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Highlights  Abstract  

▪ A semi-supervised learning method for bearing 

fault diagnosis was proposed. 

▪ A STFT enhanced Contrastive Learning is 

employed to utilize large unlabeled samples. 

▪ The diagnostic accuracy exceeded 99% when 

using 50 labeled samples per fault type. 

 This paper proposes a novel semi-supervised framework, time-

frequency Contrastive Learning (CL), to address the challenge of 

accurate rolling bearing fault diagnosis under industrial small-sample 

conditions. Raw vibration signals are transformed into discriminative 

time-frequency images using short-time Fourier transform (STFT). A CL 

network with a ResNet18 model is pre-trained on a lot of unlabeled 

samples to learn generalized feature, and the ResNet18 model is fine-

tuned using small labeled samples for fault classification. Experimental 

validation on bearing fault datasets demonstrates that the proposed 

STFT-CL method achieves above 99% diagnosis accuracy with only 50 

labeled samples per fault type, outperforming conventional semi-

supervised methods by 6-12%. The proposed method provides  

a potential solution to the "small sample dilemma" in industrial 

applications through the synergistic effect of physically driven signal 

processing and self supervised representation learning. 
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1. Introduction 

Rolling bearings are precision components that provide support 

to mechanically rotating bodies. These elements reduce friction 

coefficients during motion and minimize frictional losses 

between various mechanical components in the system1. 

However, during actual system operation, the bearings can be 

damaged due to fatigue resulting from prolonged periods of 

overload or improper maintenance. Generally, rolling bearings 

failures account for a large share of failures in power systems. 

According to reported data, bearing failures in induction motors 

constitute around 42% of the total number of failures2. 

Therefore, developing and implementing intelligent methods 

for fault diagnosis of bearings can extend machine operation 

safety and enhance the system performance and overall 

efficiency3-5. 

In recent years, a number of deep learning (DL) -based 

methods were widely used in various applications, 

demonstrating significant potential for diagnosing faults in 

rotating machinery6-12. DL methods realize end-to-end learning 

by hierarchically representing and extract high-level 

representations from low-level features. This effectively 
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reduces the dependency on data as experienced in traditional 

machine learning models and algorithms13-16. For instance, 

Wang et al.  implemented a convolutional neural networks 

(CNN) based hidden Markov model to address the mechanical 

fault classification problem17. In a connected work, Anil et al. 

introduced a novel CNN to improve the fault diagnosis accuracy 

for bearings. They presented a triangular cross-entropy function 

to calculate sparsity costs18. Zhao et al. developed a 

convolutional bidirectional long short-term memory (LSTM) 

network to process raw sensing data to form a basis for machine 

health monitoring19. Also, Chen et al. presented a multi-task 

network deep domain adaptive model for planetary gearbox 

fault diagnosis20. Zhou et al. proposed a deep kernel based 

extreme learning machine (KELM) algorithm for predicting 

milling tool wear values that could improve significantly the 

performance of tool wear condition monitoring21. However, it is 

noted that these DL-based methods require a lot of labeled 

samples for training and learning22-24. This is challenging in 

many practical industrial scenarios and creates major problems 

hindering implementation due to the need for extensive 

experimentation.  

In many actual scenarios, it is difficult to collect sufficient 

training samples constrained by time and monetary costs, in 

addition to a large number of unlabeled samples. This situation 

affects significantly the learning effectiveness of supervised DL 

models2526. On this basis, there is a need to develop a 

classification method capable of learning from small labeled 

samples along with large unlabeled samples. Zhou et al. 

proposed a novel semi-supervised method based on multiscale 

permutation entropy, in which unlabeled samples could be 

utilized to extract fault features27. This method provides a very 

novel and effective framework for fault diagnosis in the 

industrial reality of "small sample, big data", effectively 

overcoming the problem of fault diagnosis under small sample. 

It is worth noting that this method requires parameter 

optimization to obtain the best two-dimensional samples, 

resulting in high professional requirements for employees.  

