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Highlights  Abstract  

▪ This paper proposes LSESgram for optimal 
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▪ LSESgram is robust to noise and 

interference,which struggle under noisy 

conditions. 

▪ LSESgram validated via simulations,experiments, 

beats Fast Kurtogram, Infogram, Autogram. 

 Envelope demodulation has become a key technique in rolling bearing 

fault diagnosis. However, selecting the optimal frequency modulation 

band that captures rich fault information remains a challenge, especially 

in the presence of low signal-to-noise ratios, accidental pulses, and 

irrelevant harmonics. This paper presents a novel approach, LSESgram, 

for optimal frequency modulation band selection. Unlike existing 

methods such as Spectral Kurtosis and Kurtogram, which struggle under 

noisy conditions, LSESgram is robust to noise and interference. It first 

extracts spectral trends using a scale-space-like theory, then performs 

multi-level segmentation based on these trends. The LSES indicator is 

then used to identify the optimal demodulation frequency band. The 

method is validated with simulation and experimental signals, showing 

superior performance compared to Fast Kurtogram, Infogram, and 

Autogram. 
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1. Introduction 

With the increasing automation of rotating machinery, fault 

diagnosis techniques are receiving increasing attention. 

Bearings are one of the most important components of various 

rotating machines [1], and their operating conditions. Once we 

fail to detect and eliminate weak faults in time, it may lead to 

damage of the bearing itself as well as the whole equipment, 

which in turn may cause serious economic losses in the 

continuous production activities of the industry [2]. Therefore, 

bearing fault diagnosis is crucial for assessing the operational 

status of mechanical equipment and preventing accidents [3-5]. 

Bearings may experience variable and constant speeds during 

normal operation, and it is easier to find fault information about 

a faulty bearing under constant speed conditions [6]. Under 

constant speed conditions, when damage occurs at a specific 

location in the bearing, the rolling element will repeatedly strike 

the damaged area and generate periodic pulses. The resulting 

pulses contain complex high-frequency components, which 

cause the sensors or components of the system to be excited to 

resonate. Demodulation of the signal in the resonant band range 

of the system results in a lower frequency envelope signal with 

a higher signal-to-noise ratio [7], and the fault characteristic 

frequencies are more easily observed. Among the many fault 

diagnosis techniques, adaptive decomposition and sparse signal 

representation are widely used. Among which overcomplete 
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dictionaries for sparse signal representation can be categorized 

as analytic dictionaries and learning dictionaries. Analytic 

dictionaries have a fixed structure with limited adaptability. 

Adaptive decomposition can partition the signal into multiple 

narrowband components, aiding in the quantitative assessment 

of signal characteristics. Nonetheless, this method incurs high 

computational complexity, prolonged processing time, and 

increased cost. envelope analysis, also known as the resonance 

demodulation technique, is widely used today [8]. The resonant 

bands in the spectrum are first discovered and the corresponding 

filtered signals are obtained, and then the envelope spectrum 

analysis is performed to observe the fault characteristic 

frequencies present in them. However, how to accurately extract 

the resonant bands has been the main challenge of such methods. 

Dwyer [9] first introduced the concept of spectral kurtosis 

(SK) as a statistical tool to measure the non-Gaussian 

components in a signal and to locate non-Gaussian components 

in the frequency domain.SK characterizes the magnitude of the 

kurtosis of each spectral line in the signal’s frequency domain 

and describes the distribution of the kurtosis with frequency. 

Then, based on the Wold-Cramer decomposition theory, Antoni 

[10] explained SK systematically and proposed a complete 

theoretical system of SK applicable to non-stationary signals, 

defining it as a normalized fourth-order accumulation of energy. 

He further studied the application of SK with Randall [11], 

proposing Fast Kurtogram based on the short-time Fourier 

transform, but the method is computationally expensive, which 

is not conducive to engineering applications. Later, Antoni [12] 

proposed Fast Kurtogram based on a Finite Pulse Response 

(FIR) filter, which greatly improved the computational 

efficiency and practicality of the SK method. However, Fast 

Kurtogram ignores the different characteristics of the fault 

vibration signal and may fail when the noise in the signal is 

strong [13]. Subsequently, many scholars have proposed 

improvements to Fast Kurtogram. Lei [14] used wavelet packet 

decomposition instead of a FIR filter in Fast Kurtogram, thus 

reducing the effect of noise and obtaining higher accuracy of 

spectrum division.  

