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Highlights  Abstract  

▪ The model is based on time-domain fuzzy 

Bayesian network. 

▪ It combines the fuzzy fault tree and Bayesian 

network reliability analysis methods. 

▪ The method provides robust probabilistic 

assessments. 

 

 This study addresses high fault uncertainty, time-varying dynamics and 

non-reversible reasoning in natural gas station regulators by integrating 

fuzzy fault tree analysis with Bayesian networks. The approach 

combines component-level reliability models to tackle complex 

structural uncertainties and dynamic failure scenarios more accurately 

than traditional methods like binary-state event relationships or T-S 

fuzzy gates. By leveraging explicit causal links through fuzzy logic 

while enabling probabilistic predictions using Bayesian inference over 

time-varying dependencies, the method provides robust probabilistic 

assessments. The subsequent calculation of posterior probability and 

sensitivity identifies weak links influencing the system’s reliability.  

Experimental validation demonstrates its capability to identify critical 

weak points affecting system performance, affirming applicability and 

potential impact on design optimization and maintenance strategies for 

real-world installations. 
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1. Introduction 

Natural gas pipeline expansions lead to increased 

commissioning of transmission stations, which rely on critical 

systems like pressure regulation for efficient operation. 

However, the complexity of these systems can cause unforeseen 

issues. Effective maintenance, especially for components like 

pressure regulators, is essential to ensure both employee safety 

and operational productivity. Malfunctions in this system could 

jeopardize personnel safety and station performance. Therefore, 

maintaining the reliability of pressure regulation systems 

through regular inspections and preventive measures is critical 

for safe and stable gas transmission operations. 

The reliability analysis of the system can provide the basis 

for the safety evaluation of the system and the formulation of 

the corresponding maintenance strategy (1; 2). The common 

methods for system reliability analysis include fault tree 

analysis (FTA)(3), Monte Carlo simulation analysis process (4; 5; 

6), failure mode consequences and hazard analysis (FMECA) (7; 

8), Markov process analysis (9; 10) and Bayesian network analysis 

(11; 12; 13; 14). Bayesian network analysis has been perfected and 

developed by many experts and scholars into a theoretical 

method for analyzing uncertainty expression systems. Yakowitz 

S J elaborated on the Bayesian network and applied it in 
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engineering (15). Researchers Minn and Zhang both pay attention 

to fault diagnosis and analyze information about uncertain 

system failures (16; 17). In reference (18), a Bayesian approach is 

proposed to allow the corrosion model parameters to be updated 

according to the evolution 2of environmental conditions. This 

method makes full use of the advantages of Bayesian networks 

and solves the uncertainty problem in the process of network 

fault diagnosis. However, the fault mechanism of the actual 

natural gas station system is much more complex. The previous 

fault tree model has many deficiencies: (1) it needs to 

understand the logical relationship and probability between 

events accurately. (2) Each event can only be described by two 

states. (3) Traditional BN requires node states to be discretized 

(such as "normal/fault"), while faults in natural gas pressure 

systems often exhibit continuous or polymorphic characteristics 

(such as gradual pressure drop, partial valve blockage, sensor 

drift, etc.). (4) Traditional BN requires an accurate conditional 

probability table (CPT), but in practical systems, the fault logic 

is often fuzzy (such as "slightly higher pressure may cause slight 

valve jamming"). 

This paper introduces a novel approach by combining the T-

S fuzzy gate fault tree with Bayesian networks, achieved 

through the conversion of the fuzzy gate rules of the former into 

the conditional probability table of the latter. Its advantages are: 

(1) Fine modeling of polymorphic faults; (2) Collaborative 

expression of fuzzy logic and probability; (3) Time domain 

dynamic adaptability; (4) Handling of complex coupling 

relationships. suitable for scenarios involving polymorphic 

continuous fault diagnosis, risk assessment in uncertain 

environments, and preventive maintenance decision-making. 

