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Highlights  Abstract  

▪ Missing data & wavelet denoising ensure 

reliable preprocessing. 

▪ Subdomain adversarial network enables cross-

condition fault classification. 

▪ Wear severity scoring with multi-level warnings 

for proactive maintenance. 

▪ High-accuracy monitoring for complex internal 

raceway wear. 

▪ Vibration-based method outperforms traditional 

visual inspections. 

 The yaw bearing of wind turbine is large in size and complex in 

structure, and the raceway is located inside the bearing, so the 

traditional monitoring methods, such as the machine vision inspection 

method, or the use of some auxiliary tools, such as endoscopy, etc., can 

only carry out local inspection, and they can't set a reasonable 

reference threshold for faults and categorize the fault characteristics, 

which results in the inaccuracy of detecting the internal wear faults of 

the raceway. For this reason, an algorithm is proposed to monitor the 

large-area deep wear faults of the yaw bearing raceway of wind 

turbine. The accelerometer (vibration sensor) is selected to collect the 

bearing state data, and the missing value interpolation is implemented 

to complete the bearing state data; then the data collected is denoised 

by the improved wavelet modal maxima denoising algorithm; Based on 

this, the joint sub-domain adaptive adversarial migration network 

establishes a classification model of the bearing fault feature extraction, 

extracts the wear and tear fault features of the bearing, and constructs a 

diagnostic model to classify and recognize the extracted features; At 

the same time, according to the degree of wear of the bearing to set the 

wear severity level, establish early warning mechanism, and after the 

classification of the failure to carry out the wear level scoring, to find 

out the corresponding wear level, to complete the monitoring and 

warning. The experimental results show that when the algorithm is 

utilized to complete the bearing wear monitoring, the denoising effect 

of the bearing state data is obvious, and the monitoring accuracy is 

very high. 
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1. Introduction 

Under the background of global energy structure 

transformation and sustainable development strategy, wind 

power, as a clean and renewable form of energy, is being 

popularized and applied worldwide at an unprecedented speed 

[1-2]. As one of the core components of wind power generation 

system, the yaw bearing bears the key tasks of supporting the 

wind wheel, transmitting torque and realizing the adjustment 

of the wind wheel with the wind direction, and its 
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performance and reliability are directly related to the overall 

efficiency, operation life and maintenance cost of the wind 

turbine. However, with the continuous expansion of wind 

farm scale and the prolongation of operation time, the wear 

problem of yaw bearing, especially the large area deep wear in 

the raceway area, has become an important bottleneck 

restricting the further development of wind power generation 

technology and the improvement of economic benefits. The 

wear problem of yaw bearings has significant particularities 

compared with main shaft bearings or gearbox bearings, 

mainly reflected in their dynamic load characteristics and 

operating conditions. Yaw bearings need to withstand 

intermittent impact loads caused by frequent start-stop cycles, 

as well as dynamic yaw moments caused by asymmetric wind 

loads. This alternating stress will accelerate the contact fatigue 

on the raceway surface. Meanwhile, the low-speed and heavy-

load characteristics of the yaw system make it difficult for the 

lubricating film to form stably, resulting in a combined 

damage mode of adhesive wear and abrasive wear on the 

raceway. In addition, the intermittent fretting wear of the yaw 

bearing (caused by the swing of the wind wheel) will further 

aggravate the spalling at the raceway edge, which is 

essentially different from the continuous rotational wear of the 

main shaft bearing or the high-frequency meshing wear of the 

gearbox bearing. 

The working environment of yaw bearings is extremely 

harsh, not only to withstand the extreme weather conditions of 

the huge load and complex stress, but also need to face the 

sand, dust, salt spray and other corrosive substances, these 

factors together accelerate the fatigue and wear process of 

bearing materials [3-4]. Raceway as the most vulnerable parts of 

the bearing, the degree of wear is directly related to the 

bearing's rotational accuracy, vibration characteristics and 

service life. Once the raceway is deeply worn over a large 

area, it will not only lead to bearing failure, but also trigger 

chain reactions, such as gearbox damage, main shaft bending, 

etc., which will seriously affect the stability and safety of the 

wind turbine and increase the unplanned downtime and 

maintenance costs. 

In summary, the wear of wind turbine yaw bearing 

raceway not only affects the bearing capacity and service life 

of the yaw bearing, but also may lead to the increase of 

vibration and noise of the whole wind turbine, and even cause 

serious mechanical failure, resulting in huge economic losses. 

Therefore, real-time monitoring and diagnosis of the large-

area deep wear of wind turbine yaw bearing raceway is of 

great significance to improve the stability and reliability of 

wind turbines and reduce the operation and maintenance cost. 

The diagnostic method based on motor current signal 

analysis (MCSA) in the literature [5] is unable to diagnose the 

minor faults of the rolling bearing outer raceway, and there is 

the problem of diagnostic failure under no-load or light-load 

operation conditions of the motor. In this regard, we propose  

a diagnostic method for the fault diagnosis of asynchronous 

motor rolling bearing outer raceway based on the rotational 

frequency multimodulation components of the stator current 

signal. Firstly, multiple frequency band modulation 

components are determined according to the rotational 

frequency; then the stator current signal is analyzed by 

continuous refinement Fourier transform near each rotational 

frequency modulation component; the fault index is 

determined according to the amplitude of multiple rotational 

frequency modulation components under normal and fault 

conditions; finally, the fault index is used to determine 

whether the fault occurs or not to realize the fault monitoring. 

Due to the serious redundancy of the algorithm parameters in 

the Fourier transform of the current signal, the method has a 

low performance in fault monitoring. 

Literature [6] method firstly analyzes the acoustic 

vibration of the equipment unit, and improves the singular 

value decomposition denoising method by fusing the similar 

soft thresholds, so as to effectively eliminate the inherent 

noise interference of the non-contact sensors; Secondly, it 

proposes the inverse Barker spectral transform method, and 

extracts the acoustic and vibration feature maps of the unit 

bearings by combining the Barker spectral transform with the 

Gram's angle and the field transform and other characteristic 

engineering techniques; by fusing the relative position 

encoding self By integrating the self-attention mechanism of 

relative position encoding and depth-separable convolution, a 

feature map transfer network is established; At the same time, 

a time-series data transfer network is constructed by using the 

multi-head self-attention mechanism and bi-directional long- 

and short-term memory network, and a parallel grid 
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architecture is used to construct a fault diagnosis model of the 

unit bearings, and the bearing state data is collected and 

inputted into the model, and then based on the output of the 

model training, the existence of faults is monitored, and the 

types of faults are determined, so as to complete the 

monitoring of the wear faults. The method neglects the 

interference caused by the external influencing factors of 

bearing operation when extracting the bearing acoustic pattern 

characteristics, so the method has lower monitoring accuracy 

when monitoring bearing wear faults. 

Literature [7] method firstly adopts the overlapping 

sampling method to enhance the one-dimensional time series 

data; then uses the Markov transformation field method to 

convert the one-dimensional time series data into two-

dimensional image representation; then constructs a snake 

network for wear monitoring and introduces the migration 

learning technique to optimize the network structure; Finally, 

inputs the two-dimensional images into a neural network 

model to provide the two-dimensional image samples and 

retains the time domain information, and then builds and 

trains the ResNeXt and ResNeSt improved residual networks 

based on the migration learning fine-tuning process to classify 

the fault images and realize the fault diagnosis, and complete 

the wear monitoring. Due to the mismatch between the 

migration learning parameters and the network structure when 

the migration learning principle is introduced, the method is 

ineffective in bearing wear monitoring. 