Barszcz and Jablonski found that SK fails in the presence of 

high amplitude non-Gaussian noise in the signal. To overcome 

these drawbacks, they proposed a method based on the envelope 

spectral kurtosis rather than the filter time signal kurtosis, 

namely Protrugram [15]. It requires the use of a filter three times 

the width of the fault frequency to scan the entire frequency 

band. Wang [16] used the wavelet packet transform for 

multilevel segmentation of the spectrum and the proposed 

Sparsogram for amplifying the information in the signal. Antoni 

[17] was inspired by the concept of entropy in thermodynamics 

and argued that the entropy of the signal changes during 

transient pulses. Therefore, he proposed the Infogram to 

calculate the negative entropy of the signal [18]. He defined the 

SE Infogram, which is based on the negative entropy of the 

signal's square envelope, the SES Infogram, which is based on 

the negative entropy of the signal's square envelope spectrum, 

and the Average Infogram, which is based on the weighted 

average of the two, to detect repeated transients. Recently, 

Moshrefzadeh and Fasana [19] developed Autogram, which 

uses the unbiased autocorrelation kurtosis of the signal squared 

envelope as an evaluation index to improve the reliability of the 

optimal demodulation band selection for rolling bearing 

vibration signals. Since the autocorrelation function is 

introduced, the effect of random pulse noise can be weakened 

and the periodic components in the vibration signal can be 

captured effectively. Wang [20] developed the TIEgram, which 

weighted the fusion of the kurtosis, correlation coefficient, and 

spectral negative entropy to improve the reliability of the 

optimal demodulation band selection indicator. However, the 

existing optimal demodulation band selection methods still 

have shortcomings. First, the traditional binary tree or 1/3 

binary tree segmentation models used in some methods segment 

the spectrum mechanically and cannot segment it according to 

the shape of the signal spectrum itself, which has the 

disadvantage of insufficient segmentation accuracy. Second, 

some methods do not perform well when dealing with signals 

containing incidental pulses and extraneous harmonic 

interference. Third, some methods require parameter presetting 

based on a priori knowledge, which reduces the efficiency of 

diagnosis. 

The traditional binary tree or 1/3 binary tree segmentation 

methods mentioned above cannot segment the spectrum 

according to its inherent shape. To address this limitation, this 

paper employs the key function method from the theory of scale 

space to extract spectral trends with different levels of 

granularity and performs multi-layer segmentation to better 
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align with the inherent shape of the spectrum. To overcome the 

poor performance of previous methods in handling occasional 

pulses and external harmonic interference, this paper introduces 

a novel algorithm—LSESgram. By calculating the LSES value 

of the extracted spectral components, an LSESgram is generated. 

The frequency band with the maximum LSES value is then 

identified and its fault characteristics are further extracted for 

fault diagnosis. In this paper, we use LSESgram to process the 

simulated and experimental signals and compare the results 

with Fast Kurtogram, Infogram, and Autogram to verify the 

superiority of the proposed method. The comparison results 

show that LSESgram has good results in processing bearing 

fault signals containing strong noise, chance pulses, and 

irrelevant harmonics. This paper is structured as follows: 

Section Ⅱ describes the cancellation process of the incidental 

pulse and extraneous harmonic disturbances provides a 

theoretical description and characterization of LSESgram 

indicator and describes the specific steps of LSESgram. In 

Section Ⅲ, the simulated signal analysis is performed for 

LSESgram. In Section Ⅳ, LSESgram is applied to the 

experimental signals, and the results are compared with Fast 

Kurtogram, Infogram, and Autogram. Section 5 concludes the 

paper. 

2. Theoretical elaboration  

2.1. Elimination of accidental pulses and extraneous 

harmonic disturbances 

When a rolling bearing fails, the signal envelope spectrum 

will have the failure frequency of the corresponding component 

and its multiples. Ideally, this can be seen as a series of 

repetitive transients of different amplitudes, and these repetitive 

transients are also a series of repetitive transients of different 

periods in the frequency domain of the envelope, which are 

expressed as Dirac comb functions. Therefore, if there are fault 

frequencies and their multiples in the envelope spectrum, there 

should be similar Dirac comb functions in its amplitude 

spectrum, and vice versa, which means that the amplitude 

spectrum of the envelope spectrum can also be used as the 

computational domain of statistical indicators. 

A simple model of periodic pulse signals under a single 

degree of freedom forcibly vibrating system with damping is 

constructed as follows: 

𝑝(𝑡) = ∑ 𝐴𝑒−2𝜋𝜁𝑓𝑛𝑡𝛿(𝑡 − 𝑛𝑇0)
∞
−∞           (1) 

where 𝜁 is the damping ratio, 𝑓𝑛is the intrinsic frequency, 𝑇0is 

the period, 𝑛 is an integer, 𝑛 = 0,±1,±2,⋯, A is the amplitude 

of the periodic pulse. 

Under the same system, the simple model of a single non-

periodic instantaneous pulse signal is: 

𝑔(𝑡) = 𝐶𝑒−2𝜋𝜁𝑓𝑛𝑡𝛿(𝑡 − 𝑡0)         (2) 

where 𝑡0 is a certain moment, and 𝐶 is the amplitude of the non-

periodic instantaneous pulse. 

The periodic pulse signal containing a single nonperiodic 

instantaneous pulse is the superposition of two signals, and the 

expression is： 

𝑠(𝑡) = ∑ 𝐴𝑒−2𝜋𝜁𝑓𝑛𝑡𝛿(𝑡 − 𝑛𝑇0) + 𝐶𝑒
−2𝜋𝜁𝑓𝑛𝑡𝛿(𝑡 − 𝑡0)

∞
−∞     

(3) 

The analytic signal h(t) of the signal 𝑠(𝑡) is obtained by the 

Hilbert transform. 

