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Highlights  Abstract  

▪ Modeling the reliability of Cyber Physical 

System using local polynomial regression. 

▪ Discussed the reliability research of Cyber 

Physical System under fully masked data. 

▪ The masked data is allocated using 

multinomial distribution. 

 In this paper, the cyber physical system is divided into a software system 

and a hardware system, and both the software system and the hardware 

system each contain several subsystems. To solve the difficult problem 

of parameter estimation in parametric reliability models such as the non-

homogeneous Poisson process under masked data, this paper proposed 

an additive reliability model of cyber physical systems based on local 

polynomial regression under masked data. This model uses the 

multinomial distribution to allocate the masked data and employs the 

local weighted least squares method to solve the reliability model. 

Finally, by using a set of open-source software failure data and a set of 

simulation data in the cyber physical system, this paper conducts a 

performance comparison and analysis between the proposed non-

parametric reliability model and traditional reliability models. The 

empirical results show that the proposed reliability model performs 

better in terms of the fitting effect and demonstrates stronger 

applicability and superiority. 
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1. Introduction 

In the current period of swift information technology 

advancement, the Cyber Physical System (CPS), as a key 

component of modern science and technology, is being 

increasingly widely applied in various fields. CPS realizes the 

in-depth integration of the physical world and the digital world 

through the deep fusion of communication, control and 

computing technologies. However, in practical applications, the 

reliability issues of CPS have become increasingly prominent 

and have become a key factor restricting its wide application. 

Especially in an environment with masked data, due to the 

complexity among the internal components of the system and 

the dynamic changes of the external environment, traditional 

reliability assessment methods find it difficult to accurately 

disclose the true situation of the system. 

In the field of reliability engineering, accurately evaluating 

and predicting the reliability of a system is of crucial 

significance for ensuring its performance, improving safety and 

reducing costs. For example, power systems are confronted with 

strong uncertainties such as the intermittency of renewable 

energy sources, abrupt load changes, and equipment failures. 
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Traditional parametric models are prone to evaluation failures 

due to assumption biases. In contrast, nonparametric methods 

build models directly based on data, enabling more flexible 

handling of various data scenarios and the extraction of inherent 

reliability information from the data, thus providing a novel 

approach for reliability assessment. Xu et al.[1] proposed a new 

non-parametric density estimation method to derive and 

reconstruct the unknown distribution of the limit state function 

for reliability analysis. Li et al.[2] applied gene expression 

programming to non-parametric software reliability modeling. 

Barghout[3] put forward a new non-parametric model which 

considers the long-term trend and local behavior of reliability 

growth separately. The moving average method is used to 

capture the trend, while the local behavior is evaluated by the 

kernel estimator, and in this way, a software reliability model is 

established. When modeling software reliability, Wang et al.[4] 

et al. estimated the failure intensity function of the non-

homogeneous Poisson process model through the constructed 

non-parametric method while taking into account the 

particularity of software failure data. Gweon et al.[5] et al. 

introduced a nearest neighbor-based recalibration method 

which aims to improve the reliability of probability classifiers 

in multi-class problems. Yu et al.[6] introduced a new method for 

adaptively reconstructing the unknown distribution of complex 

limit state functions and achieved structural reliability analysis 

through a non-parametric density estimation approach using 

harmonic transformation. Roy et al.[7] et al. developed a support 

vector regression model tailored for structural reliability 

analysis, they achieved this by addressing an optimization sub-

problem, which aimed to reduce the mean square error value 

derived from the cross-validation technique to its minimum. Hu 

et al.[8] et al. proposed a kernel density estimation method, 

which is a non-parametric method for estimating the probability 

density function of wind speed, to conduct the reliability 

assessment of power generation systems. 

The integrity and accuracy of data are crucial for 

constructing reliable reliability models. However, in practical 

situations, the situation of masked data is often encountered. 

The existence of such data has brought numerous challenges to 

the construction and analysis of reliability models, but it has 

also spurred many scholars to conduct in-depth research on 

reliability models under masked data. Cai et al.[9] estimated the 

reliability functions of systems and components under the usage 

stress level based on Type-I progressively hybrid censored data 

and masked data. Liu et al.[10] estimated the reliability of 

systems and components at specific time points based on the 

Lindley distribution with tampered failure rate model for 

masked system lifetime data. Sarhan et al.[11] calculated the 

reliability of system components through maximum likelihood 

estimation and Bayesian estimation based on masked system 

lifetime test data. In addition, Zhao et al.[12] proposed an 

additive non-homogeneous Poisson process model to describe 

the failure process of wireless sensor networks with subnets 

under masked data. Sarhan et al.[13, 14] considered the parameter 

estimation problem of component reliability in multi-

component systems based on the situation where there are 

correlated masked system lifetime test data. Yang et al.[15] 

proposed a framework for an open-source software reliability 

growth model with masked data considering the failure 

detection and correction process, and a new expected least 

squares method was used to solve the parameter estimation 

problem. Zheng et al.[16], in order to evaluate the reliability of 

embedded systems more accurately, proposed an additive 

reliability model for software and hardware systems with 

masked data and failure correlation. Liu et al.[17]  proposed  

a non-parametric Bayesian analysis method for correlated 

masked data under accelerated life tests with censoring and 

conducted reliability analysis. Kuo et al.[18] conducted Bayesian 

reliability modeling based on masked system lifetime data. 

Sarhan et al.[19] introduced how to use masked system lifetime 

data to estimate the reliability values of each component in  

a series system. Srivastava et al.[20] considered the analysis of 

masked data for different reliability systems (such as series, 

parallel and their various combined configurations). Wang et 

al.[21] proposed an approximate grey prediction method suitable 

for small samples and conducted reliability modeling based on 

masked system lifetime data. Sarhan et al.[22] estimated the 

parameters related to the lifetime distribution of system 

components using the maximum likelihood method based on 

masked data and also estimated the reliability of system 

components at specific times. 