Literature [8] method first established a forced lubrication 

rolling bearing rotor test bench, artificial introduction of high 

hardness non-ferrous metal contaminants to accelerate the 

occurrence of pitting and spalling; the use of the relevant 

sensors on the bearing movement vibration signals, 

temperature and other state data synchronized collection; the 

data signal decomposition process, based on the 

decomposition results to extract bearing wear characteristics, 

build wear feature set; for bearing wear to build wear level, 

build a wear monitoring model will be input into the model, 

the model training results and different levels of threshold 

comparison, to determine the severity of bearing wear, 

complete the bearing wear monitoring. Wear level is 

constructed for bearing wear, a wear monitoring model is 

constructed to input the features into the model, and the 

training results of the model are compared with the thresholds 

set for different levels to determine the severity of bearing 

wear and complete the monitoring of bearing wear. Due to the 

large number of noisy data signals in the process of collecting 

state data signals, the detection effect of this method in 

bearing wear monitoring is not satisfactory. 

Based on the above mentioned drawbacks in the bearing 

raceway wear fault monitoring process, an algorithm is 

proposed to monitor the large-area deep wear faults of the 

yaw bearing raceway of wind turbines. Vibration data are 

collected through accelerometers. After missing value 

interpolation and improved wavelet mode maximum 

denoising, the subdomain adaptive adversarial transfer 

network is used to extract fault features and classify and 

identify them, and a wear grade scoring and early warning 

mechanism is established. Since traditional methods assume 

that the noise follows a Gaussian distribution and is stationary, 

while the impact noise in the yaw bearing vibration signal has 

time-varying amplitudes and suddenness (such as the 

wideband transient response generated at the moment of 

raceway spalling). Fixed-threshold denoising may mistakenly 

filter out the fault impact components as noise, resulting in the 

loss of fault features. The improved modular maximum 

denoising algorithm can adaptively adjust the thresholds of 

each scale based on the local variance of the noise, avoid 

excessive suppression of the impact components, and 

effectively distinguish the noise (randomly occurring) from 

the fault characteristics (cross-scale correlated). 

2. Wind turbine yaw bearing state data signal 

acquisition and pre-processing 

The yaw bearing is one of the key components of the wind 

turbine, responsible for rotating the nacelle of the wind 

turbine to stand against the wind to achieve the best power 

generation efficiency. Wear of the yaw bearing raceway will 

directly affect the stability and safety of wind turbine 

operation [9-10]. By monitoring the wear of the yaw bearing 

races, potential failures can be detected and warned in time, so 

that repair or replacement measures can be taken in advance, 

avoiding the loss of power generation efficiency and the 

increase of maintenance costs caused by the failure and 

shutdown. At the same time, regular monitoring and 
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maintenance can also extend the service life of the wind 

turbine, improve its economic performance; at the same time, 

the monitoring of bearing raceway wear, but also for the 

repair and replacement work to provide an accurate basis for 

the analysis of the monitoring data to determine the degree of 

wear and failure of the bearings, so as to formulate targeted 

maintenance programs. This not only improves the 

maintenance efficiency, but also ensures the quality of 

maintenance and reduces the risk of equipment damage 

caused by improper maintenance. 

Based on the above analysis results, the yaw bearing 

raceway large-area deep wear fault monitoring of wind 

turbine is divided into three parts: bearing state data 

acquisition, raceway wear fault feature extraction and fault 

monitoring and warning. Among them, the bearing running 

process state data acquisition is the key link of the whole 

monitoring method, and the specific design is as follows: 

2.1. Bearing-related state data acquisition 

When monitoring the failure of yaw bearing raceway in large 

area and deep wear, it is necessary to select suitable sensors to 

collect the data of bearing operation process. As the bearing 

wears, the bearing wear will generate specific vibration 

frequencies, which may include the fundamental frequency of 

the bearing, harmonics and sidebands, etc. The vibration 

sensor can capture these frequency components to analyze the 

bearing's operating condition. 

Firstly, based on the WTG bearings in operation, vibration 

sensors and temperature sensors with permanent or portable 

magnetic bases are mounted on the bearing box for data 

acquisition [11-12]. 

Wind turbine yaw vibration signal acquisition mainly use 

piezoelectric accelerometer (vibration sensor) to expand and 

during the process of bearing work, the charge 𝑄 generated by 

the mechanical stress of the piezoelectric material for setting 

the accelerometer is proportional to the stress 𝐾𝑝 . The 

generation process of the charge is as follows: 

𝑄 = 𝐾𝑝 ⋅ 𝑎     (1) 

Where, the acceleration applied to the sensor itself is 

expressed as a form of 𝑎. 

After charge acquisition is completed, a charge amplifier is 

used and its amplification gain is set to 𝐺, by which charge is 

converted to voltage 𝑉𝑜𝑢𝑡 , the process is shown in the 

following equation: 

𝑉𝑜𝑢𝑡 = 𝐺 ⋅ 𝑄 = 𝐺 ⋅ 𝐾𝑝 ⋅ 𝑎    (2) 

Upon completion, signal conditioning is applied to the voltage 

to obtain the final bearing vibration data signal (electrical 

signal) 𝑉𝑓𝑖𝑛𝑎𝑙 . The results are shown in the following equation: 

𝑉𝑓𝑖𝑛𝑎𝑙 = 𝐻(𝑉𝑜𝑢𝑡) = 𝐻(𝐺 ⋅ 𝐾𝑝 ⋅ 𝑎)   (3) 

Where the signal transfer function is expressed as a form of 𝐻. 

2.2. Missing value interpolation 

Due to the vibration sensor to collect the bearing state data 

information, based on the sensor's own interference, the data 

collected will be partially missing, so after the collection of 

data, you need to use the appropriate algorithms for the data 

collected to implement the missing value interpolation 

processing. 

The definition of data missingness varies in different fields, 

and for bearing state data, in order to avoid confusion, the 

sparsity of the dataset is used to describe the data missingness. 

Sparsity refers to the ratio of the number of non-missing units 

in a data set to the total number of units. The sparser the data 

set, the smaller the sparsity value, the corresponding missing 

degree value is larger, generally considered the sparsity of 0.5 

or less is called a sparse data set. 

2.2.1. Data clustering 

Due to the existence of missing values and the incomplete 

data structure, directly filling in the missing values will result 

in poor filling effects due to the complexity and uncertainty of 

the data distribution. The fuzzy C-means clustering algorithm 

is adopted to cluster the collected state data, which can group 

the data with similar features into one category, making the 

data within the same category closer in terms of distribution 

and features. When filling in the data subsequently, by taking 

advantage of the characteristics within the data clusters after 

clustering, appropriate reference attribute variables are 

selected based on correlation to fill in the missing values. 

Within the data clusters after clustering, the reference attribute 

variables with the highest correlation to the attribute variables 

to be filled can be found more accurately. Because clustering 

makes the data have a stronger correlation within a local range, 

the selection of reference attribute variables is more 

reasonable. Thus, the average ratio can be calculated more 
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accurately based on the local characteristics of the data after 

clustering, achieving more effective filling of missing values. 

Therefore, clustering is performed before imputation. By 

rationally grouping the data, clustering provides a more 

reliable data basis for the subsequent imputation based on the 

average ratio method of correlation, assists and influences the 

subsequent imputation process, and effectively improves the 

accuracy and rationality of missing value imputation. 

Firstly, the fuzzy C-mean clustering algorithm is used to 

implement the clustering process for the collected state data. 

The process is as follows: 

Step 1: Based on the collected 𝑚 bearing status data, first 

determined 𝑐  number of clusters, initialize the affiliation 

matrix 𝑈(𝑟), and make it satisfy the condition of the following 

equation, labeling the iterative process as 𝑟 = 0,1,⋯ , as 

shown in the following equation: 

{
∑ 𝑢𝑖𝑗
𝑐
𝑖=1 = 1; ∀𝑗 = 1,⋯ ,𝑚

∑ 𝑢𝑖𝑗
𝑐
𝑖=1 > 0; ∀𝑖 = 1,⋯ , 𝑐

   (4) 

Where, the membership of the 𝑖 th sample 𝑥𝑖 belonging to the 

central point of the 𝑗 th cluster 𝑐𝑖 is expressed with 𝑢𝑖𝑗. 

