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Highlights  Abstract  

▪ Inverse identification method for composite 

materials based on dynamic response analysis. 

▪ Integration of experimental and numerical 

modal analysis for material property 

estimation. 

▪ Validated method applicable to UAV 

composite structures.  

▪ Non-destructive approach enabling accurate 

FEM-based material calibration. 

 This work introduces a method for the inverse identification of 

composite material properties using dynamic response data and finite 

element modelling. The methodology combines numerical modal 

analysis, Design of Experiments (DoE), Response Surface Methodology, 

and a Multi-Objective Genetic Algorithm (MOGA) to determine 

material parameters without destructive testing. The approach was 

applied to a UAV composite wing, achieving high correlation between 

simulated and experimental modal characteristics, with eigenfrequencies 

deviations below 2%. Variations between the identified parameters and 

reference data are linked to inherent inconsistencies in composite 

manufacturing and the operational condition of the tested structure. 

Nevertheless, the proposed method proves to be a reliable and non-

invasive tool for estimating mechanical properties, enhancing the 

predictive capabilities of numerical models. Its adaptability makes it a 

promising solution for future applications in structural health 

monitoring, damage assessment, and optimization of aerospace 

composite structures. 
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1. Introduction 

Since its inception, the aviation industry has continuously 

sought to minimize the weight of aerostructures to extend flight 

time, distance, and improve performance [1].  Modern 

composite materials have emerged as a revolutionary solution, 

offering an exceptional alternative to traditional metal structures. 

These materials provide an outstanding strength-to-weight ratio, 

excellent resistance to corrosion, and significant design 

flexibility, making them particularly well-suited for demanding 

aerospace applications. As a result, composites have found 

widespread use in manned aviation and the rapidly growing 

field of unmanned aerial vehicles (UAVs). In parallel with these 

developments, increasing environmental awareness has 

accelerated the search for sustainable alternatives to 

conventional composite systems. Natural fibre-reinforced 

polymers, bio-based resins, and recyclable composites are 

gaining traction across various sectors—including aerospace 

and UAV design—due to their reduced environmental footprint 

and favourable mechanical characteristics [2], [3], [4]. 

The unique characteristics of composites require tailored 

approaches to obtain their material properties. Traditional 
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strength tests, such as those assessing tensile and shear 

properties, are often time-consuming, costly, and require 

significant preparation. Consequently, there has been growing 

interest in alternative, indirect methods for determining material 

properties, particularly those that leverage structural responses 

under specific conditions. Indirect methods, such as inverse 

identification techniques, have shown significant promise by 

estimating material parameters, providing a more efficient 

alternative to direct testing [5]. 

Several methodologies have been proposed to address this 

challenge. Ragauskas and Belevičius [6] proposed a two – step 

methodology for identifying composite material properties, 

combining specimen geometry optimization with vibration 

testing. The authors focused on modifying specimen geometry 

to improve the identification of material properties, particularly 

Poisson’s ratio, which is challenging to determine due to its low 

impact on eigenfrequencies. Rahmani et al. [7] developed an 

improved Regularized Model Updating (RMU) method for 

identifying composite material properties. This inverse 

technique addresses noise in displacement data, enhancing the 

Finite Element Model Updating (FEMU) approach using 

homogenization models as constraints, improving accuracy, 

especially for fibre properties. Kang et al. [8] proposed an 

inverse method using genetic algorithms (GAs) and finite 

element analysis to identify the mechanical properties of 

interfaces in multiphase composites. The method leverages 

experimental interfacial failure data as input for the 

identification process, enabling simultaneous estimation of 

tensile and shear properties in real microstructures under mixed-

mode fracture. Chen et al. [9] introduced an innovative 

Approximate Bayesian Computation (ABC) framework to 

tackle the ill – posed inverse problem of identifying parameters 

in Variable Stiffness (VS) composite laminates. Lecompte et al. 

[10] identified an orthotropic composite's in – plane elastic 

parameters under biaxial loading using FEMU and full – field 

strain data. Geers et al. [11] applied an inverse identification 

method, using DIC data, to determine the parameters of  

a gradient-enhanced damage model for glass-fibre-reinforced 

polypropylene composites. Liu et al. [12] employed an inverse 

identification method to determine the nonlinear mechanical 

properties of carbon fibre-reinforced composites under dynamic 

loading, obtaining strain- and frequency-dependent expressions 

for elastic moduli and loss factors through experimental testing 

and inverse analysis, validated by numerical models. Karpenko 

et al. [13] applied an inverse approach, combining theoretical 

and experimental methods, to analyse the dynamic properties of 

composite pneumatic tyres, using piezoelectric micro-vibration 

tests and FEM simulations, with high accuracy between 

experimental and numerical results. Lopes et al. [14] present  

a modelling-based approach to predict cork-rubber composites' 

static and dynamic performance, applying inverse methods 

through linear regression and finite element analysis (FEA). 

While inverse methods have been extensively used for 

parameter identification, their integration with vibrational data 

provides additional information about material properties and 

structural performance. Not only does it provide valuable 

insights into the material constants, but it also delivers critical 

information about structural health and the operational state of 

the object. This makes vibrational data particularly powerful for 

detecting degradation, identifying damage, and understanding 

how external conditions—such as varying loads or 

environmental factors—influence the structure's performance. 