ℎ(𝑡) = 𝑥(𝑡) + 𝐻[𝑥(𝑡)] = 𝑝(𝑡) + 𝑔(𝑡) + 𝑗𝐻[𝑝(𝑡) + 𝑔(𝑡)] 

= 𝑝(𝑡) + 𝑗𝐻[𝑝(𝑡)] + 𝑔(𝑡) + 𝑗𝐻[𝑔(𝑡)] = ℎ𝑝(𝑡) + ℎ𝑔(𝑡)  (4) 

Then the envelope signal of signal 𝑠(𝑡) is： 

𝐸(𝑡) = |ℎ𝑝(𝑡)| + |ℎ𝑔(𝑡)|          (5) 

The Fourier transform is performed on the envelope signal to 

obtain the envelope spectrum. According to the linear 

superposition property, the envelope spectrum of the signal  

𝑠(𝑡) is: 

𝐸𝑆(𝑓) = 𝐹𝑇[𝐸(𝑡)] = 𝐹𝑇[|ℎ𝑝(𝑡)|] + [|ℎ𝑔(𝑡)|] 

= 𝐸𝑆𝑝(𝑓) + 𝐸𝑆𝑔(𝑓)   (6) 

Refer to (6), it can be seen that the envelope spectrum of a 

periodic pulse signal containing a single nonperiodic 

instantaneous pulse is equivalent to the result of superimposing 

the envelope spectra of two signals. 

The envelope spectrum of a single non-periodic 

instantaneous pulse signal is a curve that gradually decays in 

amplitude as the frequency increases. After superimposing with 

the envelope spectrum of a periodic pulse signal, the spectral 

lines near the origin of the envelope spectrum of a periodic pulse 

signal appear to be elevated, changing the arrangement of the 

spectral lines in the envelope spectrum of a periodic pulse signal. 

The Fourier transform calculation of the envelope spectrum 

is equivalent to finding the spectrum of the envelope spectrum 

as follows. 

𝑆𝐸𝑆 = |𝐹𝑇[𝐸𝑆𝑝(𝑓) + 𝐸𝑆𝑔(𝑓)]| 

      = |𝐹𝑇[𝐸𝑆𝑝(𝑓)]| + |𝐹𝑇[𝐸𝑆𝑔(𝑓)]|  (7) 
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In the amplitude spectrum of the envelope spectrum, the 

spectral line representing a single non-periodic transient pulse 

signal is located near the origin and is approximately parallel to 

the vertical axis. If low-pass filtering is performed in the 

spectrum of the envelope, the non-periodic components can be 

directly eliminated, and to simplify the process, the components 

near the origin can be directly defined as 0. 

Fig.1(a)-(b) shows the constructed outer ring fault simulation 

signal and its envelope waveform containing a single non-

periodic transient pulse, respectively. The non-periodic 

transient pulse will disturb not only the fault signal but also its 

envelope waveform. When the acquired signal contains a single 

incidental pulse, it causes a steep and large increment in the 

envelope spectrum of the acquired signal, which is manifested 

in the envelope spectrum as the spectral line lifts along the 

vertical axis, which causes the shape of the envelope spectrum 

to be changed, as shown in Fig. 1(c). Further calculation of the 

frequency spectrum of the envelope spectrum, as shown in Fig. 

1(d), reveals that the amplitude spectrum has a steep rise at the 

origin and the endpoint, thus reflecting the occasional and 

periodic pulses in the time domain signal into the amplitude 

spectrum of the envelope spectrum. If further low-pass filtering 

(the low-pass filtering length is 2%-3% of the sampling points) 

is performed to filter out the steep rise in amplitude, the effect 

of the incidental pulses can be eliminated and only the periodic 

components are retained, and the effect is similar to that of part 

B in Fig. 1(d). Similarly, the signal with harmonic interference 

can be eliminated by this method to eliminate the interference 

of irrelevant harmonics. Fig. 1(e)-(f) show enlarged views of  

A and B in Fig. 1(d), respectively. The signal 𝑝(𝑡) is: 

𝑝(𝑡) = 10 ⋅ 𝑒
−700⋅𝑚𝑜𝑑(

𝑛

𝐹𝑠
−0.43,

1

1
)
⋅ 𝑠𝑖𝑛( 2𝜋 ⋅

𝑛⋅1500

𝐹𝑠
)

       + 0.6 ⋅ 𝑒
−900⋅𝑚𝑜𝑑(

𝑛

𝐹𝑠
,
1

80
)
⋅ 𝑠𝑖𝑛 (2𝜋 ⋅

𝑛⋅2400

𝐹𝑠
)

        (8) 

 

Fig. 1. (a) The time domain waveform; (b) The envelope 

waveform; (c) The Envelope spectrum; (d) The amplitude 

spectrum of the envelope spectrum; (e) Zoomed-in view at A 

in the envelope spectrum; (f) Zoomed-in view at B in the 

envelope spectrum. 

2.2. Optimal demodulation band selection indicator: 

LSES  

Hosking [21] introduced the concept of L-moments based on 

the statistical theory of order. For a sequence of continuous 

random variables {X} with r-order L-moments, the sequence of 

order 𝑋1:𝑟 ≤ 𝑋2:𝑟 ≤ ⋯ ≤ 𝑋𝑟:𝑟 , can be obtained by the 

magnitude of the values. Then the linear moment of the 

sequence of random variables is: 

𝜆𝑟 =
1

𝑟
⋅ ∑ (−1)𝑗 ⋅ 𝐶𝑘

𝑟−1𝐸(𝑋𝑟−𝑘:𝑟)
𝑟−1
𝑘=0 , 𝑟 = 1,2,⋯        (9) 

where 𝐶𝑘
𝑟−1  is the number of combinations obtained by 

selecting 𝑘 variables from 𝑟 − 1 random variables ,𝑋𝑟−𝑘:𝑟 is the 

(𝑟 − 𝑘)  th smallest random variable, 𝐸[𝑋𝑟−𝑘:𝑟]  is the 

mathematical expectation of the random variable.  
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The order 𝑟 of the sequence of random variables is the length 

𝑟of the sequence. 

