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Highlights  Abstract  

▪ It is especially effective in strong noise and 

small sample scenarios. 

▪ AEDFE uses a simple convolutional neural 

network (CNN) for implementation. 

▪ It achieves 100% diagnostic accuracy in noisy 

environments. 

▪ AEDFE demonstrates superior performance 

under complex conditions. 

 Parametric fault diagnosis of DC-DC converters faces significant 

challenges under strong noise and small sample conditions due to the 

low accuracy of existing feature extraction methods. To address this 

problem, we propose an Adaptive Euler Difference Feature Extraction 

(AEDFE) method, which effectively captures spatial features from fault 

signals to enhance the distinction between faults of varying severities. 

This method is implemented via a lightweight convolutional neural 

network, enabling accurate fault classification even under adverse 

conditions. Experimental results show that the proposed AEDFE 

achieves 100% diagnostic accuracy in strong noise environments, 

outperforming three existing methods by an average margin of 61.61%. 

Furthermore, when the training data is reduced to 10% of the original, 

AEDFE still maintains an accuracy of 99.98%, representing a 77.64% 

improvement in diagnostic precision over the comparative models. 

These results highlight the robustness and effectiveness of AEDFE in 

noisy and data-scarce scenarios. 
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1. Introduction 

With the rapid development of integrated circuit technology and 

computer technology, the internal structures and manufacturing 

scales of electronic circuit systems and equipment have become 

increasingly large and complex. Among these, DC-DC circuits 

play a crucial role as an integral part of electronic circuit 

systems, quickly integrating into people's lives, work, and 

economic development. They are essential in various fields, 

including communication systems, transportation, medical 

devices, industrial production, and even national defense and 

aerospace. DC-DC circuits have become a vital pillar for 

ensuring people's well-being, maintaining national security, and 

promoting the advancement of national technology [1-3]. 

DC-DC circuit failures can be primarily classified into two 

types: structural failures [4] (hard failures) and parametric 

failures [5] (soft failures) .Structural failures have been the 

focus of numerous research methods [6-7], making detection 

relatively straightforward. However, when structural failures 

occur, they can lead to severe circuit failures or even total 

breakdowns, resulting in significant losses. Additionally, 

diagnosing hard failures is typically a post-failure remedy; once 

the fault has occurred, the damage is already done. Before hard 

failures arise, parametric failures often occur due to the gradual 
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degradation of component parameters. The early signs of 

parametric failures manifest as a decline in circuit performance, 

leading to abnormal device operation [8]. However, the early 

characteristics of parametric failures are subtle and often go 

unnoticed. If these failures are allowed to persist, the 

degradation of component parameters may reach a critical point, 

resulting in structural failures with serious consequences. 

Therefore, timely assessment of the health status of DC-DC 

circuits in the presence of parametric failures is crucial for 

ensuring their reliability and achieving accurate, rapid fault 

diagnosis. 

DC-DC converters are widely used to provide various 

supply voltages for electronic components on circuit boards. 

However, as switching frequencies increase, switching noise 

also rises [9]. This not only interferes with the circuit's 

switching frequency, regulation accuracy, and stability, but it 

also leads to output voltage fluctuations, impacting the overall 

performance of the circuit and the reliability of the equipment. 

In high-noise environments, this noise interference can obscure 

the early signs of parametric failures, making detection and 

diagnosis more challenging [10].Due to the subtle nature of 

failure characteristics and their susceptibility to noise 

interference, obtaining sufficient high-quality samples becomes 

challenging. This limitation restricts the model's ability to learn 

failure patterns, reduces detection sensitivity, and increases the 

risk of overfitting. Consequently, the issue of small sample data 

is particularly pronounced in fault diagnosis [11]. To ensure 

effective health monitoring and fault diagnosis of DC-DC 

circuits in complex environments, it is essential to adopt robust 

methodologies that facilitate rapid and accurate diagnostics. 

With the rapid development of computer technology, 

machine learning-based methods are quickly becoming one of 

the mainstream approaches for fault diagnosis in electronic 

circuits [12]. The methods for diagnosing faults in DC-DC 

circuits primarily involve two key techniques: fault feature 

extraction and fault classification. Jiang et al. [13] utilized 

empirical mode decomposition (EMD) to decompose light rail 

noise signals, extracting the energy and kurtosis features of the 

intrinsic mode functions (IMFs) to obtain multi-scale kurtosis 

features, which were then input into a neural network to identify 

wheel-rail fault types. Li Rui et al. [14] applied complete 

ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) to adaptively decompose the vibration signals of 

one-way valves in high-pressure diaphragm pumps into 

multiple intrinsic mode functions (IMFs). They then calculated 

multi-scale permutation entropy values to extract signal features 

and ultimately established a fault diagnosis model. Sudhar et al. 

