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Highlights  Abstract  

▪ Maintenance strategy integrates operational 

availability under delay propagation. 

▪ Introducing delay time as a state variable to 

handle operational availability impacts. 

▪ A Markov Decision Process–Based Condition-

Based Maintenance Model. 

▪ A scenario-based value iteration method to 

solve discrete health states effectively. 

 Manufacturing system degradation can damage its reliability, resulting 

in decreased product quality and delayed deliveries. These challenges 

are characteristic of imperfect manufacturing systems. Moreover, the 

propagation of delay time across task periods may reduce the operational 

availability in future periods. Condition-based maintenance is an 

effective method for mitigating system degradation and enhancing 

reliability. However, existing condition-based maintenance studies often 

overlook the impact of delay propagation on operational availability. To 

address this issue, this paper proposes a condition-based maintenance 

model based on a Markov decision process. By introducing delay time 

as a state variable to capture changes in operational availability and 

incorporating it into the reward model, the proposed strategy aims to 

maximize enterprise profit. A case study and comparative analysis using 

data from a manufacturing enterprise validate the effectiveness and 

superiority of the proposed model in improving economic performance. 

 

  Keywords 

This is an open access article under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/)  

reliability, condition-based maintenance, imperfect manufacturing 

system, operational availability, delay propagation, Markov decision 

process 

1. Introduction 

 The manufacturing system is central to enterprise operations, 

and its reliability refers to the ability to complete specified tasks 

under given conditions within a defined time frame[1]. Over 

time, system health degrades, reducing reliability and 

potentially leading to quality deterioration and production 

delays[2]. In severe cases, degradation causes unexpected 

shutdowns, which reduce the average proportion of time the 

system operates effectively during a task period—referred to as 

operational availability[1]. Such degradation and quality 

variability reflect the characteristics of imperfect manufacturing 

systems[3, 4], where issues arise from both machine 

unreliability and the probability of producing nonconforming 

products. As these imperfections threaten both operational 

availability and product quality, it is essential to develop 

maintenance strategies that ensure the reliability of imperfect 

manufacturing systems. 
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To preserve system reliability, effective maintenance 

strategies are essential for mitigating degradation and sustaining 

performance[5, 6]. Traditional strategies like Time-Based and 

Failure-Based Maintenance[7, 8] are simple but may cause 

unnecessary losses due to untimely or excessive 

interventions[9]. Condition-Based Maintenance (CBM) 

improves efficiency by using sensor data to model degradation 

and schedule actions based on system health[10]. Advances in 

sensing and artificial intelligence have further enhanced the 

practicality of CBM[11]. Central to CBM is accurately 

modeling degradation: recent CBM methods increasingly adopt 

continuous-state stochastic processes rather than discrete-state 

models, effectively capturing system dynamics[12, 13]. Among 

these methods, Markov Decision Processes (MDP) stand out 

due to their capability to model complex state transitions and 

optimize long-term maintenance decisions[14]. 

Recent CBM studies have begun to jointly consider product 

quality and production for imperfect manufacturing system. 

However, most neglect operational availability, and even those 

considering availability generally ignore the impact of delay 

propagation, i.e., delays in one task period inevitably spilling 

over into subsequent periods and further impairing 

availability[15]. Given the complexity introduced by system 

degradation, uncertain quality, and delay propagation, CBM is 

particularly well-suited to be modeled using MDP. 

Therefore, targeting imperfect manufacturing systems, this 

paper proposes an MDP-based CBM strategy that introduces 

delay time as a state variable to reflect variations in operational 

availability. This approach enables the model to explicitly 

capture delay propagation effects and optimize maintenance 

decisions to maximize long-term enterprise profitability. 

2. Literature review and contributions 

This paper presents a review of the relevant literature in the 

context of the problem to be addressed. In the first subsection, 

current research on maintenance strategy for imperfect 

manufacturing systems is reviewed. In the second subsection, 

studies on maintenance strategies regarding availability are 

discussed. In the third subsection, current research on solving 

CBM problems for manufacturing systems using MDP is 

presented. Finally, the technical contributions of this paper are 

summarized. 

2.1. Maintenance strategy for imperfect manufacturing 

system 

In imperfect manufacturing systems, the coexistence of 

equipment degradation and quality uncertainty poses significant 

challenges for maintenance strategy design. Unlike idealized 

systems, these imperfections require maintenance policies to 

jointly consider system reliability, product quality, and 

production continuity. As a result, increasing attention has been 

paid to integrated strategies that combine production, 

maintenance, and quality control: Li et al.[16] proposed a CBM 

strategy that incorporates the working schedule to balance 

maintenance with production while maintaining product quality. 

Shi et al.[17] developed a model for imperfect systems that 

integrates decisions on production, maintenance, and quality 

under inventory constraints. Ait-El-Cadi et al.[18] introduced  

a joint control policy for production, maintenance, and dynamic 

quality inspection in failure-prone systems.  Zhang et al.[19] 

used a digital twin to co-optimize predictive maintenance and 

production scheduling. Guendouli et al. [20]proposed an 

integrated policy considering production-related parameters 

affecting degradation and final product quality. 

Although these studies reflect the complexity of imperfect 

manufacturing systems, they primarily focus on optimizing cost, 

quality, and scheduling outcomes, while few explicitly 

incorporate operational availability into the decision-making 

process. As discussed in the introduction, availability is 

essential for understanding how degradation and maintenance 

affect system performance over time. Therefore, there remains 

a gap in addressing availability within integrated CBM 

strategies for imperfect systems. 

2.2. Maintenance strategy regarding availability 

As discussed in the introduction, availability characterizes the 

proportion of time a system remains functionally operational 

within a task period, thereby directly influencing production 

output and timely order fulfillment. Some studies have explored 

maintenance strategies with a focus on maintaining high 

availability levels, highlighting its role as a critical indicator of 

system performance over time. The following works represent 

recent developments in this direction: Yin et al.[21] examined 

how to optimize the periodic preventive maintenance rate to 

maximize availability in Markov systems with multiple 
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degraded states. Chalabi et al.[22] proposed a grouping strategy 

for multi-unit systems to improve availability while reducing 

preventive maintenance costs. Lotovskyi et al.[23] developed an 

age-based maintenance model that evaluates the effect of 

perfect and imperfect maintenance on the availability of 

offshore oil production systems. Yang et al.[24] proposed an 

availability-oriented maintenance strategy for automated 

production lines that accounts for performance degradation. An 

et al.[25] introduced a condition-based maintenance model that 

minimizes cost risk under operational availability constraints. 

However, these studies are generally not framed within the 

context of imperfect manufacturing systems, nor do they 

consider the propagation of delays across task periods—an 

omission that hinders their ability to capture how current delays 

reduce future operational availability. 

2.3. Condition-based maintenance studies utilizing MDP 

The degradation of manufacturing systems often exhibits 

Markovian properties, making Markov Decision Processes 

(MDP) a suitable framework for modeling CBM strategies 

based on system state information. Numerous studies have 

applied MDP or reinforcement learning to optimize 

maintenance decisions[26-28]. For example, Zhang et al.[29] 

proposed a semi-Markov decision model for a two-component 

series system that adaptively determines optimal strategies 

without a predefined structure. Zhou et al.[30] developed an 

MDP-based method for series-parallel systems with 

intermediate buffers to identify optimal maintenance actions. 

Tang et al.[31] introduced a semi-MDP model that integrates 

dynamic maintenance policies with mean residual life 

estimation. Liu et al.[32] formulated a selective maintenance 

strategy for missions under imperfect maintenance using Q-

learning within an MDP framework. 

While these studies demonstrate the applicability of MDP-

based frameworks in maintenance optimization, few of them 

explicitly incorporate operational availability or model the 

cumulative effect of delay propagation—key factors in 

imperfect manufacturing systems addressed in this study. 

2.4. Contributions and outline 

Targeting imperfect manufacturing systems characterized by 

both equipment degradation and product quality uncertainty, 

this paper addresses the overlooked issue of delay propagation 

in operational availability. The main contributions are as 

follows: 

(1)A condition-based maintenance (CBM) strategy is 

proposed for imperfect manufacturing systems, which explicitly 

considers operational availability while ensuring product 

quality. To capture the effect of delay propagation, delay time is 

introduced as a state variable and combined with health state to 

form a two-dimensional state space. 

(2)The CBM strategy is formulated within a Markov 

Decision Process (MDP) framework that models both 

degradation-induced failures and quality deterioration.  

A scenario-based value function is constructed to solve the 

Bellman optimal equation and derive the optimal maintenance 

policy. 