The expectation of the 𝑟th order statistic for a sequence of 

arbitrary length 𝑛 is: 

𝐸(𝑋𝑟:𝑛) = 

𝑛!

(𝑟−1)!⋅(𝑛−𝑟)!
⋅ ∫

0

1
𝑥(𝐹) ⋅ [𝐹(𝑥)]𝑟−1 ⋅ [1 − 𝐹(𝑥)]𝑛−𝑟𝑑𝐹(𝑥)  (10) 

Therefore, the first fourth-order L-moments can be obtained 

from Eq. (8) and Eq. (9) as follows: 

{
 
 

 
 
𝜆1 = 𝐸(𝑋1:1) = 𝑏0

𝜆2 =
1

2
𝐸(𝑋2:2 − 𝑋1:2) = 2𝑏1 − 𝑏0

𝜆3 =
1

3
𝐸(𝑋3:3 − 2𝑋2:3 + 𝑋1:3) = 6𝑏2 − 6𝑏1 + 𝑏0

𝜆4 =
1

4
𝐸(𝑋4:4 − 3𝑋3:4 + 3𝑋2:4 − 𝑋1:4)

      (11) 

where 𝑏𝑖 = ∫
0

1
𝑥(𝐹) ⋅ [𝐹(𝑥)]𝑖𝑑𝐹(𝑥), 𝑖 = 0,1,2,3 is the ith order 

probability moment. 

According to the definition of linear moment, the first-order 

L-moment 𝜆1  represents the mean of the random sequence, 

while the second-order L-moment 𝜆2 can be interpreted as the 

dispersion of the distribution of the random sequence, similar to 

the variance of the constant rule. The L-kurtosis (LK) is defined 

as: 

𝐿𝐾 =
𝜆4

𝜆2
          (12) 

The L-moments of a random signal can be calculated as long 

as the expectation of the signal exists. Compared with the 

normal rule, linear moments can be estimated unbiased by linear 

combinations of sampled values and are more resistant to 

interference. In particular, for outliers in the data, linear 

moments are more robust than the normal rule, giving better 

results with a smaller number of samples. 

Let 𝐸𝑆(𝑓)  denote the envelope spectrum, for which the 

Fourier transform is calculated to obtain its amplitude spectrum 

as: 

𝑆𝐸𝑆 = |𝐹𝑇[𝐸𝑆(𝑓)]|        (13) 

The physical meaning of the spectrum of the envelope is not 

elaborated in this paper, so the horizontal coordinate of the 

spectrum of the envelope is defined as the number of sampling 

points. To reduce the effects of accidental pulses and extraneous 

harmonic interference, the components of the spectrum of the 

envelope near the origin are defined as 0. By calculating the LK 

of the amplitude spectrum of the envelope spectrum, this paper 

proposes the concept of the LSES as indicator which can be 

represented as: 

𝐿𝑆𝐸𝑆 =
𝜆4(𝑆𝐸𝑆)

𝜆2(𝑆𝐸𝑆)
         (14) 

2.3. Characterization of the LSES indicator 

To demonstrate that the LSES indicator is not easily disturbed 

by accidental pulses and extraneous harmonics, four sets of 

simulated signals with 2000 sample points were constructed for 

verification, as shown in Fig. 2(a). They are random noise signal 

(Sig. 1), sinusoidal harmonic signal (Sig. 2), single pulse signal 

(Sig. 3), and periodic pulse signal (Sig. 4). The LSES of the five 

signals are calculated as shown in Fig. 2(b). It can be clearly 

observed that the LSES value of sig.4 is the largest. This 

indicates that the LSES indicator is more sensitive to periodic 

pulse components. Fig. 2 suggests that the LSES indicator has 

the ability to characterize whether the signal contains a periodic 

component that is critical for measuring failure information in 

rolling bearings. 

Fig. 2. The degree of reflection of different signals by LSES: (a) 

Simulated signals 1-4; (b) LSES of simulated signals 1-4. 

To further express the LSES to measure the periodicity of the 

signal and its ability to resist noise, the variation of the LSES 

with the number of pulses under different noise conditions is 

investigated. For a signal of finite length, the number of pulses 

is an important factor in evaluating the pulse characteristics of 

the signal. A series of periodic pulse signals with different 

numbers of pulses and amplitude of 1 are constructed and white 

noise is added to form a periodic pulse simulation signal with 

different noise variances. According to Fig. 3, we compared 

LSES with kurtosis and L-kurtosis. In Fig. 3(a), the kurtosis 

decreases with increasing number of pulses, which is consistent 

with the characteristics of kurtosis. Compared to L-kurtosis, 
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LSES can characterize the presence or absence of periodic 

components in a signal at a smaller number of pulses. In terms 

of noise immunity, LSES has better noise immunity. As shown 

in the boxed areas in Fig. 3(b) and Fig. 3(c), the growth area of 

LSES is larger when the noise variance is 0.05 and 0.1, which 

indicates that LSES is less susceptible to noise than L-kurtosis. 

