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Highlights  Abstract  

▪ Increased NG ratio significantly reduces NOx 

and smoke emissions. 

▪ HVO pilot fuel shortens ignition delay and 

lowers injector fouling. 

▪ Dual fuel mode lessens engine thermal load 

and extends maintenance intervals. 

▪ ANCOVA model predicts major engine 

parameters with MAPE as low as ~2%. 

▪ Extended intervals and lower component stress 

improve engine reliability over time. 

 This paper presents an experimental and statistical study of a four-

cylinder turbocharged compression ignition (CI) engine operating in 

dual-fuel mode with natural gas and liquid pilot fuel (diesel or 

hydrotreated vegetable oil, HVO). The main engine performance 

indicators (brake power, specific fuel consumption), combustion process 

parameters (cylinder pressure, heat release rate) and emissions (NOX, 

CO2, smoke) were evaluated, as well as noise and vibration 

measurements were performed to determine the loading of structural 

elements. In order to highlight the factors affecting engine reliability and 

maintenance, the ANCOVA (analysis of covariance) methodology was 

applied, modeling the influence of load, natural gas fraction and sound 

pressure. The mean absolute percentage error (MAPE) shows that the 

model predicts the most important indicators quite accurately under 

various operating conditions. The developed ANCOVA model not only 

predicts engine characteristics under various load and fuel mixture 

conditions, but it also provides insights useful for engine maintenance 

planning and reliability assurance, especially in long-term or intensive 

operation. 
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1. Introduction 

Research on alternative fuels [29] shows that by properly 

selecting their combinations with conventional fossil fuels [16], 

it is possible not only to reduce emissions, but also to maintain 

and improve the reliability and long-term operation of the 

engine [26]. Dual-fuel technologies, where compressed gas (e.g., 

natural gas or biomethane) is supplied through the intake 

manifold, and diesel or other liquid fuel is used as a pilot 

ignition source, are becoming increasingly popular [12]. This 

method allows for significant reductions in NOX and particulate 

emissions while maintaining sufficient engine power and 

efficiency [27]. 

The application of HVO (hydrogenated vegetable oil) as  

a pilot liquid fuel, partially replacing conventional diesel, is 

receiving increasing attention. This results in shorter ignition 
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delay, cleaner engine combustion, and less polluting of the 

injector and exhaust system [18, 19]. Using HVO and gaseous 

fuels in dual-fuel mode also provides operational advantages – 

lower NOX and soot emissions allow for shorter maintenance 

intervals and protect engine components from accelerated wear 

or deposits [21]. Experimental studies have shown that by 

properly selecting the amount of HVO, even with an increased 

proportion of gaseous fuel (e.g., 80% NG by energy), it is 

possible to maintain similar or even higher engine power, and 

avoid sudden pressure surges that significantly reduce 

component life [23]. In addition to emission reduction goals, 

maintaining operational reliability and minimizing maintenance 

costs remain key priorities for dual-fuel systems. Acoustic and 

vibration-based prognostic modeling offers a promising 

pathway for achieving both objectives simultaneously. 

In recent years, examples of machine learning (ML) 

methods have been rapidly increasing in order to more 

effectively model [14] and control the combustion processes 

and emissions of dual-fuel engines [31]. ML algorithms can 

quickly process large data sets (cylinder pressure, fuel 

consumption, acoustic signals, emissions) collected during 

experiments or operations, generating accurate predictions in 

real time and at the same time helping to understand nonlinear 

interrelationships between experimental factors [7]. 

For example, the Boosted Regression Trees (BRT) algorithm 

can be used to reproduce the performance and emission levels 

of a dual-fuel engine with high accuracy (correlation coefficient 

R2 ≈ 0.995–0.999) [23]. Compared to conventional artificial 

neural networks (ANNs), this method often exhibits lower root 

mean square error (RMSE) and mean absolute percentage error 

(MAPE), which indicates higher accuracy in reproducing the 

actual engine performance parameters for various pilot liquid 

and gaseous fuel compositions. Multi-output regression 

methods, such as least-squares support vector regression (MLS-

SVR), allow a single model to predict several emission 

components (CH4, CO, NOx) depending on engine speed, 

hydrogen content in the intake gas, manifold pressure, and other 

parameters [9]. This allows for rapid identification of the most 

appropriate engine control mode to limit the generation of 

unwanted pollutants [8]. In order to evaluate the impact of 

various variables—including load, gaseous fuel fraction, and 

acoustic characteristics—on the combustion process and engine 

emissions, ML approaches are frequently employed in 

conjunction with regression analysis and statistical tools like 

Analysis of Covariance (ANCOVA). ANCOVA models are 

especially beneficial for dual-fuel engines, as they require an 

understanding of the interaction between the ratios of liquid 

pilot and gaseous fuel and the engine load. They allow us to 

analyze not only the effect of basic components but also their 

relationships. In another study, where dual-fuel mode used 

blends of biogas and biodiesel, the Taylor diagram technique 

also demonstrated that the BRT model nearly identically fits the 

experimental trends [10]. 

A novel Taylor's diagram method for comparing dual-fuel 

engine prediction models demonstrated the advantages of BRT 

models. To save money, the BRT-based prediction metamodel 

can mimic future tests. The BTE of biogas-biodiesel was lower 

than that of diesel. NOX emissions were lower in dual fuel mode 

than in fossil diesel mode, however HC and CO emissions were 

greater. Local fuel generation, on the other hand, saves money 

on imported gasoline. Thus, addressing energy and 

environmental challenges with biogas, a low-cost gaseous fuel, 

is financially feasible. With correlation values ranging from 

0.9947 to 0.9997, low Theil's values (less than 0.081), and high 

Kling-Gupta efficiency (>98%), the proposed BRT model 

correctly predicted performance and emission parameters. The 

root mean square error for all output models was 0.0056-0.1154, 

with a mean absolute percentage error of less than 3%. Under 

identical operating conditions, the BRT and ANN models were 

compared. All statistical measurements showed that BRT 

outperformed ANN. [23]. Multi-output least-squares regression 

to predict hydrogen-enriched natural gas engine CH4, CO, and 

NOX emissions. The MLS-SVR evaluated these emission 

parameters based on H2/fuel ratio, engine speed, manifold 

absolute pressure, surplus air ratio, and ignition duration. The 

study's key findings are below. MLS-SVR allowed MIMO 

simulation of HENGE emission properties. NOX and CH4 

emission are mainly affected by surplus air ratio, while CO 

emission is most affected by manifold absolute pressure [9]. The 

suggested modeling and ABC (Artificial Bees Colony 

Algorithm) parameter optimization approach involves two steps. 

First, polynomial regression is used to model and optimize SI 

(Spark ignition) engines output performance using testing data. 

Compare R2 and RMSE. The proposed polynomial regression 
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integrated with the ABC optimization technique showed 

excellent predictive reliability. When using AC10 (Gasoline 

fuel and 10 % of acetone by volume fuel mixture) instead of 

pure diesel, polynomial regression and ABC optimization 

would increase SI engine BT and BTE (Brake thermal 

efficiency) by 6.33% and 10.59%, respectively [2]. 

In addition to targeted modeling of emissions and 

combustion parameters, ML methods are widely used in engine 

diagnostics: acoustic and vibration signals processed by neural 

networks or statistical classifiers allow for real-time detection 

of atypical operating modes (misfire, detonation, excess 

temperature), thereby increasing operational reliability and 

predicting the need for maintenance [24, 30]. For example, by 

creating a neural network that captures anomalies in the 

dynamics of combustion pressure changes, it is possible to 

determine that the pilot injector or gas injection system is 

operating unevenly before a major failure occurs. This is 

extremely important in order to respond in a timely manner to 

increased NOX or vibration levels [28]. 