[15] addressed noise issues in input signals through variational 

mode decomposition (VMD) and then performed principal 

component analysis (PCA) for dimensionality reduction, 

thereby improving the accuracy of fault loss 

predictions.Common classifiers include BP neural networks 

[16], various optimized support vector machines (SVM) [17-18], 

and extreme learning machines (ELM) [19]. However, 

traditional machine learning methods often struggle with signal 

processing, as most classifiers are shallow network models, 

which limits their effectiveness [20]. While traditional feature 

extraction methods can mitigate signal noise to some extent, 

their diagnostic performance often deteriorates significantly in 

complex or high-noise environments. Moreover, these methods 

generally require large amounts of labeled data for training, 

making them less effective in small-sample scenarios 

commonly encountered in practical applications. This reliance 

limits their generalization ability and robustness when data is 

scarce or noisy. To overcome these challenges, this paper 

proposes an improved feature extraction method designed to 

enhance both the accuracy and practical applicability of fault 

diagnosis under noisy and limited-data conditions. 

In real-world applications, DC-DC converters often operate 

under strong electromagnetic interference and limited data 

availability, making the diagnosis of parametric faults—caused 

by subtle component degradations—particularly challenging. 

Traditional feature extraction methods typically focus on 

decomposing signal components to suppress noise and isolate 

relevant features. While effective in general cases, they struggle 

to distinguish slight differences in fault severity, especially 

under high-noise conditions, leading to reduced diagnostic 

accuracy. To address this issue, we propose a novel method 

called Adaptive Eulerian Difference Feature Extraction 

(AEDFE), which leverages the spatial information embedded in 

fault signals. Unlike conventional approaches, AEDFE 

enhances the representation of spatial features rather than 

relying solely on signal decomposition, significantly improving 

the model’s ability to differentiate between faults of varying 
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severity. The extracted features are more robust and 

discriminative, enabling high-accuracy diagnosis even in noisy 

and data-scarce environments, thus offering strong practical 

value for real-world fault diagnosis scenarios.First, we apply 

AEDFE to process the collected voltage signals, effectively 

extracting the spatial features and indirectly achieving noise 

suppression. The processed features are then used as inputs for 

a convolutional neural network (CNN), facilitating precise 

diagnosis of parametric faults in DC-DC converters. The fault 

diagnosis workflow for DC-DC circuits, illustrated in Fig.1, 

combines AEDFE with a one-dimensional convolutional neural 

network (1DCNN). 
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Fig. 1. Fault Diagnosis Workflow for DC-DC Circuits. 

Initially, AEDFE is used to extract features from the voltage 

data related to parametric faults in the DC-DC converter. 

Subsequently, the extracted features are divided into training 

and testing sets in a 70:30 ratio to construct the fault dataset, 

which serves as input data for the 1DCNN, ultimately enabling 

accurate diagnosis of parametric faults in the DC-DC converter. 

The innovative contributions of this work are summarized 

as follows: 

1) This study proposes an innovative AEDFE method for 

effectively extracting spatial features from the voltage signals 

of DC-DC converters, overcoming the challenges of traditional 

methods in feature extraction under strong noise environments. 

2) The AEDFE method significantly enhances the ability to 

extract features of parametric faults of varying degrees by 

leveraging the spatial information of the signals, allowing for 

effective utilization and accurate identification of fault 

characteristics even in high-noise conditions. 

3) By combining the AEDFE method with a 1DCNN, an 

efficient fault diagnosis process is established. This combined 

approach enables high-precision fault diagnosis in small sample 

environments, improving the accuracy and practicality of the 

model. 

2. AEDFE 

In small sample fault diagnosis under strong noise environments, 

the primary challenge lies in extracting effective fault features 

from data affected by noise interference. Noise obscures the true 

fault information, making it difficult to identify distinct features. 