Due to the fact that CPS possess both the continuous 

dynamic characteristics of physical equipment and the discrete 

event-driven characteristics of information systems, and there is 
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close interaction and collaboration between the two, this poses 

numerous challenges for constructing reliability models 

applicable to CPS. However, with the continuous expansion of 

CPS applications, research on its reliability models has 

increasingly become the focus of attention in both the academic 

and industrial communities. Alemayehu et al.[23] et al. used 

Markov chains to model and analyze the component reliability 

of CPS and proposed corresponding recovery techniques to 

ensure high reliability of the system and thus the continuity of 

system operation. Andrade et al.[24] et al. proposed a strategy 

based on stochastic Petri nets for the reliability modeling, 

evaluation, and adjustment of intelligent CPS. Lawal et al.[25] 

developed a meta-heuristic dynamic line rating sensor 

placement algorithm based on hierarchical clustering and 

proposed a framework for modeling the operational reliability 

of dynamic line ratings in cyber physical power systems 

networks. Yang et al.[26] introduced a reliability framework and 

assessment approach for CPS, incorporating communication 

failures, which was grounded in the instantaneous availability 

model and its analysis of fluctuations. Gholami et al.[27] 

considered the reliability modeling and evaluation of cyber 

physical power systems under the condition of multi-state 

independent components. He et al.[28] proposed a method for 

reliability modeling and evaluation of the cyberspace in cyber 

physical power systems to obtain the maximum flow that can 

meet the power demand. Liu et al.[29] modeled the reliability of 

active cyber physical distribution systems and established  

a reliability evaluation test system to analyze the impact of 

network failures. Gong et al.[30] studied a reliability model of  

a special cyber physical system with unreliable services and 

complex boundary behaviors. Rostami et al.[31] proposed an 

effective reliability evaluation technique for cyber physical 

power generation systems. Zhou et al.[32] studied the problem of 

optimizing the reliability of the embedded platform integrating 

central processing units and graphics processing units deployed 

in industrial cyber physical systems under temperature 

constraints. Ju et al.[33] analyzed the trade-off between reliability 

and security in cyber physical systems based on millimeter-

wave ad hoc networks. Zhou et al.[34] analyzed the interlocking 

failures of the communication network in power cyber physical 

systems and proposed corresponding reliability evaluation 

methods. Huang et al.[35] introduced an innovative probabilistic 

modeling approach aimed at strengthening the analysis of the 

reliability of cyber physical systems affected by multilateral 

random attacks. Yang et al.[36] proposed using partially 

observable Markov decision processes to model cyber physical 

systems in an uncertain environment. Gong et al.[37] studied the 

reliability of a special cyber physical system with unreliable 

services and complex boundary behaviors. 

To sum up, given the existence of masked data in systems, 

researchers have mostly considered establishing unified overall 

reliability models for systems, while relatively few have used 

additive models. Local polynomial regression is a non-

parametric regression method that can flexibly capture the local 

features of data and is suitable for handling data with complex 

nonlinear relationships. Therefore, this paper proposed an 

additive reliability model of cyber physical systems based on 

local polynomial regression under masked data. 

2. Related works 

2.1. Masked data 

During the process of system development and maintenance, 

system testing strategies and testing environments play a vital 

role. They not only affect the performance and functional 

verification of the system but also are directly related to the 

integrity of the system failure data records. In practical 

operations, due to the imperfection of testing strategies or the 

limitations of testing environments, a masking phenomenon 

may occur when obtaining failure data. This masking 

phenomenon means that although the system has failed, the 

exact cause of this failure remains unknown. Specifically, the 

information about the specific components (or subsystems) that 

caused the system failure is missing or cannot be accurately 

obtained. Among them, masked data[38] is a complex and 

challenging issue. 

Let 𝑆𝑗 be the set of components that cause the system to fail 

within time period 𝑡𝑗−1 − 𝑡𝑗 , where 𝑆𝑗 ⊆ {1,2, . . . , 𝑘}(𝑗 =

1,2, . . . , 𝑚) . If any component of the system can cause the 

system to fail, then the data is masked data, that is, 𝑆𝑗 =

{1,2, . . . , 𝑘} . Let 𝑡𝑗(𝑗 = 1,2, . . . , 𝑚)  be the continuous 

observation time, and then there is the masked failure data of 

the Cyber Physical Systems (CPS), as shown in Table 1.
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Table 1. Masked data. 

Time Component 1 Component 2  Component k Masked data Total 𝑆𝑗 

𝑡1 𝑛11 𝑛21  𝑛𝑘1 𝑛𝑀1 𝑛1 {1,2, . . . , 𝑘} 

𝑡2 𝑛12 𝑛22  𝑛𝑘2 𝑛𝑀2 𝑛2 {1,2, . . . , 𝑘} 

        

𝑡𝑚 𝑛1𝑚 𝑛2𝑚  𝑛𝑘𝑚 𝑛𝑀𝑚 𝑛𝑚 {1,2, . . . , 𝑘} 

 

Among them, 𝑛𝑖𝑗 represents the number of failures detected 

for Component 𝑖  of the CPS within the time period 𝑡𝑗−1 − 𝑡𝑗 , 

𝑛𝑀𝑗 represents the number of masked failures detected for the 

CPS within the time period 𝑡𝑗−1 − 𝑡𝑗 , 𝑛𝑗  represents the total 

number of failures detected for the CPS within the time period 

𝑡𝑗−1 − 𝑡𝑗, the relationship among the three satisfies 𝑛𝑗 = 𝑛𝑀𝑗 +

∑ 𝑛𝑖𝑗
𝑘
𝑖=1 . 𝑖 = 1,2, . . . , 𝑘, 𝑗 = 1,2, . . . , 𝑚, 𝑆𝑗 = {1,2, . . . , 𝑘}. 

2.2. Software reliability growth model based on non-

homogeneous Poisson process 

There are numerous types of CPS reliability models. Among 

them, for the software subsystems of CPS, the commonly 

applied ones are mostly reliability models of the non-

homogeneous Poisson process (NHPP) type[39]. 

The assumptions of the NHPP-based software reliability 

models are as follows: 

(1) The software failure process is a non-homogeneous 

Poisson process; 

(2) The remaining defects in the software cause the current 

failures; 

(3) The number of failures occurring in any time period is 

proportional to the number of remaining failures at that time; 

(4) Perfect debugging. 

Let 𝑁(𝑡)  be the cumulative number of failures detected 

within time period 0, 𝑡, and let 𝑚(𝑡) be the expectation of the 

cumulative number of failures at time 𝑡 , that is, 𝐸[𝑁(𝑡)] =

𝑚(𝑡). Based on the above assumptions, we have: 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑏(𝑡)(𝑎 − 𝑚(𝑡))         (1) 

Among them, 𝑎  represents the total number of expected 

failures of the system, and 𝑏(𝑡) represents the failure detection 

rate function. 

(1) When 𝑏(𝑡) = 𝑏, the GO model is obtained, and its mean 

function is shown as follows: 

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡)           (2) 

(2) When 𝑏(𝑡) =
𝑏2𝑡

1+𝑏𝑡
, the DSS model is obtained, and its 

mean function is shown as follows: 

𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡)         (3) 

2.3. Non-parametric regression model 

Non-parametric regression[40] is a regression analysis method 

that does not impose too many restrictions on the distribution 

assumptions of data when conducting regression modeling. 