It is necessary to develop a method that is easy for ordinary 

employees with weak professionalism to understand and 

operate. Therefore, this paper establishes a simpler and more 

feasible method based on time-frequency transform enhanced 

contrastive learning that can obtain highly accurate performance 

using small labeled samples and large unlabeled samples. The 

contributions of this paper are as follows: 

(1) A semi-supervised learning method for bearing fault 

diagnosis has been proposed, which significantly reduces the 

requirement of deep learning models for a large number of 

labeled samples by learning features from a large number of 

unlabeled samples. 

(2) A STFT enhanced CL method is proposed, in which 

STFT is used to enhance the information of samples, while CL 

learns deep features from unlabeled samples. 

(3) The diagnostic accuracy of the proposed method 

exceeded 99% when using 50 labeled samples per fault type, 

significantly reducing the dependence of fault diagnosis on 

sample size. 

2. Proposed method 

2.1. Contrastive learning 

In their research on unsupervised classification, Hardsel et al. 

introduced contrast loss, which maps high-dimensional data to 

a low-dimensional space28. By calculating the contrast loss of 

positive pairs and negative pairs, this approach brings similar 

points closer together in space. In a connected study, Chen et al. 

developed a contrastive learning (CL) framework, which adds 

multiple fully connected layers and activation layers after the 

feature extraction network29. In this regard, the model addresses 

the slow computation speed when considering high-

dimensional feature vectors, and good results were reported. 

Overall, CL has addressed some issues of conventional 

approaches, including data sparsity and the long-tail distribution 

of items in recommendation systems30. It also showed good 

performance in natural language processing3132. In such 

applications, the method utilizes data augmentation to bring 

closer the results of the same sentence after augmentation, as 

positive examples, in addition to separating different sentences 

or augmentations of different sentences, as negative examples. 

Generally, it was shown that the trained model performs well in 

downstream tasks, such as sentence transformation.  

Figure 1 presents the overall framework of CL. The 

framework includes three modules: data augmentation, feature 

extraction, and contrastive loss optimization modules.  
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Figure 1. Framework of contrastive learning model. 

(1) Data Augmentation Module 

Generally, it can augment image through two ways. The first 

way involves spatial geometric transformations, such as 

horizontal flipping, vertical flipping, and cropping. The second 

way involves appearance transformations, such as color jittering 

and grayscale generation. By default, a set of images obtained 

through the T transform of an image are called positive samples 

of the original image. On the other hand, paired samples, which 

are generated from other images, serve as negative samples for 

this image. 

(2) Feature Extraction Module 

Feature extraction is performed to obtain feature vectors to 

serve as inputs for the DL classification model. Here, the multi-

layer perceptron (MLP) is applied to extract features. After the 

first linear layer is normalized, the ReLU function is 

implemented to explore the relevant features and accelerate the 

fitting of training data. This allows for speeding up 

computations in the subsequent loss function calculations33. 

(3) Contrastive Loss Optimization Module 

In this module, a batch size of N is specified, where N 

images are transformed using a T transformation. This results 

in images denoted as N1 and N2. The low-dimensional features 

obtained through the MLP-based feature extraction module are 

represented as Z1 and Z2, respectively, with 𝑍 = [𝑍1; 𝑍2] ∈

𝑅2𝑁×𝐾 . In this regard, K denotes the length of the feature vectors 

Z1 and Z2, and [Z1; Z2] represents the column-wise concatenation 

of Z1 and Z2. Additionally, the cross-entropy loss of the i-th 

sample can be calculated by using Eq. (1) 29. 