Additionally, the small sample issue complicates the training of 

high-accuracy models, as the limited amount of data can lead to 

overfitting, adversely affecting the model's generalization 

ability. Therefore, there is an urgent need for an innovative 

approach in the field of fault diagnosis that can effectively 

extract fault features under conditions of strong noise and data 

scarcity. This method should ensure model accuracy to enhance 

the performance of diagnostic systems and the reliability of 

equipment. 

Euler's formula in complex analysis is expressed as：  

𝑒𝑖𝑥 = 𝑐𝑜𝑠( 𝑥) + 𝑖 𝑠𝑖𝑛( 𝑥)           (1) 

This signifies that both sides of the equation are proven to 

hold true in the complex domain, implying that the equality  

𝑒𝑖𝑥 − (𝑐𝑜𝑠( 𝑥) + 𝑖 𝑠𝑖𝑛( 𝑥)) = 0         (2) 

is valid in the complex plane.This article proposes the 

transfer of Euler's identity in the complex domain to Cartesian 

coordinates and introduces the AEDFE method. By applying  

a differential approach to Euler's identity, the aim is to analyze 

data more deeply and capture spatial features within the signals. 

This method employs a multi-step mathematical transformation 
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process that incorporates data scaling, trigonometric 

transformations, exponential transformations, and feature 

differentiation, effectively extracting potential complex features 

from the data. First, data is standardized and scaled to the 

interval [0, 1] to eliminate dimensional influences and provide 

a consistent scale for subsequent transformations. Next, the 

inverse cosine function is utilized to convert the standardized 

data into angles, introducing periodic features and nonlinear 

information. Following this, an exponential function is applied 

to the product of the angles and standardized data, generating 

feature values with higher nonlinear characteristics. Finally, the 

absolute differences between features generated from 

trigonometric and exponential transformations are computed, 

and these differences are adjusted for their mean to highlight 

meaningful feature distinctions in the data. Through this 

comprehensive approach, not only is the ability to capture 

spatial features in signals enhanced, but the expressiveness of 

the data features is also improved, laying a solid foundation for 

further analysis and modeling. 

The specific steps of AEDFE are as follows: 

1) Data Scaling 

To ensure that different features have the same scale and 

eliminate the dimensional influence between the data, the 

original data is first standardized. Let the original data column 

be , and its standardization formula is: 

 𝑥𝑖 =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
           (3) 

where 𝑥𝑖  represents the standardized data value, and 𝑚𝑖𝑛( 𝑥) 

and 𝑚𝑎𝑥( 𝑥) are the minimum and maximum values in the data 

column, respectively. Using this formula, the data is linearly 

scaled to the range [0, 1], ensuring that all data points are within 

a uniform scale. 

2) Calculate the Arc Cosine Value 

After standardization, the next step is to calculate the arc 

cosine values of the standardized data to obtain the 

corresponding angles. This process can be expressed as: 

𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠( 𝑥𝑖)            (4) 

where 𝜙  is the arc cosine angle corresponding to the 

standardized data 𝑥𝑖. The arc cosine function 𝑎𝑟𝑐𝑐𝑜𝑠 maps the 

standardized data to angles in the range [0, 𝜋 ].This step 

introduces a nonlinear transformation, effectively capturing the 

periodic characteristics of the data. 

3) Feature Calculation 

Based on the transformation using Euler's formula, this 

paper defines two new features that combine the nonlinear 

effects of trigonometric functions and exponential functions: 

(1) First Feature Value: 

𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_1 = 𝑐𝑜𝑠( 𝜙) + 𝑥𝑖 𝑠𝑖𝑛( 𝜙)         (5) 

This feature integrates the cosine value of the angle with the 

product of the sine value and standardized data. This 

combination effectively captures periodic and nonlinear 

patterns in the data through the interplay of the two 

trigonometric functions. 

(2) Second Feature Value: 

𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_2 = 𝑒𝑥𝑝( 𝑥𝑖𝜙)          (6) 

This feature performs a nonlinear expansion using the 

exponential function 𝑒𝑥𝑝  on the product of the standardized 

data 𝑥𝑖  and the angle 𝜙 . The second feature value effectively 

highlights the nonlinear relationships in the data, making the 

complex patterns more prominent. 

4) Calculate AEDFE 

To extract meaningful features from the data, the absolute 

differences between the first and second feature values are 

calculated, followed by mean adjustment of these differences. 

The specific steps are as follows: 

(1) Calculate the Absolute Differences: 

𝐷𝑖 = |𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_1 − 𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_2|        (7) 

where 𝐷𝑖   represents the absolute difference between the first 

and second feature values. 