The remainder of the paper is as follows: Section 3 presents 

the problems and assumptions to be addressed by the model; 

Section 4 models the maintenance strategy of manufacturing 

systems through MDP; Section 5 represents the solution method 

of the maintenance strategy model; Section 6 conducts  

a numerical study and comparative analysis based on the 

historical data of a commercial vehicle manufacturing company 

to obtain the optimal maintenance strategy, demonstrating the 

effectiveness and superiority of the proposed approach; Finally, 

Section 7 concludes this paper. 

3. Problem description and assumptions 

In this section, an imperfect single-machine manufacturing 

system that consistently produces a single product type is 

considered as the study object. The flowchart of the 

maintenance strategy is presented in Fig.1. 

The duration of the task period for the single-machine 

manufacturing system is denoted as δ, starting with  

a maintenance period. During this period, the maintainer 

performs system inspections, which is assumed to require 

negligible time and cost. Based on the observed health state sn 

in the nth task period and the delay time 𝑇𝑛
𝑜𝑡 carried over from 

the previous period, the manager selects a maintenance action 

an: No Maintenance(Null, no action is taken), Imperfect 

Maintenance(IM, imperfectly restores the system), or 

Overhaul(restores the system to a "good as new" state). After 

the maintenance action is executed, the system transitions to  

a new health state 𝑠𝑛
′ , and the corresponding maintenance time 
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is denoted as TNull, TIM or TO. The associated costs are CNull, CIM 

and CO. The relationship between time and cost is described in 

Eq.(1): 

{
𝑇𝑂 ≫ 𝑇IM > 𝑇Null = 0

𝐶𝑂 ≫ 𝐶IM > 𝐶Null = 0
 (1)

 

Fig.1. Maintenance strategy flowchart.

After the maintenance period concludes, the production 

period begins, during which the operator runs the system at  

a constant takt time takt. Customer demand is defined as a fixed 

upper-bounded constant D, with the range specified in Eq.(2): 

𝐷 ≤ ⌊
𝛿−𝑇𝑂

𝑡𝑎𝑘𝑡
⌋ (2) 

where ⌊⋅⌋ denotes the floor function. This ensures that customer 

demand D can be satisfied within the remaining time of the task 

period, even if the most time-consuming maintenance action is 

executed, without causing delays. 

If a degradation failure occurs during the production period, 

i.e., the system degrades to the threshold L, the maintainer 

performs a Renew action. After Renew, the system returns to an 

optimal state, and no further degradation failures are assumed 

to occur within the current task period. Both Overhaul and 

Renew restore the system to a "good as new" condition, with 

their costs (CO and CR) being identical. However, the time 

required for Renew (TR) is longer than that for Overhaul (TO) 

because maintenance conditions during the maintenance period 

are more favorable. During the production period, the 

probability of producing nonconforming products increases as 

the system's health state deteriorates. These nonconforming 

products eventually reach the customer, incurring a unit penalty 

cost Cpena. The task period ends with the production period, and 

the enterprise is expected to deliver products by the customer's 

expected delivery time (before the end of the task period). 

Therefore, the ideal maximum operational availability of the 

system in the current period is given by the following equation: 

𝐴𝑛
𝑚𝑎𝑥

𝛿−𝑇𝑛
𝑜𝑡−𝑇𝑎𝑛
𝛿  (3) 

where 𝑇𝑎𝑛  is the required time for maintenance action an. 

Each delivered product yields revenue r. If production is not 

completed on time, delayed delivery occurs, incurring a unit 

delay cost Cdel. Within a finite time horizon, the delay time 𝑇𝑛+1
𝑜𝑡  

generated in the current task period carries over to the next, 

causing delay propagation and reduced the operational 

availability in the subsequent period. Consequently, the nth task 

period effectively begins with the delay time 𝑇𝑛
𝑜𝑡  from the 

previous task period (indexed as n for consistency). The 

manager must account for both the health state sn and the delay 

time when formulating the maintenance strategy to prevent 

further delay propagation to future periods. 

4. Optimal condition-based maintenance strategy model 

To construct the proposed CBM strategy, this section formulates 

the decision-making process within the MDP framework by 

aligning it with the CBM execution logic described in Section 

3. In this process, the system state is first diagnosed, followed 

by maintenance decision-making, after which the system enters 

a production cycle where degradation and nonconforming 

products may occur due to system imperfections. Based on 

these outcomes, corresponding rewards are computed and state 

transitions occur. 

Accordingly, Section 4.1 defines the state space and 
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available maintenance actions, including delay time as a state 

variable to reflect variations in operational availability. Section 

4.2 details the imperfect manufacturing system, focusing on 

degradation and quality-related uncertainties. Section 4.3 

formulates the reward and state transition functions, capturing 

the feedback and dynamics for policy optimization. This 

structure ensures that all MDP elements—state, action, reward, 

and transition—are coherently embedded into the CBM process, 

highlighting the contribution of modeling delay propagation 

and imperfect manufacturing characteristics. 

4.1. State space and Action 

Let the manufacturing system health state sn, and the delay 

duration 𝑇𝑛
𝑜𝑡 constitute the state of the system in the nth task 

period, denoted by italicized Sn. The state Sn is an element of the 

state space Sn, which is represented using italicized bold letters 

(the state space and the action space involved in the following 

are denoted by italicized bold letters). 

The value of sn ranges from [0, L], where 0 represents the 

optimal health state and L represents the worst state, which is 

the threshold for system degradation failure. Based on the 

system state sn, the corresponding maintenance action an is 

performed, leading to a transition in the system state to 𝑠𝑛
′ . Since 

𝑇𝑛
𝑜𝑡 remain unchanged, the state space of the system at the start 

of production period is 𝑆𝑛
′ = {𝑆𝑛

′ |𝑆𝑛
′ = (𝑠𝑛

′ , 𝑇𝑛
𝑜𝑡)} , where the 

non-bold 𝑆𝑛
′  represents an element of the state space, i.e., the 

state of the system. 

This section defines a generalized set a of maintenance 

actions and explores the corresponding health state transition 

functions: 

(1) Null: No intervention is performed on the manufacturing 

system. 

(2) Overhaul or Renew: The manufacturing system is 

restored to its optimal health state. 

(3) Imperfect Maintenance (IM): Maintenance actions in 

real manufacturing scenarios are influenced by various factors, 

leading to inconsistent maintenance effects. 

the probability mass function of the health state transition 

when an = Null is described by Eq.(4): 

𝑃(𝑠𝑛
′ |𝑠𝑛, 𝑎𝑛 = Null) = {

1, 𝑠𝑛 = 𝑠𝑛
′

0,otherwise
 (4) 

The health state transition probability mass function for an = 

Overhaul or Renew is given by Eq.(5): 

𝑃(𝑠𝑛
′ |𝑠𝑛, 𝑎𝑛 = Overhaul or Renew) = {

1, 𝑠𝑛
′ = 0

0,otherwise
 (5) 

When an = IM, the health state s1 after system maintenance is 

assumed to follow a Beta distribution constrained to the interval 

(0, sn), and the health state transition probability density 

function is described by Eq.(6)[33]: 

𝑦(𝑠𝑛
′ |𝑠𝑛, 𝑎𝑛 = IM) = 

1

𝑠𝑛

Γ(𝑢+𝑣)

Γ(𝑢)Γ(𝑣)
(
𝑠𝑛
′

𝑠𝑛
)
𝑢−1

(1−
𝑠𝑛
′

𝑠𝑛
)
𝑣−1

, 𝑠𝑛
′ ∈ (0, 𝑠𝑛) (6) 

where u and v are positive parameters determined using 

maximum likelihood estimation from historical data. 

The manager's decision regarding a in any system state 

forms the maintenance strategy presented in this paper, based 

on the available state information. 

4.2. Imperfect Manufacturing System 

An imperfect manufacturing system is characterized by the 

simultaneous presence of machine degradation and quality 

variability, where both reliability loss and the production of 

nonconforming products can occur during operation. In this 

paper, we use the Gamma process to model the degradation of 

the manufacturing system[34]. The system will enter the 

production period with the health state 𝑠𝑛
′ , and the degradation 

of the system occurs only during the production period. For 

clarity, this subsection will use 𝑠𝑛
′  as the initial reference state 

for discussion. Given that the state of the system entering the 

production period of the nth work period is 𝑠𝑛
′ , the probability 

density function of the state at the next work period denoted as 

sn+1, is provided by Eq.(7): 

𝑓(𝑠𝑛+1, 𝑡|𝑠𝑛
′ ) =

𝛽𝛼𝑡(𝑠𝑛+1−𝑠𝑛
′ )𝛼𝑡−1𝑒−𝛽(𝑠𝑛+1−𝑠𝑛

′ )

Γ(𝛼𝑡)
 (7) 

where α is the shape parameter, β is the scale parameter, and 

 𝛤(⋅) represents the Gamma function, as defined in Eq.(8): 

Γ(𝑥) = ∫ 𝑢𝑥−1𝑒−𝑢𝑑𝑢, 𝑥 > 0
∞

0
 (8) 

The Bernoulli process is a discrete-time stochastic 

process[35] consisting of an infinite number or a finite number 

of mutually independent random variables, each taking on one 

of two values: 0 or 1, where 0 represents "failure" and 1 

represents "success". If the probability of a manufacturing 

system producing nonconforming products is constant, the 

system’s production process can be regarded as a Bernoulli 

process with a stable parameter, where 0 stands for conforming 

products and 1 for nonconformities. According to the 
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literature[36], the probability of a manufacturing system 

producing nonconformities is positively correlated with its state 

𝑠𝑛
′ , increasing as 𝑠𝑛

′  becomes larger. The probability at state 𝑠𝑛
′  

is described by Eq.(9): 

𝑝(𝑠𝑛
′ ) = 𝑝0 + 𝜂(1− 𝑒𝑥𝑝(−𝜆𝑞(𝑠𝑛

′ )𝛾𝑞)) (9) 

where p0 is the probability of nonconforming product when the 

system is in its optimal state, η denotes the quality degradation 

boundary, and λq and γq are constants determined from historical 

data. 