𝑙𝑖𝑗 = − 𝑙𝑜𝑔
𝑒𝑥𝑝(𝑆𝑖𝑚(𝑖, 𝑗)/𝜏)

∑ 𝑒𝑥𝑝(𝑆𝑖𝑚(𝑖, 𝑗)/𝜏)2𝑁
𝑘=1

, 𝑆𝑖𝑚(𝑖, 𝑗)

=
𝑍𝑖
𝑇𝑍𝑗

|𝑍𝑖||𝑍𝑗|
 

(1) 

Where Sim(i,j) denotes the cosine similarity function, and 𝜏 ∈

[0,1] is the temperature coefficient which is used to adjust the 

focus on hard samples. It is worth noting here that a smaller 𝜏 

triggers the model towards separating the sample from other 

similar samples. In Eq. (1), the numerator represents the cosine 

similarity of positive sample pairs in the i-th sample, and the 

denominator is the sum of the cosine similarities between the i-

th image and all other samples. According to the findings 

reported in the literature 29, it was demonstrated that the 

performance deteriorates significantly without a regularization 

adjustment and with no inclusion of the 𝜏. Finally, the average 

of losses L for batch n can be calculated through Eq. (2)29. 

𝐿 =
1

2𝑁
∑[𝑙(2𝑘 − 1, 2𝑘) + 𝑙(2𝑘, 2𝑘

2𝑁

𝑘=1

− 1)] 

(2) 

2.2. Short time Fourier transform (STFT) 

In general, STFT is commonly used to analyze time-varying and 

non-stationary signals. This transformation approach is capable 

of elevating a one-dimensional signal into a two-dimensional 

matrix. The latter is easier to process by DL and comprises the 

spectro-temporal characteristics of the signal34. Additionally, 

the Fourier transform (FT) reflects the overall characteristics of 

an image, and its frequency domain analysis exhibits good local 

properties. STFT is developed based on FT, and it is adopted in 

this study as applying FT directly to the entire process would 

lead to losing time information3536. On this basis, it is necessary 

to segment a time-varying and non-stationary signal into 
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multiple stationary signals. To perform this, one approach is to 

multiply a function by a window function, followed by a 1-D 

FT. Sliding the window function results in a series of spectral 

functions, which are then concatenated sequentially to form a 

two-dimensional spectrogram. This fundamental operation is 

represented by Eq. (3), where x(t) denotes the time-domain 

signal, h(t-w) represents the window function, and ω  is its 

center position37. 

𝑆𝑇𝐹𝑇𝑥(𝑡, 𝜔) = ∫ 𝑥(𝑡)ℎ(𝑡 − 𝜔)𝑒−𝑗𝑤𝑡𝑑𝑡
+∞

−∞

 (3) 

2.3. Proposed method procedure 

The proposed method includes four steps, as illustrated in 

Figure 2.

 

Figure 2. Process of the proposed STFT-CL method. 

Step 1: An experimental platform for rolling bearings is 

established, with parameters configured to replicate real-world 

operational conditions. A subset of bearings is randomly 

selected and manually damaged to varying degrees across 

critical components (e.g., inner/outer rings, rollers) to simulate 

realistic fault scenarios. This process yielded a dataset 

comprising limited labeled samples and extensive unlabeled 

data. 

Step 2: The STFT is performed on all collected one-

dimensional signals to obtain spectrograms. These 

spectrograms are then converted to grayscale images. Then, the 

grayscale images originated from multiple channels are merged 

to obtain color images. 

Step 3: The generated color images in Step 2, which 

correspond to a large number of unlabeled samples, are 

introduced to the CL pre-training network to train the network 

feature weights. 

Step 4: The trained feature weights in Step 3 are then used 

as the initial values for the feature weights of ResNet18. In this 

process, a few labeled samples are used to fine-tune the 

ResNet18 model. The trained ResNet18 can then be used for 

fault diagnosis. 

3. Experimental investigation 

3.1. Bearing experimental dataset  

The setup of the rolling bearing fault diagnosis experiments is 

shown in Figure 3 1838. In the testing system, the geometric 

specifications of rolling bearings used for fault detection are 

shown in Table 1. A 346-watt AC motor is employed to deliver 

power to the shaft through a step pulley mechanism. A 2 kg disc 

is added in the middle of the shaft, between bearings 1 and 2. 