(2) Mean Adjustment: 

To remove the offset in the differences, the mean of all 

differences needs to be calculated and subtracted from each 

difference. 

𝑚𝑒𝑎𝑛𝐷 =
1

𝑛
∑ 𝐷𝑖

𝑛
𝑖=1           (8) 

𝐴𝐸𝐷𝐹𝐸𝑖 = 𝐷𝑖 − 𝑚𝑒𝑎𝑛𝐷          (9) 

Here, 𝑛 is the total number of data points, and 𝑚𝑒𝑎𝑛𝐷 is the 

mean of all differences. This mean adjustment makes the final 

feature 𝐴𝐸𝐷𝐹𝐸𝑖 more centralized, enhancing its stability in data 

analysis. 

The proposed method generates a novel feature, Adaptive 

Eulerian Difference Feature Extraction (AEDFE), through  

a series of mathematical transformations including 

normalization, angle calculation, nonlinear mapping, and 
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feature differentiation. By integrating the nonlinear 

characteristics of trigonometric and exponential functions, 

AEDFE is able to capture complex data patterns and reveal 

underlying structural information that traditional linear methods 

may overlook. This innovative approach offers a fresh 

perspective for feature extraction from one-dimensional signals, 

effectively enhancing the representational capacity of the data 

for subsequent analysis and model training. Furthermore, the 

nonlinear transformations contribute to improved robustness 

against noise and better adaptability in small-sample scenarios, 

thereby increasing the practical applicability of the model.

Table 1. mathematical formul. 

Step mathematical formula variable definitions 

1) Data Scaling 𝑥𝑖 =
𝑥 − 𝑚𝑖𝑛( 𝑥)

𝑚𝑎𝑥( 𝑥) − 𝑚𝑖𝑛( 𝑥)
 

𝑥𝑖:standardized data; 

𝑚𝑖𝑛( 𝑥) /𝑚𝑎𝑥( 𝑥):maximum/minimum 

of the column;scales data to [0, 1] 

2) Calculate the Arc 

Cosine Value 
𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠( 𝑥𝑖) 

𝜙:arccos angle of standardized data 𝑥𝑖; 

nonlinear mapping to capture 

periodicity; 

𝑥𝑖:standardized input data (range-

scaled to [0,𝜋]) 

3) Feature Calculation   

(1) First Feature Value: 𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_1 = 𝑐𝑜𝑠( 𝜙) + 𝑥𝑖 𝑠𝑖𝑛( 𝜙) 

First Feature: combines cos(angle) and 

sin(angle)  ×  data to capture nonlinear 

and periodic patterns. 

(2) Second Feature Value: 𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_2 = 𝑒𝑥𝑝( 𝑥𝑖𝜙) 

Second Feature: applies exp(x × a) to 

highlight nonlinear relationships and 

complex patterns. 

4) Calculate AEDFE   

(1) Calculate the Absolute 

Differences: 
𝐷𝑖 = |𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_1 − 𝐸𝑢𝑙𝑒𝑟_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_2| 

𝐷𝑖:absolute difference between the 

First Feature and Second Feature 

(2) Mean Adjustment: 
𝑚𝑒𝑎𝑛𝐷 =

1

𝑛
∑ 𝐷𝑖

𝑛

𝑖=1

 

𝐴𝐸𝐷𝐹𝐸𝑖 = 𝐷𝑖 − 𝑚𝑒𝑎𝑛𝐷 

𝑛:number of data points; 

𝑚𝑒𝑎𝑛𝐷:average of differences, used to 

center AEDFE. 

3. 1D Convolutional Neural Networks  

3.1. Introduction to 1D Convolutional Neural Networks 

1DCNN are a type of multi-layer feedforward neural network, 

typically consisting of three basic components: convolutional 

layers, pooling layers, and fully connected layers. In 1DCNNs, 

convolutional layers extract features from the input data through 

convolution operations, while pooling layers further reduce the 

size of the feature maps through downsampling, thereby 

decreasing computational complexity. Finally, the fully 

connected layers use the extracted features to perform 

classification or regression tasks, with a structure and 

computational method similar to traditional feedforward neural 

networks. 