Unlike traditional parametric regression models (such as linear 

regression, logistic regression, etc.), non-parametric regression 

does not rely on functions in specific forms. Instead, it estimates 

the shape of the regression function based on the data itself. 

Since the distribution of the failure data of CPS is unknown and 

the CPS reliability model does not depend on a fixed functional 

form, this paper adopts the non-parametric regression model to 

model and fit the number of failures. 

Suppose there is a set of cumulative failure data of CPS, 

denoted as (𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛 , 𝑦𝑛) . If it is necessary to 

study the relationship between the cumulative failure number 

𝑌 of CPS and time 𝑋 , it can be expressed in the form of the 

following non-parametric regression model: 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖, 𝑖 = 1,2, ⋯ , 𝑛         (4) 

Among them, 𝑓(⋅) is the regression function, which is 

usually unknown, complex and nonlinear. The error term 𝜀𝑖 

satisfies 𝐸(𝜀𝑖) = 0 and 𝑉𝑎𝑟(𝜀𝑖) = 𝜎2. 

3. Model construction 

3.1. The additive reliability model of CPS based on non-

homogeneous Poisson process 

As shown in Figure 1, the CPS consists of only two subsystems, 

namely software subsystem 𝑆  and hardware subsystem 𝐻 . 

Software subsystem 𝑆  contains 𝑟 components, which are: 

𝐶𝑠1, 𝐶𝑠2, … , 𝐶𝑠𝑟. Hardware subsystem 𝐻 contains 𝑙 components, 

which are: 𝐶ℎ1, 𝐶ℎ2, … , 𝐶ℎ𝑙. From the perspective of the sources 

of CPS failure data, a failure data may come from software 

subsystem 𝑆, or from hardware subsystem 𝐻, or may be jointly 

generated by software and hardware, that is, from the 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

intersection part 𝑀  of 𝑆  and 𝐻 . The software-hardware 

interface 𝑀  contains 𝑛  failure data, which are: 

𝐶𝑚1, 𝐶𝑚2, … , 𝐶𝑚𝑛. If it is assumed that the failure data comes 

from 𝑀, then this failure data is masked data.

 

Figure 1. The structure diagram of failure data for CPS. 

The reliability model of Cyber Physical Systems is a crucial 

tool for evaluating and optimizing system performance. Its 

reliability model aims to describe the logical relationships 

among various components of the system through mathematical 

methods and assess the reliability and availability of the system 

under given conditions. 

Considering the situation where the software system of 

Cyber Physical Systems  contains 𝑟  component, the NHPP-

based software additive reliability model based on masked data 

needs to add the following two assumptions on the basis of the 

software reliability model under ordinary failure data: 

(1) The failure data {𝑁𝑑(𝑡), 𝑡 ≥ 0}(𝑑 = 1,2, … , 𝑟)  of each 

component are mutually independent; 

(2) The components that cause the system to fail may be any 

component of the system. 

Based on the above assumptions, we have: 

(1) When 𝑏(𝑡) = 𝑏, the GO_SRM model is obtained, and its 

mean function is shown as follows: 

𝑚(𝑡) = ∑ 𝑎𝑑(1 − 𝑒−𝑏𝑑𝑡)𝑟
𝑑=1          (5) 

(2) When 𝑏(𝑡) =
𝑏2𝑡

1+𝑏𝑡
 , the DSS_SRM model is obtained, 

and its mean function is shown as follows: 

𝑚(𝑡) = ∑ 𝑎𝑑(1 − (1 + 𝑏𝑑𝑡)𝑒−𝑏𝑑𝑡)𝑟
𝑑=1         (6) 

For the reliability model of the hardware subsystem of CPS, 

the model used in Article[41] is adopted and denoted as the RH 

model, and its mean function is: 

𝑚(𝑡) = 𝜆𝑡𝛽           (7) 

Similarly, considering the situation where the hardware 

system of CPS contains 𝑙  component, the failure data 

{𝑁ℎ(𝑡), 𝑡 ≥ 0}(ℎ = 1,2, … , 𝑙) of each component are mutually 

independent, and 𝑘 = 𝑟 + 𝑙 . An additive reliability model 

RH_SRM is established for the hardware system, and its mean 

function is: 

𝑚(𝑡) = ∑ 𝜆ℎ𝑡𝛽ℎ𝑙
ℎ=1            (8) 

In summary, the following NHPP-based additive reliability 

model for CPS is obtained: 

(1) The GO model is adopted for the software subsystem, 

and the RH_SRM model is adopted for the hardware subsystem. 

This is denoted as the GO_CPS model: 

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) + ∑ 𝜆ℎ𝑡𝛽ℎ𝑙
ℎ=1          

(9) 

(2) The DSS model is adopted for the software subsystem, 

and the RH_SRM model is adopted for the hardware subsystem. 

This is denoted as the DSS_CPS model: 

𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡) + ∑ 𝜆ℎ𝑡𝛽ℎ𝑙
ℎ=1       

(10) 

(3) The GO_SRM model is adopted for the software 

subsystem, and the RH_SRM model is adopted for the hardware 

subsystem. This is denoted as the GO_SRM_CPS model: 

𝑚(𝑡) = ∑ 𝑎𝑑(1 − 𝑒−𝑏𝑑𝑡)𝑟
𝑑=1 + ∑ 𝜆ℎ𝑡𝛽ℎ𝑙

ℎ=1       (11) 

(4) The DSS_SRM model is adopted for the software 

subsystem, and the RH_SRM model is adopted for the hardware 

subsystem. This is denoted as the DSS_SRM_CPS model: 

𝑚(𝑡) = ∑ 𝑎𝑑(1 − (1 + 𝑏𝑑𝑡)𝑒−𝑏𝑑𝑡)𝑟
𝑑=1 + ∑ 𝜆ℎ𝑡𝛽ℎ𝑙

ℎ=1      (12) 

CPS

S

Cs1

Cs2

Csr

   

H

Ch1

Ch2

Chl

   

M
Cm1

Cm2

Cmn
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In the NHPP model, the cumulative number of failures 𝑁(𝑡) 

follows a Poisson distribution, and its mean function 𝑚(𝑡) is of 

great significance. There is a relationship 𝑅(𝑡) = 𝑒−𝑚(𝑡) 

between the reliability 𝑅(𝑡)  and the mean function 𝑚(𝑡) , 

indicating that the reliability is in the form of an exponential 

function of the mean function. The larger the value of the mean 

function is, the smaller the reliability will be. That is to say, as 

the average number of failures within a certain period of time 

increases, the probability that the product remains in normal 

operation at that time point decreases. 