Given the inherent complexity of the system, the multitude of 

potential errors, and the diverse range of data sources, this 

article harnesses the efficient parallel bidirectional inference 

capability of Bayesian networks to its full extent. Through the 

integration of reliability models for each component and their 

hierarchical traversal in the time domain, the proposed 

methodology enables uncertain fault diagnosis for industrial 

systems. The implementation of this method results in the 

construction of a Bayesian network, and its effectiveness is 

demonstrated through the diagnosis of faults in the regulation 

system’s regulator skid. This component, being one of the most 

critical and frequently-faulting elements in a natural gas station, 

highlights the practical significance of the developed approach. 

2. Method 

2.1. Reliability Modeling 

The reliability analysis model employed in this study assesses 

the reliability and lifespan of each component across various 

time periods. Serving as the cornerstone of this paper, this 

model provides the essential data support for the subsequent 

exploration of the fuzzy Bayesian network in the temporal 

dimension throughout the manuscript. 

2.1.1. Reliability Modeling Process 

The primary objective of reliability modeling is to utilize 

historical failure data of equipment components, coupled with 

statistical modeling techniques, to extract pertinent lifespan 

information (19). This enables the representation of failure 

patterns, providing theoretical underpinnings for equipment 

maintenance. Consequently, it facilitates the formulation of 

more rational and scientifically grounded maintenance 

strategies. The process of reliability modeling is depicted in 

Figure 1, and the specific modeling steps are as follows: 

1. Fault Data Preprocessing: Utilizing the historical fault 

records of related equipment at the gas transmission station, 

determine the time intervals between failures to establish 

separate fault data points. Afterward, arrange the component 

failure data by type of equipment and location in ascending 

order, remove any outliers, and obtain standardized reliability 

analysis data.  

2. Fitting Distribution Models: It is possible to identify one 

or more applicable distributions for a given set of failure data. 

To conduct a fitting analysis, it is crucial to comprehend the 

appropriateness of common distribution models and to choose 

an appropriate distribution function. The best distribution 

function can be identified through validation methods.  

3. Parameter Estimation: In order to conduct reliability 

analysis accurately, it is crucial to determine the parameters of 

the distribution function selected in step 2. This further step of 

parameter estimation directly impacts the calculation of final 

reliability indicators.  

4. Calculating Reliability Indices: Reliability indices are 

primarily used to characterize the failure patterns in equipment 

fault data. They can uncover potential issues, allowing for the 
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optimization of existing maintenance procedures by directly 

influencing the maintenance content through reliability indices. 

 

Figure 1. The process of reliability modeling. 

2.1.2. Reliability Metrics 

Lifespan analysis is based on the theoretical techniques of 

reliability analysis (20), which defines reliability as the capacity 

of mechanical equipment to fulfill designated duties within 

defined time frames and under specific conditions. Failure 

occurs when this specified capability is lost, often characterized 

as a fault for repairable equipment. Reliability metrics are 

utilized to quantify the level of equipment reliability. Several 

common reliability indicators include the following: 

1. Reliability 

Reliability is the probability that a mechanical device can 

perform its specified function within a defined time period and 

under specified conditions. It is a probabilistic quantification of 

reliability over time. Let T be a random variable representing 

the lifespan of the mechanical equipment. The probability that 

the product accomplishes its specified function within a fixed 

time t is given by: 

𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
∞

𝑟
   （1） 

2. Probability Distribution Function 

The probability distribution function of failure data, also 

known as the unreliability function, represents the probability 

that a mechanical device cannot perform its specified function 

within a defined time period and under specified conditions (21). 

Its relationship with the reliability function can be expressed as 

follows: 

𝐹(𝑡) = 1 − 𝑅(𝑡)     （2） 

3. The failure rate function When the sample size is 

relatively large, the approximate median rank is often used to 

estimate the empirical distribution function of failure data. 