1) Convolutional Layer 

The convolutional layer learns features from the input data 

through convolution calculations. It consists of multiple feature 

maps, with each neuron in a feature map connected to a local 

region of the previous layer's feature map via a convolutional 

kernel (weight set), known as the receptive field. After the 

convolution operation, the results pass through a nonlinear 

activation function to generate the feature maps for the next 

layer. Different convolutional kernels produce different feature 

maps, and each feature map is computed using the same 

convolutional kernel. This weight sharing technique reduces 

model complexity and simplifies the training process [21]. The 

forward propagation of a convolutional neural network can be 

represented by the following formula: 

𝑦𝑡 = 𝑅𝑒𝐿𝑈(∑ (𝑥𝑡+𝑘ω𝑘)𝐾−1
𝑘=0 + 𝑏)       (10) 

Here, 𝑥𝑡+𝑘 is the value of the input data at position 𝑡 + 𝑘, 𝜔𝑘 is 

the weight of the convolutional kernel at position 𝑘, 𝑏 is the bias 

term, and ReLU  is the activation function. 

2) Pooling Layer 

In convolutional neural networks, pooling layers are typically 

inserted between consecutive convolutional layers to gradually 

reduce the dimensions of the output from the convolutional 
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layers. This helps decrease the number of parameters and the 

computational load, mitigate overfitting, and perform secondary 

feature extraction. The pooling layer keeps the number of 

feature maps unchanged, with the most commonly used 

methods being max pooling and average pooling [22]. In this 

paper, average pooling is adopted because it better preserves the 

global information of features and results in more stable training 

compared to max pooling. The calculation formula is as follows: 

y𝑡 =
1

𝑘
∑ 𝑥𝑡+𝑖

𝑘−1
𝑖=0         (11) 

Here, 𝑘 is the size of the pooling window. 

3) Activation layer 

Activation functions are typically used to perform nonlinear 

transformations on the outputs of convolutional computations 

to obtain nonlinear representations of the input data, thereby 

enhancing the network's feature learning capability [23]. A 

commonly used activation function in CNNs is the ReLU 

function, which is defined as: 

ReLU(x) = 𝑚𝑎𝑥(0, x)       (12) 

4) Fully connected layer 

The fully connected layer is typically located at the end of  

a convolutional neural network, mapping the features extracted 

by the convolutional and pooling layers to the final 

classification results. In the fully connected layer, the softmax 

function is used to convert the network's raw output into  

a probability distribution for classification tasks [24]. Its 

formula is as follows: 

pi =
ezi

∑ e
zjK

j=1

       (13) 

Here, 𝑍𝑗 is the 𝑖 -th component of vector 𝑍, and  ∑ 𝑒𝑧𝑗𝐾
𝑗=1  is the 

sum of the exponential values of all class scores, used for 

normalization to ensure that the sum of all probability values 

equals 1. 

In this study, the key hyperparameters of the 1D-CNN model, 

including the convolution kernel size, number of kernels, 

dropout rate, and learning rate, were reasonably determined 

based on a review of relevant literature and extensive 

preliminary experiments. Specifically, a kernel size of 3 was 

chosen to effectively capture local details in the input time series, 

while the stacking of multiple convolutional layers enabled the 

model to learn long-term dependencies. The number of kernels 

was set to 64 to balance model expressiveness and 

computational complexity, thereby avoiding overfitting caused 

by an excessively large model. A dropout rate of 0.3 was 

selected, which was demonstrated through experiments to 

effectively suppress overfitting and improve the model’s 

generalization ability. The learning rate was set to 0.0001 to 

ensure stable convergence during training and to prevent 

training oscillations or divergence that could occur with a higher 

learning rate. 

3.2. 1D CNN Fault Diagnosis Model 

The 1DCNN fault diagnosis model is established in three steps: 

1) Data preprocessing: We first add Gaussian white noise to the 

original data to simulate the noise impact in daily industrial 

production. Next, we use feature extraction methods to extract 

features from the data with added noise. After feature extraction, 

we divide the feature data into a dataset and split it into training 

and testing sets according to a predetermined ratio. 

2) Model training: We selected the Adam optimizer and cross-

entropy loss function. The Adam optimizer is widely used due 

to its ease of implementation, high computational efficiency, 

and low memory requirements. Compared to SGD and 

RMSprop, Adam typically demonstrates superior optimization 

performance. The cross-entropy loss function was chosen for its 

strong robustness in handling noise, making it suitable for high-

noise environments. We set the learning rate to 0.0001 to 

achieve a good balance between training speed and model 

convergence. 