3.2. The additive reliability model of CPS based on local 

polynomial regression 

The basic idea of local polynomial regression[42] is to use  

a polynomial to fit the data within the local neighborhood of 

each prediction point. Different from traditional polynomial 

regression, which fits a global polynomial to the entire dataset, 

local polynomial regression performs fitting in the local regions 

of the data, so that it can better capture the local characteristics 

of the data. 

Suppose the dataset of the i-th subsystem of Cyber Physical 

Systems is (𝑥𝑖
𝑗
, 𝑦𝑖

𝑗
), 𝑖 = 1,2, . . . , 𝑘, 𝑗 = 1,2, . . . , 𝑚 . For a given 

prediction point 𝑥𝑖
0, the following polynomial function can be 

used to fit the local data points: 

𝑚𝑖(𝑥𝑖
𝑗
) ≈ 𝛽𝑖

0 + 𝛽𝑖
1(𝑥𝑖

𝑗
− 𝑥𝑖

0) + 𝛽𝑖
2(𝑥𝑖

𝑗
− 𝑥𝑖

0)2 + ⋯ + 𝛽𝑖
𝑝

(𝑥𝑖
𝑗

−

𝑥𝑖
0)𝑝   (13) 

Among them, 𝛽𝑖
0, 𝛽𝑖

1, ⋯ , 𝛽𝑖
𝑝
 represents the coefficient of the 

polynomial, and 𝑝 represents the order of the polynomial. The 

coefficients of the polynomial are estimated through the local 

weighted least squares method, that is, minimizing: 

(�̂�𝑖
0, �̂�𝑖

1, ⋯ , �̂�𝑖
𝑝

) = 𝑎𝑟𝑔 𝑚𝑖𝑛
(𝛽𝑖

0,𝛽𝑖
1,⋯,𝛽

𝑖
𝑝

)
∑ [𝑦𝑖

𝑗
− ∑ 𝛽𝑖

𝑣(𝑋𝑖
𝑗

−
𝑝
𝑣=0

𝑚
𝑗=1

𝑥𝑖
0)𝑣]

2
𝐾ℎ𝑖

𝑚(𝑋𝑖
𝑗

− 𝑥𝑖
0)  (14) 

Among them, 𝐾ℎ𝑖
𝑛(⋅) = 𝐾(⋅/ℎ𝑖

𝑛)/ℎ𝑖
𝑛 , 𝐾(⋅) is a Gaussian 

kernel function, which is used to measure the distance between 

data points and determines the weight of each data point, 

satisfying condition ∫ 𝐾(𝑢)𝑑𝑢 = 1
∞

−∞
 . The kernel function 

should possess sufficient smoothness to ensure the continuity 

and differentiability of the estimation. The Gaussian kernel 

function selected in this paper has infinite-order smoothness, 

making it suitable for estimating cumulative failure data. ℎ𝑖
𝑛 >

0 is the bandwidth, which controls the influence range of each 

data point of the i-th subsystem of Cyber Physical Systems in 

the estimation process. The choice of bandwidth parameter 

significantly impacts model performance. In this paper, the 

bandwidth parameter is determined through the cross-validation 

method. This method first divides the data into a training set and 

a validation set, then iterates over candidate bandwidths ℎ𝑖
𝑛 , 

calculates the error on the validation set, and finally selects the 

ℎ𝑖
𝑛
 with the minimum error. 

Define symbols: 

𝑋𝑖 ≡ (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑚)𝑇                                                    (15) 

𝑌𝑖 ≡ (𝑦𝑖
1, 𝑦𝑖

2, … , 𝑦𝑖
𝑚)𝑇         (16) 

𝛽𝑖 ≡ (𝛽𝑖
0, 𝛽𝑖

1, ⋯ , 𝛽𝑖
𝑝

)𝑇        (17) 

And: 

𝑊𝑖 ≡ (
𝑤𝑖

1(𝑥𝑖
0) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑤𝑖

𝑚(𝑥𝑖
0)

)                                     (18) 

Then equation (16) can be written as: 

�̂�𝑖 = (𝑋𝑖
𝑇𝑊𝑖𝑋𝑖)

−1𝑋𝑖
𝑇𝑊𝑖𝑌𝑖                                        (19) 

Then, according to equation (15), we have: 

�̂�𝑖(𝑥𝑖
0) = �̂�𝑖

0 = ℓ𝑇�̂�𝑖 = ℓ𝑇(𝑋𝑖
𝑇𝑊𝑖𝑋𝑖)

−1𝑋𝑖
𝑇𝑊𝑖𝑌𝑖      (20) 

Among them, ℓ = (1,0,0, … ,0)𝑇  is a (𝑝 + 1) × 1 

dimensional vector. In practical applications, the order 𝑝  is 

usually set to an odd number in order to reduce the 

corresponding boundary and design biases. 

Summing up the cumulative number of failures of various 

subsystems in a CPS at the same time point and treating it as  

a whole, and then performing modeling based on the overall 

failure data at different time points through local polynomial 

regression, this model is denoted as the LPR model. This paper 

proposed the LPR_SRM model. That is, based on the two 

additional assumptions in Section 3.1, separate local 

polynomial regression modeling is conducted for each 

subsystem of CPS (including the hardware subsystem and the 

software subsystem). Finally, the local polynomial regression 

reliability models of each subsystem are added together to 

obtain the additive reliability model of CPS based on local 

polynomial regression under masked data. 

3.3. The methods for solving models 

3.3.1. Allocation of masked data 

Suppose that for each component 𝑖, the cumulative number of 

failures observed at time 𝑡𝑗 is 𝑚𝑖𝑗, where 𝑖 = 1,2, . . . , 𝑘 and 𝑗 =
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1,2, . . . , 𝑚. Due to the existence of masked data, 𝑚𝑖𝑗 is unknown. 

To solve this problem, let 𝑁𝑖𝑗  be the number of failures of 

component 𝑖  within 𝑡𝑗−1, 𝑡𝑗) , and the random vector 

𝑁∗𝑗~𝑀(𝑛𝑗 , 𝑝1𝑗 , 𝑝2𝑗 , … , 𝑝𝑘𝑗) , 𝑁∗𝑗 = (𝑁1𝑗 , 𝑁2𝑗, … , 𝑁𝑘𝑗) , 𝑛𝑗 =

∑ 𝑛𝑖𝑗 + 𝑛𝑀𝑗
𝑘
𝑖=1 . It can be known that: 

𝑝𝑖𝑗 =
𝑚𝑖(𝑡𝑗)−𝑚𝑖(𝑡𝑗−1)

𝑚(𝑡𝑗)−𝑚(𝑡𝑗−1)
=

𝑚𝑖(𝑡𝑗)−𝑚𝑖(𝑡𝑗−1)

∑ [𝑚𝑖(𝑡𝑗)−𝑚𝑖(𝑡𝑗−1)]𝑘
𝑖=1

      (21) 

Obviously, ∑ 𝑝𝑖𝑗 = 1𝑘
𝑖=1 . 