𝐹𝑛(𝑡𝑖) =
𝑖−0.3

𝑛+0.4
(𝑖 = 1,2, ⋯ , 𝑛)   （3） 

In the equation: i represents the index of failure data, and n 

represents the total number of failure data points. 

2.1.3. Reliability Distribution Model 

The equipment lifespan distribution refers to the distribution 

pattern of equipment failure data. It involves using statistical 

analysis methods to fit the equipment’s failure data into  

a specific distribution, estimating relevant parameters, and 

ultimately analyzing various related indicators (22). Below is  

a brief introduction to three commonly encountered lifespan 

distribution models in engineering applications: 

1. Exponential Distribution (23): The exponential distribution 

is often utilized to model the lifespan distribution of 

components, such as electronic devices, software, and related 

parts in complicated systems with numerous components. These 

components generally display a constant failure rate, signifying 

that their failures are mainly random events and are not heavily 

dependent on time. The reliability function for the exponential 

distribution is determined by: 

𝑅(𝑡) = 𝑒−𝜆𝑡      （4） 

2. Normal Distribution (24): According to survey results, in 

non-lifespan situations, over 80% of equipment failure issues 

follow a normal distribution pattern. In mechanical products and 

structural engineering, the normal distribution is a common 

distribution model used to study the strength and stress 

distribution of mechanical structures. Additionally, for 

components prone to wear-related failures, such as gears and 

bearings, their failure distribution typically conforms to  

a normal distribution. The reliability function for the normal 

distribution is given by: 

𝑅(𝑡) =
1

√2𝜋𝜎
∫ 𝑒

−
𝑡−𝜇2

2𝜎2 𝑑𝑡
∞

𝑡
    （5） 

3. Weibull Distribution (25): The Weibull distribution is a 

frequently observed distribution pattern in mechanical 

equipment failure problems, similar to the normal distribution. 

It is utilized to represent the initial, random, and wear-out 

failure periods of equipment and has a close relationship with 

the bathtub curve. The Weibull distribution’s reliability function 

is provided as follows: 

𝑅(𝑡) = 𝑒
−(

𝑡−𝑡0
𝜂

)
𝛽

     （6） 

β represents the shape parameter, η represents the scale 

parameter, and𝑡0 represents the location parameter. When𝑡0 =
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0 , the three-parameter Weibull distribution becomes a two-

parameter Weibull distribution. 

2.1.4. Distribution Parameter Estimation 

Two common statistical methods used for parameter estimation 

of distribution models are graphical methods and analytical 

methods. Graphical methods include probability plot methods 

and hazard rate plot methods, among others. Analytical methods 

include moment estimation, least squares method, and 

maximum likelihood estimation, among others. Analytical 

methods are less influenced by the size of the data sample 

compared to graphical methods and are therefore often used as 

the primary parameter estimation methods. In this paper, the 

least squares method is used as an estimation method for the 

parameters. 

The least squares method is commonly used to estimate the 

distribution parameters A and B of a linear model𝑦 = 𝑤𝑥 + 𝑏. 

It aims to minimize the sum of squared differences between the 

estimated values and the observed values, making it an 

optimization goal of the least squares method. Therefore, the 

objective function can be represented as the formula: 

𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿𝑖
2 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑌𝑖 − �̂�𝑖)

𝑛
𝑖=1

𝑛
𝑖=1

2
  （7） 

To take the derivatives of the objective function F with 

respect to w and b: 

{

∂𝐹

∂𝑤
= −2 ∑ 𝑥𝑖(𝑌𝑖 − �̂�𝑖) = 0𝑛

𝑖=1

∂𝐹

∂𝑏
= −2 ∑ 𝑥𝑖(𝑌𝑖 − �̂�𝑖) = 0𝑛

𝑖=1

   （8） 

Solving the above equations yields: 