In summary, numerical models based on machine learning 

principles already allow: 

• Quickly and accurately predict dual-fuel engine 

emissions (NOX, smoke, etc.) and operating 

parameters (cylinder pressure, combustion duration, 

heat release rate) [3, 11, 20]. 

• Statistically assess the significance of several 

parameters (load, fuel composition, acoustic indicators) 

and their interaction, describing complex nonlinear 

relationships [32]. 

• Diagnose engine condition and predict maintenance 

needs based on sensor data, thus extending operational 

reliability [17]. 

• Optimize the use of dual-fuel technology in real time, 

reducing the cost of experimental testing and 

increasing applicability to various engine types or fuel 

mixtures [22]. 

Further development of these methods will contribute to 

even greater efficiency of dual-fuel systems and will help create 

the prerequisites for the widespread application of sustainable 

fuels (e.g. HVO, biomethane, biogas), making maximum use of 

the possibilities provided by new generation algorithms for 

controlling combustion processes [5]. 

A higher proportion of gaseous fuel (up to ~60–80% of 

energy) reduces soot, NOX emissions and thermal loading of the 

cylinder walls [18]. This means that fewer deposits (carbons, 

sulfur compounds) are formed, injectors and distributors 

become clogged more slowly, and the load on the exhaust gas 

recirculation (EGR) system decreases [25]. This change extends 

the periods between maintenance procedures (e.g., cleaning 

injectors, changing oil due to soot). Lower maximum 

temperatures in the combustion chamber also reduce thermal 

fatigue of parts, so the engine runs longer without major repairs 

[6]. 

However, the dual-fuel mode itself requires additional 

maintenance of the gas injection (or dosing) system itself, 

pressure regulation and condensate collection. However, ML 

models already offer the ability to predict malfunctions in these 

systems – for example, uneven gas flow or inaccurate pilot 

nozzle operation can be determined by increased emissions or 

anomalous vibration spectra [13]. This allows for real-time 

identification of possible operational deviations before they turn 

into a major failure. 

1. The combination of gas and liquid pilot in the engine 

combustion chamber helps reduce NOX and particulate 

matter (smoke) levels, while maintaining similar or 

even higher efficiency. As a result, the accumulation of 

deposits is reduced, engine parts are less stressed, 

which directly extends the service life of components 

[1, 15]. 

2. HVO fuel (as an alternative to diesel for pilot injection) 

has a lower sulfur and aromatic content, therefore it 

pollutes the injectors and exhaust system less, 

increasing the reliability of the engine during long-

term use [18]. 

3. Machine learning methods (BRT, ANCOVA, neural 

networks) allow for effective prediction of engine 

combustion and emission indicators, determination of 

optimal operating conditions and timely identification 

of possible signs of failure. This means the ability to 

adapt engine control in real time and thus reduce 

operating costs and risks [23]. 

4. Operational reliability depends on many factors – 

combustion dynamics, fuel quality, engine load, 

vibrations, and the dual-fuel mode requires more 
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precisely coordinated control algorithms. However, by 

applying ML models, it is possible to identify the most 

important risk factors, respond in time to atypical 

combustion or vibration signals, and thus reduce repair 

intervals [28]. 

Thus, current trends show that the dual-fuel (liquid pilot + 

gaseous fuel) concept, enhanced by artificial intelligence 

analysis tools, is a sustainable and promising direction for 

reducing pollutant emissions, ensuring stable engine operation, 

and extending service life. The integration of ML methods in 

dual-fuel systems provides the opportunity not only to predict 

real operating parameters, but also to timely identify future 

malfunctions or changed operating conditions, thereby reducing 

repair and downtime costs. 

2. Methodology and Data Description 

2.1. Conditions of the Tests and Engine Outcome 

Parameters 

Dual fuel compression-ignition (CI) engine with load bench was 

used in experimental studies (Fig. 1). It was four-cylinder high-

speed turbocharged engine with direct liquid fuel injection 

system (Table 1). The CI engine was additionally equipped with 

a gaseous fuel supply system (Elpigaz-Degamix) ensuring 

precise mass-controlled gas injection into the intake air before 

the turbocharger.

 

Figure 1. Scheme of experimental studies. 

Engine load torque MB (measurement error ± 1.23 Nm) and 

crankshaft speed n (rpm.) were regulated with a load bench KI-

5543. An electronic scale SK-5000 (measurement error: 0.5%) 

and a chronometer were used to measure the consumption of 

liquid fuel mass per hour Bf (kg/h). Natural gas consumption 

was measured with an RHM 015 type mass flow meter 

(measurement error: ± 0.1%). The intake air mass was measured 

with a Bosch HFM 5 (measurement error: 2%) air mass meter. 

The in-cylinder pressure was measured using an AVL GH13P 

sensor installed in a place of the glow plug (sensitivity of 

piezoelectric sensor: 15.84 ± 0.09 pC/bar) and recorded using 

LabView Real software and an AVL DiTEST DPM 800 

oscilloscope (signal ratio: 1 mV/pC, input range: 6000 pC). An 

A58M-F photoelectric encoder was used to determine the 

position of the crankshaft rotation angle (CA) (signal 

repeatability: 0.176° for the CA). Pressure in the engine intake 

manifold was measured with a Delta OHM HD 2304.0 device 

(measurement error: ± 0.0002 MPa). Intake and exhaust 
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temperatures were measured using K-type thermocouples 

(measurement error: ± 1.5 °C). The composition of chemical 

elements in the exhaust gas was measured using an AVL DiCom 

4000 exhaust gas analyser/opacimeter (Table 2).

Table 1. The specifications of the tested CI dual fuel engine. 

Indicator Dimension Value 

Engine displacement VH cm3 1986 

Cylinders arrangement Four, in-line 

Valve control system - OHC 

Compression ratio ε - 19.5 

Bore D mm 79.5 

Stroke S mm 95.5 

Max. Power P kW 66 (4000 rpm.) 

Max. Torque M Nm 182 (2000–2500 rpm.) 

Injectors opening pressure pi bar 190–200 

Fuel injection system - Distributor injection pump 

Table 2. Specifications of the exhaust gas analyser. 

Measured indicator Dimension Measurement range Accuracy 

CO2  % (vol.) 0–20 0.1 

HC  ppm (vol.) 0–20000 1 

NOX ppm (vol.) 0–5000 1 

O2 % (vol.) 0–25 0.01 

λ  - 0–1.0 0.001 

Smoke absorption coefficient m-1 0–99.99 0.01 

Engine speed rpm 250–9990 10 

 

Engine speed (n = 2000 rpm) was constant during all tests, 

but there were three different engine loads: MB = 45, 60 and 90 

Nm (corresponding brake mean effective pressure (BMEP): 0.3, 

0.4 and 0.6 MPa). Start of liquid fuel injection (SOI) was fixed 

at 6° CA before top dead centre (BTDC), as the standard engine 

control unit begins to adjust SOI do to the addition of gaseous 

fuel. Reason of this is lower mass of liquid fuel required to 

maintain the specified torque. Received data with fixed constant 

start of injection moment allows the combustion process of 

different fuels to be compared. Engine speed and loads were 

selected to correspond real driving conditions on the highway 

or stationary engine working as a generator. Tests were 

performed without using EGR system.  

Main combustion parameters, such as start of combustion 

(SOC), combustion duration (CD), combustion intensity index 

– Wiebe equation factor m, rate of heat release (ROHR), in-

cylinder pressure rise, in-cylinder pressure and temperature, 

were set using AVL BOOST sub-software BURN. The 

parameters measured in experimental research (fuel 

consumption, air flow, cylinder pressure, boost pressure, etc.) 

were used to determine these parameters. 