Therefore, the conditional probability is obtained: 

𝑃({∩ ⟨𝑁𝑖𝑗 ≥ 𝑛𝑖𝑗⟩}/ ∑ 𝑁𝑖𝑗 = 𝑛𝑗
𝑘
𝑖=1 ) =

                   ∑ (𝑛𝑗! ∏
𝑝

𝑖𝑗

𝑟𝑖

𝑟𝑖!

𝑘
𝑖=1 )∩⟨𝑟𝑖≥𝑛𝑖𝑗⟩,∑ 𝑁𝑖𝑗=𝑛𝑗

𝑘
𝑖=1

           (22) 

Furthermore, the expected value of 𝑁𝑖𝑗  is calculated as 

follows: 

�̂�𝑖𝑗 = 𝐸(𝑁𝑖𝑗|𝑛𝑖𝑗 , 𝑛𝑀𝑗) =

∑ (𝑟𝑗! ∏
𝑝

𝑖𝑗

𝑟𝑖

𝑟𝑖!
𝑘
𝑖=1 )

∩⟨𝑟𝑖≥𝑛𝑖𝑗⟩,∑ 𝑁𝑖𝑗=𝑛𝑗
𝑘
𝑖=1

∑ (∏
𝑝

𝑖𝑗

𝑟𝑖

𝑟𝑖!
𝑘
𝑖=1 )

∩⟨𝑟𝑖≥𝑛𝑖𝑗⟩,∑ 𝑁𝑖𝑗=𝑛𝑗
𝑘
𝑖=1

  (23) 

After determining the estimated value �̂�𝑖𝑗 of 𝑚𝑖𝑗, it will be 

used for subsequent estimations. 

3.3.2. Locally Weighted Least Squares 

Locally Weighted Least Squares[43] (LWLS) is a non-parametric 

learning method designed to address the limitations of 

traditional linear regression when handling nonlinear or locally 

varying data. Unlike ordinary least squares, LWLS assigns 

higher weights to samples near the target prediction point and 

lower weights to samples farther away, achieving a "local 

fitting" effect. Its core idea is to construct a locally 

approximated model near the target point rather than a unified 

global model. 

LWLS estimates parameters by minimizing the weighted 

sum of squared residuals: 

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽

∑ 𝜔𝑖(𝑦𝑖 − 𝑋𝑖𝛽)𝑛
𝑖=1

2
        (24) 

𝜔𝑖  is the weight of the i-th sample, 𝑋𝑖  and 𝑦𝑖   are the 

independent variable and dependent variable respectively, and 

𝛽 is the parameter to be estimated. 

The weight is calculated by the Gaussian kernel, which 

reflects the distance between the sample and the prediction point: 

𝜔𝑖 = 𝑒𝑥𝑝( −
(𝑥𝑖−𝑥)2

2𝜏2 )         (25) 

𝑥𝑖  is the training sample point, 𝑥  is the current prediction 

point, and 𝜏 is the bandwidth parameter that controls the local 

range. 

By solving the weighted normal equation, the parameter 

estimator is obtained: 

�̂� = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑌        (26) 

𝑊  is the diagonal weight matrix and 𝑌  is the dependent 

variable vector. 

3.3.3. Expectation Least Squares algorithm 

The core idea of the Expectation Least Squares (ELS) 

algorithm[44] is similar to that of the Expectation Maximization 

algorithm. This algorithm aims to deal with the least-squares 

problems involving masked data and is an optimization iterative 

algorithm. The whole process can be divided into two major 

steps: 

E-step: Allocate masked data 

�̂�𝑖𝑗 = 𝐸(𝑁𝑖𝑗|𝑛𝑖𝑗 , 𝑛𝑀𝑗 , 𝜃)        (27) 

L-step: Minimize the sum of squared residuals 

𝑚𝑖𝑛 𝑆 (𝜃) = ∑ ∑ (𝑚𝑖(𝑡𝑗) − 𝑚𝑖𝑗)𝑚
𝑗=1

𝑘
𝑖=1

2
      (28) 

The fundamental procedures of the ELS algorithm are 

outlined below:  

(1) Provide the initial value (𝜃1, 𝜃2, … , 𝜃𝑘)(0)  of the 

unknown parameters; 

(2) The existence of masked data leads to the unknown 

nature of 𝑚𝑖𝑗. Solve for its estimated value �̂�𝑖𝑗; 

(3) Calculate the probability: 𝑃({∩ ⟨𝑁𝑖𝑗 ≥ 𝑛𝑖𝑗⟩}| ∑ 𝑁𝑖𝑗 =𝑘
𝑖=1

𝑛𝑗); 

(4) The estimated value of 𝑚𝑖𝑗 is the conditional expected 

value �̂�𝑖𝑗 of the number of failures of each component; 

(5) The new predicted value (𝜃1, 𝜃2, … , 𝜃𝑘)(1)  is obtained 

through the L-step; 

(6) Replace (𝜃1, 𝜃2, … , 𝜃𝑘)(0)  with (𝜃1, 𝜃2, … , 𝜃𝑘)(1) , and 

repeat the above steps (2) - (5) until the stable estimated value 

𝜃 is obtained. 

3.3.4. Least squares estimator 

Least squares estimator[45] (LSE) is based on an optimization 

strategy. Suppose there are a series of failure data points of CPS. 

The system failure probabilities 𝐹(𝑡𝑖) are observed at different 

time points 𝑡𝑖, and the reliability 𝑅 = 𝑓(𝑡, 𝜃), 𝑡 represents time, 

and 𝜃 is the parameter vector to be estimated. For each observed 

data point (𝑡𝑖 , 𝐹(𝑡𝑖)), the predicted value of the model is 𝑅𝑖 =
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𝑓(𝑡𝑖, 𝜃). The core principle of the least squares estimator is as 

follows: 

𝑆(𝜃) = ∑ (𝐹(𝑡𝑖) − 𝑓(𝑡𝑖 , 𝜃))𝑛
𝑖=1

2
       (29) 

By finding the parameter 𝜃 values that minimize 𝑆(𝜃), the 

parameters of the reliability model that can best fit the observed 

data are determined. 