{
𝑤 =

∑ 𝑥𝑖𝑌𝑖−∑ 𝑥𝑖 ∑ 𝑌𝑖
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑥𝑖
2−

1

𝑛
(∑ 𝑥𝑖

𝑛
𝑖=1 )𝑛

𝑖=1

𝑏 =
1

𝑛
∑ (𝑌 − 𝑤𝑥𝑖)

𝑛
𝑖=1

   （9） 

Using the above method to solve the parameters of the 

Weibull distribution and applying linear transformation, we 

obtain: 

𝑙𝑛(− 𝑙𝑛(1 − 𝐹(𝑡))) = 𝛽(𝑙𝑛 𝑡 − 𝑙𝑛 𝜂)  （10） 

Let 𝑦 = 𝑙𝑛 [𝑙𝑛 (
1

1−𝐹(𝑡)
)] , 𝑥 = 𝑙𝑛(𝑡) , The transformed linear 

equation is then: 

𝑦 = 𝛽𝑥 − 𝛽 𝑙𝑛 𝜂     （11） 

Where 𝑤 = 𝛽and 𝑏 = −𝛽 𝑙𝑛 𝜂. 

After obtaining the parameters w and b through the above 

calculation process, you can then reverse-calculate the two 

parameters of the Weibull distribution. Additionally, by 

introducing the Mean Square Error (MSE) and the𝑅2coefficient 

of determination, you can assess the goodness of fit of the linear 

model, further evaluating the accuracy of the distribution 

parameters. The formulas for calculating the Mean Square Error 

and the 𝑅2coefficient are as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

𝑛
𝑖

2
    （12） 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1
2

∑ (𝑦𝑖−𝑦𝑖)𝑛
𝑖=1

2    （13） 

Where 𝑦𝑖   represents the actual values, i.e., empirical 

distribution values; 𝑦�̂�  represents the fitted predicted values; 

𝑦𝑖  represents the mean of the actual values. A smaller MSE 

indicates a better model performance for that parameter, and an 

𝑅2 value closer to 1 indicates a better fit.  

The same approach of linear transformation can be applied 

to the other two distributions, and the results are as shown in 

Table 1:

Table 1. Linearization of common distribution. 

Distribution type Y X A B 

Exponential Distribution 𝑌 = 𝑙𝑛 [
1

1 − 𝐹(𝑡)
] 𝑋 = 𝑡 𝐴 = 𝜆 𝐵 = 0 

Normal Distribution 𝑌 = 𝑧 𝑋 = 𝑡 𝐴 =
1

𝜎
 𝐵 = −

𝜇

𝜎
 

Weibull Distribution 𝑌 = 𝑙𝑛 {𝑙𝑛 [
1

1 − 𝐹(𝑡)
]} 𝑋 = 𝑙𝑛(𝑡) 𝐴 = 𝛽 𝐵 = −𝛽 𝑙𝑛 𝜂 

 

2.1.5. Goodness-of-Fit Test 

When using the above method to calculate the assumed 

distribution parameters for mechanical equipment failure data, 

it’s essential to further test the four types of lifespan distribution 

models, analyze the differences between the lifespan 

distribution model and the actual distribution, and then choose 

the lifespan distribution type that provides the best fit. When 
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conducting goodness-of-fit tests, the steps for hypothesis testing 

generally include:  

1. First, establish the null hypothesis𝐻0and the alternative 

hypothesis𝐻1. 

𝐻0: The sample data follows the given distribution model.  

𝐻0: The sample data does not follow the given distribution 

model.  

2. Choose an appropriate test statistic.  

3. Determine an appropriate significance level𝛼. Reject the 

null hypothesis within the significance level, otherwise, accept 

it. In general, 𝛼is often set to 0.05.  

4. Based on the distribution of the test statistic, calculate the 

p-value. The p-value measures the probability of observing the 

sample’s differences due to sampling error and helps decide 

whether to accept or reject the null hypothesis. If p ¡ 0.05,  then 

the null hypothesis𝐻0is rejected in favor of𝐻0. 