For example, Wittig et al. [15] proposed a vibration-based ice 

monitoring method for composite blades using artificial neural 

networks under different icing conditions. In Ooijevaar et al. [16] 

study vibration-based damage identification method using the 

Modal Strain Energy Damage Index successfully detected and 

localized delamination in a carbon fibre PEKK T-beam. Liang 

et al. [17] conducted a study focusing on predicting the residual 

fatigue life of fibre-reinforced polymer (FRP) structures using 

vibration parameters. 

While the unique properties of composites have 

revolutionized the aerospace industry, their complex 

characterization remains a persistent challenge. Current 

research often focuses on simplified geometries. Tam et al. 

conducted a study on the identification of material properties of 

composite plates using Fourier-generated frequency response 

functions on a model of a simple orthotropic plate [18]. Teixeira 

Silva et al. conducted a study aiming to present a technique for 

identifying the elastic parameters of composite materials. The 

proposed technique was validated through various tests, applied 

to plates made from different materials, ranging from isotropic 

to orthotropic [19]. Hwang et al. proposed a numerical method 

that combines finite element analysis with a hybrid genetic 
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algorithm to inversely identify the elastic constants of 

composite materials based on vibration testing data. They 

performed experimental tests on rectangular plates with 

different thickness and stacking sequences [20].  Araujo et al. 

proposed a combined numerical–experimental method aimed at 

identifying six elastic material moduli of generally thick 

composite plates. Their technique is versatile and applicable to 

composite plates made from various materials and with 

arbitrary stacking sequences [21]. Sankar et al. presented an 

innovative approach for identifying material properties of 

composite plates using a hybrid method that combines 

Response Surface Methodology (RSM) with Particle Swarm 

Optimization (PSO). Initially, various RSM and PSO strategies 

were evaluated using a simplified 4 degrees-of-freedom (4DOF) 

dynamic system to assess their speed and accuracy [22]. Ismail 

et al. proposed a methodology for determining the material 

properties of orthotropic plates with general elastic boundary 

conditions using an inverse approach. In this method, the 

identification of material properties was achieved by updating 

four parameters within the governing equation for  

a symmetrically laminated thin plate [23]. This study seeks to 

address this gap by applying inverse identification methods 

based on Ground Vibration Test (GVT) and FEM analysis to 

determine the material properties of UAV composite wing 

structures. By integrating experimental data with computational 

models in Ansys software, the approach aims to validate 

simulation techniques for more intricate configurations, 

extending their applicability beyond basic specimens. By 

addressing geometry and computational modelling challenges, 

it seeks to optimise composite materials for demanding 

aerospace applications, demonstrating the potential of inverse 

methodologies. 

Modal analysis (or Ground Vibration Test) is a widely 

employed non-destructive testing (NDT) method, valued for its 

ability to assess structures' integrity and dynamic behaviour 

without compromising their functionality. This makes it 

particularly suitable for applications in aerospace engineering, 

where destructive testing is often impractical due to the critical 

nature and high cost of components. Moreover, extracting 

material samples for direct testing often renders components 

unusable for composite materials, highlighting the practical 

importance of non-destructive methods like GVT. This 

approach allows engineers to maintain the operational state of 

the structure while gaining valuable insights for further 

computational modelling and optimization.  

By preserving the structural integrity of key elements, such 

as UAV wings or fuselage sections, GVT provides  plenty of 

information about the system's properties. These include not 

only its dynamic characteristics, such as eigenfrequencies, 

mode shapes, and damping ratios but also its overall structural 

health. For example, changes concerning the reference vibration 

parameters can indicate the presence of damage, material 

degradation, or changes in boundary conditions, making GVT a 

powerful diagnostic tool in structural health monitoring (SHM) 

[24], [25], [26]. 

In practice, different types of modal analysis may be 

employed. For instance, GVT is performed under controlled 

laboratory conditions—often under free–free or simply 

supported boundary conditions—to capture the natural 

vibrations of the structure [27] [28]. Operational modal analysis 

(OMA), on the other hand, involves analysing the dynamic 

response of a structure under its actual operational conditions 

without imposing artificial excitation [29] [30]. 

Data acquisition during modal testing is typically carried out 

using a network of accelerometers or laser vibrometers, which 

record structure’s response at multiple discrete points. The 

coherence between measurement channels is essential to ensure 

the reliability of the captured mode shapes and eigenfrequencies. 

In modal analysis, coherence is a key metric used to evaluate 

the quality and reliability of measured data [31]. It describes 

how much the structural response correlates with the applied 

excitation force across the frequency spectrum. Maintaining 

high coherence is crucial for extracting reliable modal 

parameters. A well-positioned excitation force typically applied 

using an electrodynamic shaker or impact hammer, should 

generate a response strongly correlated with the input, leading 

to coherence values near 1 across the frequency range of interest 

[32]. 

Fundamental equation of dynamic behaviour of a structure 

can be described as: 

[𝑴]{�̈�} + [𝑪]{�̇�} + [𝑲]{𝑥} = {𝑓},         (1) 

where [M], [C] and [K] are global mass, damping and stiffness 

matrices respectively, and {�̈�}  is acceleration vector, {�̇�}  is 

velocity vector and {x} is displacement vector of dynamic 
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system; {f} is excited force vector. 