Step 2: Based on the affiliation matrix 𝑈(𝑟), calculate the 

center 𝑐(𝑘, 𝑑) of clustering of the data, the process is shown 

in the following equation: 

𝑐(𝑘, 𝑑) =
∑ 𝑢𝑖𝑘

𝑛 𝑥𝑖,𝑑
𝑚
𝑖=1

∑ 𝑢𝑖𝑘
𝑛𝑚

𝑖=1

    (5) 

Where, the membership of the sample 𝑥𝑖 to the cluster center 

𝑐𝑘 is expressed as 𝑢𝑖,𝑘, and the 𝑑 dimensional sitting mark of 

the corresponding sample 𝑥𝑖 is made as 𝑥𝑖,𝑑, the total number 

of samples is denoted as 𝑚, the fuzzy factor is denoted as 𝑛. 

Step 3: According to the current clustering center, update 

the affiliation matrix, the process is shown in the following 

equation: 

𝑈𝑖𝑘 = 1/∑ (
‖𝑥𝑖−𝐶𝑘‖

‖𝑥𝑖−𝐶𝑗‖
)

2

𝑛−1𝑐
𝑗=1    (6) 

Where, the representation vector of the 𝑖 th data is denoted as 

𝑥𝑖 , the 𝑘  th cluster center is denoted as 𝐶𝑘 , the 𝑗 th cluster 

center is denoted as 𝐶𝑗 , and the Euclidean distance between 

the data and the cluster center is denoted as ‖𝑥𝑖 − 𝐶𝑘‖, the 

fuzzy factor is denoted as 𝑛. 

Step 4: Repeat the above steps 2 and 3 until the stopping 

criterion is satisfied and the data clustering is realized. 

2.2.2. Populated data 

After completing the clustering of the data, the data were 

populated using the average ratio method, as shown in the 

following equation: 

Step 1: Firstly, the correlation calculation is used to obtain 

the correlation of the attribute variables of the bearing state 

dataset within the clustered data clusters; 

Step 2: Select attribute variables that contain one or more 

missing values: 𝑍1 (attribute variable to be populated). 

Step 3:Select the reference attribute variables (additional 

variables), which satisfy the highest correlation with 𝑍1, and 

contain complete values or at least does not have the same 

missing value relative to 𝑍1, denoted as 𝑍2; 

Step 3: Calculate the average ratio 𝐴𝑅𝑉 of the variables. 

the process is shown in the following equation: 

𝐴𝑅𝑉 = 1/𝑛∑ (𝑍𝑖2, 𝑍𝑖1)
𝑛
𝑖=1 (7) 

In the formula,𝑛indicates the number of samples in the 

data cluster that do not contain missing values, 𝑍𝑖1, 𝑍𝑖2 

denotes the 𝑖 th taken value of the attribute variable 𝑍1, 𝑍2; 

Step 5: Calculate the padding value, during the process, if 

the ratio is calculated by (𝑍1/𝑍2), then the missing value of 

the attribute 𝑍1  is computed as 𝑍2 ∗ 𝐴𝑅𝑉 , if the ratio is 

calculated by (𝑍2/𝑍1), then the missing value of the attribute 

𝑍1 is computed as 𝑍2/𝐴𝑅𝑉; 

Step 6: Repeat the above steps until all the missing values 

of each attribute variable are filled in, i.e. the missing value 

interpolation of the bearing state data is completed. 

For the attribute variable 𝑍1  containing multiple missing 

values, the method of sequential filling is adopted. Each time 

when filling, according to the process of steps 1 to 5, the 

average ratio 𝐴𝑅𝑉 is calculated using the reference attribute 

variable 𝑍2 with the highest correlation to 𝑍1 and no identical 

missing values, and then the missing value filling value of the 

𝑍1 attribute is calculated. After completing the filling of one 

missing value, update the data set and repeat the above steps 

for the next missing value until all the missing values in 𝑍1 

have been filled. Since the filling process will change the 

overall distribution of the data set and the correlation between 

variables, each filling will be affected by the previously filled 

values. In subsequent steps such as the selection of reference 

attribute variables and the calculation of the average ratio, the 

impact brought by this change will be reflected, thereby 
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making the filling process more in line with the actual 

situation and coherent. This clearly expounds the mutual 

influence relationship among multiple missing values. 

2.3. Pre-processing of bearing state data signal 

Due to the use of sensors to collect wind turbine yaw bearing 

vibration and temperature data, the sensor itself there is a 

certain amount of interference, the collection of data signals 

will be mixed with a large number of noise signals, so it is 

necessary to implement the de-noising process to improve the 

signal quality of the collected data signals. 

During the process, CEEMDAN algorithm is used to 

decompose the collected bearing vibration data signals, and 

the inherent modal components of the decomposed signals are 

obtained to carry out the improved wavelet maxima denoising, 

which approximates the useful signals and realizes the quality 

enhancement of the bearing state data signals [13-14]. 

2.3.1. Signal decomposition of bearing state data 

The EMD algorithm can decompose any signal into a number 

of intrinsic modal components (IMF) and a residual residue, 

the IMF frequency from high to low, and the residual residue 

is monotonous. Gaussian white noise has a uniform power 

spectral density. Its addition can cause differentiated 

disturbances in the similar frequency components of the 

original signal. According to the extreme point screening 

characteristics of EMD, this disturbance can effectively 

separate the originally overlapping instantaneous frequency 

components (that is, solve the modal aliasing). Through 

multiple averaging processing of positive and negative noise 

pairs, the IMF components of the noise itself will cancel each 

other out, while the IMF components of the true signal are 

retained, thereby significantly reducing the residual noise and 

improving the decomposition accuracy. For this reason,the 

CEEMDAN algorithm adds the positive and negative 

Gaussian white noise of each order of the IMF components 

decomposed by the EMD in the decomposition process, which 

can eliminate the problem of modal overlapping to a large 

extent, improve the decomposition efficiency, and reduce the 

noise residual and reconstruction error. residual noise and 

reconstruction error. 

CEEMDAN is broken down in the following steps: 

Step 1: Add 𝐾 Gaussian white noise signal to the original 

signal, and the state data signal 𝑥𝑖(𝑡) after noise addition is as 

follows: 

𝑥𝑖(𝑡) = 𝑥(𝑡) + (−1)𝑚𝜔0𝜀
𝑖(𝑡); 𝑖 ∈ 1,2,⋯ , 𝐾;𝑚 ∈ {1,2}(8) 

Where, the noise factor is expressed as a form of 𝜔0 , 

independent positive and negative paired Gaussian noise 

signals with variance 1 are formulated as (−1)𝑚𝜔0𝜀
𝑖(𝑡), the 

number of independent positive and negative pairs of 

Gaussian noise is denoted by 𝑚. 

Step 2: For each 𝑥𝑖(𝑡), which is decomposed using the 

EMD decomposition algorithm to obtain the first of the data 

signals 𝐼𝑀𝐹1, and set the total number of 𝐼𝑀𝐹1 is 𝐾, for 𝐾 

individual 𝐼𝑀𝐹1 mean value expand calculation 𝑐1(𝑡), and by 

calculating the difference between the result and the original 

data signal 𝑥(𝑡), the first residual signal 𝑟1(𝑡) is obtained, as 

follows: 

{
𝑐1(𝑡) =

1

𝐾
∑ 𝑐1

𝑖𝐾
𝑖=1

𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡)
    (9) 

Step 3: Decompose the residual signal 𝑟1(𝑡) +

𝜔1𝐸1(𝜀
𝑖(𝑡)) of the added noise, where, 𝐸𝑗 represents the 𝑗th 

IMF2 component obtained from the EMD decomposition 

result after adding Gaussian white noise. After decomposition, 

there are still a number of 𝐾 individual 𝐼𝑀𝐹2,and then expand 

the average 𝑐2(𝑡)  of these 𝐾  individual 𝐼𝑀𝐹2  to calculate. 