4. Case studies 

4.1. Data description 

4.1.1. Dataset 1 

Dataset 1 is sourced from the real open-source software Apache 

Tomcat. As an outstanding open-source web application server, 

the Tomcat server has been widely used in the field of Java Web 

application development due to its characteristics such as being 

open-source and free, cross-platform, high-performance, and 

highly scalable. The intelligent parking system is used to 

manage data such as parking space information and vehicle 

entry and exit records in a parking lot. The Tomcat server 

supports the operation of relevant applications, enabling car 

owners to query parking space information and reserve parking 

spaces through mobile applications. Meanwhile, parking lot 

managers can conduct operations such as monitoring the status 

of parking spaces and fee management. Therefore, the Tomcat 

server is a software system of CPS, and its failure data belongs 

to the software part of CPS failure data. The real fault data of 

Dataset 1 in this paper originates from the fault tracking system 

of Tomcat 5, with its website URL being 

https://bz.apache.org/bugzilla/query.cgi. The data is integrated 

on a monthly basis, and a total of 40 sets of data from September 

2008 to December 2011 are extracted, as shown in Table 2.

Table 2. Real failure dataset of Tomcat 5. 

Time F1 F2 F3 Masked Time F1 F2 F3 Masked 

1 4 2 3 3 21 0 0 1 0 

2 5 4 3 1 22 3 3 0 1 

3 5 1 1 2 23 1 1 0 0 

4 2 0 1 0 24 1 5 3 1 

5 2 2 1 4 25 2 1 0 0 

6 2 5 2 1 26 1 1 0 0 

7 3 3 1 0 27 2 1 0 0 

8 1 1 0 3 28 1 1 0 1 

9 0 0 1 0 29 2 0 1 0 

10 3 3 0 1 30 1 0 1 1 

11 1 1 0 0 31 0 0 1 1 

12 1 5 3 1 32 2 1 0 0 

13 2 0 1 0 33 1 0 0 2 

14 1 1 0 0 34 0 0 0 2 

15 2 1 0 0 35 3 0 0 0 

16 1 1 0 1 36 1 0 0 0 

17 3 2 2 1 37 0 0 0 0 

18 2 5 2 1 38 0 0 1 0 

19 3 3 1 0 39 0 1 0 0 

20 1 1 0 3 40 1 0 2 0 

 

The table shows the cumulative failure data containing 

masked data. Among them, F1 indicates the count of 

malfunctions in the Catalina component, F2 indicates the count 

of malfunctions in the Connector and Webapps components, F3 

indicates the count of malfunctions in the Jasper, Servlet and 

Native components, and "Masked" indicates the count of 

malfunctions in the "Unknown" ones, that is, the masked data 

in the system. 

4.1.2. Dataset 2 

Given that it is currently very difficult to directly obtain the 

detailed failure data of the actual hardware subsystems, this 

situation poses a significant challenge to the in-depth analysis 

and verification of the reliability models of hardware systems. 

To overcome this problem, this paper adopts simulation 

algorithms to generate the relevant failure data, thereby 

numerically verifying and analyzing the constructed reliability 

models of CPS. 

Assuming that the failure of the software subsystem 

reliability model follows a GO model, with its failure mean 

value function expressed in the form of (30), and the failure of 
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the hardware subsystem reliability model follows a power-law 

model, with its failure mean value function expressed in the 

form of (31). 

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡), 𝑏(𝑡) = 𝑏        (30) 

𝑚(𝑡) = 𝜆𝑡𝛽 , 𝑏(𝑡) = 𝜆𝑡𝛽−1, 𝑘 > 0, 𝛽 > 1       (31) 

Among them, 𝑎  represents the expected total number of 

faults in the software subsystem; 𝑏(𝑡) represents the number of 

faults detected in the system per unit time; 𝜆 is a constant whose 

value is related to the complexity of the equipment; and 𝛽 is an 

exponent. 

Assuming that the total number of masked faults at each 

time point in the CPS  follows a Poisson distribution, the fault 

counts of the software subsystem and hardware subsystem are 

aggregated with the masked data to obtain a complete 

simulation data table. 

Simulations were carried out on the failure data of Software 

Subsystem 1, Software Subsystem 2, Software Subsystem 3, 

Hardware Subsystem 1, Hardware Subsystem 2 and Hardware 

Subsystem 3 based on masked data. The simulation results are 

shown in Table 3.

Table 3. Failure simulation dataset. 

Time 1S(F1) 2S(F2) 3S(F3) 1H(F4) 2H(F5) 3H(F6) Masked 

1 29 28 26 1 2 2 4 

2 22 19 20 5 7 4 4 

3 26 19 18 2 10 7 11 

4 17 20 19 4 6 6 0 

5 23 20 20 4 10 9 6 

6 13 8 11 5 13 10 1 

7 14 7 6 4 23 8 12 

8 16 13 12 2 19 16 8 

9 9 5 6 5 27 23 7 

10 3 8 4 5 17 16 8 

11 6 10 8 4 29 24 3 

12 8 6 7 5 25 20 9 

13 6 8 6 7 26 18 0 

14 12 8 9 6 28 19 2 

15 5 5 4 5 30 22 6 

16 4 5 3 4 38 29 3 

17 3 4 2 8 24 28 9 

18 8 2 3 4 27 24 11 

19 1 4 2 3 28 22 8 

20 3 3 1 10 31 23 1 

21 4 4 2 1 46 27 9 

22 7 3 4 4 32 18 8 

23 2 5 3 6 36 16 13 

24 2 1 2 13 37 23 9 

25 0 0 1 6 44 26 10 

26 3 2 0 5 38 19 4 

27 2 1 1 6 42 18 5 

28 2 1 0 10 53 21 9 

29 3 0 1 8 39 25 1 

30 2 0 3 10 56 31 1 

31 0 1 2 9 60 28 4 

32 1 0 2 9 56 26 2 

33 2 0 1 8 52 33 5 

34 1 1 1 7 70 35 9 

35 1 1 1 11 60 28 5 

36 0 0 1 8 62 26 1 

37 1 0 0 7 73 29 4 

38 0 1 0 12 72 31 6 

39 1 1 1 8 47 34 4 

40 2 0 1 11 73 28 8 
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As shown in Table 3, the CPS simulated by Dataset 2 

contains six subsystems. Among them, there are three software 

subsystems, namely 1S (F1), 2S (F2) and 3S (F3), and there are 

also three hardware subsystems, namely 1H (F4), 2H (F5) and 

3H (F6), with a total of 40 sets of data. 