The Gamma process is a Lévy process, which, by definition, 

continuous-time Markov processes[37, 38]. Consequently, the 

production process of the single-machine manufacturing system 

can be regarded as a special Bernoulli process, where the 

probability of success varies according to the Markov chain. 

This stochastic process is referred to as a Markov-modulated 

Bernoulli process (MMBP)[39]. However, MMBP is  

a Bernoulli process with non-smooth parameters, which is 

difficult to analyze and compute. The literature[40] proposes  

a smooth binomial approximation method for the discrete 

Markov Modulated Bernoulli Process, allowing it to be 

approximated as a smooth-parameter Bernoulli process. The 

approximated probability of success is expressed by Eq.(10): 

𝑝̂(𝑠𝑛′ ) = 𝐷
−1∑ ∑ 𝑝𝑑(𝑠𝑖𝑑)𝑝𝑠𝑛′ ,𝑠𝑖𝑑

(𝑖−1)𝐿
𝑠=𝑠𝑛

′
𝐷
𝑖=1  (10) 

where pd(sid) represents the probability that the system will 

produce a nonconforming product (probability of success) at 

state sid, and sid denotes the health state of the system after 

producing the ith product. 

In this paper, the health state of the manufacturing system is 

a continuous random variable, and therefore the above equation 

is transformed into a continuous form, as shown in Eq.(11): 

𝑝̂(𝑠𝑛′ ) = 𝐷
−1∑ ∫ 𝑝𝑑(𝑠𝑖𝑑)

𝑓(𝑠𝑖𝑑,𝑖⋅𝑑|𝑠𝑛
′ )

∫ 𝑓(𝑠𝑖𝑑,𝑖⋅𝑑|𝑠𝑛
′ )𝑑𝑠𝑖𝑑

𝐿

𝑠𝑛
′

𝐿

𝑠𝑛
′

𝐷−1
𝑖=0 𝑑𝑠𝑖𝑑 (11) 

4.3. Reward and state transition function 

In the nth task period, when the state of the system is Sn, an 

immediate reward r(Sn, an) is obtained upon executing the action 

an, as described in Eq.(12): 

𝑟(𝑆𝑛, 𝑎𝑛) = −𝐶𝑎𝑛 (12) 

where 𝐶𝑎𝑛 is the cost of the action an. 

The system begins production with a health state 𝑠𝑛
′ , and as 

described in Section 3, two scenarios may occur during the 

production period. These scenarios are discussed in detail below: 

Scenario 1 (ω1): The system degrades to failure during the 

production period, leading to downtime. 

Assuming the system shuts down at time T, the probability 

density function of the system entering Scenario 1 at health state 

𝑠𝑛
′  is given by Eq.(13) : 

𝑃(𝜔1|𝑠𝑛
′ ) = 𝑓(𝐿, 𝑇|𝑠𝑛

′ ) (13) 

where f(·) is the Eq.(7). 

Assuming that 𝑤1
(1)

 denotes the number of nonconforming 

products produced by the system before entering Scenario 1, 

with its probability given by Eq.(14): 

𝑝(𝑤1

(1)
|𝑠𝑛
′ ) = (

⌊
𝑇

𝑡𝑎𝑘𝑡
⌋

𝑤1

(1)
) 𝑝̂(𝑠𝑛′ )

𝑤1

(1)

(1− 𝑝̂(𝑠𝑛′ ))
⌊
𝑇

𝑡𝑎𝑘𝑡
⌋−𝑤1

(1)

 (14) 

where 𝑝̂(𝑠𝑛′ )  represents the approximate smooth parameter 

probability of producing a nonconforming product when the 

health state of the system is 𝑠𝑛
′ , obtained from Eq.(11). 

Assuming that 𝑠𝑛
″  denotes the system state upon entering 

each scenario. Upon entering Scenario 1, the system is restored 

to an "as good as new" condition, transitioning the health state 

from the threshold L to 𝑠𝑛
″  (for 0), as shown in Eq.(15): 

𝑃(𝑠𝑛
″|𝜔1) = {

1, 𝑠𝑛
″ = 0

0,otherwise
 (15) 

After Renew is executed, the system resumes production 

until customer demand is fulfilled. Assuming that 𝑤1
(2)

 

nonconforming products are produced in the remaining demand, 

with its probability given by Eq.(16): 

𝑝(𝑤1

(2)
|0) = (

𝐷 − ⌊
𝑇

𝑡𝑎𝑘𝑡
⌋

𝑤1

(2)
) 𝑝̂(0)

𝑤1

(2)

(1− 𝑝̂(0))
𝐷−⌊

𝑇

𝑡𝑎𝑘𝑡
⌋−𝑤1

(2)

(16) 

Once the remaining production is completed, the health state 

𝑠𝑛
″  (which is 0) transitions to sn+1, as shown in Eq.(17) : 

𝑃(𝑠𝑛+1|𝑠𝑛
″) = 𝑓(𝑠𝑛+1, 𝐷 ⋅ 𝑡𝑎𝑘𝑡 − 𝑇|𝑠𝑛

″ = 0) (17) 

Based on the maintenance action an, the delivery time upon 

entering Scenario 1 can be determined using Eq.(18): 

𝑇𝑛(𝜔1) = 𝑇𝑎𝑛 +𝐷 ⋅ 𝑡𝑎𝑘𝑡 + 𝑇𝑅 + 𝑇𝑛
𝑜𝑡 (18) 

Therefore, the operational availability of the system in 

Scenario 1 can be shown as Eq.(19): 

𝛿−𝑇𝑛
𝑜𝑡−𝑇𝑎𝑛−𝑚𝑖𝑛{𝛿−𝑇𝑛

𝑜𝑡−𝑇𝑎𝑛−𝑇,𝑇𝑅}

𝛿
 (19) 

In summary, the total reward for the system in Scenario 1 is 

expressed in Eq. (20): 

𝑅(𝜔1) = 𝑟 ∙ 𝐷 − 𝐶𝑅 − 𝐶𝑑𝑒𝑙 ∙ max(0, 𝑇𝑛(𝜔1) − 𝛿) − 𝐶𝑝𝑒𝑛𝑎 ∙

(𝑤1
(1)
+𝑤1

(2)
) (20) 
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Scenario 2 (ω2): Smooth production until the end of the task 

period. 

In this scenario, the system operates smoothly until the end 

of the task period. The probability of the system entering 

Scenario 2 at health state 𝑠𝑛
′  is given by Eq.(21): 

𝑃(𝜔2|𝑠𝑛
′ ) = 1− ∫ 𝑓(𝐿, 𝑇|𝑠𝑛

′ )𝑑𝑇
𝐷⋅𝑡𝑎𝑘𝑡

0
 (21) 

Assuming that w2 denotes the number of nonconforming 

products produced by the system under Scenario 2, with its 

probability given by Eq.(22) : 

𝑝(𝑤2|𝑠𝑛
′ ) = (

𝐷
𝑤2
) 𝑝̂(𝑠𝑛′ )

𝑤2(1− 𝑝̂(𝑠𝑛′ ))
𝐷−𝑤2 (22) 

Since no maintenance is performed during the production 

period, the transition function of the system's health state from 

𝑠𝑛
′  to 𝑠𝑛

″  is expressed as Eq.(23): 

𝑃(𝑠𝑛
″|𝜔2) = {

1, 𝑠𝑛
″ = 𝑠𝑛

′

0,otherwise
 (23) 

According to Eq.(7), the health state transition function can 

be further expressed as Eq.(24): 

𝑃(𝑠𝑛+1|𝑠𝑛
″) = 𝑓(𝑠𝑛+1, 𝐷 ⋅ 𝑡𝑎𝑘𝑡|𝑠𝑛

″ = 𝑠𝑛
′ ) (24) 

Based on the maintenance action an, the delivery time after 

entering Scenario 2 is calculated by Eq.(25) : 

𝑇𝑛(𝜔2) = 𝑇𝑎𝑛 +𝐷 ⋅ 𝑡𝑎𝑘𝑡 + 𝑇𝑛
𝑜𝑡 (25) 

Therefore, the operational availability of the system can 

obtain the maximum, which is shown as Eq.(3). 