If external load and damping effects are not considered, the 

equation becomes: 

[𝑴]{�̈�} + [𝑲]{𝑥} = 0,    (2) 

then replace the characteristic equation of {𝑥}  by the 

solution of 𝜙𝑖𝑠𝑖𝑛𝜔𝑖𝑡 Eq. (2) is transferred to: 

([𝑲] − 𝜔𝑖
2[𝑴]){𝜙𝑖} = 0,     (3) 

where {𝜙𝑖}  is mode shape of ith eigenfrequency and 𝜔𝑖  is ith 

eigenfrequency of the structure. 

Unlike isotropic materials, where stiffness is uniform in all 

directions, composites exhibit direction – dependent behaviour 

due to their layered constructions. Factors such as fibre 

orientation, ply thickness, stacking sequences, and percentage 

of fibres in a composite play a crucial role in defining the 

stiffness characteristics of the structure.  

To accurately capture this complexity, Classical Laminate 

Theory (CLT) is often employed to construct the stiffness matrix 

for composite materials [33]. CLT models the laminate as a 

stack of orthotropic plies, each contributing to the overall 

stiffness matrix. Stack of plies is shown in Figure 1. 

 

Figure 1. Scheme of the stack of plies. 

The stiffness matrix for laminate can be expressed as: 

𝑲 =

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16

𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26

𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16

𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26

𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66]
 
 
 
 
 

,        (4) 

where 𝐴𝑖𝑗, 𝐵𝑖𝑗 and  𝐷𝑖𝑗  are the extension, coupling and bending 

stiffness matrices, respectively, defined as:

𝐴𝑖𝑗 = ∑ 𝑄𝑖𝑗

𝑘
𝑁
𝑘=1 (ℎ𝑘 − ℎ𝑘−1), 𝐵𝑖𝑗 =

1

2
∑ 𝑄𝑖𝑗

𝑘
𝑁
𝑘=1 (ℎ2

𝑘 − ℎ2
𝑘−1), 𝐷𝑖𝑗 =

1

3
∑ 𝑄𝑖𝑗

𝑘
𝑁
𝑘=1 (ℎ3

𝑘 − ℎ3
𝑘−1),        (5) 

where 𝑁 is the number of layers of the composite, ℎ𝑘 represents 

the distance from the middle plane to the upper and lower 

surface. The transformed stiffness matrix 𝑸
𝑘
can be defined as: 

𝑸
𝑘

= 𝑻 ∙ 𝑸 ∙ (𝑻−1)𝑇 ,           (6) 

where 𝑻  is the matrix for transformation from the global 

coordinate system to the principal coordinate system, defined as: 

𝑻 = [

𝑐𝑜𝑠2𝛽 sin2 𝛽 2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽

sin2 𝛽 𝑐𝑜𝑠2𝛽 −2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽

−𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 𝑐𝑜𝑠2𝛽 − sin2 𝛽

],         (7) 

where 𝛽 is the angle between the two coordinate directions. The 

stiffness matrix 𝑸 for single lamina, in the principal coordinate 

system can be expressed as:  

𝑸 = [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

],            (8) 

where

(4) 
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𝑄11 =
𝐸11

1−𝑣12𝑣21
, 𝑄12 = 𝑄21 =

𝑣12𝐸22

1−𝑣12𝑣21
, 𝑄22 =

𝐸22

1−𝑣12𝑣21
, 𝑄66 = 𝐺12,       (9) 

where 𝐸11  and 𝐸22  are the elastic moduli, 𝐺12  is the shear 

modulus, and 𝑣12 and 𝑣21 are the Poisson’s ratios.  

Only four out of the five material constant for plane stress 

of an orthotropic material are independent. The Poisson’s ratio 

𝑣21 is obtained as: 

𝑣21 =
𝑣12𝐸22

𝐸11
.         (10) 

Given that Young’s moduli and other elastic properties 

govern the stiffness matrix of composite materials, their precise 

identification is essential for accurate structural modelling. The 

strong dependency of dynamic behaviour on these parameters 

highlights the necessity of high fidelity identification 

techniques. 

2. Materials and Methods 

In this study, we propose an inverse identification method that 

leverages GVT data to determine composite wing structures' 

material properties accurately. The method refines the 

numerical model by adjusting key parameters – such as Young’s 

moduli, shear modulus– until the simulated dynamic response 

aligns with the experimental measurements. This approach 

provides a robust, non-destructive alternative to conventional 

testing methods. 

The method flow is presented in Figure 2. The key 

methodical steps requiring further elaboration are detailed in the 

following sections. Section 2 explores part A of method with the 

fundamentals of modal analysis and Classical Laminate Theory 

(CLT) in the context of composite materials and outlines the B 

part of method, including the application of Response Surface 

Methodology (RSM) and Design of Experiment (DoE) within 

Ansys. Section 3 presents the practical implementation and 

validation of the proposed approach.

 

Figure 2. Investigation procedure flowchart. 

2.1. Ground Vibration Test 

The identification process begins with selecting the test object, 

followed by the definition of boundary conditions and 

excitation points. A GVT is performed to extract the Frequency 

Response Function (FRF), from which modal parameters such 

as eigenfrequencies and mode shapes are derived. To ensure 

high measurement quality, the coherence function is analyzed. 