This disc rotates with the shaft, and a lever mechanism is 

utilized to provide a vertical load. To measure this applied load, 

a load cell is placed below the test bearing housing. Additionally, 

proximity sensors placed on the test rig record the shaft speed, 

and a tri-axial accelerometer is used to measure the vibration 

signals in X, Y, and Z directions at the top of the bearing testing 

setup. Sampling frequency is 70 kHz. 

Table 1. Parameters of experimental bearings 38. 

Parameter Value 

Inner ring diameter 25mm 

Outer ring diameter 52mm 

Pitch diameter 38.9mm 

Roller diameter 7.5 mm 

Number of rollers 13N 

Contact angle 0o 

Furthermore, the fault diagnosis experiment on the roller 

bearing was running at a speed of 2050 rpm while the vertical 

load is set to 200 N. Using electrical discharge machining (EDM) 

technology, four different types of wear faults were generated 

on the inner ring, outer ring, and roller parts, resulting in a total 

of twelve types of faults. Among them, the inner ring fault size 

includes four types: 0.43, 1.01, 1.56, and 2.03mm, the outer ring 

fault size includes four types: 0.42, 0.86, 1.55, and 1.97mm, and 

the roller fault size includes four types: 0.49, 1.16, 1.73, and 
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2.12mm, as shown in Figure 4.

 

Figure 3. Operation image of the testing bench setup38. 

 

Figure 4. Pictures of twelve fault types. 

3.2. Experiment Data Acquisition and Partitioning 

Based on these conducted experiments, thirteen bearing 

conditions, 1 normal condition and 12 fault conditions, were 

sampled for one cycle period, with each having 2048 points. 

Three directional (X, Y, and Z) vibration signals were 

transformed using STFT with a window length of 256 to 

generate time-frequency grayscale images. The obtained 

grayscale images from the three channels were then merged into 

color images, as shown in Figure 5. 
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Figure 5. Construction of graphical samples. 

Figure 6 to Figure 8 present the color spectrograms 

generated by STFT for three types of faults: inner race, outer 

race, and rolling element faults across 12 fault conditions, 

respectively. Overall, each fault condition produced 1000 

graphical samples, resulting in a dataset of 13,000 graphical 

samples.

 

Figure 6. Inner circle faults and their corresponding STFT images. 

 

Figure 7. Outer circle faults and their corresponding STFT images. 
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Figure 8. Roller faults and their corresponding STFT images. 

Following dataset construction, the samples were 

partitioned into training and testing sets at an 8:2 ratio, 

corresponding to 800 and 200 samples, respectively. Within the 

training set, 650 samples were randomly selected as unlabeled 

samples to pre-train the CL model, while the remaining 150 

labeled samples were reserved for fine-tuning the ResNet18 

classification model. The testing set comprised 200 samples per 

category to ensure comprehensive evaluation. To evaluate the 

influence of training sample size on diagnostic performance, 

subsets of labeled data—containing 20, 30, 50, 100, and 150 

samples per category—were extracted from the training set. 

These subsets, designated as TR20, TR30, TR50, TR100, and 

TR150, were utilized to quantify classification accuracy under 

varying sample sizes. 

3.3. Experimental Results and Analysis 

According to articles 22 and 27, the model parameters of the CL 

pre-training network and the Resnet18 classification model are 

presented in Table 2. The contrastive loss and CrossEntropy loss 

functions were employed in the CL pre-training network and the 

Resnet18 model, respectively. Additionally, the results obtained 

from the ten repeated experiments using different training sets 

employing the STFT-CL, STFT-ImageNet pre-training, and 

STFT-Resnet18 (without pre-training) methods were averaged.

Table 2. Parameters of the CL pre-training and Resnet18 model. 