The results are as follows: 

𝑐2(𝑡) =
1

𝐾
∑ 𝐸1(𝑟1(𝑡) + 𝜔1𝐸1(𝜀

𝑖(𝑡)))𝐾
𝑖=1   (10) 

Step 4: Repeat step 3 above until the residual fraction 

𝑟𝑛(𝑡)  is not possible to proceed to the next step of 

disaggregation, i.e. The number of extreme points 𝑟𝑛(𝑡) is less 

than 2; at this point, set acquires a number of 𝐾 individual 

𝐼𝑀𝐹  component 𝑐𝐾(𝑡) , with the remaining residuals set to 

𝑅(𝑡) , i.e., the original signal 𝑠(𝑡)  is expressed in the 

following equation: 

𝑠(𝑡) = ∑ 𝑐𝐾(𝑡) + 𝑅(𝑡)
𝐾
𝐾=1    (11) 

2.3.2. Wavelet maxima denoising 

(1) The principle of wavelet mode maxima denoising 

The Lie index is a mathematical measure that characterizes 

the local features of a function. The Lee's exponent of a 

function at a point characterizes the size of the singularity at 

that point, the larger the exponent, the higher the smoothness 

of the point, the smaller the exponent, the larger the 

singularity at that point. Usually, the Lee's index of impulse 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

noise and white noise appearing in one-dimensional signals 

are less than -1/2, and the singularity is larger. When the index 

𝛿 is greater than 0, the extreme value of the wavelet transform 

increase with the increase of decomposition scales 𝑗; when 𝛿 

is less than 0, the extreme value of the wavelet transform 

decreases with the increase of the decomposition scales 𝑗. It 

can be seen that the mode maximum of the wavelet coefficient 

obtained by the signal point increases with the increase of the 

decomposition scale 𝑗 , while the mode maximum of the 

wavelet coefficient obtained by the noise point decreases with 

the increase of the decomposition scale 𝑗, which should be 

filtered out. 

Bearing vibration signal and noise signal in different 

scales under the wavelet changes show different 

characteristics, can use this different characteristics to set a 

certain threshold to filter out the noise signal, and then the 

remaining wavelet decomposition of the signal reconstruction 

to realize the signal denoising. 

In terms of the threshold estimation method, an adaptive 

threshold strategy based on the statistical characteristics of 

noise is adopted. Statistical analysis was conducted on the 

noise wavelet coefficients of each scale 𝑗. Assuming that the 

noise follows a generalized Gaussian distribution, according 

to the general threshold criterion, a scale correlation 

correction factor is introduced to dynamically adjust the initial 

threshold. This multi-scale adaptive mechanism can 

effectively distinguish the impact components of bearing 

faults (manifested as the modulus maxima correlated across 

scales) from random noise (occurring only at a single scale). 

The specific calculation process is as follows: 

𝑇𝑗 = 𝛼𝑗 ⋅ 𝜎𝑗 ⋅ √2 𝒍𝒏𝑁 ⋅ 𝑠(𝑡)   (12) 

In the formula, 𝑁  represents the signal length, 𝛼𝑗 

represents the scale correlation correction factor, 𝜎𝑗 represents 

the median estimate of the wavelet coefficient of the 𝑗 layer. 

(2) An improved wavelet mode-maximization denoising 

algorithm 

Accurately obtaining the wavelet mode maxima requires 

constructing a domain around the mode maxima to perform 

the mode maxima tracking. Therefore, constructing an 

effective field is an important factor affecting the tracking 

speed. In order to improve the efficiency of tracking the 

wavelet mode maxima of useful signals, wavelet shrinkage is 

utilized to remove the mode maxima corresponding to certain 

noises, and then the mode maxima points at each level are 

tracked according to the wavelet mode maxima propagation of 

the signals. The wavelet thresholds for each level are 

estimated based on the wavelet coefficient distributions of the 

signal and noise at different levels. The threshold value is 

used to obtain the wavelet transform mode maxima of the 

signal, reduce the number of fields to be tracked, and control 

the effective field range appropriately, so as to improve the 

tracking efficiency. 

The selection of the threshold function, the traditional hard 

threshold function 𝑑𝑗,𝑘
𝑦,∧

, the soft threshold function 𝑑𝑗,𝑘
𝑟,∧

 and 

the Garrote function 𝑑𝑗,𝑘
𝐺,∧

 are generally selected, as shown in 

the following equation: 

{
 
 
 
 

 
 
 
 𝑑𝑗,𝑘

𝑦,∧
= {

𝑑𝑗,𝑘; |𝑑𝑗,𝑘| ≥ 𝜆

0; |𝑑𝑗,𝑘| < 𝜆

𝑑𝑗,𝑘
𝑟,∧ = {

𝑑𝑗,𝑘 − 𝜆sgn(𝑑𝑗,𝑘); |𝑑𝑗,𝑘| ≥ 𝜆

0; |𝑑𝑗,𝑘| < 𝜆

𝑑𝑗,𝑘
𝐺,∧ = {

𝑑𝑗,𝑘 −
𝜆2

𝑑𝑗,𝑘
; |𝑑𝑗,𝑘| ≥ 𝜆

0; |𝑑𝑗,𝑘| < 𝜆

   (13) 

Where, the signal wavelet estimation coefficients is described 

as a form of 𝑑𝑗,𝑘
∧ , the original wavelet coefficients is described 

as a form of 𝑑𝑗,𝑘, the threshold is chosen to be described as a 

form of 𝜆, the wavelet decomposition scale is denoted by 𝑗, 

the integer coefficients is denoted as 𝑘. 

When using the above threshold function for denoising, 

due to the hard threshold function to process the signal, the 

edge of the denoised signal is better, and can well retain the 

singularity of the useful signal, but due to the discontinuity of 

the function itself, it may lead to a large oscillation in the 

processed signal, resulting in a pseudo-Gibbs effect. The soft 

threshold function has a relatively good continuity of the 

processed signal, the denoising effect is smoother, but the 

overall wavelet coefficients and the original coefficients of the 

overall deviation of the original coefficients, which will make 

the signal of the high-frequency part of the signal is lost, 

resulting in the reconstruction of the signal distortion. The 

Garrote function combines the advantages of soft and hard 

threshold functions, which can not only maintain the 

continuity of the signal, but also retain the high-frequency 

information of the signal, overcoming the shortcomings of the 

soft and hard threshold functions. However, for the mutation 
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signal, its denoising effect is still insufficient. 

In order to solve the disadvantages of the above three 

threshold functions, an exponential threshold function is given. 

Considering the high order derivability of the natural 

exponential function, the natural exponent can be introduced 

into the threshold function to overcome the disadvantages of 

the hard threshold function. The exponential threshold 

function is shown in the following equation: 

𝑑𝑗,𝑘
𝑍𝑆,∧ = {

𝑑𝑗,𝑘 −
𝜆2

𝑑𝑗,𝑘
𝑄 ; |𝑑𝑗,𝑘| ≥ 𝜆

0; |𝑑𝑗,𝑘| < 𝜆

   (14) 

Where, the adjustment is described as a form of 𝑄. 