If coherence is low, modifications to the excitation points or 

levels may be necessary to improve data quality. The obtained 

eigenfrequencies are further processed by fitting a polynomial 

regression function of the lowest possible degree while ensuring 

a coefficient of determination R2≥ 0.98. The value of R2 should 

(10) 
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be greater than 0.7 for a good fitting quality [34]. Based on this 

function, a 95% confidence interval is constructed, which will 

later serve as a criterion for evaluating the accuracy of the 

numerical results. Both criteria were adopted as a best practice 

in statistical analysis to ensure the reliability and accuracy of 

the results. A coefficient of determination of at least 0.98 

indicates an excellent fit of the regression model to the data, 

minimizing the discrepancy between predicted and observed 

values. Meanwhile, the 95% confidence interval is typical value 

applied in engineering data [35]. These thresholds were chosen 

to guarantee high precision in the optimization process while 

maintaining statistical rigor. 

2.2. Numerical Model 

The essential step in the identification process is representing 

the test object using a CAD environment and conducting  

a numerical modal analysis. The accuracy of the simulation 

depends on correctly defining boundary conditions and mesh 

discretization. Commonly applied boundary conditions include 

free-free, clamped or simply supported configurations, chosen 

based on experimental constraints to ensure consistency 

between numerical and operational conditions. At this stage, 

default material data is introduced, typically derived from 

literature values, software library or manufacturer 

specifications. These initial properties serve as a baseline and 

will be systematically refined throughout the identification 

process.  

2.3. Design of Experiment and Response Surface 

Methodology 

A Design of Experiments approach is employed to explore the 

relationship between material properties and dynamic response 

efficiently. DoE provides a structured methodology for 

selecting representative material parameter sets, reducing 

computational costs compared to exhaustive simulations. 

Several DoE techniques can be applied, depending on the 

complexity of the problem. Full-factorial designs evaluate all 

possible parameter combinations but quickly become 

impractical in high-dimensional problems [36]. Latin 

Hypercube Sampling (LHS) ensures uniform coverage of the 

design space and is widely used in engineering optimization 

[37]. A more efficient alternative is Sparse Grid Sampling 

(SGS), strategically placing sample points toa balance 

computational efficiency and accuracy. This method is 

particularly advantageous in high-dimensional parameter 

spaces, where a reduced number of simulations is desirable 

without compromising predictive capabilities [38]. 

Once an appropriate DoE strategy is selected, a process is 

conducted for each sampled material configuration. These 

simulations generate a dataset that describes how variations in 

material properties affect eigenfrequencies. Instead of directly 

optimizing material parameters using finite element 

simulations—which would be computationally expensive— 

a Response Surface Methodology  is employed to construct  

a surrogate model. RSM approximates the relationship between 

material properties and modal characteristics, significantly 

reducing computational demands by allowing rapid 

interpolation of modal parameters within the explored design 

space. 

Once an appropriate DoE strategy is selected, simulations 

are performed for each sampled material configuration, 

generating a dataset that characterizes the influence of material 

properties on eigenfrequencies. Instead of directly optimizing 

material parameters through computationally expensive finite 

element simulations, RSM is employed to construct a surrogate 

model. RSM approximates the relationship between material 

properties and modal characteristics, significantly reducing 

computational costs by enabling rapid interpolation of modal 

parameters within the explored design space. 

2.4. Model Evaluation and Optimization 

The next step involves evaluating the accuracy of the surrogate 

model. The simulated eigenfrequencies are compared against 

the experimental confidence intervals. If the maximum relative 

prediction error for each frequency remains below 3%, the 

chosen DoE type is validated, and the simulation data can be 

further used in the optimization process. However, if the 

discrepancies exceed this threshold, the DoE approach must be 

adjusted to improve model accuracy. 

Once a reliable response surface is established, the 

experimental frequencies are introduced into the solver, which 

searches for material parameters that satisfy the condition f i,sim 

= fi,exp. This optimization process refines the material properties 

iteratively to minimize deviations between experimental and 

simulated modal characteristics. After obtaining optimized 
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parameters, the final verification step checks whether the 

resulting frequencies fall within the predefined confidence 

interval. If all values are within the assumed range, the material 

identification is considered successful. However, if 

discrepancies persist, material tests are required to perform. 

By integrating numerical modal analysis, DoE, response 

surface modelling, and optimization, this method provides  

a systematic framework for identifying material properties 

while minimizing computational costs and avoiding destructive 

testing. The iterative approach ensures high precision in 

material characterization, making it a valuable tool for 

applications in structural health monitoring, damage detection, 

and lifespan estimation of composite structures. 

3. Practical Application  

 This section presents the application of the proposed 

inverse identification method to determine the material 

properties of a composite structure used to manufacture UAV 

wing. Wing is presented in Figure 3.

 

Figure 3. Test object. 

Previous work [39] provides a detailed description of the 

experimental and numerical modal analysis. To exclude external 

constraints, the experimental modal analysis was conducted on 

a carbon-epoxy UAV wing structure under free boundary 

conditions. The structure was excited using an electrodynamic 

shaker, and the response was measured at 27 discrete points 

using high-sensitivity accelerometers. The recorded 

acceleration signals were processed to extract eigenfrequencies 

and mode shapes, which served as reference data for subsequent 

numerical modelling. 

3.1. Initial numerical model  

A finite element model of the wing was developed using 

Ansys ACP, where the laminate stacking sequence, including 

layer orientations, thicknesses, and material assignment, was 

explicitly defined. The detailed stacking sequence is illustrated 

in Figure 4, and carbon-fibre layer directionality is illustrated in 

Figure 5.

 

Figure 4. Stacking sequence of each half. 