3) Model testing: We evaluate the model using the testing set. 

Performance testing on the testing set allows us to understand 

the model's performance on actual data and comprehensively 

assess its classification effectiveness. 

4. DC-DC Boost Converter Fault Data 

4.1. Experimental Subjects 

To verify the performance of the circuit fault feature extraction 

diagnostic model, a 150W boost converter controlled by the 

UC3843 chip is tested as an example. The input voltage of the 

circuit is 12V, the output voltage is 24V, and the load is 100Ω 

with a resistor power of 50W. The standard values for capacitors 

C1 and C5 are both 1000µF. The circuit schematic, parameter 

fault testing platform, and physical diagram of the circuit are 

shown in Fig.2, Fig.3, and Fig.4, respectively. The basic 

information of the circuit is provided in Table 2. 
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Fig. 2. 150W DC-DC Boost Converter Circuit Schematic.

 

Fig. 3. 150W DC-DC Boost Converter Actual Circuit 

Diagram. 

Table 2. Basic Information of 150W DC-DC Boost Converter 

Circuit. 

Circuit Type 150W DC-DC Boost Converter Circuit 

Input Voltage 10-32V 

Output Voltage 12-35V 

Input Current 10A(MAX) 

Output Current 6A(MAX) 

 

Fig. 4. Parameter Fault Platform of 150W DC-DC Boost 

Converter Circuit. 

4.2. Experimental Data 

In this paper, the electrolytic capacitors C1 and C5 in the 150W 

DC-DC Boost Converter circuit are selected. In the actual 

circuit, a capacitor degradation of 0-10% is considered normal, 

so a range of 10%-50% degradation is divided into 15 fault 

modes. The fault setting modes are shown in Table 3. Among 

them, f11 represents the normal mode, f12, f13, and f14 

represent soft faults of C1, while f21, f31, and f41 represent soft 

faults of C5. The remaining fault modes are dual soft faults of 

both C1 and C5. 

Table 3. Fault Mode Settings for 150W DC-DC Boost Converter 

Circuit Parameters 

Failure Mode C1/C5(μF) 
C1/C5 Degradation  

Level (%) 
Label 

F11 988/916 0~10/0~10 1 

F12 988/887 0~10/10~20 2 

F13 988/653 0~10/30~40 3 

F14 988/554 0~10/40~50 4 

F21 864/916 10~20/0~10 5 

F22 864/887 10~20/10~20 6 

F23 864/653 10~20/30~40 7 

F24 864/554 10~20/40~50 8 

F31 655/916 30~40/0~10 9 

F32 655/887 30~40/10~20 10 

F33 655/653 30~40/30~40 11 

F34 655/554 30~40/40~50 12 

F41 546/916 40~50/0~10 13 

F42 546/887 40~50/10~20 14 

F43 546/653 40~50/30~40 15 

F44 546/554 40~50/40~50 16 
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To ensure that the collected DC-DC circuit voltage signals 

adequately capture the fault information of C1 and C5, this 

paper analyzes the voltage signals from four measurement 

points as shown in Schematic Diagram 2. Each measurement 

point has 2,000 sampling points, with 50 samples taken for each 

fault state, and each sampling duration is 0.5 seconds. The 

voltage signals obtained from the four measurement points can 

accurately represent the degradation state of the circuit. Fig.5 

illustrates the voltage waveforms from the four measurement 

points under the F43 fault mode. 

 

Fig. 5. Voltage Signals: (a) Input Voltage Signal; (b) Output 

Voltage Waveform; (c) MOSFET Drain Voltage; (d) MOSFET 

Source Voltage. 

4.3. Comparison of Fault Data Processing Results 

To visually demonstrate the capability of AEDFE in extracting 

fault features, we take the data from Measurement Point 1 for 

Fault Mode 15 (F43) as an example. The polar plots, or radar 

charts, processed by different feature extraction algorithms are 

presented in Fig.6 to Fig.10. The radar chart provides an 

intuitive representation of multidimensional data, allowing 

multiple variables to be compared within the same graph. It 

showcases the multidimensional characteristics of the data, 

helps identify patterns and anomalies, and evaluates the 

effectiveness of different feature extraction methods, while 

clearly displaying the overall distribution and periodic changes 

of the data. Fig. 6 shows the radar chart for the raw data, while 

Fig.7 to Fig.9 present the radar charts for the data after feature 

extraction using traditional methods. Fig.10 displays the radar 

chart for the data after feature extraction using AEDFE. 