2.2. Type of Fuel 

Conventional diesel or hydrotreated vegetable oil biodiesel 

(HVO) was used as a pilot fuel to ignite the gas in the cylinder. 

Natural gas was supplied to the intake manifold. Table 3 shows 

dual fuel composition, marking and lower heating (energy) 

values (LHVs).

Table 3. Tested fuels and their labels. 

Fuel (% of energy) 
Label LHV, MJ/kg 

Liquid fuel Gaseous fuel 

Conventional diesel fuel and natural gas   

100% 

60% 

0% 

40% 

D100 

D60+NG40 

42.82 

45.45 

40% 

20% 

60%  

80% 

D40+NG60 

D20+NG80 

46.92 

48.49 

Hydrotreated vegetable oil and natural gas   

100% 

60% 

0% 

40% 

HVO100 

HVO60+NG40 

43.63 

46.04 
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2.3. Vibration and sound pressure of the engine 

Vibrations produced by internal combustion (IC) engines rely 

on disbalanced return motion and rotating components, cyclical 

gas pressure variation, dynamic excitation forces from engine 

rotating elements, and structural characteristics of the engine 

mounting system. General views of engine vibration and sound 

pressure measurement points are presented in Fig. 2. In the low 

frequency band, the engine mounting structure's stiffness and 

damping must be high; in the high frequency range, they must 

be low. Engine vibrations must be reduced by correct engine 

mounting. Occasionally, it is required to use mounting 

components with suitable qualities at the contact point between 

the engine and frame. Often, several kinds of vibration 

insulation material are employed to lower engine-to-mounting 

structure force transmission.

  
a) b) 

Figure 2. Vibration and sound pressure measuring points: (a) an overview of the engine under examination and vibration 

measurement points; (b) a microphone for sound pressure measurement. 

Noise of the surrounding surroundings and vibrations did 

not influence room measurements during experimental engine 

tests. The test room walls had a soundproof double-glazed glass 

for looking inside the engine test chamber from the operator's 

room, an acoustic door, and an acoustic lining composed of 

sound-insulating material.  

Using a Gras 46AE free-field microphone (range: 3.15–

20,000 Hz; dynamic range: 17–148 dB; sensitivity: 50 mV/Pa.) 

assessed the compression of an ignition engine's sound pressure. 

Engine block vibrations in longitudinal and transverse 

directions were measured using Bruel and Kjaer 8341 CCLD 

accelerometers (frequency range: 0.3–10,000 Hz; sensitivity: 

0.01 V/ms-2). Noise and vibration data were gathered using the 

Bruel and Kjaer Machine Diagnostic Toolbox Type 9727 

(comprises 5-channel PULSE data collecting equipment Type 

3560-B). Bruel and Kjaer program processed collected 

vibration and sound pressure data. Sound pressure and vibration 

data were collected from the engine block at a frequency of 3.2 

kHz (for vibration) and 20.0 kHz (for sound pressure) for all 

tested fuels and engine loads. 

Although a free-field microphone was used for sound 

pressure measurements, the focus was on relative signal features 

(RMS and spectral content), and the test cell environment 

allowed for sufficient control of reflections. Future studies will 

consider pressure-field microphones to enhance near-field 

accuracy. 

2.4. Statistical Analysis 

Multivariate linear regression models for predictions of 

maximum in-cylinder pressure, NOX, smoke, exhaust gas 

temperature, SOC, CD, m, and RORH were build. Power, gas 

ratio, sound pressure, and vertical vibrations were selected as 

independent prognostic variables. Whole experiment data was 

divided in to two sets: training and test sets. Training and test 

sets consisted of experimental data when pure diesel and HVO 

was used, respectively. Multivariate regression models were 

based on analysis of covariance (ANCOVA) model [2, 4]. 

Model for training data set was defined as: 

40% 

20% 

60%  

80% 

HVO40+NG60 

HVO20+NG80 

47.25 

48.83 
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𝑌𝐸,𝐷 = 𝛼𝐷 + 𝛽𝐷𝑃𝐷 + 𝛾𝐷𝑅𝐷 + 𝛿𝐷𝑆𝐷 + 𝜃𝐷𝑉𝐷 + 𝜀, 

where 𝑌𝐸,𝐷 – engine outcome parameter (dependent variable), 

𝐸  – type of engine outcome parameter, 𝐷  – indicator of 

experiment when pure diesel was used, 𝑃𝐷 – engine power, 𝑅𝐷 

– gas ratio, 𝑆𝐷 – sound pressure RMS, 𝑉𝐷 – vertical vibrations 

RMS, 𝛼𝐷  – regression intercept value, 𝛽𝐷  – regression 

parameter for engine power, 𝛾𝐷 – regression parameter for gas 

ratio, 𝛿𝐷 – regression parameter for sound pressure, and 𝜃𝐷 – 

regression parameter for vertical vibrations, 𝜀 – random error. 

After parameter estimation new prognostic model for test set 

was build: 

𝑌𝐸,𝐻𝑉𝑂 = 𝛼𝐷 + 𝛽𝐷𝑃𝐻𝑉𝑂 + 𝛾𝐷𝑅𝐻𝑉𝑂 + 𝛿𝐷𝑆𝐻𝑉𝑂 + 𝜃𝐷𝑉𝐻𝑉𝑂 , 

where 𝑌𝐸,𝐻𝑉𝑂 – engine outcome parameter (dependent variable), 

𝐸  – type of engine outcome parameter, 𝐻𝑉𝑂  – indicator of 

experiment when HVO was used, 𝑃𝐻𝑉𝑂 – engine power, 𝑅𝐻𝑉𝑂 

– gas ratio, 𝑆𝐻𝑉𝑂  – sound pressure RMS, 𝑉𝐻𝑉𝑂  – vertical 

vibrations RMS, 𝛼𝐷  – regression intercept value, 𝛽𝐷  – 

regression parameter for engine power, 𝛾𝐷  – regression 

parameter for gas ratio, 𝛿𝐷  – regression parameter for sound 

pressure, and 𝜃𝐷 – regression parameter for vertical vibrations. 

Sound pressure and vertical vibrations signals were 

aggregated with root mean square (RMS) estimate for each 

experiment: 

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

, 

where 𝑁 – sample size, 𝑥 – value of sound pressure signal. 

Accuracy between prognostic model and real data was 

evaluated using mean absolute percentage error (MAPE): 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑌𝑖
𝐸,𝐻𝑉𝑂 − �̂�𝑖

𝐸,𝐻𝑉𝑂

𝑌𝑖
𝐸,𝐻𝑉𝑂 |

𝑁

𝑖=1

, 

where 𝑌𝑖
𝐸,𝐻𝑉𝑂

 – observed engine outcome parameter value for 

𝑖th experiment, �̂�𝑖
𝐸,𝐻𝑉𝑂

 – prognostic engine outcome parameter 

value for 𝑖th experiment, 𝐸 – type of engine outcome parameter, 

𝐻𝑉𝑂 – indicator of experiment when HVO was used. 

3. Results and Discussion 

3.1. Sound Pressure of the Engine 

The diagrams in Fig. 3 show the time and frequency domain 

variations of the sound pressure of different fuel mixtures 

(HVO100NG00, HVO60NG40, HVO40NG60) at a load of 

60 Nm. First, when using only HVO (HVO100NG00), the 

combustion is characterized by a somewhat faster SOC and  

a sharper pressure rise, since there is no diluted gas component 

that would make the combustion process more uniform. In this 

case, larger instantaneous sound peak jumps are visible in the 

time domain, indicating more intense combustion dynamics. In 

the frequency domain, this influence of combustion sharpness 

is manifested by more pronounced peaks in the mid- and higher-

frequency range, often corresponding to engine structural 

resonances or knock-like phenomena.