 

Figure 5. Direction of carbon fibre assigned in ACP module. 
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To represent the experimental conditions, the simulation was 

conducted under free-free boundary conditions, and the modal 

analysis was performed to extract eigenfrequencies and mode 

shapes. 

 

At this stage, default material properties were used, selected 

from the software’s material database (Epoxy Carbon Woven 

(230 GPa) Wet). Table 1 presents the material properties. 

Table 1. Default material properties. 

Property Value 

Density 1.79 g/cm3 

𝐸𝑥 59.61 GPa 

𝐸𝑦 59.61 GPa 

𝐺𝑥𝑦  3.3 GPa 

𝜈𝑥𝑦 0.04 

The comparison of baseline numerical results with 

experimental modal data (Table 2) revealed discrepancies in 

eigenfrequencies, necessitating further refinement of the 

material parameters. The difference was calculated using the 

experimental result as the reference value. The percentage 

difference shown in the table was calculated using the formula:  

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  |
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛−𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
| ∗ 100%        (11) 

Table 2. Comparison of numerical and experiment results [39]. 

Mode 

ID 

Simulation 

[Hz] 

Experiment 

[Hz] 

Experiment value 

range [Hz] 

Difference 

[%] 

1 86.35 79.85 <79.4;80.02> 8.18 

2 125.58 114.94 <113.81;115.08> 9.26 

3 139.89 134.98 <134.4;135.82> 3.64 

4 162.03 157.75 <157.02.4;158.642> 2.71 

For the results obtained, the frequency – mode ID relationship 

was approximated by a linear function, as this turned out to be 

the lowest degree polynomial giving an R2 greater than 0.98. 

The function and the 95% confidence intervals constructed for 

it are shown in Figure 6.

 

Figure 6. Regression function and Confidential Interval for obtained results. Blue circles - results from the experiment. Red solid line 

- regression function. Red dashed line - confidence interval limits 

3.2. Optimization Process 

Despite the satisfactory correlation between the experimental 

and simulated mode shapes, a more precise identification of the 

material properties is required. This is essential for improving 

the accuracy of future numerical analyses, particularly for 

predicting structural responses under varying operational 

conditions. A refined material model enables a better 

assessment of the aircraft’s structural integrity, supporting 

decisions related to continued operation, potential 

modifications, and life-extension strategies. The observed 

discrepancies indicate that the default material properties do not 

accurately represent the UAV wing composite. The next step 

involves optimising these material parameters, following the 

method outlined in the flowchart. The applied bounds for the 

optimization were as follows: 

{
25 𝐺𝑃𝑎 ≤ 𝐸𝑥 , 𝐸𝑦 ≤ 85 𝐺𝑃𝑎

1 𝐺𝑃𝑎 ≤ 𝐺𝑥𝑦 ≤ 10 𝐺𝑃𝑎
, 

R2 = 0.9835 

Mode ID 

Fr
eq

u
en

cy
 

[H
z]
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where x corresponds to the fibre direction and y is transverse 

direction.  

By constraining the search space within these ranges, the 

optimization was prevented from converging to non-physical 

solutions, ensuring that the identified material parameters were 

representative of the actual composite structures used in the 

UAV wings. The selected constraints were based on the dataset 

presented in [40], which provides a comprehensive collection of 

experimentally obtained material properties for various 

composite specimens. This database includes mechanical 

characteristics of composites manufactured using similar 

fabrication techniques, reinforcing the validity of the assumed 

parameter bounds. By leveraging this empirical foundation, the 

optimization process remained grounded in realistic material 

behaviour, improving the reliability of the identified properties 

and their applicability to real-world aerospace structures. The 

Poisson’s ratio was not included in the identification process, as 

its influence on the resulting eigenfrequencies was found to be 

negligible [6]. 

Since the carbon fibre material used in the UAV wing is 

woven, the same material properties were assumed for both the 

𝐸𝑥  and 𝐸𝑦   directions. This is because woven carbon fibre 

exhibits quasi-isotropic behaviour in-plane, meaning that its 

stiffness is identical in both fibre and transverse directions. 

It is important to note that the core material of the sandwich 

composite structure is isotropic and typically provided with 

well-documented material properties by the manufacturer [41]. 

As a result, it does not require parameterization since its exact 

characteristics are known and remain constant throughout the 

analysis. This allows us to focus solely on the identification of 

the carbon-fibre laminate properties. 

To efficiently explore the relationship between material 

properties and eigenfrequencies, Sparse Grid Sampling was 

chosen as the DoE method due to its effectiveness in handling 

nonlinear problems while maintaining a balance between 

accuracy and computational efficiency. The optimization 

process utilized 111 sample points, yielding a maximum relative 

prediction error for the first four eigenfrequencies: mode 1: 

2.05%, mode 2: 2.34%, mode 3: 2.89%, mode 4: 2.74%. The 

generated Response Surface illustrating the relationship 

between Young’s modulus, shear modulus and the mode 1 value 

is presented in the Figure 7. 

 

Figure 7. Response Surface relationship between 𝑬𝒙, 𝑮𝒙𝒚,  and mode. 