This article uses the K-S test [55] to test the goodness of fit 

of the distribution, because the amount of fault data obtained 

from historical data is relatively small, and the K-S test is more 

suitable for small sample data. The basic method is to arrange n 

experimental data (t, t,..., tn) in ascending order, and then 

calculate the probability distribution value F (ti) corresponding 

to each data based on the pre assumed probability distribution F 

(t). Compare it with the cumulative frequency function value (t) 

of the random sample, and take the maximum difference D, that 

is: 

𝐷 = 1 ≤ 𝑖 ≤ 𝑛𝒎𝒂𝒙 ∣ 𝐹𝑛(𝑡𝑖) − 𝐹0(𝑡𝑖) ∣  （14） 

Among them, D is called the test statistic, which compares 

D with the critical value D (which can be obtained by looking 

up a table). If D<Dn, the null hypothesis H is accepted, 

otherwise it is rejected. 

2.1.6. Hypothesis Rationality Analysis 

The following main assumptions were made when conducting 

reliability modeling in this study: 

1. Assumption of Independence of Fault Events: Assuming 

that the faults of each component of the equipment occur 

independently. 

2. Distribution selection assumption: Assuming that the 

equipment failure time follows a Weibull distribution, normal 

distribution, or exponential distribution. 

To verify the impact of these assumptions on the model 

results, we conducted a sensitivity analysis: 

1. Assumption of independent fault events: The object of this 

study is the monitoring regulator valve. Due to the fact that the 

monitoring pressure regulating valve is composed of multiple 

components, such as the commander diaphragm, commander 

sealing ring, solenoid valve, commander filter element, etc., 

each component has its specific function. If a component 

experiences a serious malfunction, the pressure regulating valve 

will immediately stop working and undergo testing. Therefore, 

after the failure occurs, the pressure regulating valve will not be 

able to continue to use, and the failure will be found and handled 

in a timely manner. Based on this, this study believes that 

failures between various components occur independently. This 

assumption holds true. In practical applications, the failures of 

different components will not affect each other, and there is no 

need for complex analysis of their interrelationships.

 

Figure 2. Bathtub curve chart. 
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2. Distribution selection assumption: This study assumes 

that the failure time of equipment follows a Weibull distribution, 

normal distribution, or exponential distribution. Previous 

studies have shown that normal distribution, Weibull 

distribution, and exponential distribution can cover 90% of 

common failure modes. The typical life distribution types are 

shown in the figure on the right. Among the six distribution 

types, 68% of equipment failures belong to the left bathtub 

curve, 14% of equipment have a constant failure rate, and 7% 

of equipment failures first increase and then stabilize. Therefore, 

the exponential life distribution curve, normal life distribution 

curve, logarithmic normal distribution, and Weibull life 

distribution curve can describe more than 90% of the life 

distribution situation. Based on this, using these four life 

distributions for modeling is scientific. 

Sensitivity analysis shows that the assumptions of fault 

event independence and distribution selection have a relevant 

impact on the reliability analysis results, and these assumptions 

are reasonable for the structural characteristics and usage of 

monitoring and regulating valves. 

2.2. fuzzy Bayesian network 

To address the complexities of industrial production 

environments and to calculate the impact of different system 

components on system reliability more accurately, this study 

makes full use of the parallel bidirectional reasoning 

capabilities of Bayesian networks, combined with the 

advantages of fuzzy fault trees (26). By calculating reliability and 

failure rate models for each component and employing 

Bayesian network (27) hierarchical traversal in both temporal and 

parameter domains, it assesses the reliability and sensitivity of 

mixed uncertainty. This method takes into account the 

polymorphic and fuzziness of failure states in complex system 

reliability calculations, the uncertainty in logical relationships 

between event failures, and the variation of component failure 

rates over time. It allows for reverse inference using posterior 

probabilities, constructs Bayesian fuzzy network models using 

T-S fuzzy fault trees (28), and combines the temporal and 

parameter domains, effectively leveraging their strengths while 

overcoming their limitations. 