From Fig.6 to Fig.9, it is evident that the spatial features in 

the data extracted using traditional methods are quite chaotic, 

making it difficult for the model to capture and utilize this 

information effectively. However, as shown in Fig.10, after 

extraction using AEDFE, the spatial features of the data 

transition from chaotic to structured, demonstrating the 

effectiveness of AEDFE in mining and clarifying the spatial 

characteristics of the data. 

 

Fig. 6. Radar Chart of Raw Data 

As shown in Figure 6, the features of the raw, unprocessed 

data are highly disordered in the spatial distribution. 

 

Fig. 7. Radar Chart of VMD 

As shown in Figure 7, the data processed by VMD exhibits 

slightly clearer spatial features, but the characteristics remain 

indistinct and relatively disordered. 
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Fig. 8. Radar Chart of CEEMDAN 

As shown in Figure 8, the data processed by CEEMDAN 

lacks a clear distribution pattern in the spatial dimension, 

exhibiting strong randomness. 

 

Fig. 9 Radar Chart of EMD 

As shown in Figure 9, the data processed by EMD still lacks 

a clear distribution pattern in the spatial dimension and exhibits 

strong randomness. 

As shown in Figure 10, the data processed by AEDFE forms 

a distinct feature convergence region in the radar chart, with a 

more consistent distribution, demonstrating clear feature 

centralization and distinguishability. 

 

 

Fig. 10. Radar Chart of AEDFE. 

5. Analysis of Experimental Results 

This paper validates the proposed diagnostic method using the 

fault data from the DC-DC boost circuit described above. The 

testing software environment is Windows 10 64-bit, equipped 

with 32 GB of RAM, and the experiments are conducted on the 

PyCharm platform using the PyTorch framework. The hardware 

environment includes an Intel® I5-12400 CPU and a 4060 Ti 8 

GB GPU. The 1D CNN used employs Cross Entropy as the loss 

function, Adam as the optimizer, and a learning rate of 0.0001. 

Each experiment involves 100 training epochs on both the 

training and testing datasets. 

In practical working conditions, data collection is often 

affected by noise, which may obscure fault characteristics and 

make it difficult for diagnostic models to effectively extract 

them. Therefore, Gaussian white noise of varying magnitudes 

was added to the original fault data to simulate the noise 

environment encountered in daily production. Subsequently, the 

fault data was processed using feature extraction methods such 

as AEDFE, CEEMDAN, VMD, and EMD. In the comparative 

experiments, the CEEMDAN method decomposes multiple 

time series data files, with the parameter set to perform one 

screening per scale to improve computational efficiency. The 

first four intrinsic mode functions (IMFs) from the 

decomposition results are extracted for subsequent analysis, 

ensuring effective extraction and processing of the main signal 

features under noisy conditions. EMD decomposes single-

channel time series data, with a key parameter set to 3, limiting 
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the extraction to a maximum of three IMFs. The decomposition 

results are saved row-wise for convenient subsequent analysis. 

This parameter setting helps control the decomposition levels, 

avoiding over-decomposition while extracting the primary 

signal features. VMD decomposes multi-channel data from 

multiple CSV files with the following key parameters: 

balancing factor alpha = 2048 controlling the bandwidth of 

decomposition, noise tolerance tau = 0, number of modes K = 4, 

DC component off (DC = 0), initialization method init = 1, and 

convergence tolerance tol = 1e-6. VMD decomposition is 

performed on each input file, outputting four IMFs which are 

saved separately, ensuring effective extraction of multi-scale 

features from the signals. 

The processed data was then input into a 1D CNN for 

diagnosis, with each capture consisting of 2000 data points and 

moving the capture frame forward by 100 sampling points each 

time. The generated samples were randomly divided into 

training and testing sets in a certain proportion. The final 

diagnostic results of the different feature extraction methods are 

shown in Fig.11 to Fig.13. 

 

Fig. 11. Experimental results with -18 dB noise. 

 

Fig. 12. Experimental results with -12 dB noise. 

 

Fig. 13. Experimental results with -6 dB noise. 

From the bar comparison chart in Fig.11, it can be observed 

that the diagnostic model using the AEDFE method achieves an 

accuracy of 100%, which is an increase of 61.61% compared to 

the average accuracy of the other three feature extraction 

methods. Even when the training data is reduced to 30%, this 

method still maintains a diagnostic accuracy of 100%, showing 

an average improvement of 63.24% over the other methods. 