Since all error values remained below the 3% threshold, the 

response surface model was deemed sufficiently accurate, and 

the optimization process proceeded. The next step involved 

refining the material parameters using the validated surrogate 

model to ensure minimal deviation between the experimental 

and simulated modal characteristics. 
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The optimization process was carried out using the Multi-

Objective Genetic Algorithm (MOGA), an advanced variant of 

NSGA-II (Non-dominated Sorted Genetic Algorithm-II), 

employs controlled elitism to balance exploration and 

exploitation of the search space, making it well-suited for 

complex, multi-objective problems [42]. MOGA is specifically 

designed to handle multi-objective optimization problems by 

simultaneously optimizing multiple conflicting objectives while 

maintaining a diverse set of solutions. This is achieved through 

the application of controlled elitism, which ensures a balance 

between exploration and exploitation of the search space, 

preventing premature convergence to local optima and 

enhancing the robustness of the solution. In multi-objective 

optimization problem can be described as [43]: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑝) = [𝐹1(𝑝), 𝐹2(𝑝), … , 𝐹𝑀(𝑝)], 

where 𝑝 ∈ ℜ𝑑 , subject to 𝑔𝑗(𝑝) ≤ 0, 𝑗 = 1, 2, … , 𝐽; ℎ𝑘(𝑝) =

0, 𝑘 = 1, 2, … , 𝐾,  

where 𝑝 represents the vector of design variables, 𝐹(𝑝) denotes 

the vector of objective functions, and 𝑔𝑗  and ℎ𝑘  define 

inequality and equality constraints, respectively. The space 

ℱ = ℜ𝑑 spanned by the vectors of design variables 𝑝 is called 

the search space. The space 𝑆 = ℜ𝑀formed by all the possible 

values of objective functions is called the solution space.  

In contrast to single-objective optimization, multi-objective 

optimization does not always yield a single solution that 

minimizes all objective functions simultaneously. This is 

because objectives often conflict with one another, meaning that 

improving one objective may come at the cost of worsening 

another. As a result, the optimal parameters for one objective 

may not necessarily lead to the best outcomes for the others, and 

in some cases, they may even have a negative impact. 

Originally developed by Deb et al. [44], NSGA-II has 

gained significant popularity in solving multi-objective 

optimization problems due to its ability to identify multiple 

Pareto-optimal solutions. Its key features include elitist 

selection mechanisms, diversity preservation, and a strong 

emphasis on maintaining a set of non-dominated solutions 

throughout the optimization process. 

Unlike single-objective optimization, where a unique global 

optimum is sought, multi-objective optimization involves 

conflicting objectives, meaning that improving one criterion 

may lead to the deterioration of another. As a result, rather than 

a single optimal solution, the outcome is a Pareto front-a set of 

non-dominated solutions where no single solution is strictly 

better than another across all objectives. 

In NSGA-II, the optimization process begins by generating 

an initial population, from which offspring are created through 

standard genetic operators such as crossover and mutation. The 

new population is then merged with the parent population, 

forming a combined set of solutions. A non-dominated sorting 

procedure is applied to rank the solutions into Pareto fronts, 

where the first front consists of solutions that are not dominated 

by any other, the second front consists of solutions dominated 

only by those in the first front, and so on. To maintain the 

population size, solutions are selected iteratively from the 

sorted fronts until the required number is reached. If a front 

exceeds the remaining capacity, a crowding distance metric is 

used to prioritize solutions with higher diversity, ensuring an 

even distribution across the Pareto front. 

The crowding distance plays a crucial role in maintaining 

solution diversity. It is calculated based on the relative spacing 

of solutions within the objective space, ensuring that selected 

solutions are well-distributed rather than clustered in specific 

regions. During the selection process, solutions are compared 

based on their rank, with higher-ranked solutions preferred. If 

two solutions share the same rank, the one with a greater 

crowding distance is chosen, thereby promoting diversity. 

The iterative nature of NSGA-II ensures that the population 

evolves toward an improved Pareto front over successive 

generations. 

In this case, MOGA iteratively refined the key material 

parameters within the predefined constraints to minimize the 

objective function 𝐹(𝑝), ensuring close agreement between the 

simulated and experimental data. Its ability to navigate non-

linear dependencies and multimodal optimization landscapes 

allowed for an efficient convergence toward an optimal material 

parameter set, improving the accuracy of the numerical model.  

The objective function, 𝐹(𝑝) , quantifies the discrepancy 

between experimental and simulated eigenfrequencies: 

𝐹(𝑝) = (
|𝑓𝑖,𝑒𝑥𝑝−𝑓𝑖,𝑠𝑖𝑚|

𝑓𝑖,𝑒𝑥𝑝
) ∙ 100%,        (12) 

where 𝑓𝑖,𝑒𝑥𝑝  and 𝑓𝑖,𝑠𝑖𝑚  are the ith experimental and simulated 

eigenfrequencies, respectively and  𝑝 is the vector of unknown 

material properties. 
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Table 3 presents a comparison of frequency obtained from 

experiment and optimized simulation. 

Table 3. Comparison of experiment and optimized simulation 

results. 