Model 
Parameter value 

Image size Learning rate Temperature parameter Batch size Optimizer 

CL 64×64×3 0.0005 0.1 —— Adam 

Resnet18  64×64×3 0.001 —— 64 Adam 

 

Table 3 presents the average classification results obtained 

from ten experiments on five different sample size datasets 

employing the three methods investigated in this work. It is 

observed that transforming the signal into time-frequency 

spectrograms (STFT) to train the model yields consistently high 

classification accuracies. In this regard, the accuracy exceeds 90% 

as early as the case considering T-20 samples, while reaching 

over 98% for all methods in the case of T-150 samples. Overall, 

it is noted that the proposed CL method obtains higher accuracy 

compared to other two strategies (IM and Resnet18). In 

particular, the CL approach exhibited a 2% improvement under 

STFT with only 20 samples per category in the training dataset.
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Table 3. Classification results with different sample sizes. 

No. Labeled/class Unlabeled/class 
Test 

size/class 

STFT-

Resnet18 
STFT-IM STFT-CL 

T-20 20 650 200 91.82% 92.53% 94.13% 

T-30 30 650 200 94.66% 96.37% 96.94% 

T-50 50 650 200 97.85% 98.56% 99.04% 

T-100 100 650 200 99.29% 99.53% 99.73% 

T-150 150 650 200 99.50% 99.73% 99.89% 

 

Furthermore, the confusion matrix of the classification 

results for the T-20 dataset is illustrated in Figure 9. Here, Label 

1 represents the normal condition, Labels 2 to 5 represent 

different degrees of rolling element faults with increasing wear 

width, Labels 6 to 9 represent different degrees of inner circle 

faults with increasing wear width, and Labels 10 to 13 represent 

different degrees of outer circle faults with increasing wear 

width. Based on the matrix results, it can be concluded that the 

model demonstrates high accuracy in identifying the normal 

condition, inner circle faults, and outer circle faults. However, 

for rolling element faults, especially the middle two categories, 

a decrease in the recognition capability of the model is reported. 

This may be attributed to the rolling elements' ability to both 

rotate and revolve during operation. Thus, it is more challenging 

to distinguish these faults compared to inner and outer circle 

faults. 

 

Figure 9. Confusion matrix diagram of the T-20 dataset 

training model. 

4. Conclusion 

In this paper, a rolling bearing fault diagnosis method based on 

time-frequency transformation enhanced CL is proposed and 

evaluated. Large unlabeled samples collected from multiple 

experiments were dimensionally augmented and merged into 

color spectrograms using STFT. Additionally, a developed CL 

network is employed to pre-train the feature weights of 

ResNet18. This mode, in turn, was subsequently fine-tuned 

using a few labeled samples, resulting in the final recognition 

model. Moreover, experimental data was collected from bearing 

tests, and the result  analysis validated its effectiveness, 

demonstrating better performance in comparison to two other 

current methods. The main advantage of the proposed method 

is, it provides a potential solution to the "small sample dilemma" 

in industrial applications through the synergistic effect of 

physically driven signal processing and self supervised 

representation learning, specifically, only a small number of 

labeled fault samples need to be obtained, and a large number 

of samples during operation do not require manual labeling, 

significantly reducing the cost and time of manually labeling 

fault samples.  

In further, to advance the proposed semi-supervised fault 

diagnosis method, several promising directions could be 

explored. First, while the current method employs STFT to 

generate graphical samples, integrating complementary time-

frequency analysis techniques can enhance enhance the 

discriminability of 1D-to-2D data conversion, such as, 

combining STFT and GAF (Gramian Angular Field) through 

attention-based fusion mechanisms. Second, optimizing the CL 

architecture to better adapt to bearing-specific fault features. 

For example, a multi-scale contrastive loss could enforce 

similarity across time-frequency representations to capture 

hierarchical fault patterns. In addition, the robustness of the 

proposed method under under different operating conditions is 

worth exploring, validating performance across variable speeds, 

loads, noise levels, and lubrication states is critical to ensure 

industrial applicability.
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