                   

a) 
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b) 

                   

c) 

Figure 3. Typical results of measurement of sound pressure (a – HVO100NG00; b – HVO60NG40; c – HVO40NG60) under 60 Nm load. 

On the other hand, when switching to the mixed variants 

HVO60NG40 and HVO40NG60, the pilot combustion still 

takes place partly with liquid fuel (HVO), but a significant part 

of the energy is provided by natural gas entering the cylinder 

during the intake. Such a mixture is created more restrained 

during combustion, because the gas ignites more slowly and is 

more evenly distributed in the combustion chamber. As a result, 

the pressure rise becomes less abrupt, the amplitude of 

instantaneous jumps decreases. In the time-domain graphs, the 

total sound level may remain close to the pure HVO mode, but 

the frequency domain (autospectral) analysis reveals that the 

acoustic energy is distributed in a wider frequency band, 

therefore the sharpest peak intervals weaken. This indicates that 

the gas part acts as a shock absorber that softens the combustion 

pulses. 

From a physical point of view, an intense increase in sound 

pressure is associated with a sharp change in pressure at the 

beginning of combustion, when the accumulated fraction of 

combustible vapors burns out in a short time. In the case of pure 

HVO, this fraction can ignite very quickly, generating a larger 

acoustic response. When natural gas is added, the combustion 

front is stretched: the pressure rises in a flatter curve, while the 

probability of sudden structural excitation decreases. As a result, 

engine design resonances and combustion shocks, especially in 

the mid-frequency range, cause smaller amplitudes. From  

a practical point of view, such a trend means that increasing the 

NG fraction reduces the engine noise at sharper frequencies, but 

the total RMS value in the time domain may remain similar, 

since the total amount of thermal energy released is essentially 

unchanged. 

The final conclusion would be that the HVO100NG00 

variant leads to more intense sound pressure dynamics due to 

the more static nature of combustion, while in the case of 

HVO60NG40 and HVO40NG60, the combustion energy is 

naturally distributed between the liquid and gaseous fuels, 

reducing the most pronounced frequency peaks and softening 

the impulse noise component. This expresses a strong cause-

and-effect relationship between fuel composition (higher or 

lower gas content) and the acoustic response of the engine 

(noise and vibration levels). 
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3.2. Descriptive Statistics of Exhausted Emission 

Parameters 

Descriptive analysis was performed for all engine outcome 

parameters, vibrations RMS, and sound pressure RMS in fuel 

type groups. The mean values of majority of engine outcome 

parameters and sound pressure RMS did not differ between 

diesel and HVO groups (Table 1). Only ignition delay vertical 

vibrations was found to be statistically significantly higher in 

diesel groups (p = 0.010 and 0.004, respectively). 

Tables 1 and 2 show how the engine performance and 

emission indicators change when using different liquid fuels 

(diesel and HVO) and various natural gas (NG) fractions. First, 

comparing the use of pure diesel and HVO without a gas 

additive, it is noticeable that the mean (SD) of the maximum 

combustion pressure (77.4 (8.66) MPa and 76.5 (9.30) MPa), 

NOX (346 (224) and 323 (211) ppm) and smoke (3.6 (0.82) and 

3.3 (0.84) m-1) do not differ significantly. Peak pressure and 

NOX decrease due to slower NG combustion at lower 

combustion temperatures, but smoke decreases due to the lower 

carbon/hydrogen ratio in the natural gas and the longer 

combustion process. However, two parameters stand out more: 

start of combustion (SOC) and vertical engine vibrations. In the 

case of HVO, the degree of SOC timing is statistically 

significantly lower than that of diesel, and the vibrations in the 

vertical axis are higher. This indicates that HVO, having 

different aspects of combustion chemistry, causes a slightly 

faster combustion initiation stage, but due to different pressure 

growth dynamics, it excites the engine block more in the vertical 

direction. 

Secondly, when introducing different amounts of natural gas 

(0%, 40%, 60% and 80% of energy from NG), a clear trend 

emerges: as the NG fraction increases, the maximum pressure 

decreases (from ~80 to ~72 MPa), NOX (from ~508 to ~209 

ppm) and smoke (from ~4.1 to ~2.3 m-1) decrease significantly. 

Thus, partial gas combustion smoothes the nature of the 

pressure variation and reduces the formation of nitrogen oxides 

and particulate matter (soot). It is also seen that the exhaust gas 

temperature increases slightly with increasing NG content (from 

~349 to ~368 °C), and ROHR (heat release rate) decreases 

slightly – combustion becomes less impulsive, because the 

amount of liquid fuel decreases, and more evenly distributed 

gases stretch the combustion process. In other words, due to the 

slower combustion of natural gas, the energy of the exhaust 

gases tends to increase as the share of NG energy increases. 

Both the SOC timing, combustion duration (CD) and sound 

pressure RMS values differ less significantly, but vibrations 

(especially vertical) with a higher NG content noticeably 

decrease (from ~55 to ~48 RMS). This correlation allows us to 

understand that increasing the natural gas energy fraction 

reduces sudden pressure surges at the beginning of combustion, 

therefore, the engine block is subjected to less impulsive 

mechanical impact. However, overall sound pressure RMS can 

remain quite similar, since the engine still generates similar total 

heat and sound energy, only the nature of the distribution of this 

energy changes.

Table 1. Descriptive statistics of engine outcome parameters, sound pressure, and vibration data in fuel groups. 

Parameter Total Mean (SD) Pure diesel Mean (SD) HVOMean (SD) p-value 

     

Max in-cylinder pressure, MPa 77.0 (8.80) 77.4 (8.66) 76.5 (9.30) 0.796 

NOX, ppm 334.6 (213.20) 346.2 (224.25) 323.0 (210.86) 0.797 

Smoke, m-1 3.4 (0.83) 3.6 (0.82) 3.3 (0.84) 0.324 

Exhaust gas temperature, °C  358.9 (45.18) 359.9 (45.89) 357.8 (46.48) 0.913 

RORH, J/°CA 34.3 (10.23) 35.9 (9.21) 32.8 (11.34) 0.473 

SOC, °CA BTDC 3.9 (0.66) 4.2 (0.72) 3.5 (0.40) 0.010 

CD, °CA 50.6 (7.27) 51.9 (8.05) 49.3 (6.49) 0.399 

m 0.99 (0.246) 0.92 (0.272) 1.06 (0.205) 0.174 

Sound pressure RMS, m/s2 1.12 (0.089) 1.13 (0.088) 1.10 (0.091) 0.397 

Vertical vibrations RMS, m/s2 52.6 (7.03) 48.7 (5.70) 56.5 (6.18) 0.004 

Horizontal vibrations RMS, m/s2 23.96 (1.20) 23.9 (1.20) 24.0 (1.24) 0.737 
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Table 2. Descriptive statistics of engine outcome parameters, sound pressure, and vibration data in gas energy ratio groups. 