In summary, the reward for the system upon entering 

Scenario 2 is obtained as Eq.(26) : 

𝑅(𝜔2) = 𝑟 ⋅ 𝐷 − 𝐶𝑑𝑒𝑙 ⋅ 𝑚𝑎𝑥( 0, 𝑇𝑛(𝜔2) − 𝛿) − 𝐶𝑝𝑒𝑛𝑎 ⋅ 𝑤2(26) 

Using Eqs.(18) and (25), the delay time 𝑇𝑛+1
𝑜𝑡  for the current 

task period is determined by Eq.(27) : 

𝑇𝑛+1
𝑜𝑡 = 𝑚𝑎𝑥( 0, 𝑇𝑛(𝜔𝑖) − 𝛿) (27) 

The transition function for the delay time is described in 

Eq.(28) : 

𝑃(𝑇𝑛+1
𝑜𝑡 |𝑇𝑛

𝑜𝑡) = {
1, 𝑇𝑛+1

𝑜𝑡 = 𝑚𝑎𝑥( 0, 𝑇𝑛(𝜔𝑖) − 𝛿)

0,otherwise
 (28) 

Summarizing the above, the state transition function of the 

system during the task period is provided by Eq.(29): 

𝑃(𝑆𝑛+1|𝑆𝑛, 𝑎𝑛) = 𝑃(𝑆𝑛+1|𝑆𝑛
″) × 𝑃(𝑆𝑛

″|𝑆𝑛
′ , 𝜔𝑖) 

 × 𝑃(𝜔𝑖|𝑆𝑛
′ ) × 𝑃(𝑆n

′|𝑆𝑛, 𝑎𝑛) (29) 

Since 𝑇𝑛
𝑜𝑡 remain unchanged, the state space of the system 

after entering Scenarios is 𝑆𝑛
″ = {𝑆𝑛

″|𝑆𝑛
″ = (𝑠𝑛

″, 𝑇𝑛
𝑜𝑡)}, where the 

non-bold 𝑆𝑛
″ represents an element of the state space, i.e., the 

state of the system. Thus, 𝑃(𝜔𝑖|𝑆𝑛
′ ) is equivalent to Eq.(13) and 

Eq.(21), while 𝑃(𝑆𝑛
″|𝑆𝑛

′ , 𝜔𝑖)  corresponds to   Eq.(15) and  

Eq.(23). Using Eqs.(17)  ,   (24) and   (28), the state transition 

function 𝑃(𝑆𝑛+1|𝑆𝑛
″) for the interval between the system's entry 

into the scenario and the next task period is given by Eq.(30): 

𝑃(𝑆𝑛+1|𝑆𝑛
″) = 𝑃(𝑠𝑛+1|𝑠𝑛

″) ⋅ 𝑃(𝑇𝑛+1
𝑜𝑡 |𝑇𝑛

𝑜𝑡) (30) 

5. Solving the model by value iteration 

The Markov Decision Process (MDP) is typically solved by 

formulating the Bellman equation, which links the state value 

function with the action value function. Once the optimal action 

for each state is identified, the optimal maintenance policy is 

derived by evaluating all possible system states. 

5.1. Bellman optimal equation

 

Fig.2. Bellman backup diagram of the maintenance period. 
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Based on the core components of the MDP, the Bellman 

equation is illustrated in Fig. 2 as a backup diagram for the 

maintenance period value function V(Sn), leading to the 

expression given in Eq.(31): 

𝑉(𝑆𝑛) = 

∑ 𝜋(𝑎𝑛|𝑆𝑛)(𝑟(𝑆𝑛, 𝑎𝑛) + 𝛾 ∑ 𝑃(𝑆𝑛
′ |𝑆𝑛, 𝑎𝑛)𝑉(𝑆𝑛

′ )𝑆𝑛
′⏟                      

𝑄(𝑆𝑛,𝑎𝑛)

𝑎𝑛 ) (31) 

where V(Sn) represents the long-term expected reward during 

the nth task period when the system is in state Sn, while Q(Sn, 

an) denotes the expected reward when action an is performed in 

state Sn. 

Accordingly, the Bellman optimality equation is derived, as 

shown in Eq. (32): 

𝑉∗(𝑆𝑛) = 𝑚𝑎𝑥
𝑎𝑛
𝑄(𝑆𝑛, 𝑎𝑛) (32) 

From this, the optimal maintenance strategy π*(Sn) can be 

determined, as shown in Eq.(33): 

𝜋 ∗ (𝑆𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑛

𝑄 ∗ (𝑆𝑛, 𝑎𝑛) (33) 

Fig.3 presents a Bellman Backup Diagram of the value 

function 𝑉(𝑆𝑛
′ )  during the production period. To further 

describe the system's expected performance in different 

operational scenarios, a scenario-based value function 

𝑄(𝑆𝑛
′ , 𝜔𝑖) is introduced, as defined in Eq.(34): 

𝑉(𝑆𝑛
′ ) = ∑ 𝑃2

𝑖=1 (𝜔𝑖|𝑆𝑛
′ )𝑄(𝑆𝑛

′ , 𝜔𝑖) (34) 

where 𝑄(𝑆𝑛
′ , 𝜔𝑖)  represents the long-term expected reward of 

the system when it enters scenario ωi in state 𝑆𝑛
′  as shown in Eq.

(35): 

𝑄(𝑆𝑛
′ , 𝜔𝑖) = 

𝑅(𝜔𝑖) + 𝛾 ∑ ∑ 𝑃(𝑆𝑛
″|𝑆𝑛

′ , 𝜔𝑖)𝑃(𝑆𝑛+1|𝑆𝑛
″)𝑉(𝑆𝑛+1)𝑆𝑛

″𝑆𝑛+1
 (35) 

where 𝑅(𝜔𝑖) denotes the expected reward in scenario ωi, with 

its specific forms under Scenarios 1 and 2 derived from the 

expressions in Section 4.3, and given in Eqs.(36) and   (37), 

respectively: 

𝑅(𝜔1) = ∑ ∑ 𝑝(𝑤1

(2)
|0)𝑝(𝑤1

(1)
|𝑠𝑛
′ )𝑅(𝜔1)

⌊𝑇 𝑡𝑎𝑘𝑡⁄ ⌋

𝑤
1

(1)
=0

𝐷−⌊𝑇 𝑡𝑎𝑘𝑡⁄ ⌋

𝑤
1

(2)
=0

 (36) 

𝑅(𝜔2) = ∑ 𝑝(𝑤2|𝑠𝑛
′ )𝑅(𝜔2)

𝐷
𝑤2=0  (37) 

Finally, by substituting  Eq.(34) into Eq.(31),   the specific 

form of the action value function Q(Sn, an) is obtained, as 

expressed in Eq. (38): 

𝑄(𝑆𝑛, 𝑎𝑛) = 

𝑟(𝑆𝑛, 𝑎𝑛) + ∑ 𝑃(𝑆𝑛
′ |𝑆𝑛, 𝑎𝑛)𝑆𝑛

′ (∑ 𝑃2
𝑖=1 (𝜔𝑖|𝑆𝑛

′ )𝑄(𝑆𝑛
′ , 𝜔𝑖))(38) 

where 𝑃(𝜔𝑖|𝑆𝑛
′ )𝑄(𝑆𝑛

′ , 𝜔𝑖) as shown in Eq.(39)

 𝑃(𝑃𝑃|𝑃𝑃
′ ) ⋅ 𝑃(𝑃𝑃

′ ,𝑃𝑃) = {
∫ 𝑃(𝑃,𝑃|𝑃𝑃

′ )(𝑃(𝑃𝑃)
𝑃⋅𝑃𝑃𝑃𝑃
0

+ 𝑃∑ 𝑃(𝑃𝑃+1|𝑃𝑃
″) ⋅ 𝑃(𝑃𝑃+1)𝑃𝑃+1 )𝑃𝑃,𝑃 = 1

𝑃(𝑃𝑃|𝑃𝑃
′ )(𝑃(𝑃𝑃) + 𝑃∑ 𝑃(𝑃𝑃+1|𝑃𝑃

″) ⋅ 𝑃(𝑃𝑃+1)𝑃𝑃+1 ),𝑃 = 2
 (39) 

 

Fig.3. Bellman backup diagram of the production period.