Mode ID Experiment [Hz] 
Optimized 

simulation [Hz] 
𝑭(𝒑) [%] 

1 79.85 80.99 1.43 

2 114.94 112.82 1.84 

3 134.98 135.21 0.16 

4 157.75 155.63 1.34 

3.3. Mechanical tests of material samples  

After optimization, the discrepancies between the numerical 

and experimental results were reduced below 2% for all 

analysed modes, with the highest error observed at Mode 2 

(1.84%). For the optimized frequency values, the algorithm 

provided the corresponding optimized material properties: 

𝐸𝑥 , 𝐸𝑦 = 47126 MPa , 𝐺𝑥𝑦 = 3927 MPa . To assess the accuracy 

and effectiveness of the proposed method, physical material 

testing was conducted. The specimens were prepared and 

subjected to the following mechanical testing to determine the 

in-plane elastic properties: 

• Static tensile tests in accordance with ASTM 

D3039 [45] 

• Static compression tests following ASTM 

D6641 [46] 

• Static shear tests based on ASTM D7078 [47] 

These experimental results provided a direct comparison 

with the computationally identified material parameters, 

serving as a validation of the inverse identification approach. 

The specimens were manufactured using the same fabrication 

method as the UAV wing – hand lay-up with vacuum bagging. 

From the resulting composite laminate, test samples were cut to 

the dimensions specified in the previously referenced ASTM 

standards. This ensured consistency between the material 

properties of the tested specimens and those of the actual 

structure, allowing for a reliable validation of the identified 

parameters. Specimens prepared for mechanical testing are 

shown in the Figure .

a)  

b)  

c)  

Figure 8. Specimen prepared for mechanical testing a) tensile tests, b) compression tests, c)shear tests. 

For each type of the test 3 specimens were performed with experimental parameters presented in 

. The elastic properties of composite materials were obtained 

using data collected from testing machine and strain gauges. For 

static tensile tests the extensometer were used, which measure 

elongation of the specimen until 0.5% value. For compression 

and shear tests, the strain gauges were sticked by cyanoacrylate 

glue and connected into quarter bridge with an external dummy 

strain gauge.
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Table 4. Experimental parameters. 

Type of tests Testing machine Velocity Strain measurement 

Static tensile tests Instron 5982 with 100kN loading cell 2mm/min 
2630-100 series extensometer with 50 mm 

gauge length 

Static compression tests MTS 858 with 15kN loading cell 1.2mm/min Strain gauge TF-3/120 with 3mm base 

Static shear tests MTS 810 with 250kN loading cell 1.2mm/min Strain gauge TFs-3-2x/120 with 3mm base 

Table 5. Obtained mechanical properties from experimental campaign. 

Property Mechanical Tests [MPa] Simulation [MPa] [%] 

𝐸𝑥 , 𝐸𝑦 (from tensile) 43181 

47126 

9.14 

𝐸𝑥 , 𝐸𝑦(from compression) 53588 12.1 

𝐸𝑥 , 𝐸𝑦(mean value) 48385 2.6 

𝐺𝑥𝑦(0.15-0.55%) 3650 

3927 

7.58 

𝐺𝑥𝑦(0.15-0.35%) 3973 1.16 

𝐺𝑥𝑦(0.15-0.25%) 4163 5.67 

𝐺𝑥𝑦(0-0.40%) 4232 7.21 

 

Comparison of the mechanical properties taken from 

experimental campaign and simulation studies are shown at 

Table 5. The variation of obtained results was achieved dividing 

values taken from simulation by properties from mechanical test.  

The percentage differences presented in Table 5 were 

calculated according to the formula: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  |
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛−𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑇𝑒𝑠𝑡

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑇𝑒𝑠𝑡
| ∗ 100%        (13) 

The stiffness along to fibre axis acquire from compression 

and tensile test is characterized by fairly large difference in 

value. In both cases, the outcome from simulation is 

characterize with discrepancy from experimental data. If the 

mean value calculated from the tensile and compression results 

will be compared with simulation, the convergence can be 

observed. This phenomenon can be noticed cause wing under 

bending have one side of the structure working in tensile regime, 

when second side is compressed. Comparing shear properties is 

more challenging, due to non-linear properties of the laminate 

under shear stress. The value of 𝐺𝑥𝑦   highly depends on the 

range of shear strain used for designate the elastic property. The 

ASTM standard recommend calculation of the shear modulus 

of elasticity applied over a 0.4% of engineering shear strain 

range and starting with lower strain point from 0.15% to 0.25%. 

Variation of obtained shear modulus in different strain range 

were presented on Table 5. Obtained mechanical properties 

from experimental campaignTable  and 

 

Figure 9. Result of stress-elongation plot obtain from shear test. 

(13) 
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Figure 9. Result of stress-elongation plot obtain from shear test. 

However, despite maintaining the same manufacturing 

process and materials, there is no absolute certainty that the 

fibre volume fraction in the composite is identical across all 

specimens. Since the fabrication process involves hand lay-up 

and vacuum bagging, slight variations in resin content and fibre 

distribution may occur. These inconsistencies can lead to minor 

differences in mechanical properties between the test samples 

and the structural component, potentially influencing the 

correlation between experimental and simulated results. 

Subsequently, the experimentally determined material 

properties were incorporated into the simulation model, and  

a modal analysis was conducted using these parameters. This 

step aimed to evaluate how well the experimentally obtained 

constants reproduce the dynamic behaviour of the structure in 

the numerical model. Table 6 presents a comprehensive 

comparison of eigenfrequencies obtained from the experiment, 

the initial simulation, the optimized simulation, and the 

simulation based on the material properties derived from 

mechanical testing.

Table 6. Eigenfrequency Comparison: Experiment vs. Simulations. 

Mode ID 
GVT  

[Hz] 

Init. Sim.  

[Hz] 

Difference vs 

GVT [%] 

Opt. Sim.  