Parameter Gas energy ratio, % 

0 

Mean (SD) 

40 

Mean (SD) 

60 

Mean (SD) 

80 

Mean (SD) 

     

Max in-cylinder pressure, MPa 80.4 (6.62) 78.8 (8.55) 76.9 (9.72) 71.7 (38.61) 

NOX, ppm 508.5 (165.71) 331.3 (218.80) 289.8 (207.82) 208.7 (123.83) 

Smoke, m-1 4.1 (0.44) 4.1 (0.36) 3.3 (0.38) 2.3 (1.90) 

Exhaust gas temperature, °C  349.0 (49.93) 357.8 (46.83) 360.8 (51.18) 367.8 (167.97) 

RORH, J/°CA 35.3 (5.96) 34.9 (7.88) 34.9 (13.08) 32.3 (14.45) 

SOC, °CA BTDC 4.0 (0.77) 3.8 (0.68) 3.8 (0.68) 3.8 (1.74) 

CD, °CA 52.0 (2.84) 51.0 (4.49) 49.0 (9.01) 50.4 (24.87) 

m 0.77 (0.069) 0.90 (0.133) 1.11 (0.231) 1.17 (0.446) 

Sound pressure RMS, m/s2 1.12 (0.090) 1.14 (0.053) 1.13 (0.090) 1.08 (0.578) 

Vertical vibrations RMS, m/s2 54.5 (6.93) 55.8 (6.38) 52.4 (6.65) 47.8 (7.10) 

Horizontal vibrations RMS, m/s2 24.8 (1.57) 24.0 (1.34) 23.8 (0.58) 23.3 (0.83) 

In summary, simply changing the liquid fuel from diesel to 

HVO significantly affects only the ignition duration and the 

level of vertical vibration, while increasing the natural gas 

energy fraction radically reduces NOX and smoke, smoothes out 

maximum pressure in-cylinder and vibrations. Such results 

highlight that the inclusion of NG in the combustion process 

provides ecological and dynamic benefits, allowing for the 

maintenance of similar engine power with lower emissions and 

smoother combustion. 

These combustion and emission trends are also relevant 

from a mechanical reliability perspective. Lower peak in-

cylinder pressures and smoother pressure rise curves suggest 

reduced mechanical loading of engine components, while 

decreased vibration RMS values indicate diminished structural 

stress. Together, these factors point to a potentially longer 

service life of engine parts and extended maintenance intervals 

under high NG ratio operation. 

3.3. Prognostic Model Building 

For the prognostic model building experimental data was 

divided in to two sets: training and test. Training data set was 

used for estimation of prognostic model parameters while test 

sets was used for final model application and accuracy 

evaluation. Multivariable ANCOVA model was trained using 

experimental data when pure diesel was used. Parameter 

estimates are shown in Table 3. 

The parameters of the trained multivariate ANCOVA model 

are presented in Table 3. The model parameters indicate how 

many units of measurement the dependent variable increases 

when the independent variable increases by one unit or moves 

to another category.

Table 3. Model parameters estimation using training set. 

Parameters 
Max in-cylinder 

pressure, MPa 

NOX,  

ppm 

Smoke,  

m-1 

Exhaust gas  

temperature, °C 

RORH, J/ 

°CA 

SOC,°CA 

BTDC 

CD,  

°CA 
m 

Intercept  82.31 868.42 3.63 558.42 2.61 4.90 120.27 -0.97 

Gas energy 

ratio, % 

0 9.19 326.38 1.91 -14.47 0.83 0.16 5.28 -0.53 

40 7.39 152.18 1.88 -2.42 -1.36 -0.03 8.52 -0.56 

60 6.07 119.35 1.06 0.48 3.06 0.09 3.51 -0.24 

80 0 0 0 0 0 0 0 0 

Engine power, kW 

45 -17.93 -481.51 -0.59 -123.28 -12.08 1.37 3.05 -0.08 

60 -13.49 -351.06 -0.31 -72.04 -20.70 0.28 13.38 -0.42 

90 0 0 0 0 0 0 0 0 

Sound pressure 

RMS, m/s2 
 -7.68 -353.38 -0.74 -105.03 -7.98 -2.24 -34.77 1.04 

Vertical vibrations 

RMS, m/s2 
 0.18 0.14 -0.02 -0.21 1.08 0.03 -0.79 0.02 

R2  98.4 99.0 99.5 99.7 90.6 98.7 72.0 90.8 

p-value  0.002 <0.001 <0.001 <0.001 0.059 <0.001 0.372 0.047 
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The Table 3 presents the coefficients of ANCOVA training 

model estimated from the experimental data, when the pilot fuel 

was pure diesel, and the output characteristics evaluated ranged 

from maximum in-cylinder pressure to the combustion intensity 

index m. The intercept value for all indicators (e.g., 82.31 MPa 

for max. in-cylinder pressure, 868 ppm NOX, 3.63 m-1 for 

smoke, etc.) reflects the base position of the model, relative to 

which the coefficients of the effects of other variables (gas ratio, 

engine power, sound pressure and vibrations) are evaluated. The 

effect of the gas ratio is decomposed into four levels – 0%, 40%, 

60% and 80%, where 80% NG is considered the reference point 

(value in the table = 0). The maximum pressure line shows that 

when the gas fraction is 0% (i.e. diesel fuel only), the pressure 

increases by +9.19 MPa compared to the base 80% NG energy 

ratio. The same principle applies to 40% and 60% NG energy 

ratio (+7.39 and +6.07 MPa). These positive numbers show that 

as the gas content decreases (as the liquid fuel fraction 

increases), the combustion becomes more intense, therefore the 

pressure peak increases. The same trend is confirmed by the 

NOX line, where 0% NG energy ratio leads to as much as +326 

ppm more NOX than the base 80% NG, while at 40% and 60% 

NG, this excess amounts to +152 ppm and +119 ppm, 

respectively. Thus, a higher natural gas fraction significantly 

reduces the formation of nitrogen oxides. A similar result is 

observed in terms of smoke level: 0% NG increases smoke level 

by +1.91 Pa, while at 60% NG it is only +1.06 Pa above the base, 

which indicates that a higher proportion of gas reduces soot 

formation. The exhaust gas temperature changes slightly 

differently. At 0% NG, the temperature decreases by –14.47°C, 

but as it approaches 60% NG, the effect becomes even slightly 

positive (+0.48°C), indicating that the combustion process may 

take place in a different mode here, and the total heat is released 

more evenly. RORH (heat release rate) does not yet have  

a unidirectional trend: at 0% NG it increases by +0.83, at 40% 

NG by –1.36, and at 60% NG it rises by +3.06. This makes it 

clear that heat release depends not only on the gas fraction, but 

also on other combustion parameters occurring at the same time. 

The effect of engine load (Engine power) is compared from 45 

kW and 60 kW relative to a 90 kW base. When the load is 

reduced to 45 kW, a significant drop in peak pressure (–17.93 

MPa) and NOX (–482ppm) is observed. In addition, a lower 

exhaust gas temperature (–123.28°C) and a lower RORH (–

12.08) are obtained. This means that when the engine is 

operating at lower power, the combustion process is less intense, 

so the pressure and temperature peaks are smaller, and the NOX 

concentration is also significantly reduced. It is noticeable that 

the combustion duration (CD) increases slightly (e.g. +3.05°CA 

degrees at 45 kW and +13.38 at 60 kW), which indicates that 

combustion may be slower at lower loads. It is worth paying 

attention to the SOC timing: a lower load (45 kW) in the model 

is associated with a slight (+1.37° CA) increase in this 

parameter, which may indicate a slightly different phase of 

combustion initiation. Analyzing the last two rows – sound 

pressure RMS (Sound pressure RMS) and vertical vibrations 

RMS (Vertical vibrations RMS) – it is possible to assess how 

acoustic and dynamic phenomena are related to the combustion 

process. For example, with an increase in the sound pressure 

RMS value, the maximum in-cylinder pressure in the model 

changes by –7.68 MPa from the base, NOX decreases by as 

much as –353 ppm, and RORH – by –7.98. Such coefficients 

indicate that a more intense acoustic environment (higher RMS) 

is inherently associated with certain changes in combustion. 

