67.99 78.76 83. 2 

Fault 5 60.04 63.04 71.36 64.69 8 .48 

           

(a)                                                                                    (b) 

           

(c)                                       (d) 
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(e) 

Figure 10. Confusion matrix of BF: (a)GAT, (b)TAGCN, (c)MRF-GCN, (d)MTGNN,(e)MCTEGNN. 

The MCTEGNN model achieved good classification 

performance on the BF dataset, mainly due to its deep fit 

between the model structure and the complex dynamic 

characteristics of blast furnaces. By modeling the sensor 

coupling relationship across timestamps through a multi 

connected spatiotemporal graph (such as the lag correlation 

between oxygen enrichment changes and top temperature 

fluctuations), and quantifying the process delay effect using an 

attenuation matrix, the unique delay coupling mechanism of 

blast furnaces was effectively captured. The sliding window 

design of mobile pooling GNN accurately identifies local abrupt 

working conditions, solving the shortcomings of traditional 

methods in modeling cross temporal dependencies. This 

dynamic coupling modeling capability enables the model to 

accurately analyze multivariate chain faults in blast furnaces. 

A decay matrix is employed to augment the graph in order 

to ensure an accurate representation of correlation between 

various sensors at different time points. The selection of decay 

rate δ is crucial and affects the correction of the generated 

spatial-temporal connectivity graph. Relevant evaluations are 

needed. When δ is set to 0.7, the model demonstrates 

satisfactory performance, which is in line with the actual 

interaction relationship between variables in industrial 

processes. When the decay rate is set to a smaller parameter, 

performance decreases. When δ 1, it is equivalent to the 

absence of a decay matrix. The proposed model is capable of 

learning more effective representations, and this comprehensive 

modeling approach has been shown to achieve excellent overall 

performance in industrial fault diagnosis tasks. The proposed 

MCTEGNN model includes multi connected graph construction 

and moving pool graph convolution layers. Compared to 

simpler, traditional models, it may need higher computational 

costs. 

5. CONCLUSION 

In order to model the comprehensive Spatial-Temporal 

dependencies in complex industry time signal data, we have 

designed a new method called Multi-Connected Temporal 

Encoding Graph Neural Network (MCTEGNN). A multi-

connected graph is designed to connect sensors among all 

timestamps by additionally considering the correlations 

between different sensors at different timestamps. This enables 

comprehensive ST dependencies modeling within complex 

industry data. Subsequently, a multi-connected graph 

convolution is devised, comprising a moving-pooling GNN. 

This is achieved by employing a moving window and temporal 

pooling, which enables the capture of local ST dependencies 

and the subsequent learning of high-level features. The 

proposed model addresses the performance issues associated 

with inaccurate spatial-temporal modeling in complex industrial 

fault diagnosis. MCTEGNN has achieved significant results in 

modeling industrial dependencies, and its graph structure still 

relies on predefined decay mechanisms. Future work can 

combine this method with dynamic graph structures to further 

enhance the adaptability of the model to complex industrial 

scenarios. The effectiveness of our method is demonstrated 

through comprehensive experimentation.
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