In the denoising process, because the mode maximum 

amplitude of the noise decreases at a binary rate as the scale 

increases, which results in the mode maximum points on the 

largest scale being controlled by the signal, while some 

smaller amplitudes may still be propagated by the noise 

maximum points on the lower scale, for this reason, the 

threshold 𝑇 is set for the maximum point on the maximum 

scale 2𝐽, the module maximum point below the threshold 𝑇 is 

removed, and the point noise mode maximum is dominant. 

The threshold 𝑇 is specifically in the 𝑇 = 𝑂
max|𝑑

2𝐽
𝑓(𝑥𝑖)|

𝐽
 form, 

where the 𝐽 layer wavelet coefficient of the signal is described 

in the 𝑑2𝐽𝑓(𝑥𝑖)  form and the constant coefficient in the 𝑂 

form. 

According to the threshold value determined above as well 

as the exponential threshold function, the noise of the signal is 

effectively filtered out, and signal denoising is realized 

through signal reconstruction to improve the signal quality [15-

16]. The specific process is shown in Fig. 1. 

Bearing status data signal 

with noise

CEEMDAN decomposition

High frequency 

IMF
Low frequency IMF

Wavelet modulus 

maximum denoising

Signal 

reconstruction

Obtain denoised 

signal
 

Figure 1. Flow chart of denoising bearing state data signal. 

3. Yaw bearing raceway extensive wear failure 

monitoring algorithm design 

For the collected vibration data signal after denoising, the 

bearing wear fault characteristics are extracted, and a 

diagnostic model is constructed to classify and recognize the 

extracted characteristics [17-18] at the same time, the wear 

severity level is set according to the bearing wear level, and 

an early warning mechanism is established to score the wear 

level of the classified faults, find out the corresponding wear 

level, and identify whether early warning is needed; finally, 

when the bearing raceway damage exceeds the early warning 

threshold, the early warning mechanism is activated to notify 

the maintenance personnel to replace the bearing for repair 

treatment, so as to realize the real-time monitoring of the 

large-scale wear faults of the yaw bearing raceway of wind 

turbine generators. 

3.1. Classification algorithm for bearing fault feature 

extraction 

After determining the bearing state, the vibration data signals 

collected from the unhealthy bearings are used to extract the 

fault characteristics of the bearings through the improved 

domain adversarial network. 

A bearing fault feature extraction classification algorithm 

model based on a subdomain-adapted adversarial migration 
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network [19-20] is proposed for bearing raceway wear 

monitoring. Firstly, a basic 1DCNN model is trained in pre-

training with sufficient source domain data to complete the 

depth mapping from the original vibration signals to the fault 

features; subsequently, an improved domain adversarial model 

is built in the adversarial training stage to learn the domain-

invariant features; The Wasserslein distance is introduced in 

the adversarial layer to measure the distance between the 

extracted features in the source and target domains, and to 

utilize the advantage of Wasserslein distance in the gradient to 

obtain stable training results. The local maximum mean 

deviation is introduced in the classification layer to measure 

the difference between the source and target domain data 

embedded in the relevant subdomains, in order to capture the 

fine-grained information of each category and adjust the 

distribution of the relevant subdomains under the same 

category. The domain-invariant features are learned in 

constant confrontation by maximizing the domain 

discrimination loss and minimizing the loss of the classifier 

and feature extractor. The adversarial learning process enables 

end-to-end unsupervised bearing fault migration diagnosis by 

introducing labeled source-domain migratable features into 

new and relevant target-domain diagnostic tasks without any 

labeled samples. 

The specific bearing fault feature extraction classification 

model is shown in Fig. 2. 
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Figure 2. Classification model for bearing fault feature extraction based on subdomain adaptive adversarial transfer network.  

Analyzing Fig. 2, it can be seen that the model is divided 

into three parts, including feature extractor, domain 

discriminator and classifier. The feature extractor is 

constructed by the basic CNN model, while the domain 

discriminator and classifier are constructed by 3-layer and 2-

layer shallow fully connected networks, respectively. In the 

feature extraction part, the 1DCNN model is used to 

automatically extract high-dimensional deep features from the 

preprocessed signals in both domains, and its parameters are 

shared and updated by the classifier, domain discriminator and 

the introduced LMMD computational module at the same 

time. In the domain discriminator part, WD is introduced to 

maximize the discriminator error. In the classification part, the 

cross moisture loss is used to minimize the source domain 

classifier error. The training process needs to be based on pre-

training, using the source domain data to train the feature 

extractors and classifiers to obtain the pre-training parameters, 

and loading the pre-training parameters into the SANN model 

to complete the initialization of the model parameters during 

the formal training. The specific process is as follows: 

3.2.1. Feature extraction 

In the feature extraction process, the above denoised bearing 

state data are input into the model, and the feature extraction 

module is designed as a 4-layer one-dimensional 

convolutional neural network, using the ReLU function as the 

activation function. For the one-dimensional vibration signals, 

in order to obtain a rich sensory field and better extract the 

global features of the signals, a large-inch convolution kernel 

is used for the 1st convolutional layer; a maximal pooling 

layer and adaptive pooling layer are added to the 2nd and 4th 

convolutional layers, respectively, for sampling operations to 

reduce the size of the parameter matrix, in which the output 

dimension of the adaptive pooling layer is 4. 

In order to enhance the generalization ability of the model 

and reduce the model complexity, a batch layer and a Dropot 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

layer are introduced, and a BN layer is added after each 

convolutional layer respectively, which effectively avoids the 

problem of gradient disappearance and improves the training 

speed of the model. The Dropot of the fully connected layer is 

set to 0.5, which effectively improves the generalization 

ability of the model. The specific parameter settings are 

shown in Table 1. 

Table 1. Network Structure of DCNN. 

Layer type 
Nuclear size and 

quantity 
Step 

Convolutional layer1 16*15 1 

Convolutional layer2 32*2 1 

Maximum pooling layer 2 2 

Convolutional layer3 64*3 1 

Convolutional layer4 128*3 1 

Adaptive pooling layer — — 

Fully connected layer 256 — 

Among them, the typical manifestation of raceway wear in 

yaw bearings is periodic impact signals, and the pulse width is 

positively correlated with the damage size. At a sampling rate 

of 20kHz, the impact pulse width of slight wear is 

approximately 15 to 20 sampling points. The first layer adopts 

a large convolution kernel design of 16*15. The width of  

a single convolution kernel can completely cover the time-

domain waveform of an impact event, avoiding feature 

truncation. Raceway wear can stimulate characteristic 

frequencies and their harmonic components, and different 

degrees of damage can lead to a redistribution of frequency 

energy. In the shallow network (Conv1-2), the small-step long 

volume volume of 16-32 channels focuses on the extraction of 

single-cycle impact patterns, corresponding to the capture of 

high-frequency components (2-8 KHZ). The maximum 

pooling layer (step size 2) enhances the significance of the 

impact amplitude by retaining local extremum values; In the 

deep network (Conv3-4), the convolutional layers of 64-128 

channels expand through receptive fields (up to 128 points), 

learn multi-period correlation patterns, and effectively capture 

low-frequency modulation features (<1kHz). The output 

dimension of the adaptive pooling layer is set to 4, 

corresponding to the classification of the degree of wear, 

forcing the network to establish a mapping relationship 

between the frequency band energy and the degree of failure. 

Considering that the traditional average pooling may blur the 

impact characteristics, this design adopts a hybrid pooling 

strategy. The peak amplitude of the impact is retained in the 

maximum pooling layer. In the adaptive pooling layer: the 

downsampling strategy is dynamically adjusted through 

learnable weights to avoid the frequency shift caused by 

rotational speed fluctuations. Due to the interferences such as 

rotational speed fluctuations and load changes in the on-site 

data, batch normalization is adopted to make the network 

focus on the relative energy distribution rather than the 

absolute amplitude, reducing the fluctuation of classification 

accuracy under variable rotational speed conditions. And by 

randomly shielding neurons, the network is forced to rely on 

both the time-domain impact characteristics and the 

frequency-domain harmonic distribution simultaneously, 

avoiding overfitting to a single mode. 