And the RMS of vertical vibrations, for example +0.18 MPa at 

maximum pressure and +0.14 ppm at NOX, show that increasing 

block vibrations correlate with somewhat higher pressure and 

NOX formation. However, these are statistical relationships that 

do not necessarily directly define what causes what, but it is 

obvious that combustion and acoustic-dynamic engine 

properties are closely related. In summary, high R² values (from 

~90% to ~99.7%) confirm that the variables included in the 

ANCOVA model (gas fraction, engine load, sound pressure and 

vibration RMS) explain most of the differences between the 

experimentally measured combustion and emission indicators. 

Such a model allows us to quantitatively assess how  

a decreasing NG fraction or lower power is directly related to 

increased maximum in-cylinder pressure, NOX or smoke; and 

also shows how the acoustic and vibrational state of the engine 

is related to the combustion process parameters. At the same 

time, this confirms that the increasing proportion of natural gas 

(especially towards 80% of the energy ratio) remains effective 

in reducing the pressure peak and NOX formation, and when the 

load is reduced, the processes become less intense, but the 

combustion stretches out over a longer angular interval. 

After parameter estimation final prognostic models was 
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validated on test set. Prognostic and real engine parameter 

trends are shown in Figs. 4–6. 

Figure 4a shows the maximum in-cylinder pressure (MPa) 

in twelve experiments with varying engine load and natural gas 

(NG) fraction. The blue curve shows the actual (observed) 

values, while the red curve shows the values predicted by the 

ANCOVA test model. The overall data development clearly 

confirms that the pressure decreases with increasing NG 

fraction, and increases with increasing engine load. In the lower 

load range (runs 1–4), when the NG energy ratio increases from 

0% to 80%, a close, albeit slightly overestimated, agreement 

between the experimental and predicted results is observed; for 

example, in run 1 the model shows a slightly higher in-cylinder 

pressure than the experimentally recorded pressure. In the 

middle load range (runs 5–8) the differences between the actual 

and numerical values decrease, indicating a more even match. 

In the maximum load regime (9–12 tests), the predictions again 

tend to slightly overestimate or, in some cases, underestimate 

the real in-cylinder pressure by several MPa, but overall the red 

and blue curves move along the same trajectory. This means that 

the model adequately captures the pressure variation trends and 

the relative deviation caused by changes in the NG energy ratio 

and the increase in load. Even in cases where the predicted 

pressure differs slightly from the observer, the difference 

usually does not exceed 3–4 MPa, which indicates that the 

model developed on the basis of ANCOVA generally correctly 

reflects the influence of the two fuels (diesel and natural gas) on 

the maximum in-cylinder pressure at different loads. 

Figure 4b shows the exhaust gas temperature (°C) over 

twelve tests (blue curve) and the same temperature values 

predicted by the ANCOVA model (red curve). It is immediately 

apparent that the experimental data show a consistent 

temperature increase, from around 300°C (at lower load and 

higher natural gas fraction) to over 420°C as the engine power 

increases and the fuel composition changes. The model output 

curve also presents a gradual increase, usually slightly 

exceeding the actual measured temperature in the first tests (e.g., 

299°C observed in test 1, and 303.2°C predicted), but the 

differences remain small and systematically decrease in the 

higher load zone. For example, in tests 5–8 the observed 

temperature increases from 336°C to 349°C, while the model 

shows 337.8–363.6°C. Although there is a 14°C difference in 

run 8 (observed 349°C, predicted 363.6°C), the overall 

increasing trend of both curves coincides. Finally, in the peak 

load section (runs 9–12), when the temperature actually 

approaches 420 °C, the model also predicts it in a similar range 

(~409–420°C), actually coinciding very closely with the 

observed curve values. In general, both experimental and model 

data show that when moving to higher engine power and 

decreasing the proportion of natural gas, the temperature 

increases steadily. Although the ANCOVA model results in the 

first runs exceed the actual values by an average of 5–10°C, in 

the later runs (especially 9–12) the prediction approaches 

almost perfectly. Such dynamics confirm that the model 

successfully conveys the fundamental regularity of heat 

variation, arising both from the intensification of combustion 

processes with increasing load and from the influence of fuel 

composition on the thermal conditions of the engine. 

Figure 5a shows the NOX emission levels (blue curve) for 

twelve experimental runs and the ANCOVA model predictions 

for the same parameter (red curve). The data are divided into 

three main load levels (runs 1–4, 5–8 and 9–12), each with  

a different natural gas energy ratio. In all cases, NOX emissions 

clearly decrease with increasing NG fraction in the mixture, and 

the ANCOVA model curve follows the same decreasing trend, 

although at some points it tends to overestimate the observed 

values. In the first interval (runs 1–4), NOX drops from around 

350 ppm to 60 ppm, when the NG energy ratio reaches 80%. 

The model predicts slightly higher NOX levels in this range (e.g. 

351 vs. 367), but it reflects the general downward trend well. In 

the second interval (5–8 tests), at medium load, a fairly large 

difference is seen between 430 ppm (low NG content) and 120 

ppm (80% NG); the model also shows higher predictions, but 

the direction of change clearly coincides. In the third interval 

(9–12 tests), where the load is highest, the actual NOX values 

increase to 700 ppm, while the model – to almost 790 ppm, but 

again with decreasing NG content, the same tendency for 

emissions to decrease is detected. In general, although the 

ANCOVA model tends to slightly overestimate the NOX 

concentration at most points, its accumulated deviation is 

relatively small, especially considering that NOX values reach 

several hundred or even up to 700–800 ppm. The main 

conclusion remains clear: NOX emissions decrease significantly 

with increasing natural gas content, and the model adequately 
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reflects not only this trend, but also the deviations of individual 

tests and the influence of load. 

Figure 5b shows the variation of smoke in different test 

cases (blue curve) and the corresponding ANCOVA model 

predictions (red curve). As in the other indicators, each block of 

four tests (1–4, 5–8, 9–12) reflects a constant engine load, but  

a changing natural gas energy ratio from 0% to 80%. In all three 

groups of blocks, a very clear decrease in smoke with increasing 

NG proportion is observed. For example, at the end of the first 

block (test No. 4) smoke decreases to 1.9 m-1, while in the initial 

test (No. 1) it was 3.4 m-1. The same drop is shown by the model 

predictions – from 4.1 to 2.3, only the model records a higher 

smoke value on average (typically 0.2–0.6 m-1 above the 

observed one). In the second block (runs 5–8), where the load 

increases, the smoke also decreases from almost 3.7 to about 2.0, 

while the model curve moves from 4.2 to 2.4. Here again, it is 

clear that both the observed and predicted values point in the 

same direction, but the ANCOVA results tend to overestimate 

the actual smoke. In the third block (runs 9–12), where the load 

is even higher, the total smoke value starts at 4.4 m-1 (low NG 

fraction) and drops to 2.4 m-1 (80% NG), while the model 

calculates 4.6 → 2.6 m-1. In summary, although the model 

values remain somewhat higher than the experimental ones in 

most runs, the overall decreasing trend is completely consistent: 

with increasing NG fraction, the smoke value drops sharply, as 

the gas is less carbon-rich and produces less smoke when 

burned. While the model offers somewhat more cautious, higher 

values, actual data reveal that smoke can fall around 2 m-1 and 

even below; the variation is not significant. The ANCOVA 

forecasts so properly show the developing pattern of smoke 

value decline, therefore verifying that more natural gas in 

engine running lowers soot emissions. 