In summary, LSES has excellent periodic component 

characterization capability and noise immunity and is well 

suited for fault feature extraction of rolling bearings. 

2.4. LSESgram 

In this section, an optimal band selection method that can 

resist strong noise as well as accidental pulse and harmonic 

interference, LSESgram, is proposed. Firstly, multiple spectral 

trends are obtained, then the location of the minima of the 

spectrum trend is used as the boundary to segment the original 

spectrum, and then decompose the signals into a series of 

empirical modal components. Finally, calculate the LSES value 

of each component and select the component with the largest 

LSES value for demodulation analysis for fault diagnosis, 

which is the basic content of LSESgram. The main steps of 

LSESgram are as follows. 

 

Fig. 3. Variation of (a) kurtosis; (b) L-kurtosis; (c) LSES with 

the number of pulses under different noise conditions. 

Step 1: Extract the spectral trend by using the key function 

method of scale-space-like theory. The scale space theory is a 

method of convolving the original signal with a kernel function 

containing variable scale parameters and then realizing filtering. 

In layman's terms, the scale space of a signal is the multiple low-

frequency signals obtained by filtering the original signal with 

a series of single-parameter, increasing-width Gaussian filters. 

The explanation of the scale space theory is shown below: 

Define 𝑓(𝑥)  as a continuous function on the interval 

[0, 𝑥𝑚𝑎𝑥]  and 𝑔(𝑡)  as a kernel function, the continuous scale 

space of the function can be expressed as: 

𝐿(𝑥, 𝑡) = 𝑔(𝑥; 𝑡) ∗ 𝑓(𝑥)        (15) 

where 𝑡  is the scale parameter, ∗  denotes the convolution 

operation. 

The scale space can be interpreted as selecting different scale 

parameters to achieve varying levels of smoothing for the 

original function. When t is larger, the higher the degree of 

𝐿(𝑥, 𝑡) smoothing, the less detail points are retained [22]. 

This paper explains the key function-based spectral trend 

estimation method based on the scale space theory. Assume 𝑠(𝑡) 

is a time domain signal, the amplitude spectrum 𝑆(𝑓)  is 

obtained by performing a fast Fourier transform on 𝑠(𝑡). 

𝑆(𝑓) = |𝐹𝐹𝑇[𝑠(𝑡)]|        (16) 

where 𝐹𝐹𝑇  represents fast Fourier transform, | |  represents 

calculation of absolute value. 𝑆(𝑓)  is a sequence of real 

numbers rather than a sequence of complex numbers. 

Calculate the key function 𝐾(𝑢) of 𝑆(𝑓). 

𝐾(𝑢) = 𝐹𝐹𝑇[𝑆(𝑓)]        (17) 

Get the spectrum trend 𝑇(𝑚, 𝑓). 

𝑇(𝑚, 𝑓) = 𝐼𝐹𝐹𝑇[𝑊(𝑚; 𝑓) ⋅ 𝐾(𝑢)]       (18) 

where 𝐼𝐹𝐹𝑇 represents inverse fast Fourier transform, 𝑊(𝑚, 𝑓) 

represents the window function, 𝑚  indicates the number of 

points reflecting the width of the window. The window function 

used in this paper is a rectangular window. 

According to the convolution theorem, Eq. (17) can be 

written as: 

𝑇(𝑚, 𝑓) = 𝑤(𝑚; 𝑓) ∗ 𝑆(𝑓)       (19) 

where 𝑤(𝑚; 𝑓) = 𝐼𝐹𝐹𝑇[𝑊(𝑚; 𝑓)]. 

Defining different window lengths can get different spectrum 

trends. The longer the window, the finer the spectral trend; the 

more boundaries defined, the more bands are segmented; and 

vice versa, the fewer bands are segmented. The spectral trends 

corresponding to different values of m are represented in Fig. 4. 

Fig. 4(a) shows the simulation spectrum, Figs. 4(b), (c), (d) 
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show the spectral trends (solid yellow lines) obtained at 𝑚 =

10,15,25, respectively, the red dashed lines in the Fig.4 indicate 

the boundary of the spectral division. Therefore, the window 

lengths from short to long can be defined to obtain multi-level 

spectrum segmentation results, and the segmentation process is 

adaptive, which improves the practicality of the spectrum 

segmentation method. The expression for the simulated signal 

is as follows: 

{

𝑆𝑐1(𝑡) = ∑ 𝑒−2𝜋𝜁1𝑓𝑛1𝑡50
𝑘=1 ⋅ 𝑠𝑖𝑛( 2𝜋𝑓n1√1 − 𝜁1

2𝑡)𝑢(𝑡 − 𝑘𝑇1)

𝑆𝑐2(𝑡) = 10𝑒
−2𝜋𝜁2𝑓𝑛2𝑡 ⋅ 𝑠𝑖𝑛( 2𝜋𝑓𝑛2√1 − 𝜁2

2𝑡)𝑢(𝑡 − 0.45)

𝑆1(𝑡) = 𝑆𝑐1(𝑡) + 𝑆𝑐2(𝑡) + 𝑔(𝑡)

(20)

 

Fig.4. (a) Simulation spectrum; (b) Spectral trend at m=10; (c) Spectral trend at m=15; (d) Spectral trend at m=25;  

where 𝑆𝑐1(𝑡)  represents the periodic pulses and 𝑆𝑐2(𝑡) 

represents the incidental pulses at 𝑡 = 0.45𝑠 ,the inherent 

frequency 𝑓𝑛1 = 2400𝐻𝑧, 𝑓𝑛2 = 1500𝐻𝑧 , damping ratio 𝜁1 =

0.048, damping ratio 𝜁2 = 0.074, pulse period 𝑇1 = 0.0125𝑠, 

i.e., the fault frequency 𝑓𝑐 = 80𝐻𝑧 . To be more realistic, 

Gaussian white noise 𝑔(𝑡) with a SNR ratio of 4.1 dB is added. 