4.2. Model evaluation criteria 

This paper conducts a comparative analysis of the proposed 

model and uses MSE (Mean Squared Error), AIC (Akaike 

Information Criterion), and BIC (Bayesian Information 

Criterion) as the indicators for evaluating the performance of 

the model. 

The MSE calculates the differences between the predicted 

values and the actual values, squares these differences so that 

the positive and negative errors will not cancel each other out, 

and then calculates the mean of these squared errors to obtain  

a comprehensive error measurement indicator. Suppose there is 

a set of actual values 𝑦1, 𝑦2, … , 𝑦𝑛 , and the corresponding 

predicted values are �̂�1, �̂�2, … , �̂�𝑛. Its calculation formula is as 

follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

𝑛
𝑖=1

2
        (32) 

The AIC is a criterion used for model selection. When 

multiple different models are used to fit the same set of data, the 

AIC value of each model can be calculated. The smaller the AIC 

value, the better the relative goodness-of-fit of the model. Its 

calculation formula is as follows: 

𝐴𝐼𝐶 = 2𝑘 − 2 𝑙𝑛( 𝐿)        (33) 

Among them, 𝑘  signifies the quantity of parameters that 

need to be estimated within the model. Generally speaking, the 

more parameters there are, the more complex the model will be 

and the more data models it can fit. The likelihood function 𝐿 

measures the probability of observing the existing data under 

the given model parameters. The log-likelihood function 𝑙𝑛(𝐿) 

is the natural logarithm of the likelihood function. The larger its 

value is, the better the model fits the data. 

The BIC is derived based on the Bayesian theoretical 

framework. Similar to the AIC, its aim is to achieve a balance 

between the model's capacity to fit the data and the model's 

complexity in order to select an optimal model. Given a set of 

candidate models, the smaller the BIC value, the better the 

relative goodness-of-fit of the model. Its calculation formula is 

as follows: 

𝐵𝐼𝐶 = −2 𝑙𝑛( 𝐿) + 𝑘 𝑙𝑛( 𝑛)       (34) 

Among them, 𝑘  denotes the quantity of parameters to be 

estimated in the model, 𝑙𝑛( 𝐿)  represents the value of the 

model's log-likelihood function, and 𝑛  represents the quantity 

of samples. 

4.3. Comparative analysis of experimental results 

4.3.1. Experimental results of Dataset 1 

Based on the real failure dataset of Tomcat 5 shown in Table 2, 

the LSE is used to estimate the parameters for the GO model 

and the DSS model, the expected least squares algorithm is 

adopted to estimate the parameters for the GO_SRM model and 

the DSS_SRM model, and the local weighted least squares 

method is employed for non-parametric estimation of the LPR 

model and the LPR_SRM model. Since both the LPR model and 

the LPR_SRM model are non-parametric regression models, 

there are no parameter estimation values. Eventually, the 

parameter estimation values and performance comparison 

results of six software reliability models based on masked data 

are obtained, as shown in Table 4. The table indicates that: (1) 

Among the individual models, the LPR model has the best 

fitting effect, followed by the GO model, and the DSS model 

has the worst fitting effect and has a relatively large difference 

from the previous two models; (2) Among the superimposed 

models, the LPR_SRM model has a better fitting effect than the 

GO_SRM model and the DSS_SRM model; (3) Among the six 

models, the LPR_SRM model proposed in this paper has the 

best performance, followed by the LPR model, and the DSS 

model has the worst performance. Moreover, the performance 

of the superimposed models is better than that of the individual 

models.
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Table 4. Parameter estimate values and performance comparison results of Dataset 1. 

Model Parameter estimate MSE AIC BIC 

GO a=243.4513 b=0.0372 11.6866 104.3379 109.4045 

GO_SRM 

a1=103.6486 b1=0.0362 

9.0797 94.2417 99.3083 a2=97.3782 b2=0.0337 

a3=42.0703 b3=0.0511 

DSS a=183.9541 b=0.1315 55.8708 166.9217 171.9883 

DSS_SRM 

a1=77.8313 b1=0.1268 

52.6594 164.5538 169.6205 a2=71.9619 b2=0.1206 

a3=35.0534 b3=0.1555 

LPR - - 8.1055 89.7019 94.7686 

LPR_SRM - - 6.4374 68.5696 75.5696 

 

The fitting graph of the cumulative number of software 

failures for the six models is shown in Figure 2. It can be clearly 

seen from the figure that the fitting effect of the models after 

additive processing is better than that of the models without 

additive processing, indicating that the superimposed models 

help to improve the accuracy of the evaluation of system 

reliability. In the time period [0, 10], the estimated values of the 

DSS model and the DSS_SRM model deviate significantly from 

the actual observed values. The remaining four models can all 

fit the real data well, and the fitting curves are roughly the same.

 

Figure 2. Fitting graph of the cumulative number of failures of the six models in Dataset 1. 

4.3.2. Experimental results of Dataset 2 

Based on the cumulative failure data of the system shown in 

Table 3, this paper first conducts parameter estimation for the 

models of the software subsystems of the CPS. The parameter 

estimation results of the GO model and the DSS model are 

obtained through the least squares estimator, and the parameter 

estimation results of the GO_SRM model and the DSS_SRM 

model are obtained through the expected least squares algorithm. 

The parameter estimation values and performance comparison 

results of the four software subsystem reliability models based 

on masked data are shown in Table 5. It is evident from the table 

that: (1) Among the individual models, the fitting effect of the 

GO model is better than that of the DSS model; (2) Among the 

superimposed models, the MSE of the GO_SRM model is much 

smaller than that of the DSS_SRM model, and the AIC and BIC 

of the GO_SRM model are also smaller than those of the 

DSS_SRM model, so the GO_SRM model is superior to the 

DSS_SRM model; (3) Overall, the fitting effect of the 

superimposed models is better than that of the individual models; 

(4) Among the four software subsystem reliability models, the 

MSE, AIC and BIC of the GO_SRM model are the smallest. 

Therefore, the GO_SRM model has the best fitting effect.
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Table 5. Parameter estimation values and performance comparison results of software subsystem models. 