Figure 6a shows the values of the rate of combustion heat 

release (ROHR, J/°CA) from twelve experiments (blue curve) 

and the analogous values predicted by the ANCOVA model (red 

curve). Three engine loads (runs 1–4, 5–8 and 9–12) were 

selected for the tests, each of which varied the natural gas 

energy ratio from 0% to 80%. In the first interval (runs 1–4), at 

relatively low load, the observed ROHR values initially reach 

~26–27 J/°CA and decrease towards 18–19 J/°CA as the NG 

fraction increases. The model curve also shows a clear decline, 

but initially tends to overestimate the real heat release rate (e.g., 

in run 2 the ANCOVA model fixes ~33.5 J/°CA, while the 

observed value is ~25.7). However, both directions of the curve 

coincide: intensive combustion without gas addition leads to  

a higher ROHR, and when the gas content increases to 80%, the 

release intensity drops noticeably. In the second interval (5–8 

tests), when the load is medium, the experimental data show 

ROHR fluctuations from ~32 to 25–28 J/°CA, while the 

ANCOVA predictions are in a similar range (~31–25). Although 

at some points (e.g., 6–7 tests) the model again predicts slightly 

higher values, the overall gradual decrease – with increasing 

NG energy ratio –is clearly reflected in both the actual and 

model curves. In the third interval (9–12 tests), corresponding 

to the highest load (~90 kW), the observed ROHR values 

initially increase to 41–42 J/°CA, and then increase further (up 

to ~52 J/°CA). Meanwhile, the model curve in runs 9–10 has an 

overestimation (e.g., shows ~46.1 vs. 41.7), but in the last run 

(No. 12) – on the contrary, slightly underestimates the real value 

(~44 vs. 52.4). These changes indicate that at extreme loads, 

other factors, such as fuel injection strategy or chamber 

temperature distribution, can distort ANCOVA predictions more, 

since the model relies more on the general correlation between 

load, NG fraction and combustion acoustic variables. Despite 

several larger deviations, both data sets confirm the essential 

trend: a lower NG energy ratio leads to a sharper and more 

intense combustion (higher ROHR), and an increase in NG 

stretches the combustion process, reducing the instantaneous 

heat release rate. In addition, a higher load promotes an overall 

increase in ROHR, but the exact extent of the increase is not 

always perfectly predicted by the model. Thus, this comparison 

shows that the ANCOVA method generally correctly captures 

the main patterns, but in larger ROHR ranges (especially at high 

load), additional factors that may cause a greater discrepancy 

between actual and predicted values should be more carefully 

evaluated.
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Figure 4. Measured engine operating cycle parameters real and prognostic values. Experiments 1-4, 5-8, and 9-12 include engine 

power of 45 kW, 60 kW, and 90kW, respectively. In each experiment block of unique engine power gas ratio are sorted in ascending 

order, i.e., experiment no. 1, 2, 3, and 4 includes gas ratio of of 0%, 40%, 60%, and 80%, respectively 
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Figure 5. Measured engine emission parameters real and prognostic values. Experiments 1-4, 5-8, and 9-12 include engine power of 

45 kW, 60 kW, and 90kW, respectively. In each experiment block of unique engine power gas ratio are sorted in ascending order, i.e., 

experiment no. 1, 2, 3, and 4 includes gas ratio of of 0%, 40%, 60%, and 80%, respectively 
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Figure 6. Measured engine combustion parameters real and prognostic values. Experiments 1-4, 5-8, and 9-12 include engine power 

of 45 kW, 60 kW, and 90kW, respectively. In each experiment block of unique engine power gas ratio are sorted in ascending order, 

i.e., experiment no. 1, 2, 3, and 4 includes gas ratio of of 0%, 40%, 60%, and 80%, respectively. 

Figure 6b shows the variation of the start of combustion 

(SOC) timing parameter in CA degrees before top dead center 

(BTDC) in twelve tests (blue curve) and the value of the same 

parameter calculated by the ANCOVA model (red curve). It is 

obvious that there is a 1–2 °CA difference between the observed 

and predicted values, since the model line is higher in almost all 

tests. However, the overall dynamics of the curves in each 

experimental block (1–4, 5–8, 9–12) is essentially consistent:  

a higher value at the beginning gradually decreases when the 

NG energy ratio or the fuel mass is increased. In tests 1–4 

(lowest load), the observed SOC timing values remain constant 

at 4.0 °CA, while the model predicts slightly higher values (5.0–

5.3 °CA). This may be because the actual SOC timing changes 

less in this mode, and the model, due to the generally collated 

data, is more responsive to acoustic or vibrational variations. In 

tests 5–8, where the load is higher, both the actual and predicted 

values begin to decrease to ~3.5–4.1 °CA. In the highest load 

zone (tests 9–12), the observed SOC values drop to 3.0 °CA, 

while the model still shows 3.4–3.7 °CA. Although the 

ANCOVA curve systematically fixes a higher SOC timing value, 

the general trends coincide: with increasing engine power and 

changing fuel composition, the SOC value gradually shifts 

towards lower values. The final experiments (10–12) show that 

the SOC timing can decrease more sharply than the model 

predicts, but the overall magnitude of the decrease from ~4–5 

to ~3 °CA is recorded in both curves. Such a consistent, ~1 °CA 

deviation between the model and the actual data set indicates 

that ANCOVA may tend to consistently override some of the 

ignition delay. However, given that the SOC timing is in reality 

very sensitive to fuel properties and temperature and dynamic 
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changes in the engine, this deviation is not large and does not 

prevent the determination of general ignition course regularities. 

Figure 6c shows the combustion duration (CD, °CA) values 

of twelve experimental runs (blue curve) and the prediction of 

the same data by the ANCOVA model (red curve). All runs are 

divided into three groups (1–4, 5–8 and 9–12), corresponding to 

increasing engine loads and different NG energy ratio. In the 

first group (runs 1–4), where the load is the lowest, the observed 

combustion durations start from about 49–50 °CA and increase 

to almost 58 °CA, when the NG energy ratio reaches 80%. This 

prolongation is associated with a milder combustion process, 

when part of the energy is supplied by gas. The ANCOVA model 

captures a similar trend (about 47.6 → 55.9 °CA), but in the 

fourth run it lags somewhat behind the real value (~58 vs. 

56 °CA). In the second group (tests 5–8), at medium load, the 

CD varies between 49.7° and 52.3° CA degrees, while the model 

predicts a similar range (46.7° → 56.9°), sometimes 

overestimating the actual measurements (e.g., in test 8). 

However, the direction of change of both curves remains 

common: the combustion duration tends to increase with 

increasing gas fraction. In the third group (tests 9–12), at high 

load, the actual CD initially reaches 56 °CA, but in subsequent 

tests decreases to about 35–36 °CA. The model also shows  

a decreasing direction, although at some points (e.g., tests 9–10) 

it underestimates the observed duration significantly more. This 

indicates that in the most extreme regimes, some factors (e.g., 

temperature, pilot injection characteristics) have a greater 

influence on the combustion process than the general 

covariance model predicts. Overall, ANCOVA is quite 

successful in reproducing the regularities of the combustion 

duration variation when the engine load and the natural gas 

energy ratio change. At lower loads, combustion usually 

lengthens as the gas amount increases, while at the highest load, 

the combustion duration is initially long, but becomes 

significantly shorter as the NG energy ratio increases. Although 

in some tests, more significant deviations between the actual 

and model values are observed, their direction remains the same, 

allowing a reliable conclusion to be drawn about the influence 

of these factors on the combustion process. 