Step 2: The empirical wavelet transform is used to 

decompose the raw signal into a series of empirical modal 

components. Find the location of the minimum in the spectrum 

trend obtained in Step 1 and filter the location of the minimum 

as the segmentation boundary. In this paper, the maximum 

number of levels is preset to be𝐿𝑚𝑎𝑥, and the step size is 𝑆 =

5，𝑚 = 𝑆 ∗ 𝐿. 

Step 3: Calculate the LSES of all empirical modal 

components in each level. Iterate through all the empirical 

modal components and calculate the LSES, then draw the multi-

level tower boundary schematic based on the LSES. 

Step 4: Extract the frequency band with the largest LSES 

value, perform envelope analysis, extract the fault features in 

the envelope spectrum, and perform fault diagnosis. 

 

Fig. 5. The flow chart of LSESgram. 

3. Simulation verification 

In order to verify the effectiveness of the proposed method, 

this section constructs simulated signals based on (20) to 

simulate outer ring fault signals containing incidental pulses, 

and uses LSESgram for diagnosis. 

The simulated signal 𝑆1(𝑡) and its spectrum are shown in Fig. 
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6(a)-(b). In the time domain waveform, it can be clearly 

observed that the amplitude of the incidental pulse at 0.45s is 

much larger than the amplitude of other components in the 

signal, and it is difficult to observe the periodic pulse 

component in the time domain signal. Fig. 6(b) shows the 

frequency spectrum of the simulated signal. 

LSESgram is used to process the signal, and the result is 

shown in Fig. 7(a). The signal is divided into 10 levels in the 

spectrum, and the band with the largest LSES value is located 

in level 4, with a bandwidth of 725 Hz and a center frequency 

of 2362.5 Hz, which is very close to the intrinsic frequency 

𝑓n1=2400Hz. The extracted frequency band and time domain 

waveforms are shown in Fig. 7(b), and their envelope spectra 

are shown in Fig. 7(c), where the fault characteristic frequency 

and its 2–6 harmonics can be clearly observed. Thus, it can be 

tentatively verified that LSESgram can still accurately and 

effectively extract the frequency band with the richest fault 

information when dealing with bearing fault signals containing 

incidental pulses. The simulated signal is as follows:

{

𝑠1(𝑡) = 𝑒−𝑔⋅2𝜋𝑓𝑛𝑡 ⋅ 𝑠𝑖𝑛(2𝜋𝑓𝑛√1 − 𝑔
2 ⋅ 𝑡)

𝑠2(𝑡) = 10 ⋅ 𝑒
−𝜁⋅2𝜋𝑓𝑑⋅𝑚𝑜𝑑(

𝑛

𝐹𝑠
−0.45,1/1) ⋅ 𝑠𝑖𝑛 (2𝜋𝑓𝑑√1 − 𝜁

2 ⋅ 𝑚𝑜𝑑(
𝑛

𝐹𝑠
− 0.45,1/1))

𝑠(𝑡) = 𝑠1(𝑡) + 𝑠2(𝑡) + 𝑛(𝑡)

     (21) 

Where 𝑠1(𝑡)  is periodic pulse, 𝑠2(𝑡)  is accidental pulse. 

natural frequency 𝑓𝑛 = 2400𝐻𝑧 ,𝑓𝑑 = 1500𝐻𝑧 , the damping 

cofficient 𝑔 = 0.048 , 𝜁 = 0.074 . 𝑛(𝑡)  represents white 

Gaussian noise with SNR of 4.3 dB.
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Fig. 6. (a)The time domain waveform of the simulated signal; (b) Its spectrum  
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Fig. 7. LSESgram processing results of the simulated signal: (a) LSESgram; (b) The extracted component time domain waveform; 

(c) The envelope spectrum 

4. Experimental verification 

In order to demonstrate the effectiveness of LSESgram , two 

groups of experimental signals were processed simultaneously 

using LSESgram, Kurtogram, Infogram, Autogram, and the 

results were analyzed and compared 

4.1. Experimental signal 1(bearing outer ring fault signal 

containing incidental pulse) 

The bearing experimental signal comes from the HZXT-008 
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small rotor rolling bearing test stand, as shown in Fig. 8. The NSK-6200 deep groove ball bearing is used in the experiment.

Hammering positionFaulty  bearingAccelerometerMotor

 

Fig. 8. The HZXT-008 small rotor rolling bearing test bench. 

The sampling frequency 𝑓𝑠1 = 12000𝐻𝑧, the motor speed is 

set to 1500rpm, and the outer ring failure frequency is calculated 

to be 𝑓𝑜1 = 76.2Hz. 