5.2. Health state discretization 

Reinforcement learning algorithms are commonly categorized 

into model-based and model-free types, depending on whether 

they rely on a model of the environment's dynamics[41] Model-

based methods, such as value iteration[42] and policy 

iteration[43], use known or learned transition models for 
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planning. In contrast, model-free methods like Q-learning[44] 

and REINFORCE[45] directly learn from interactions without 

modeling the environment. However, all the aforementioned 

algorithms are tabular and require the system state space to be 

enumerable[46]. in this paper, the system Sn comprises two 

components: the delay time 𝑇𝑛
𝑜𝑡 from the previous task period 

and the health state sn. While 𝑇𝑛
𝑜𝑡 is a discrete variable measured 

in units of time, while sn is a continuous variable governed by  

a Gamma process, representing the system's health evolution 

over time. Therefore, to apply standard reinforcement learning 

algorithms, the continuous health state sn must be discretized. 

Let the health state space of the system during the nth task 

period be denoted as 𝕊𝑛 = {𝑠𝑛|0 ≤ 𝑠𝑛 ≤ 𝐿} . This interval is 

discretized into N equal segments, where N is a positive integer. 

The discretization step is defined as 𝛥 = 𝐿/𝑁 , yielding the 

discrete state space: 𝕊𝑛
𝛥 = {𝑠𝑛

𝛥|0, 𝛥, 2𝛥, … , 𝐿} , where the 

superscript Δ denotes the discretized form of the state. 

It is worth noting that Eq.(11) , which defines the smooth 

probabilistic relationship between the health state and the 

production of nonconforming products, is derived based on the 

continuous form of sn. Since the approximation is more accurate 

in the continuous case, this equation is not discretized. 

Based on the health state transition functions derived for 

each maintenance action in Section 4.2, this subsection will 

present their discretized forms. For the maintenance actions 

Null and Overhaul (or Renew), the discretized transition 

functions are expressed in Eqs.(40) and (41), respectively: 

𝑃(𝑠′𝑛
Δ
|𝑠𝑛
Δ, 𝑎𝑛 = Null) = {1, 𝑠

′
𝑛
Δ
= 𝑠𝑛

Δ ∈ 𝕊𝑛
Δ

0,otherwise
 (40) 

𝑃(𝑠′𝑛
Δ
|𝑠𝑛
Δ, 𝑎𝑛 = Overhaul or Renew) =

                                             {1, 𝑠
′
𝑛
Δ
= 0, 𝑠𝑛

Δ ∈ 𝕊𝑛
Δ

0,otherwise
 (41) 

Since the health state transition function for the maintenance 

action IM is represented by a probability density function, it is 

converted into a discretized probability form by assigning the 

probability values within the interval [𝑠′𝑛
𝛥
−
𝛥

2
, 𝑠′𝑛

𝛥
+
𝛥

2
]  to the 

discrete point 𝑠′
𝑛
𝛥
, as shown in Eq. (42): 

𝑃(𝑠′𝑛
Δ
|𝑠𝑛
Δ, 𝑎𝑛 = IM) 

= ∫ 𝑦(𝑠|𝑠𝑛
Δ, 𝑎𝑛 = IM)

𝑠′𝑛
Δ
+Δ 2⁄

𝑠′𝑛
Δ
−Δ 2⁄

𝑑𝑠, 𝑠′𝑛
Δ
, 𝑠𝑛
Δ ∈ 𝕊𝑛

Δ (42) 

Similarly, the health state transition functions, represented 

as probability density functions in Eqs.(17)   and (24)   for 

Scenarios 1 and 2, are discretized according to the different 

scenarios that the system may enter during the production 

period. These discretized forms are shown in Eqs.(43) and (44), 

respectively: 

𝑃(𝑠𝑛+1
Δ |𝑠″𝑛

Δ
= 0) 

= ∫ 𝑓(𝑠, 𝐷 ⋅ 𝑡𝑎𝑘𝑡 − 𝑇|0)
𝑠𝑛+1
Δ +

Δ

2

𝑠𝑛+1
Δ −

Δ

2

𝑑𝑠, 𝑠𝑛+1
Δ ∈ 𝕊𝑛

Δ (43) 

𝑃(𝑠𝑛+1
Δ |𝑠′𝑛

Δ
) 

= ∫ 𝑓(𝑠, 𝐷 ⋅ 𝑡𝑎𝑘𝑡|𝑠
′
𝑛
Δ
)𝑑𝑠

𝑠𝑛+1
Δ +

Δ

2

𝑠𝑛+1
Δ −

Δ

2

,  𝑠′𝑛
Δ
, 𝑠𝑛+1
Δ ∈ 𝕊𝑛

Δ (44) 

After discretizing the health state, the system's state is 

expressed as 𝑆𝑛
𝛥 = {𝑠𝑛

𝛥, 𝑇𝑛
𝑜𝑡}. Accordingly, the discretized form 

of the value function defined in Section 5.1 is given by Eq.(45) 

𝑄(𝑆𝑛
Δ, 𝑎𝑛) = 𝑟(𝑆𝑛

Δ, 𝑎𝑛) 

+∑ 𝑃(𝑆′𝑛
Δ
|𝑆𝑛
Δ, 𝑎𝑛)𝑆′𝑛

Δ (∑ 𝑃2
𝑖=1 (𝜔𝑖|𝑆

′
𝑛
Δ
)𝑄(𝑆′𝑛

Δ
, 𝜔𝑖)) (45) 

In turn, the discretized Bellman optimal equation is derived 

and expressed in Eq.(46): 

𝑉∗(𝑆𝑛
Δ) = 𝑚𝑎𝑥

𝑎𝑛
𝑄(𝑆𝑛

Δ, 𝑎𝑛) (46) 

According to Eq.  (39), the discrete form of 

𝑃(𝜔𝑖|𝑆
′
𝑛
𝛥
)𝑄(𝑆 ′

𝑛
𝛥
, 𝜔𝑖) is obtained and presented in Eq.(47):

 {
∫ 𝑓(𝐿, 𝑇|𝑠′𝑛

𝛥
) ⋅ 𝑅(𝜔𝑖)

𝐷⋅𝑡𝑎𝑘𝑡
0

𝑑𝑇 + 𝛾∑ ∫ 𝑃(𝑆𝑛+1
𝛥 |𝑆′𝑛

𝛥
) ⋅ 𝑓(𝐿, 𝑇|𝑠′𝑛

𝛥
)

𝐷⋅𝑡𝑎𝑘𝑡
0𝑆𝑛+1

𝛥 ⋅ 𝑉(𝑆𝑛+1
𝛥 )𝑑𝑇, 𝑖 = 1

(1 − ∫ 𝑓(𝐿, 𝑇|𝑠′𝑛
𝛥
)

𝐷⋅𝑡𝑎𝑘𝑡
0

𝑑𝑇) ⋅ (𝑅(𝜔𝑖) + 𝛾 ∑ 𝑃(𝑆𝑛+1
𝛥 |𝑆′𝑛

𝛥
)𝑆𝑛+1

𝛥 ⋅ 𝑉(𝑆𝑛+1
𝛥 )), 𝑖 = 2

 (47)

5.3. Value iteration 

The value iteration algorithm is a classical tabular 

reinforcement learning algorithm that employs dynamic 

programming principles to efficiently and rapidly converge to 

the global optimal strategy. After discretizing the continuous 

and non-enumerable health states, the algorithm iteratively 

evaluates all possible system states to determine the optimal 

maintenance action for each one. This process constructs the 

system's optimal condition-based maintenance strategy 𝜋 ∗

(𝑆𝑛
𝛥), as detailed in Algorithm 1. 
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Algorithm 1 Value Iteration Algorithm. 

Inputs: state of the system 𝑆𝑛
𝛥; model parameters 

Output: optimal condition-based maintenance strategy 𝜋 ∗ (𝑆𝑛
𝛥) for the system in state 𝑆𝑛

𝛥 

Begin 

Initialization: N-equalize 𝕊𝑛; for any𝑆𝑛+1
𝛥 , make 𝑉(𝑆𝑛+1

𝛥 ) = 0; 

Calculation: Calculate𝑃(𝑆 ′
𝑛
𝛥
|𝑆𝑛
𝛥, 𝑎𝑛) ,𝑃(𝑆𝑛+1

𝛥 |𝑆 ′
𝑛
𝛥
) and 𝑃(𝜔𝑖|𝑆

′
𝑛
𝛥
)𝑄(𝑆 ′

𝑛
𝛥
, 𝜔𝑖) for any𝑆𝑛

𝛥; 

for any𝑆𝑛
𝛥 

while |𝑉𝑀(𝑆𝑛
𝛥) − 𝑉𝑀−1(𝑆𝑛

𝛥)| ≥ 𝜀 do 

Calculate 𝑄(𝑆𝑛
𝛥, 𝑎𝑛) so that 𝑉∗(𝑆𝑛

𝛥) = 𝑚𝑎𝑥
𝑎𝑛
𝑄(𝑆𝑛

𝛥, 𝑎𝑛) 

end 

end 

𝜋 ∗ (𝑆𝑛
𝛥) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄𝑀 (𝑆𝑛

𝛥, 𝑎𝑛)  

End 

 

6. Numerical study 

A commercial vehicle manufacturer utilizes a Mazak horizontal 

machining center HCN6800 to machine reducer housings, as 

illustrated in Fig. 4. To validate the proposed condition-based 

maintenance model, a numerical case study and comparative 

analysis are conducted using real-world data from this 

machining center.