Furthermore, when using only 10% of the data for training, the 

accuracy reaches 99.98%, with an average improvement of 

77.64% compared to other methods. Fig.12 and Fig.13 also 

indicate improvements when -12 dB and -6 dB noise are added, 

respectively, compared to the other three methods. These results 

demonstrate that the AEDFE method excels in diagnosing DC-

DC circuit parameter faults under noisy conditions and 

maintains efficient feature extraction performance even with a 

limited sample size. 

Fig.14 to Fig.19 display the training processes of the 

AEDFE method and three comparison methods. As shown in 

Fig.14, Fig.16, and Fig.18, the diagnostic model trained with 

features generated by AEDFE achieved rapid convergence, 

reaching a testing diagnostic accuracy of 99.98%. In contrast, 

while the three comparison methods attained high training 

accuracy on the training data, their diagnostic accuracy on the 

test set was relatively low, with significant testing loss and 

difficulty achieving good fitting results. 
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Fig. 14. Test accuracy plot of the model during the training 

process with 10% of the data as input for the four different 

methods. 

 

Fig. 15. Test loss plot of the model during the training process 

with 10% of the data as input for the four different methods. 

 

Fig. 16. Test accuracy plot of the model during the training 

process with 30% of the data as input for the four different 

methods. 

 

Fig. 17. Test loss plot of the model during the training process 

with 30% of the data as input for the four different methods. 

 

Fig. 18. Test accuracy plot of the model during the training 

process with 70% of the data as input for the four different 

methods 

 

Fig. 19. Test loss plot of the model during the training process 

with 70% of the data as input for the four different methods. 
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During the model training process, the t-SNE (t-distributed 

Stochastic Neighbor Embedding) technique was applied to 

project feature images into a two-dimensional space to visualize 

the evolution of feature clustering across different convolutional 

layers. Fig.20 presents the visualization results of this process. 

At the initial stage of the model, the distribution of feature 

images is relatively chaotic, indicating a high degree of feature 

dispersion. However, as the convolutional layers progressively 

process the features, the extraction and aggregation of features 

lead to a more uniform distribution, and the clustering situation 

significantly improves. This result indicates that the 

convolutional layers play an important role in extracting fault 

features, making the feature representation more concentrated 

and clearer. 

F1 F2 F3 F4

F9 F10 F11 F12

F5 F6 F7 F8

F13 F14 F15 F16

Fig. 20. t-SNE Feature Visualization. 

By employing AEDFE for feature extraction, the diagnostic 

model achieved a perfect training accuracy of 100.00% and  

a validation accuracy of 99.98%, demonstrating superior 

generalization performance. Compared with the other three 

feature extraction methods, the proposed approach exhibited  

a significant improvement in validation accuracy, particularly 

under small-sample conditions. The competing methods 

suffered from severe overfitting due to limited training data, 

leading to a sharp decline in testing accuracy. In contrast, our 

method maintained high accuracy in both training and testing 

phases, even in noisy and small-sample scenarios, highlighting 

its robustness. 

6. Conclusion 

In modern DC-DC converter fault diagnosis, accurately 

identifying parametric faults is crucial for ensuring device 

reliability and performance. However, existing feature 

extraction methods often face insufficient extraction 

capabilities in strong noise environments and small sample sizes, 

which negatively impacts diagnostic accuracy. To address this 

challenge, this study proposes an innovative AEDFE method. 

This approach effectively enhances the differentiation between 

features of various parametric faults by accurately extracting 

spatial characteristics from fault signals, significantly 

improving diagnostic accuracy. 

Experimental results demonstrate that the proposed AEDFE 

method achieves perfect fault diagnosis accuracy (100%) even 

in strong noise environments, outperforming the three baseline 

methods by an average margin of 61.61%. Notably, when the 

training data size is reduced to only 10% of the original dataset, 

AEDFE still maintains a near-perfect accuracy of 99.98%, 

surpassing the comparative methods by 77.64%. These findings 

not only confirm AEDFE's exceptional noise immunity but also 

demonstrate its remarkable robustness in data-scarce scenarios. 

Consequently, AEDFE offers a highly reliable and efficient 

solution for high-precision fault diagnosis in DC-DC converters, 

showcasing substantial practical value and broad application 

potential in industrial settings.
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