To simulate the accidental pulse, a force hammer was used to 

strike the coupling in the outer ring failure experiment. The 

waveform, spectrum, and envelope of the acquired bearing  

outer ring fault signal containing the accidental pulse are 

shown in Figs. 9(b)-(c). A single incidental pulse of huge 

amplitude can be observed near 𝑡 = 0.33𝑠 , and the periodic 

pulse in the original signal is not obvious. The envelope 

spectrum neither finds the characteristic frequency of the outer 

ring fault nor the more obvious harmonics, so it is difficult to 

find useful information to diagnose the fault.
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Fig. 9. (a) The time waveform of experimental signal 1. (b) Its spectrum. (c) Its envelope spectrum.  

LSESgram is used to process signal 1, and the result is shown 

in Fig. 10(a). The bandwidth of the extracted band is 896Hz, the 

center frequency is 5552Hz, and the bandwidth range is 

[5104Hz, 6000Hz]. Fig. 10(b) shows the time-domain 

waveform of the extracted components. Although the time-

domain waveform still contains the accidental pulse, the 

amplitude of the incidental pulses is significantly reduced 

compared with the original signal, and the periodic pulses are 

more obvious. Fig. 10(c) shows the envelope spectrum of the 

extracted components, and the outer ring fault characteristic 

frequency and its 2-7 harmonics can be clearly observed in the 

envelope spectrum, which can directly determine the bearing 

outer ring fault. Thus, it can be seen that LSESgram has good 

resistance to accidental pulse interference and can accurately 

identify and diagnose faults under interference, which proves 

the effectiveness of LSESgram.
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Fig. 10. LSESgram processing results of the experimental signal 1: (a) LSESgram; (b) The extracted component time domain 

waveform; (c) The envelope spectrum. 

Fast Kurtogram is used to process the signal 1. Fig. 11(a) 

shows the result of Kurtogram. The center frequencies of the 

extracted band are 3000 Hz, the bandwidth is 2000 Hz, and the 

bandwidth range is [2000, 4000] Hz. Fig. 11(b) shows the time 

domain waveform of the extracted component which contains 

an accidental pulse and the amplitude of this accidental pulse is 

quite close to the amplitude of the accidental pulse in the 

original signal. Fig. 11(c) shows the envelope spectrum of the 

extracted component, only the 4-5 harmonics of the 

characteristic frequency of the fault can be roughly observed in 

the envelope spectrum, and no further information is available. 

This also shows that Fast Kurtogram is more sensitive to chance 

pulses and fails easily when processing signals containing 

chance pulses. 

Infogram is used to process the signal 1 and the results are 

shown in Fig. 12(a), Fig. 13(a), and Fig. 14(a). Only the results 

obtained by SE Infogram are similar to those obtained by 

LSESgram, SES Infogram does not extract fault information, 

and the results of the Average Infogram only showing the 4th-

5th harmonics of the fault characteristic frequency, with limited 

fault information. Further comparing the results of LSESgram 

with those of SE Infogram, it can be seen that SE Infogram 

extracts a wider frequency band, which leads to more noise 

being included in the envelope spectrum, and the envelope 

spectrum of the components extracted by LSESgram has less 

noise and the fault characteristic frequencies and their 

harmonics are more pronounced.
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Fig. 11. Fast Kurtogram processing results of the experimental signal 1: (a) Fast Kurtogram; (b) The extracted component time 

domain waveform; (c) The envelope spectrum. 
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Fig. 12. SE Infogram processing results of the experimental signal 1: (a) SE Infogram; (b) The extracted component time domain 

waveform; (c) The envelope spectrum. 
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Fig. 13. SES Infogram processing results of the experimental signal 1: (a) SES Infogram; (b) The extracted component time domain 

waveform; (c) The envelope spectrum. 

Autogram is used to process the signal 1, and the result is 

shown in Fig. 15(a). The extracted band bandwidth is 375Hz, 

the center frequency is 1687.5H, and the bandwidth range is 

[1500Hz, 1875Hz]. Autogram extracted components can neither 

find more obvious periodic pulse characteristics from the 

waveform nor is the outer ring fault frequency or harmonics 

observed in the envelope spectrum (the highest spectral line 

represents a frequency of 82Hz, which has a large error with the 

fault characteristic frequency). Therefore, the kurtosis of the 

unbiased autocorrelation of the squared envelope of the 

demodulation signal does not completely eliminate the effect of 

chance pulses.
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Fig. 14. Average Infogram processing results of the experimental signal 1: (a) Average Infogram; (b) The extracted component time 

domain waveform; (c) The envelope spectrum. 
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Fig. 15. Autogram processing results of the experimental signal 1: (a) Autogram; (b) The extracted component time domain 

waveform; (c) The envelope spectrum. 

4.2. Experimental signal 2 (bearing inner ring fault signal 

containing harmonic interference)  

In order to further verify the suppression ability of the 

proposed LSESgram on the irrelevant harmonic components in 

the bearing fault vibration signal and the extraction ability of 

the periodic pulse components, a rolling bearing fault 

simulation experiment was completed on the QPZZ bearing 

fault simulation test bench, the structure of the experimental 

platform is shown in Fig. 16, and the N205 bearing is used for 

the experiment, and the displacement vibration signal is 

collected by the electric  

 

Fig. 16. The QPZZ bearing fault simulation test bench. 