The convolutional layer is the core of CNN, which is used 

to extract the high dimensional features of the input, and 

consists of multiple convolutional kernels, when each kernel 

slides on the input mapping, it shares the weights and biases, 

and obtains the feature map by convolving the input signal 

with the convolutional kernel. After the convolution operation, 

the activation function is used to increase the nonlinear 

representation of the network. The output of the convolutional 

layer is: 

𝐶𝑛
𝑙 = 𝑓(∑ 𝑥𝑛

𝑙−1 ∗ 𝜔𝑛
𝑙 + 𝑏𝑛

𝑙𝑚
𝑖=1 )𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (15) 

Where, the ReLU activation function is expressed in the form 

𝑓(𝑥), the 𝑖 th feature graph output by the module 𝑙 − 1 layer 

is expressed in the form 𝑥𝑛
𝑙−1 , the 𝑛 convolution of the 𝑙  th 

layer is described as 𝜔𝑛
𝑙 , the shared bias is expressed in the 𝑏𝑛

𝑙  

form, and the nonlinear output of the 𝑛 feature graph of layer 

1 is described in the 𝐶𝑛
𝑙  form after the activation function 

mapping. 

In addition, the main role of the pooling layer is feature 

extraction. By removing the unimportant samples in the 

feature map, the number of parameters is further reduced, and 

overfitting is also controlled to a certain extent. Common 

pooling layers include maximum pooling and average pooling. 

As for the fully connected layer, the first part of the 

convolution and pooling is equivalent to the feature 

engineering, and the latter part of the fully connected layer is 

equivalent to the feature weighting, which plays the role of 

classifier in the whole convolutional neural network. Finally, 

after the Soflmax layer, the probability distribution of the 
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current sample belonging to different categories can be 

obtained. 

3.2.2. Adversarial training based on domain 

discriminators 

In this stage, Wasserslein distance can be introduced based on 

the network adversarial layer to carry out effective distance 

metrics on the features of the extracted source domain data 

and target domain data, and using the metric results, feature 

edge alignment can be realized, and the LMMD computing 

module can be introduced to obtain the fine-grained 

information of the feature categories to realize the conditional 

distribution alignment. 

(1) The Wasserslein distance metric 

The collected bearing status data is set into two sample 

types, source domain 𝑋𝑠 and target domain 𝑋𝑠, and the two 

samples are passed through the network parameter 𝜙𝑓 feature 

extractor 𝑟𝑓 , mapped into high-dimensional features, to 

generate source-domain features ℎ𝑠 = 𝑟𝑓(𝑥𝑠)  and the target 

domain characteristics ℎ𝑡 = 𝑟𝑓(𝑥𝑡). And order the distribution 

of the edges of ℎ𝑠  and ℎ𝑡  as 𝑃𝑠  and 𝑃𝑡 , the result of feature 

mapping for the source domain as well as the target domain 

for the setting domain discriminator 𝑟𝑑 are 𝑟𝑑(ℎ𝑠) and 𝑟𝑑(ℎ𝑡), 

and thus the calculations are carried out to the difference 

𝑊(𝑃𝑠, 𝑃𝑡) in feature distribution between the source and target 

domains by means of the WD algorithm as shown in the 

following equation: 

𝑊(𝑃𝑠, 𝑃𝑡) = 𝑠𝑢𝑝
‖𝑟𝑑‖≤1

𝐸ℎ𝑠∼𝑃𝑠[𝑟𝑑(ℎ𝑠)] − 𝐸ℎ𝑡∼𝑃𝑡[𝑟𝑑(ℎ𝑡)] (16) 

Where, the upper boundary is described as 𝑠𝑢𝑝 form, the role 

of "sup" is that it is effective for all domain discriminators that 

satisfy the conditions of the 1-Lipschitz continuous function. 

It is an operation used when calculating the difference in the 

feature distribution between the source domain and the target 

domain. In simple terms, it is to find an upper bound among 

the calculation results of numerous domain discriminators that 

meet specific conditions. This upper bound is involved in the 

quantification process of the difference in feature distribution 

between the source domain and the target domain, thereby 

helping to analyze the difference in feature distribution 

between the source domain and the target domain.The 

expectation of the value obtained by the 𝑟𝑑 from the feature ℎ𝑠 

randomly selected from the source domain feature distribution 

𝑃𝑠 is expressed in 𝐸ℎ𝑠∼𝑃𝑠[𝑟𝑑(ℎ𝑠)], and the expectation of the 

value obtained by the 𝑟𝑑  from the feature ℎ𝑡  randomly 

selected from the target domain feature distribution 𝑃𝑡  is 

expressed in 𝐸ℎ𝑡∼𝑃𝑡[𝑟𝑑(ℎ𝑡)] . The 𝑠𝑢𝑝 is valid for all those 

satisfied with the 1-Lipschitz continuous function 𝑟𝑑 , at this 

point, the empirical approximation 𝐿𝑤𝑑  of the WD is 

estimated as follows: 

𝐿𝑤𝑑 =
1

𝑛𝑠
∑ 𝑟𝑑 (𝑟𝑓(𝑥𝑠)) −𝑥𝑠∈𝑋𝑠

1

𝑛𝑡
∑ 𝑟𝑑 (𝑟𝑓(𝑥𝑡))𝑥𝑡∈𝑋𝑡

 (17) 

During the training process, the parameter of 𝑟𝑑  are 

continuously updated to ensure that the WD of the features in 

the source and target domains are maximized, whereas, the 

direction of parameter 𝑟𝑓 optimization is to minimize the WD 

of the features in the source and target domains to achieve the 

purpose of edge distribution adaptation. 

To solve the maximization optimization problem when 

satisfying the 1-Lipschitz continuum constraint. A spectral 

normalization method is used to solve the problem of 

discriminator oscillations during adversarial training, i.e., the 

BN method is normalized with spectral paradigms instead of 

the BN method at each layer of the discriminator network. 

When using spectral normalization in the discriminator 

network, the singular value decomposition is performed on the 

weight matrix of each layer of the network to obtain its 

maximum singular value as the spectral norm. Normalize the 

weight matrix to ensure that each layer mapping satisfies the 

constraint condition that the Lipschitz constant does not 

exceed 1; The spectral norm is efficiently estimated through 

the power iteration method. This method only requires 3 to 5 

iterations to converge, significantly reducing the 

computational overhead. Compared with batch normalization 

(BN), spectral normalization has two major theoretical 

advantages: First, it fundamentally avoids the gradient 

explosion problem by explicitly controlling the Lipschitz 

constant, while BN only performs implicit adjustment through 

empirical statistics; Secondly, maintain the stability of the 

discriminator's decision boundary. Specifically in the network 

implementation, a spectral normalization layer is inserted after 

each convolutional layer and fully connected layer of the 

discriminator, while the original BN layer and Dropout layer 

are removed. This design enables the discriminator to 

continuously provide a stable gradient signal during the 
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adversarial training process. 

(2) LMMD calculations 

The main focus of the adversarial domain adaptation 

network is on edge distribution alignment, while ignoring the 

relationship between two subdomains in the same category, in 

fact, the data of the same fault category have stronger 

correlation. When only focusing on edge alignment for 

adaptation, the subdomain features are too close to each other, 

while after conditional distribution adaptation, both global and 

subdomain features achieve distributional alignment. 