[Hz] 

Difference vs GVT 

[%] 

Sim. (Exp. 

Mat.) [Hz] 

Difference vs 

GVT [%] 

1 79.85 86.35 8.18 80.99 1.43 78.47 1.72 

2 114.94 125.58 9.26 112.82 1.84 111.93 2.61 

3 134.98 139.89 3.64 135.21 0.16 133.06 1.42 

4 157.75 162.03 2.71 155.63 1.34 156.86 0.56 

 

4. Conclusion 

The study presents a validated methodology for inverse 

identification of composite material properties using dynamic 

testing and numerical modelling. The proposed approach, 

integrating DoE, RSM, and MOGA, was successfully applied to 

a UAV wing structure demonstrating its capability to refine 

material properties and improve the accuracy of numerical 

simulations.  

The optimization process led to a significant reduction in 

relative error across all considered modes. As shown in Table 3, 

the maximum discrepancy between the optimized simulation 

and experimental frequencies did not exceed 1.84%, indicating 

very high consistency between the model and the actual 

structural response. Notably, the largest improvement was 

observed in Mode 2, where the error was reduced from over 9% 

(initial simulation) to below 2% after optimization. 

This improvement reflects the effectiveness of the adopted 

algorithm in handling non-linear dependencies between 
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material constants and dynamic response. The inverse 

identification yielded optimized values of 𝐸𝑥 , 𝐸𝑦 = 47126 MPa , 

𝐺𝑥𝑦   = 3927 MPa, which were further validated against 

mechanical testing results. 

Experimental tests conducted on specimens manufactured 

using the same technique as the UAV wing (hand lay-up with 

vacuum bagging) revealed some variation in measured stiffness 

values. Tensile and compression tests showed a considerable 

spread in 𝐸𝑥 , 𝐸𝑦 (43181 MPa vs. 53588 MPa), primarily due to 

differences in loading regime and local imperfections. However, 

when the mean value (48385 MPa) was considered, the 

difference with respect to the optimized simulation was reduced 

to 2.6%, confirming the method's reliability. 

Shear modulus 𝐺𝑥𝑦   showed higher variability, depending 

strongly on the selected shear strain range. This is expected due 

to the non-linear behaviour of composite laminates in shear. As 

presented in Table 5 and Figure 9, different shear ranges (e.g., 

0.15–0.25%, 0.15–0.35%) produced moduli ranging from 3650 

MPa to 4232 MPa. The optimized value (3927 MPa) falls within 

this range and aligns most closely with the modulus obtained 

for the ASTM-recommended range (0.15–0.35%), differing by 

only 1.16%. This supports the accuracy of the inverse method, 

while also highlighting the need for careful selection of strain 

range when determining shear properties experimentally. 

The optimization process significantly reduced initial 

discrepancies between simulated and experimental frequencies, 

with final deviations remaining below 2% for all analysed 

modes. However, while the numerical model was improved, 

certain limitations and challenges must be acknowledged. 

A key aspect influencing the accuracy of the identified 

material properties is the variation in composite manufacturing 

conditions. Differences in fibre volume fraction, resin content, 

and potential imperfections inherent in hand lay-up vacuum 

bagging may lead to variations in mechanical properties 

between test specimens and the actual structure. Moreover, the 

experimental modal analysis was performed on a structure that 

had undergone operational use, potentially introducing micro-

damage and structural defects that were not captured in the 

numerical model. The method currently assumes an idealized, 

defect-free material, which may lead to discrepancies when 

applied to real-world structures. 

The methodology is particularly valuable for applications 

involving complex laminated composites, where traditional 

characterization methods may fall short. It enables 

comprehensive evaluation of material behaviour under 

operationally relevant dynamic conditions, supporting 

improved design validation, structural optimization, and virtual 

prototyping processes. Furthermore, because it relies primarily 

on modal data—which are relatively easy to acquire non-

destructively—this approach is well-suited for integration into 

structural health monitoring frameworks and maintenance 

planning strategies. 

Importantly, the proposed method is not limited to aerospace 

applications. It also shows strong potential for use in other 

sectors where composite materials are becoming increasingly 

prevalent, such as e-mobility, electric scooters, lightweight 

urban vehicles, automotive or wind farm blades. [48], [49], [50], 

[51]  The growing reliance on advanced composites—driven by 

the demand for weight reduction, energy efficiency, and 

improved mechanical performance—creates a pressing need for 

reliable, non-destructive methods of structural assessment. 

Further research should focus on accounting for structural 

aging effects, and exploring alternative optimization algorithms 

to enhance robustness. The optimization process will be 

expanded to include other metaheuristic techniques such as 

Particle Swarm Optimization (PSO) and Differential Evolution 

(DE), to evaluate their performance in terms of convergence rate, 

computational cost, and global search capability. These 

algorithms will be benchmarked against the current MOGA-

based framework to assess sensitivity to initial conditions and 

parameter scaling. 

Planned developments also include the implementation of 

more advanced surrogate models, such as Kriging and machine 

learning regressors, to reduce computational effort and improve 

model flexibility. Additionally, the methodology will be applied 

to a broader range of composite structures, including 

components made of natural fibre composites and thermoplastic 

laminates, to validate its versatility across different material 

systems and manufacturing methods. By addressing these 

factors, the proposed approach can serve as a powerful tool for 

improving the predictive capabilities of finite element models 

in aerospace and mechanical engineering applications.
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