  
(a) HCN 6800 (b) Reducer housings 

Fig.4. Horizontal Machining Center and Reducer Housing.

6.1. Optimal strategies under the base model 

Based on the company's product quality report, daily 

operational revenue data, and sensor-collected information, the 

parameters for the condition-based maintenance strategy model 

are determined, as shown in Table 1. 

Table 1. model parameters. 

parameters value parameters value parameters value 

L 10 λq 0.003 Cpena 8 

D 30 γq 2.5 Cdel 4 

α 0.1 u 2 δ 60 

β 0.9 v 2 TIM 10 

takt 1 r 10 TR 2TO 

p0 0.001 CIM 10 TO 20 

η 0.9 CR/CO 30 N 50 

Since the delay time 𝑇𝑛
𝑜𝑡 is theoretically unbounded, which 

poses computational challenges and lacks practical feasibility, 

it is limited to the interval [0, δ/2] based on Table 1. The 

discount factor γ is set to 0.5, and the the iteration stopping 

threshold ε = 10-6. Substituting the parameters into the model, 

all combinations of 𝑆𝑛
𝛥 are traversed, and the Bellman optimal 

equation in Section 5.2 is solved using Algorithm 1. After 6 

iterations, the action value function 𝑄𝑀(𝑆𝑛
𝛥, 𝑎𝑛)  for all state 

combinations converges. Fig.5 shows the resulting optimal 

CBM strategy 𝜋 ∗ (𝑆𝑛
𝛥). 

If the system is not properly maintained during the current 

task period, the risk of system degradation failures during 

production increases. Furthermore, a large 𝑇𝑛
𝑜𝑡  raises the 

likelihood of delay propagation, reducing the system’s 

operational availability in subsequent periods and lowering the 
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future state’s expected reward 𝑉(𝑆𝑛+1
𝛥 ) . While maintenance 

actions such as IM and Overhaul improve 𝑉(𝑆𝑛+1
𝛥 ) by restoring 

system health. However, according to Eq.(12)  ,Null yields a 

higher immediate reward 𝑟(𝑆𝑛
𝛥,Null) compared to IM, and the 

immediate reward 𝑟(𝑆𝑛
𝛥,IM)  of IM is higher than that of 

Overhaul. Since maintenance durations are deterministic, a 

large 𝑇𝑛
𝑜𝑡 may cause the total maintenance and processing time 

to exceed the task period, increasing delay costs and further 

propagating delays. Consequently, a trade-off arises between 

the immediate rewards and the future state values. This trade-

off is particularly evident in the following two specific state 

combinations, where balancing short-term and long-term 

benefits is critical. 

 

Fig.5. Optimal Condition-Based Maintenance Strategy 𝜋∗(𝑆𝑛
𝛥). 

IM's first execution point:{𝑠𝑛
𝛥 = 2.2, 𝑇𝑛

𝑜𝑡 = 21} 

As shown in Eq.(48), based on the model parameters, when 

𝑇𝑛
𝑜𝑡 = 21  and the Null action is executed, if a degradation 

failure occurs in the system during processing, Renew will be 

performed. This results in the delay being propagated precisely 

to the (n+2)-th period, causing a further reduction in the 

expected future reward associated with Scenario 1. 

𝑇𝑛
𝑜𝑡 + 𝑇𝑅 + 2𝐷 ⋅ 𝑡𝑎𝑘𝑡 = 21 + 40 + 60 = 121 > 2 ⋅ 𝛿 =

120 (48) 

The probability of a healthy system experiencing a 

degradation failure (Scenario 1) during the processing period is 

low. Consequently, the future expected reward of Scenario 1 

represents only a small percentage of the total expected reward, 

and changes in 𝑇𝑛
𝑜𝑡  have minimal impact on the overall 

expected reward. Therefore, the optimal maintenance strategy 

𝜋 ∗ (𝑆𝑛
𝛥) is to execute Null when 𝑠𝑛

𝛥 < 2.2, regardless of 𝑇𝑛
𝑜𝑡. 

However, when the system state reaches 𝑠𝑛
𝛥 = 2.2 and Null is 

executed, the probability of the system entering Scenario 1 

during the processing period increases. Based on this, at 𝑇𝑛
𝑜𝑡 =

21, the future expected reward outweighs the immediate reward, 

making this combination the first execution point of IM. When 

𝑇𝑛
𝑜𝑡 > 21, the additional time consumption caused by executing 

IM further delays the current period, resulting in an immediate 

delay cost. In this case, Null regains its advantage in the trade-

off between the immediate reward and the future expected 

reward, becoming the optimal action again. When 𝑠𝑛
𝛥 > 2.2, the 

advantage of IM gradually spreads around 𝑇𝑛
𝑜𝑡 = 21 . As the 

health state degrades further to 𝑠𝑛
𝛥 = 3.6, the execution range of 

IM expands to cover all 𝑇𝑛
𝑜𝑡 , which is referred to as the full 

execution point of IM. At this point, the system no longer selects 

Null and consistently executes IM to prevent further 

degradation, regardless of the delay time. This process 

continues until the health state reaches 𝑠𝑛
𝛥 = 6 . Fig.6(a) 

illustrates the action value function curve for each maintenance 

action with respect to delay time 𝑇𝑛
𝑜𝑡 at a system health state 

𝑠𝑛
𝛥 = 2.2. 

Overhaul's first execution point:{𝑠𝑛
𝛥 = 6, 𝑇𝑛

𝑜𝑡 = 11} 

As shown in Eq.(49), based on the base model parameters, 

when 𝑇𝑛
𝑜𝑡 = 11  and IM is executed, if the system still 

experiences a degradation failure during machining, the delay 

propagates precisely to the (n+2)-th period, resulting in a further 

reduction in the future expected reward associated with 

Scenario 1. 

𝑇IM + 𝑇𝑛
𝑜𝑡 + 𝑇𝑅 + 2𝐷 ⋅ 𝑡𝑎𝑘𝑡 = 

10 + 11 + 40 + 60 = 121 > 2 ⋅ 𝛿 = 120 (49) 

Generally, the probability of a system that has executed IM 

experiencing a degradation failure (Scenario 1) during the 

production period is low. Consequently, the future expected 

reward of Scenario 1 accounts for only a small portion of the 

total expected reward, and changes in 𝑇𝑛
𝑜𝑡 have a limited impact 

on the overall expected reward. Therefore, when 𝑠𝑛
𝛥 ∈ [3.6,6), 

the optimal maintenance strategy 𝜋 ∗ (𝑆𝑛
𝛥) is IM, regardless of 

𝑇𝑛
𝑜𝑡. However, when the system health state reaches 𝑠𝑛

𝛥 = 6,the 

probability of entering Scenario 1 during the processing period 

increases, even if IM is performed. Based on this, at 𝑇𝑛
𝑜𝑡 = 11, 

the future expected reward outweighs the immediate reward, 

making this combination the first execution point of Overhaul. 

When 𝑇𝑛
𝑜𝑡 > 11 , the time required for Overhaul further 
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increases the delay in the current period, leading to an 

immediate delay cost. In such cases, IM regains its advantage in 

the trade-off between immediate and future rewards, becoming 

the optimal action again. As 𝑠𝑛
𝛥 > 6 , the execution region of 

Overhaul gradually expands around 𝑇𝑛
𝑜𝑡 = 11 . When the 

system health state degrades to 𝑠𝑛
𝛥 = 8.2, Overhaul reaches its 

full execution point. Specifically, for 𝑠𝑛
𝛥 ∈ [8.2,10), the system 

chooses Overhaul to restore its optimal health state, irrespective 

of 𝑇𝑛
𝑜𝑡. Fig.6(b) illustrates the action value function curve for 

each maintenance action with 𝑇𝑛
𝑜𝑡 at 𝑠𝑛

𝛥 = 6.

 

  

(a) = 2.2ns


 (b) = 6ns


 

Fig.6. Action value function curves at the point of first execution.

6.2. Comparative analysis of maintenance strategies 

This subsection compares the optimal condition-based 

maintenance strategy proposed in this paper, denoted as 

CBM_delay, with several benchmark strategies, including 

failure-based maintenance (FBM), time-based maintenance 

(TBM), a baseline CBM strategy without considering delay 

propagation (denoted as CBM), and an age-based strategy 

(AGE). Under FBM, no preventive maintenance is performed. 