LMMD is introduced to solve the fine-grained problem 

under global alignment and realize the alignment of the same 

class of feature distribution, the alignment process is shown in 

the following equation: 

{
𝐿𝑐 =

1

𝐶
∑ ‖∑ 𝑤𝑖

𝑠𝑐𝜑(𝑥𝑖
𝑠)𝑥𝑖

𝑠∈𝐷𝑠
− ∑ 𝑤𝑗

𝑠𝑐𝜑(𝑥𝑗
𝑡)𝑥𝑖

𝑠∈𝐷𝑠
‖
𝐻

2
𝐶
𝑐=1

𝑤𝑖
𝑐 =

𝑦𝑖𝑐

∑ 𝑦𝑗𝑐(𝑥𝑗,𝑦𝑗)

 (18) 

Where, the corresponding weights of 𝑥𝑖
𝑠 , 𝑥𝑗

𝑡  belonging to 

category 𝑐 are described in the form of 𝑤𝑖
𝑠𝑐, 𝑤𝑗

𝑠𝑐, the number 

of fault categories is described by 𝑐 and the feature alignment 

coefficients in 𝜑. 

In setting the output of the sample feature extractor in the 

source and target domains as 𝑧𝑠𝑖  and 𝑧𝑡𝑖 , using the kernel 

function to map the two to regenerative and Hilbert spaces, 

and to compute the local maximum mean error 𝐿𝑐 of the 

sample features in the source and target domains. The results 

are shown in the following equation. 

𝐿𝑐=
1

𝐶
∑ [∑ 𝑤𝑖

𝑆𝐶𝑤𝑗
𝑆𝐶𝑘(𝑧𝑠𝑖,𝑧𝑠𝑗)

𝑛
𝑖,𝑗=1 +𝐶

𝑐=1

∑ 𝑤𝑖
𝑡𝑐𝑤𝑗

𝑡𝑐𝑘(𝑧𝑡𝑖,𝑧𝑡𝑗)
𝑛
𝑖,𝑗=1 −2∑ 𝑤𝑖

𝑠𝑐𝑤𝑗
𝑡𝑐𝑘(𝑧𝑠𝑖,𝑧𝑡𝑗)

𝑛
𝑖,𝑗=1 ]

  (19) 

3.2.3. Classifiers 

Finally, the aligned features are fed into the classifier. Based 

on the loss function 𝐿 of the classifier, the classification of 

characteristics is completed to determine the wear category of 

the bearing raceway. The specific classification process is 

shown in the following equation: 

{
𝑦𝑖,𝑐 = 𝐿(lg(𝑝𝑖,𝑐))𝑥𝑖,𝑗

𝐿 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐lg(𝑝𝑖,𝑐)

𝐶
𝑐=1

𝑁
𝑖=1

   (20) 

In the formula, the total number of collected bearing 

condition data is denoted by 𝑁 , total number of wear 

categories is denoted by 𝐶, the classifier prediction probability 

is formulated as 𝑝𝑖,𝑐 , the sample prediction results are 

described as a form of 𝑦𝑖,𝑐. 

3.3. Designing the early warning mechanism for yaw 

bearing wear in wind turbines 

Aiming at the type of yaw bearing failure, the different degree 

of bearing wear is combined to formulate a wear severity level 

of wind turbine yaw bearing raceway, and the results are 

shown in Table 2. 

Table 2. Wear grades of yaw bearing raceway for wind turbines. 

Wear grade State Score Describe 

1 Mild wear [0-0.3] 
Small area wear, not exceeding 10% of the total area of the 

raceway, with a depth less than 10 μ m 

2 Moderate wear and tear [0.3-0.5] 
Large area, accounting for 10% -30% of the total raceway 

area, with a depth between 10 μ m and 50 μ m 

3 Severe wear and tear [0.5-0.8] 
Wide area, accounting for 30% -50% of the total raceway 

area, with a depth ranging from 50 μ m to 100 μ m 

4 Disaster level wear and tear [0.8-1] 
The surface of the Extensive wear, exceeding 50% of the 

total area of the raceway and a depth of over 100 μ m. 

 

Based on the bearing raceway wear level designed in Table 

2, the level 2 moderate wear is set as the warning value, when 

the wear characteristics are determined, the fraction 

calculation is carried out, when the result 𝜌 ≥ [0.3 − 0.5], it 

indicates that the bearing races are worn over a large area and 

to a high depth, so it is necessary to issue an early warning 

and carry out replacement repairs. 

When unfolding the scoring computation for the classified 

wear features, it is assumed that extract 𝑛 fault characteristics, 

denoted as vector 𝑌 = {𝑦1 , 𝑦2, ⋯ , 𝑦𝑛}, with its corresponding 

labeling 𝑞 of the degree of bearing wear (This label may have 

been obtained through expert scoring, historical data, or other 

means). Our goal is to find a mapping function that will map 

𝑌  to a score 𝑆  of 𝑌 . The process of the specific wear 

characterization score 𝑆 is shown in the following equation: 

𝑆 = 𝑊𝑖 ∗ 𝑦𝑖 + 𝑏     (21) 
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Where, the weight of the 𝑖 th wear fault feature is expressed in 

a form of 𝑊𝑖, and the bias term is described in 𝑏. 

Finally, according to the calculated score, the wear level of 

the corresponding bearing raceway is found, realizing the 

real-time monitoring and warning of the large-area wear of the 

bearing raceway. 

4. Experiment 

In order to verify the overall effectiveness of the above 

bearing raceway wear monitoring method, it is necessary to 

test the method. 

The wind turbine yaw bearing raceway large-area deep 

wear failure monitoring algorithm (proposed method), A new 

method for diagnosing faults in the outer raceways of rolling 

bearings in asynchronous motors, Bearing fault diagnosis of 

pumped storage units considering combined acoustic-

vibration modes, A quantitative bearing fault diagnosis 

method based on MTF and improved residual network, Fault 

diagnosis for abnormal wear of rolling element bearing fusing 

oil debris monitoring are selected for comparative tests, to 

verify the feasibility of practical application of the proposed 

method in the monitoring of large-area wear of bearing 

raceways. 

During the experiment, the wind turbine of a city wind 

power station is selected as the test target, and a piezoelectric 

accelerometer and a temperature sensor are used to collect the 

state data of the yaw bearing of the wind turbine and integrate 

the collected data to construct a test sample data set. Among 

them, piezoelectric sensors have a wider effective frequency 

band and can better capture the low-frequency flutter and 

high-frequency impact signals unique to yaw bearings. Their 

high sensitivity and anti-electromagnetic interference 

characteristics make them particularly suitable for the 

complex electromagnetic environment inside wind turbine 

towers. In contrast, although piezoresistive sensors perform 

stably in the low-frequency range, their limited dynamic range 

and relatively low resonant frequency make it difficult to 

accurately characterize the high-frequency vibration 

characteristics caused by bearing raceway wear, and they are 

also susceptible to temperature drift. These limitations make 

them less applicable in scenarios that require wide-band 

monitoring, such as yaw bearings. During the test, the 

platform equipped with Ubuntu 20.04 LTS operating system 

to simulate the actual wind turbine operation state is used as 

the experimental environment, and the specific experimental 

parameters are set as follows: 

Bearing operating parameters: 

(1) Contact load: 10kN. 

(2) Swing angle: 0.8°8, 1.2°1, 1.5°4. 

(3) Oscillation frequency: 5Hz. 

(4) Experimental temperature: about 20℃. 

(5) Relative humidity: about 50%. 

(6) Number of experimental cycles: 10^3 times. 

AKG392 Piezoelectric Acceleration Sensor 

(1)Operating temperature:-196℃~+200℃; 

(2)Measuring range:0.001~800MPa. 

(3) Sensitivity: 0.21000PC/MPa. 

(4) Intrinsic frequency: 75~500kHz. 

Improvement of domain adversarial network 

parameterization: 

(1) Learning rate: 0.001; 

(2) Batch size: 128; 

(3) Number of training rounds: 50; 

After the parameters were set, based on the experimental 

parameters set above, five sets of data were selected from the 

test sample data set to test the detection effectiveness of the 

large-area deep wear monitoring method for bearing tracks. 