Figure 6d shows the dynamics of the Wiebe equation factor 

m in twelve tests, where the blue curve represents the 

empirically measured values, and the red curve represents the 

ANCOVA model predictions. The tests are divided into three 

blocks (1–4, 5–8, 9–12), reflecting increasing engine load and 

different NG energy ratio. A high m value indicates a more even 

combustion, where more heat is released in the second part of 

the combustion, while a lower value indicates a concentrated 

and sharp combustion process just after SOC. In the first tests 

(1–4), at low load, the observed m values gradually increase 

from ~0.8 to ~1.1, indicating that the combustion becomes 

milder with increasing NG energy ratio. The ANCOVA model 

simultaneously provides lower predictions (0.5–0.9), but 

follows the same increasing trend, although it underestimates 

some of the combustion dispersion. The average load (5–8 trials) 

is characterized by a rise in m from ~0.8 to 1.2 (in trials 6–7) 

and a slight decline to ~1.1 (in trial 8). ANCOVA also predicts 

a rise, but at many points (especially at trial 7) it lags behind the 

actual peak. However, both data sets show the same rise–fall 

pattern: naturally, the influence of NG on the combustion 

process is less predictable here than at higher loads. In the 

maximum load interval (9–12 trials), the m values rise from 

~0.8–0.9 to as much as 1.4–1.5. Here, the model predictions 

largely coincide with the actual values, reflecting an extremely 

good covariate relationship between the load, NG energy ratio, 

acoustic parameters, and combustion duration characteristics. 

Such a successful prediction shows that at high load the 

combustion process becomes more predictable, and a higher NG 

energy ratio provides more graduality (increased m). In 

summary, although in the first eight tests the ANCOVA model 

sometimes underestimates the observed m values, the general 

trend of increase or decrease coincides with the experimental 

data. Meanwhile, at high load (9–12 tests) both sets of curves 

overlap almost perfectly. From this it can be concluded that the 

Wiebe factor m reliably varies with the combination of natural 

gas fraction and load, and the constructed statistical model 

successfully reproduces the degree of stretching of the 

combustion process, especially at higher engine powers.
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Figure 7. Mean absolute percentage error for engine outcome parameters calculated from prognostic ANCOVA model. 

Figure 7 shows the mean absolute percentage errors (MAPE) 

for each of the engine parameters predicted by the ANCOVA 

model. MAPE indicates how much, on average (in percent), the 

model’s predicted values deviate from the experimentally 

measured values, and therefore clearly shows which parameters 

are more accurately predicted and which are more difficult to 

predict. 

The lowest errors (1.9%) were achieved when predicting 

exhaust gas temperature, indicating that the combustion heat 

balance and its dependence on load and NG energy ratio are of 

a fairly linear nature and are well captured by the statistical 

model. A relatively small MAPE (3.9%) is also observed for 

maximum pressure, indicating that the peak pressure dynamics 

characteristic of the combustion chamber successfully 

correlates with the variables included in the model. 

The average accuracy can be attributed to the combustion 

duration (CD, 7.5%), which, although it has a more complex 

relationship with the combustion process, is still partially 

predictable according to the load and fuel composition. The 

smoke and NOX emisions have a slightly higher error (12.2–

15.8%), because the emission parameters are more influenced 

by the subtle nuances of the combustion processes 

(temperatures, excess oxygen, formation of the reaction zone), 

which are simply not described by the main ANCOVA factors. 

The largest MAPEs (14.8–23.3%) are associated with the 

rate of combustion heat release (RORH), the SOC timing and 

the Wiebe equation factor m. These three indicators emphasize 

the onset, speed and degree of dispersion of combustion, and 

therefore are particularly sensitive to instantaneous changes in 

spray, mixture formation and temperature distribution in the 

engine. The load, NG energy ratio or basic acoustic parameters 

alone are not sufficient to describe them ideally, so the error 

remains more significant. 

In summary, the lowest MAPE (1.9%) is achieved for 

temperature, and the highest (~23.3%) – for the combustion 

process parameter m. However, the error of most predictions 

does not reach 20%, indicating that ANCOVA predicts quite 

well the changes in engine performance and emissions when 

changing the load and HVO or diesel and NG energy 

proportions. Thus, the model confirms a more reliable 

prediction of macroscopic quantities (temperature, maximum 

in-cylinder pressure) and a worse reproduction of combustion 

process subtleties (SOC, RORH, Wiebe m). 

MAPE analysis showed that the developed predictive model 

is sufficiently accurate, and the chosen methodology for its 

development is appropriate and reasonable. The accuracy of the 

model would improve if more data were used during model 

training. Of course, in order to firmly prove the universality of 

the model, more independent experiments using different fuels, 

engines, etc. should be performed. 

4. Conclusions 

1. Experimental results show that increasing the energy 

ratio of NG in a dual-fuel engine significantly reduces 

harmful emissions. As the NG energy ratio increases, 

maximum in-cylinder pressure, NOX and smoke are 

significantly reduced, confirming that partial gas 

combustion softens the sudden rise in pressure and 
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lower combustion temperature limits the formation of 

nitrogen oxides. Smoke emissions are reduced due to 

the lower carbon to hydrogen ratio in NG and the 

longer combustion duration. 

2. Replacing conventional diesel with hydrotreated 

vegetable oil (HVO) has been shown to significantly 

shorten the ignition delay. Although using pure HVO 

the level of vertical engine vibrations increases slightly, 

the HVO combustion process is cleaner, and when 

combined with NG, it allows reducing exhaust 

emissions without compromising engine performance. 

3. Measured indicators such as maximum in-cylinder 

pressure, start of combustion, combustion duration 

show that the increasing NG energy ratio stretches 

combustion, reduces sudden pressure surges. Although 

the overall sound pressure level does not change 

significantly, frequency analysis shows that the 

sharpest impact frequencies are weakened, making the 

engine acoustics smoother. 

4. The developed ANCOVA-based prediction model 

explains from 90% to 99% of the variations in the main 

parameters (peak in-cylinder pressure, NOX, smoke, 

combustion duration, etc.). The mean absolute 

percentage error (MAPE) ranges from ~2% (exhaust 

gas temperature) to ~23% (Wiebe equation factor m). 

Macroscopic values (temperature, peak in-cylinder 

pressure) are reproduced quite accurately, but more 

complex combustion parameters (start of combustion, 

combustion heat release rate, m) require more detailed 

analysis. 

5. Lower smoke emissions and lower peak temperature 

values with increasing NG energy ratio can reduce 

deposit accumulation and thermal load on components, 

resulting in longer engine maintenance intervals. 

Improved HVO characteristics—such as low sulfur 

content—can help to lower injector fouling even more 

and prolong the operating life of exhaust gas treatment 

systems. This helps to improve engine dependability, 

particularly in prolonged or high load operation. 

6. Combining HVO and natural gas seems to be a good 

strategy to keep reasonable engine performance while 

reducing NOX and smokiness. The proposed ANCOVA 

model provides a fast and cost-effective way to predict 

engine behavior when changing load and fuel mixture 

composition, and can be a valuable tool for engine 

improvement. In the future, it is appropriate to 

investigate more advanced injector control strategies, 

detailed cylinder temperature measurements, or the use 

of chemikine models, in order to more accurately 

reflect complex combustion processes at high loads 

and evaluate long-term changes in component 

reliability. In addition to performance and emission 

modeling, the ANCOVA approach also indirectly 

reflects factors that influence component longevity—

such as dynamic loading and acoustic excitation—

providing a useful foundation for future integration of 

predictive maintenance tools in dual-fuel engine 

systems.
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NOX Nitrogen oxide 
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