The system operates continuously until a shutdown occurs, after 

which a Renew action is executed. This approach is equivalent 

to consistently selecting the Null action for all state 

combinations. For TBM, preventive maintenance is performed 

on the manufacturing system at fixed intervals. If a downtime 

occurs during the production process, a Renew operation is 

executed. For CBM, the strategy is designed following existing 

studies that determine actions solely based on the system’s 

health state[13, 16, 47]. Specifically, when the system health 

state is within [0, 3.2], Null is performed; when it is within [3.4, 

7.8], IM is applied; and when it exceeds 7.8, an Overhaul is 

executed. For AGE, the strategy performs IM at fixed intervals 

based on the system's age, following the widely adopted 

industrial practice of applying preventive maintenance once a 

machine's age exceeds a predetermined threshold[48]. Based on 

the cost structure and degradation parameters defined in this 

study, the optimal age threshold is estimated to be 50, which is 

calculated using the formula proposed in [48]. Using the same 

environment and parameters as in Section 6.1, a comparative 

simulation test of 100 episodes was conducted for the 

manufacturing system using the five aforementioned strategies, 

with each episode consisting of 20 consecutive task periods. 

The trends of profit, availability, and quality for each strategy 

during operation are shown in Figure 7.To visually compare the 

performance of the strategies in terms of Profit, Availability, and 

Quality, Figure 8 presents the boxplots for the five strategies.

   
(a) Profit (b) Availability (c) Quality 

Fig.7 Comparative Performance Trends Under Strategies 
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(a) Profit (b) Availability (c) Quality 

Fig.8. Boxplots of Strategies on Profit, Availability, and Quality.

In the boxplots, the boxes represent the interquartile range 

(Q1 to Q3), the center line indicates the median, and the 

whiskers and outliers reflect the full range and rare cases. The 

distributions across Profit, Availability, and Quality reveal 

distinct differences among the five maintenance strategies. 

CBM_delay achieves the best performance overall, with the 

highest medians across all three metrics. Its boxplots show tight 

interquartile ranges and minimal low-end outliers, indicating 

strong and stable outcomes. CBM ranks second, with slightly 

lower medians and more spread in availability and quality, 

though it still maintains high overall effectiveness. TBM 

follows in third place. While its medians are not as high as CBM 

or CBM_delay, it maintains moderate performance across all 

metrics, with relatively narrow ranges and few extreme values, 

indicating consistent but less optimal outcomes. AGE, though a 

structured policy, underperforms TBM in all three indicators. Its 

distributions also show greater variability, especially in quality. 

FBM performs the weakest, with the lowest medians in every 

category and greater dispersion, particularly in profit and 

availability, pointing to high risk and inconsistent returns. In 

summary, CBM_delay achieves higher profit, more stable 

availability, and superior quality, confirming the superiority of 

the proposed strategy. 

7. Conclusion 

In this paper, we propose a condition-based maintenance 

strategy for imperfect manufacturing systems that aims to 

consider product quality and examine the impact of operational 

availability under delay propagation on the optimal 

maintenance decision. The strategy is modeled using a Markov 

decision process that accounts for system degradation failures 

and quality deterioration during production, with the production 

process simulated via a Markov-modulated Bernoulli process. 

To derive the strategy, we establish a scenario value function to 

support the Bellman optimal equation and discretize continuous 

health state variables, applying a value iteration algorithm to 

derive the optimal maintenance policy. A numerical case study 

and comparative analysis are conducted using data from the 

HCN6800 horizontal machining center of a commercial vehicle 

manufacturer. The results demonstrate that the proposed 

strategy outperforms traditional methods and condition-based 

maintenance strategies that ignore delay propagation, achieving 

better performance in terms of long-term profit, operational 

availability, and product quality. 

Future research could expand the model to multi-machine 

manufacturing systems or refine it for multi-component systems, 

enhancing the model's applicability and realism.

References 

1. Rausand M, Høyland A. System Reliability Theory: Models, Statistical Methods, and Applications2003. 

2. Rivera-Gomez H, Gharbi A, Kenne JP, Montano-Arango O, Hernandez-Gress ES. Subcontracting strategies with production and 

maintenance policies for a manufacturing system subject to progressive deterioration. Int J Prod Econ. 2018;200:103-18. 

https://doi.org/10.1016/j.ijpe.2018.03.004 

 

3. Taleizadeh AA, Sari-Khanbaglo MP, Cárdenas-Barrón LE. Outsourcing Rework of Imperfect Items in the Economic Production Quantity 

(EPQ) Inventory Model With Backordered Demand. IEEE Trans Syst Man Cybern -Syst. 2019;49:2688-99. 

https://doi.org/10.1109/TSMC.2017.2778943 

 

4. Lai XF, Chen ZX, Bidanda B. Optimal decision of an economic production quantity model for imperfect manufacturing under hybrid 

maintenance policy with shortages and partial backlogging. Int J Prod Res. 2019;57:6061-85. 

https://doi.org/10.1080/00207543.2018.1562249 

 

https://doi.org/10.1016/j.ijpe.2018.03.004
https://doi.org/10.1109/TSMC.2017.2778943
https://doi.org/10.1080/00207543.2018.1562249


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

5. Zhang C, Zhang YD, Dui H, Wang SP, Tomovic MM. Component Maintenance Strategies and Risk Analysis for Random Shock Effects 

Considering Maintenance Costs. Eksploat Niezawodn. 2023;25:12. https://doi.org/10.17531/ein/162011 
 

6. Yang XZ, He YH, Liao RY, Cai YQ, Dai W. Mission reliability-centered opportunistic maintenance approach for multistate manufacturing 

systems. Reliab Eng Syst Saf. 2024;241:15. https://doi.org/10.1016/j.ress.2023.109693 
 

7. Li H, Huang C-G, Guedes Soares C. A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines. 

Ocean Engineering. 2022;256. https://doi.org/10.1016/j.oceaneng.2022.111433 
 

8. Li H, Teixeira AP, Guedes Soares C. A two-stage Failure Mode and Effect Analysis of offshore wind turbines. Renewable Energy. 

2020;162:1438-61. https://doi.org/10.1016/j.renene.2020.08.001 
 

9. Zhao HS, Xu FH, Liang BT, Zhang JP, Song P. A condition-based opportunistic maintenance strategy for multi-component system. Struct 

Health Monit. 2019;18:270-83. https://doi.org/10.1177/1475921717751871 
 

10. Tsao YC, Pantisoontorn A, Vu TL, Chen TH. Optimal production and predictive maintenance decisions for deteriorated products under 

advance-cash-credit payments. Int J Prod Econ. 2024;269:12. https://doi.org/10.1016/j.ijpe.2023.109132 
 

11. Song MQ, Zhang YZ, Yang F, Wang XF, Guo GM. Maintenance policy of degradation components based on the two-phase Wiener 

process. Eksploat Niezawodn. 2023;25:12. https://doi.org/10.17531/ein/172537 
 

12. Xu WG, Cao L. Optimal maintenance control of machine tools for energy efficient manufacturing. Int J Adv Manuf Technol. 

2019;104:3303-11. https://doi.org/10.1007/s00170-018-2233-1 
 

13. Xu J, Liang ZL, Li YF, Wang KB. Generalized condition-based maintenance optimization for multi-component systems considering 

stochastic dependency and imperfect maintenance. Reliab Eng Syst Saf. 2021;211:20. https://doi.org/10.1016/j.ress.2021.107592 
 

14. Zhang Q, Liu Y, Xiang Y, Xiahou T. Reinforcement learning in reliability and maintenance optimization: A tutorial. Reliab Eng Syst Saf. 

2024;251. https://doi.org/10.1016/j.ress.2024.110401 
 

15. Zhang JL, Lam WHK, Chen BY. On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and 

time windows. Eur J Oper Res. 2016;249:144-54. https://doi.org/10.1016/j.ejor.2015.08.050 
 

16. Li S, Yang Z, He J, Li G, Yang H, Liu T, et al. A novel maintenance strategy for manufacturing system considering working schedule and 

imperfect maintenance. Comput Ind Eng. 2023;185. https://doi.org/10.1016/j.cie.2023.109656 
 

17. Shi LX, Lv XL, He YD, He Z. Optimising production, maintenance, and quality control for imperfect manufacturing systems considering 

timely replenishment. Int J Prod Res. 2024;62:3504-25. https://doi.org/10.1080/00207543.2023.2241563 
 

18. Ait-El-Cadi A, Gharbi A, Dhouib K, Artiba A. Integrated production, maintenance and quality control policy for unreliable manufacturing 

systems under dynamic inspection. Int J Prod Econ. 2021;236:20. https://doi.org/10.1016/j.ijpe.2021.108140 
 

19. Zhang QL, Yang L, Duan JG, Qin JY, Zhou Y. Research on integrated scheduling of equipment predictive maintenance and production 

decision based on physical modeling approach. Eksploat Niezawodn. 2024;26:15. https://doi.org/10.17531/ein/175409 
 

20. Guendouli E, Mifdal L, Dellagi S, Kibbou E, Moufki A. Integrated production-maintenance strategy considering energy consumption 

and recycling constraints in dry machining. Int J Adv Manuf Technol. 2024:19. https://doi.org/10.21203/rs.3.rs-3982933/v1 
 

21. Yin ML, Angus JE, Trivedi KS. Optimal Preventive Maintenance Rate for Best Availability With Hypo-Exponential Failure Distribution. 