Model Parameter estimate MSE AIC BIC 

GO a=807.6068 b=0.0988 314.2604 236.0089 241.0755 

GO_SRM 

a1=291.6684 b1= 0.0995 

39.6814 153.2353 158.3019 a2=250.3145 b2=0.1039 

a3=231.9635 b3=0.1104 

DSS a=729.6062 b=0.2509 830.3073 274.8718 279.9385 

DSS_SRM 

a1=274.1690 b1=0.2418 

823.9320 274.5635 279.6302 a2=237.0318 b2=0.2465 

a3=218.5864 b3=0.2683 

 

The fitting graph of the cumulative number of failures of the 

four models is shown in Figure 3. It can be seen from the figure 

that after the additive processing is carried out on the GO model, 

the fitting effect of the new model obtained, namely the 

GO_SRM model, is better. Therefore, adding on the GO model 

helps to optimize and improve the performance of the model. 

However, after the additive processing is carried out on the DSS 

model, the fitting effect of the new model obtained, namely the 

DSS_SRM model, has not been significantly improved, and the 

fitting curve of the DSS_SRM model is roughly the same as that 

of the DSS model. Therefore, for the dataset in this paper, the 

additive processing carried out on the DSS model has  

a relatively small impact on the model performance. The reason 

is that when simulating this dataset, it was assumed that the 

failures of the software subsystem reliability model followed 

the GO model. Therefore, whether using the DSS model or the 

DSS_SRM model, neither achieved satisfactory fitting 

performance, and the difference between them was not 

significant. By comparing the fitting curves of the four models, 

It can be inferred that the GO_SRM model has the optimal 

fitting performance.

  

Figure 3. Fitting graph of the cumulative number of failures of the four models in Dataset 2. 

Conduct parameter estimation for the models of the 

hardware subsystems of the CPS. The parameter estimation 

results of the RH_SRM model are obtained through the LSE. 

The parameter estimation values and evaluation indicator 

results of this model are shown in Table 6. Since the hardware 

subsystem contains three components, there are three sets of 

parameter estimation values for the RH_SRM model. The 

values of its MSE, AIC and BIC are all relatively small, 

indicating that the RH_SRM model has a relatively good fitting 

effect.

Table 6. Parameter estimation values and evaluation indicator results of the RH_SRM model. 

Model Parameter estimate MSE AIC BIC 

RH_SRM 

𝜆1=1.2354 𝛽1= 1.4617 

105.5467 175.5852 180.6519 𝜆2=2.6151 𝛽2=1.7279 

𝜆3=4.3913 𝛽3=1.4476 
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The fitting graph of the cumulative number of failures of the 

RH_SRM model is shown in Figure 4. Judging from the fitting 

curve and the observed value curve of this model, the two are 

very close, so it can be considered that the RH_SRM model has 

a relatively good fitting effect.

 

Figure 4. Fitting graph of the cumulative number of failures of the RH_SRM model. 

Conduct performance comparison of the models for the CPS 

as a whole. Since both the LPR model and the LPR_SRM model 

proposed in this paper are non-parametric regression models, 

there are no parameter estimation values, and the results of their 

evaluation indicators are directly calculated. The evaluation 

indicator values of the GO_CPS model, the DSS_CPS model, 

the GO_SRM_CPS model and the DSS_SRM_CPS model are 

the mean values of the evaluation indicator values of the 

corresponding combined models. The results of the evaluation 

indicators of the above six models are shown in Table 7. By 

comparing the evaluation indicator values of the six models, it 

can be known that the MSE, the AIC and the BIC of the 

LPR_SRM model are the smallest, followed by the LPR model, 

then the GO_SRM_CPS model, and the DSS_CPS model has 

the worst fitting effect.

Table 7. Results of the evaluation indicators of the six models. 

Model MSE AIC BIC 

LPR 58.5830 146.8178 150.8844 

LPR_SRM 19.0131 115.2730 120.3397 

GO_CPS 209.9035 205.7970 210.8637 

GO_SRM_CPS 72.6140 164.4102 169.4769 

DSS_CPS 467.9269 225.2285 230.2952 

DSS_SRM_CPS 464.7393 225.0743 230.1416 

 

The comparison of the fitting graphs of the LPR model, the 

LPR_SRM model, the GO_SRM_CPS model and the 

DSS_SRM_CPS model is shown in Figure 5.
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Figure 5. Comparison of the fitting graphs of the four models. 

It can be seen from the above figure that the fitting effects 

of the four models are all relatively good. In the time period [0, 

10], it can be clearly seen that the LPR_SRM model has the best 

fitting effect, followed by the LPR model, and the 

DSS_SRM_CPS model has the worst fitting effect. 

5. Conclusions and discussions 

5.1. Summary 

This paper proposed an additive reliability model for the CPS 

based on local polynomial regression under masked data, 

namely the LPR_SRM model. Traditional parametric models 

require prior assumptions about the global functional form of 

the data, whereas the LPR_SRM model does not necessitate 

such assumptions. This enables the model to flexibly adapt to 

nonlinearities, heteroscedasticity, and local fluctuations in the 

data, thereby achieving precise characterization of complex data 

structures. Additionally, by integrating local fitting, kernel 

function weighting, and bandwidth adjustment, the LPR_SRM 

model maintains the high degree of freedom inherent in 

nonparametric methods while also considering computational 

efficiency and robustness. Based on the real software failure 

data containing masked data, the performance of the LPR_SRM 

model is compared with that of the LPR model, the GO model, 

the DSS model, the GO_SRM model and the DSS_SRM model. 

It is found that the LPR_SRM model has the best performance, 

followed by the LPR model. Based on the simulated cumulative 

failure data of the CPS containing masked data, by calculating 

the goodness-of-fit evaluation indicators of the LPR_SRM 

model, the LPR model, the GO_CPS model, the DSS_CPS 

model, the GO_SRM_CPS model and the DSS_SRM_CPS 

model, as well as drawing their respective fitting graphs for 

comparative analysis, it is known that the LPR_SRM model has 

the best fitting effect. To sum up, it is concluded that compared 

with the above models, the LPR_SRM model is more suitable 

for CPS reliability prediction under masked data. 

5.2. Future Work 

In the current frontier field of the reliability research on CPS, it 

is of crucial significance to explore the reliability of CPS based 

on masked data. The existence of masked data often has  

a significant impact on the accuracy and prediction effect of 

models. This paper has carried out a preliminary discussion on 

the CPS additive reliability model based on local polynomial 

regression under masked data. We are well aware that it is far 

from enough to merely limit the research to the existing types 

of masked data. Therefore, an in-depth and comprehensive 

exploration of the types of masked data is needed. One of the 
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future research directions is to consider introducing the situation 

of general masked data, so as to further compare and analyze 

the performance of the CPS additive reliability model based on 

local polynomial regression proposed in this paper with that of 

traditional CPS reliability models. This improvement can 

provide more practical model selection and optimization 

schemes for the reliability analysis based on masked data.
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