4.1. Test of denoising effect of bearing state data 

When carrying out the monitoring of large-area deep wear of 

bearing raceway, the bearing state data collection as the core 

foundation of wear monitoring, if the quality of the collected 

data is poor, it will directly affect the actual accuracy of the 

subsequent monitoring of bearing raceway wear. For this 

reason, A new method for diagnosing faults in the outer 

raceways of rolling bearings in asynchronous motorsproposed 

proposed in literature [5] is set up as the comparison method 1, 

Bearing fault diagnosis of pumped storage units considering 

combined acoustic-vibration modesmethod proposed in 

literature [6] is set up as the comparison method 2, A 

quantitative bearing fault diagnosis method based on MTF 

and improved residual networkproposed in literature [7] is set 

up as comparison method 3, Fault diagnosis for abnormal 

wear of rolling element bearing fusing oil debris monitoring 

https://xueshu.baidu.com/usercenter/paper/show?paperid=1f4s0eg06x2g0xr0k1540230q6564231&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1f4s0eg06x2g0xr0k1540230q6564231&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1f4s0eg06x2g0xr0k1540230q6564231&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1r5j0tj04r6v0gv0ur660cm0a6324910&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1r5j0tj04r6v0gv0ur660cm0a6324910&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1r5j0tj04r6v0gv0ur660cm0a6324910&site=xueshu_se
https://www.zhangqiaokeyan.com/academic-journal-cn_journal-northeastern-university-natural-science-edition_thesis/02012159548215.html
https://www.zhangqiaokeyan.com/academic-journal-cn_journal-northeastern-university-natural-science-edition_thesis/02012159548215.html
https://xueshu.baidu.com/usercenter/paper/show?paperid=1f4s0eg06x2g0xr0k1540230q6564231&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1f4s0eg06x2g0xr0k1540230q6564231&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1r5j0tj04r6v0gv0ur660cm0a6324910&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=1r5j0tj04r6v0gv0ur660cm0a6324910&site=xueshu_se
https://www.zhangqiaokeyan.com/academic-journal-cn_journal-northeastern-university-natural-science-edition_thesis/02012159548215.html
https://www.zhangqiaokeyan.com/academic-journal-cn_journal-northeastern-university-natural-science-edition_thesis/02012159548215.html
https://www.zhangqiaokeyan.com/academic-journal-cn_journal-northeastern-university-natural-science-edition_thesis/02012159548215.html
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proposed in literature [8] is set up as the comparison method 4, 

joint all these proposed method to carry out the bearing 

raceway large area wear monitoring, any one of the bearing 

state vibration signals in the test sample set is selected, and 

the denoising effect of the bearing state number obtained by 

the above different methods is tested, and the test results are 

shown in Fig. 3. 
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Figure 3. Test results of de-noising effect of bearing condition data by different methods. 

Analysis of Fig. 3 shows that, to carry out bearing raceway 

wear monitoring, comparison method 1, although to a certain 

extent to reduce the noise of the vibration data signal, but the 

denoising process of selecting the threshold function there are 

problems, ignoring the preservation of the signal time-

frequency information, so the method of the vibration data 

signal denoising, lost part of the normal signal in the 

frequency domain; Comparison method 2 and method 3, the 

denoising process ignores the continuity of the signal, so 

when the two methods in the denoising process, denoising 

effect is significantly lower than the proposed method 

denoising effect; Comparison method 4 due to the bearing 

fault diagnosis, did not design a targeted vibration data signal 

denoising content, so the method of denoising effect is not 

satisfactory; The proposed method is based on the traditional 

soft and hard threshold function structure, and improves a 

modified wavelet modal maxima denoising algorithm to 

denoise the collected vibration signals, so the method not only 

strips the noise in the signals completely, but also preserves 

the internal information of the normal signals. It can be 

proved that the proposed method is effective for bearing 

raceway wear monitoring. 

4.2. Bearing raceway wear category identification 

accuracy test 

When using the proposed method, comparing method 1, 

comparing method 2, comparing method 3, comparing method 

4 to carry out bearing wear fault monitoring, and then test the 

sample set, select 200 test samples, construct 5 groups of 

sample data, each group of data corresponds to a wear fault 

type, the specific bearing wear types of the above five 

methods are identified, and the identification effect is shown 

in Table 3. 
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Table 3. Test results of accuracy in identifying bearing wear categories using different methods. 

Test sample 

group 

Actual type of 

bearing wear 

Accuracy test results of bearing wear category recognition 

Proposed method 
Comparison 

method1 

Comparison 

method2 

Comparison 

method3 

Comparison 

method4 

1 Abrasive wear Abrasive wear Abrasive wear Abrasive wear Abrasive wear Abrasive wear 

2 Fatigue wear Fatigue wear Fatigue wear Fatigue wear Fatigue wear Adhesive wear 

3 Abrasive wear Abrasive wear Adhesive wear Abrasive wear Abrasive wear Corrosive wear 

4 Adhesive wear Adhesive wear Adhesive wear Corrosive wear Adhesive wear Corrosive wear 

5 Corrosive wear Corrosive wear Corrosive wear Adhesive wear Adhesive wear Corrosive wear 

 

Analysis of Table 3 shows that the proposed method can 

accurately identify the wear type of bearing raceway when 

carrying out bearing wear monitoring, mainly because the 

proposed method uses the clustering algorithm to interpolate 

the missing values of the collected bearing vibration data 

signals in advance to complete the bearing vibration data 

signals when monitoring the wear damage. Therefore, when 

the proposed method is utilized for bearing raceway wear 

monitoring, the accuracy of wear fault monitoring is better. 

4.3. Actual bearing raceway wear practical effect test 

Based on the above experimental results, we continue to use 

the above five methods to carry out raceway wear monitoring 

of bearings, and test the actual monitoring effect of different 

methods, and the test results are shown in Fig. 4. 
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Figure 4. Test results of actual wear monitoring effectiveness using different methods. 
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Analyzing Fig. 4, it can be seen that when carrying out 

bearing rolling wear monitoring, comparing method 1 due to 

the serious redundancy of the algorithm parameters in the 

Fourier transform of the current signal, the performance of 

this method is lower in fault monitoring; comparing method 2 

due to the extraction of bearing acoustic pattern characteristics, 

ignoring the interference of the external influencing factors of 

the bearing operation, so the method is lower in the 

monitoring accuracy when monitoring the bearing wear faults; 

comparing method 3 due to the introduction of the migration 

learning principle, migration learning parameters and its own 

network structure before the mismatch problem, so the 

method in the bearing wear monitoring, the monitoring effect 

is poor; comparison method 4 due to the collection of state 

data signal, the process of a large number of noise data signal, 

so the method in the bearing wear monitoring, the detection 

effect is not ideal; and the proposed method that before the 

raceway wear fault monitoring, aiming at the temperature data 

collected for the use of bearings, the health status of bearings 

is effectively identified. Therefore, this method has a good 

monitoring effect in the bearing wear monitoring. 

5. Conclusion 

As the main component of wind turbine power generation, it 

is important to monitor the raceway wear of the yaw bearing 

in wind turbines. Aiming at the problems existing in the 

traditional monitoring methods, an algorithm is proposed to 

monitor the large-area deep wear failure of the raceway of the 

yaw bearing in wind turbines. The method firstly collects the 

bearing state data and implements effective denoising process 

to increase the data quality; utilizes sub-domain adaptive 

adversarial migration network to establish a model for 

unhealthy bearings to carry out wear and failure feature 

extraction and classification process; finally, based on the 

wear warning mechanism, real-time monitoring of wear and 

tear to realize the large-area deep-wear monitoring of the 

bearing raceway. 
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