Ieee Transactions on Reliability. 2013;62:351-61. https://doi.org/10.1109/TR.2013.2256672 
 

22. Chalabi N, Dahane M, Beldjilali B, Neki A. Optimisation of preventive maintenance grouping strategy for multi-component series 

systems: Particle swarm based approach. Comput Ind Eng. 2016;102:440-51. https://doi.org/10.1016/j.cie.2016.04.018 
 

23. Lotovskyi E, Teixeira AP, Soares CG. Availability analysis of an offshore oil and gas production system subjected to age-based preventive 

maintenance by Petri Nets. Eksploat Niezawodn. 2020;22:627-37. https://doi.org/10.17531/ein.2020.4.6 
 

24. Yang M, Li CB, Tang Y, Xiong MK. Availability-Oriented Maintenance Strategy of Key Equipment in Automated Production Line 

Considering Performance Degradation. IEEE Robot Autom Lett. 2023;8:3182-9. https://doi.org/10.1109/LRA.2023.3266174 
 

25. An D, Lee DJ. Optimal condition-based maintenance policy considering nested conditional value-at-risk and operational availability: A 

case study on semiconductor manufacturing equipment. IISE Trans. 2024:12. https://doi.org/10.1080/24725854.2024.2410334 
 

26. Chen Y, Liu Y, Xiahou T. A Deep Reinforcement Learning Approach to Dynamic Loading Strategy of Repairable Multistate Systems. 

IEEE Transactions on Reliability. 2022;71:484-99. https://doi.org/10.1109/TR.2020.3044596 
 

27. Wang J, Zhu XY. Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state 

degrading components. Eur J Oper Res. 2021;290:514-29. https://doi.org/10.1016/j.ejor.2020.08.016 
 

28. Hu JW, Sun QZ, Ye ZS. Replacement and Repair Optimization for Production Systems Under Random Production Waits. Ieee 

Transactions on Reliability. 2022;71:1488-500. https://doi.org/10.1109/TR.2021.3111651 
 

29. Zhang ZS, Zhou YF, Sun Y, Ma L. Condition-Based Maintenance Optimisation Without A Predetermined Strategy Structure For A Two-

Component Series System. Eksploat Niezawodn. 2012;14:120-9. 
 

30. Zhou YF, Zhang ZS. Optimal Maintenance Of A Series Production System With Two Multi-Component Subsystems And An Intermediate 

Buffer. Eksploat Niezawodn. 2015;17:314-25. https://doi.org/10.17531/ein.2015.2.20 
 

31. Tang DY, Sheng WB, Yu JS. Dynamic Condition-Based Maintenance Policy For Degrading Systems Described By A Random-Coefficient 

Autoregressive Model: A Comparative Study. Eksploat Niezawodn. 2018;20:590-601. https://doi.org/10.17531/ein.2018.4.10 
 

32. Liu YL, Qian XB. Selective maintenance optimization with stochastic break duration based on reinforcement learning. Eksploat 

Niezawodn. 2022;24:771-84. https://doi.org/10.17531/ein.2022.4.17 
 

33. Liao HT, Elsayed EA, Chan LY. Maintenance of continuously monitored degrading systems. Eur J Oper Res. 2006;175:821-35. 

https://doi.org/10.1016/j.ejor.2005.05.017 
 

34. Zhao X, Sun JL, Qiu QG, Chen K. Optimal inspection and mission abort policies for systems subject to degradation. Eur J Oper Res. 

2021;292:610-21. https://doi.org/10.1016/j.ejor.2020.11.015 
 

35. Bertsekas D, Tsitsiklis JN. Introduction to probability: Athena Scientific; 2008.  

https://doi.org/10.17531/ein/162011
https://doi.org/10.1016/j.ress.2023.109693
https://doi.org/10.1016/j.oceaneng.2022.111433
https://doi.org/10.1016/j.renene.2020.08.001
https://doi.org/10.1177/1475921717751871
https://doi.org/10.1016/j.ijpe.2023.109132
https://doi.org/10.17531/ein/172537
https://doi.org/10.1007/s00170-018-2233-1
https://doi.org/10.1016/j.ress.2021.107592
https://doi.org/10.1016/j.ress.2024.110401
https://doi.org/10.1016/j.ejor.2015.08.050
https://doi.org/10.1016/j.cie.2023.109656
https://doi.org/10.1080/00207543.2023.2241563
https://doi.org/10.1016/j.ijpe.2021.108140
https://doi.org/10.17531/ein/175409
https://doi.org/10.21203/rs.3.rs-3982933/v1
https://doi.org/10.1109/TR.2013.2256672
https://doi.org/10.1016/j.cie.2016.04.018
https://doi.org/10.17531/ein.2020.4.6
https://doi.org/10.1109/LRA.2023.3266174
https://doi.org/10.1080/24725854.2024.2410334
https://doi.org/10.1109/TR.2020.3044596
https://doi.org/10.1016/j.ejor.2020.08.016
https://doi.org/10.1109/TR.2021.3111651
https://doi.org/10.17531/ein.2015.2.20
https://doi.org/10.17531/ein.2018.4.10
https://doi.org/10.17531/ein.2022.4.17
https://doi.org/10.1016/j.ejor.2005.05.017
https://doi.org/10.1016/j.ejor.2020.11.015


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

36. Bouslah B, Gharbi A, Pellerin R. Integrated production, sampling quality control and maintenance of deteriorating production systems 

with AOQL constraint. Omega-Int J Manage Sci. 2016;61:110-26. https://doi.org/10.1016/j.omega.2015.07.012 
 

37. van Noortwijk JM. A survey of the application of gamma processes in maintenance. Reliab Eng Syst Saf. 2009;94:2-21. 

https://doi.org/10.1016/j.ress.2007.03.019 
 

38. Applebaum D. Lévy Processes and Stochastic Calculus, Second Edition: Springer; 2009. https://doi.org/10.1017/CBO9780511809781  

39. Özekici S. Markov modulated Bernoulli process. Mathematical Methods of Operations Research. 1997;45:311-24. 

https://doi.org/10.1007/BF01194782 
 

40. Maillart LM, Cassady CR, Honeycutt J. A binomial approximation of lot yield under Markov modulated Bernoulli item yield. IIE Trans. 

2008;40:459-67. https://doi.org/10.1080/07408170701592507 
 

41. Sutton RS, Barto AG. Reinforcement learning: An introduction: MIT press; 2018.  

42. Bellman RE. Dynamic Programming: Princeton Landmarks in Mathematics and Physics; 2021.08. https://doi.org/10.2307/j.ctv1nxcw0f  

43. Howard RA. Dynamic programming and Markov processes: Technology Press of Massachusetts Institute of Technology; 1960.  

44. Watkins CJCH, Dayan P. Q-learning. Machine Learning. 1992;8:279-92. https://doi.org/10.1007/BF00992698  

45. Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning. 1992;8:229-

56. https://doi.org/10.1007/BF00992696 
 

46. Liu Y, Chen Y, Jiang T. Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement 

learning approach. Eur J Oper Res. 2020;283:166-81. https://doi.org/10.1016/j.ejor.2019.10.049 
 

47. Sun QZ, Ye ZS, Chen N. Optimal Inspection and Replacement Policies for Multi-Unit Systems Subject to Degradation. Ieee Transactions 

on Reliability. 2018;67:401-13. https://doi.org/10.1109/TR.2017.2778283 
 

48. Huang J, Chang Q, Arinez J. Deep reinforcement learning based preventive maintenance policy for serial production lines. Expert Syst 

Appl. 2020;160:14. https://doi.org/10.1016/j.eswa.2020.113701 
 

 

https://doi.org/10.1016/j.omega.2015.07.012
https://doi.org/10.1016/j.ress.2007.03.019
https://doi.org/10.1017/CBO9780511809781
https://doi.org/10.1007/BF01194782
https://doi.org/10.1080/07408170701592507
https://doi.org/10.2307/j.ctv1nxcw0f
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1016/j.ejor.2019.10.049
https://doi.org/10.1109/TR.2017.2778283
https://doi.org/10.1016/j.eswa.2020.113701