The displacement vibration signal is collected by the eddy 

current sensor installed on the shaft. The sampling frequency 

𝑓𝑠2 = 12800Hz, the motor speed is 1440r/min, and the outer 

ring fault characteristic frequency 𝑓𝑜2 = 116Hz. Fig. 17(a)-(c) 

shows the waveform, spectrum, and envelope spectrum of the 

outer ring fault signal with harmonic interference. Harmonic 

features can be clearly observed in the signal waveform, which 

is the result of strong harmonic interference. Further 

observation of the spectrum shows that the side frequency band 

is mainly concentrated between [500, 1800] Hz, and the low-

frequency region is dominated by the harmonics of the 

rotational frequency, where the amplitude of rotation frequency 

at 24 Hz is much larger than other frequency components, which 

makes some statistical indicators calculated in the frequency 

domain tend to maximize, thus interfering with the 

determination of the center frequency and bandwidth of the 

frequency band where the fault is located, which is not 

conducive to obtaining fault information. 
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Fig.17. (a) The time waveform of experimental signal 2. (b) Its 

spectrum. (c) Its envelope spectrum. 

LSESgram is used to process the signal 2, and the result is 

shown in Fig. 18(a). The bandwidth of the extracted band is 

1648 Hz, the center frequency is 2909 Hz, and the bandwidth 

range is [2085, 3733] Hz. Fig. 18(b) shows the time domain 

waveform of the extracted component, where the harmonic 

form is not present in the time domain waveform and the 

Eddy current sensor
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periodic pulses are highlighted. Fig. 18(c) shows the envelope 

spectrum of the extracted components, which contains the 

rotational frequency, also the outer ring fault characteristic 

frequency and its 2-8 harmonics can be clearly observed, thus it 

can be directly determined that the outer ring of this bearing is 

faulty, and it also shows that the LSESgram is still valid even if 

there is a strong harmonic interference phenomenon in the 

signal.
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Fig. 18. LSESgram processing results of the experimental signal 3: (a) LSESgram; (b) The extracted component time domain 

waveform; (c) The envelope spectrum. 

The signal 2 was processed using Fast Kurtogram, and the 

result is shown in Fig. 19(a). The center frequency of the band 

extracted is around 1800 Hz, and the bandwidth is 533.3 Hz. 

The time domain waveform and the envelope spectrum are 

shown in Fig. 19(b)-(c). Although there are periodic pulses in 

the time-domain waveforms, the envelope spectrum mainly 

shows the 2nd and higher harmonics of rotational frequency. 

Fault characteristic frequency and its 2nd harmonic are hidden 

and difficult to be directly observed. 

Infogram is used to process the signal 2, and the results are 

shown in Fig. 20(a), Fig. 21(a), and Fig. 21(b). The result 

obtained by the SE Infogram is similar to the result obtained by 

Fast Kurtogram. Both SES Infogram and Average Infogram 

select the whole spectrum of the signal 2, which indicates that 

the strong harmonic interference directly affects the calculation 

of the spectral negentropy and the average spectral negentropy 

of the frequency domain spectrum, leading to the failure of the 

two methods.
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Fig. 19. Fast Kurtogram processing results of the experimental signal 3: (a) Fast Kurtogram; (b) The extracted component time 

domain waveform; (c) The envelope spectrum. 
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Fig.20. SE Infogram processing results of the experimental signal 3: (a) SE Infogram; (b) The extracted component time domain 

waveform; (c) The envelope spectrum. 

Autogram is used to process the signal 2, and the result is 

shown in Fig. 22(a). The result obtained by Autogram is the 

same as the result obtained by the SE Infogram, and it is difficult 

to obtain valid fault information.
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Fig. 21. SES Infogram and Average Infogram processing results of the experimental signal 3: (a) SES Infogram; (b) Average 

Infogram; (c) The extracted component time domain waveform; (d) The envelope spectrum. 
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Fig.22 Autogram processing results of the experimental signal 2: (a) Autogram; (b) The extracted component time domain 

waveform; (c) The envelope spectrum. 
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5. Conclusion 

This paper proposes an optimal demodulation band extraction 

method, LSESgram, which can resist stronger noise and is free 

from chance shocks and irrelevant harmonic interference. 

Multi-stage spectrum segmentation based on spectrum trend can 

be combined with the spectral shape of the signal to make a 

more reasonable and effective division of the spectrum, which 

is more adaptive and practical. The use of a new indicator, the 

LSES indicator, can avoid accidental shocks and irrelevant 

harmonic interference and can discover the periodic 

components in the signal in the case of strong noise.  

In this paper, the effectiveness of the method is demonstrated 

by constructing one set of simulated signals and comparing 

LSESgram with Fast Kurtogram, Infogram, and Autogram with 

the help of three sets of experimental signals. LSESgram can 

discover more accurate center frequencies and more suitable 

bandwidths compared with other methods, so that the obtained 

signal components contain richer fault information, and thus 

more accurate fault diagnosis results can be obtained. Therefore, 

LSESgram can be applied to bearing fault diagnosis. 

Our next work will focus on applying LSES to neural 

networks as input data for artificial intelligence algorithms and 

attempting to design an online fault diagnosis system.
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