2.2.1. T-S fuzzy fault tree 

The T-S fuzzy model replaces the logic gate in the traditional 

fault tree (29). The normal and fault states are commonly used in 

traditional two-state systems to describe the failure states of the 

basic components of the system, while in practical applications, 

the system and components often show a variety of fault states 

and fault degrees. For example, the occurrence of some basic 

events cannot lead to the direct occurrence of the top event 

system failure, and the system may only be in the stage of minor 

failure. In this paper, fuzzy number (0,0.5, 1) is used to describe 

the three fault states of the system (no fault, slight fault, fault). 

Figure 2 shows the T-S fuzzy fault tree model. 

𝑥1, 𝑥2, ⋯ , 𝑥𝑛(𝑛 = 1,2, ⋯ . 𝑛)  represents the bottom 

event, 𝑦𝑚(𝑚 = 1,2, ⋯ . 𝑚) , intermediate event variable, the 

system output is the top even variable is 𝐺1, 𝐺2, ⋯ , 𝐺𝑗(𝑗 =

1,2, ⋯ . 𝑗)  represents T-S fuzzy gate. Fuzzy numbers 𝑥𝑛
𝑖 (𝑖 =

0,0.5,1) , 𝑦𝑚
𝑖 (𝑖 = 0,0.5,1) , and 𝑇𝑞(𝑞 = 0,0.5,1) are used 

respectively to represent the fault state of the corresponding 

event. The fuzzy rules of the local T-S fuzzy gate fault tree 

composed of 𝑦1 , T-S gates 𝐺1 , and 𝑥1 , 𝑥2 and 𝑥3 can be 

represented in Table 2. 

2.2.2. Bayesian network 

BN (Bayesian Network) is a probabilistic causal network 

expressed in the form of graph theory, which is widely used in 

probabilistic reasoning with uncertain pins. Bayesian networks 

can be bidirectional reasoning (30; 31). Using conditional 

probability boxes and prior probabilities, forward inference can 

be achieved by calculating the probability of any node in the 

network. Give each root node a prior probability, and give each 

child node a conditional probability table. The basis of Bayesian 

networks is shown in Figure  

 

Figure 3. T-S fuzzy fault tree. 
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Table 2. Fuzzy gate rule. 

rule 𝑥1 𝑥2 ⋯ 𝑥3 
𝑦𝑖  

0 0.5 1 

1 𝑥1
𝑖 𝑥2

𝑖 ⋯ 𝑥𝑛
𝑖  𝑃𝐺1(𝑦1

0) 𝑃𝐺1(𝑦1
0.5) 𝑃𝐺1(𝑦1

1) 

3. Where𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 represents the bottom event (root 

node), 𝑦1, 𝑦2 represents the middle event (middle node), and T 

represents the top event (leaf node). 

 

Figure 4. Bayesian Network. 

2.2.3. Mapping of T-S Fuzzy fault Tree to Fuzzy Bayesian 

networks 

The T-S fuzzy fault tree analysis method is capable of 

expressing the polymorphism of event fault states and 

addressing the uncertainty in the logical relationship between 

fuzziness and fault events during the reliability analysis of  

a system. However, its modeling and analytical capabilities are 

limited, resulting in inefficiency and the inability to perform 

reverse reasoning. On the other hand, Bayesian networks are 

well-suited for the reliability analysis of complex multistate 

systems and for expressing the unclear mechanisms of faults. 

While Bayesian networks enable backward reasoning using 

posterior probabilities, establishing the model can be 

challenging. Therefore, we propose using the T-S fuzzy fault 

tree to construct a Bayesian fuzzy network model. This 

approach leverages the advantages of both methods and 

overcomes their respective limitations in a coherent manner. 

T-S fuzzy fault tree mapping to BN is mainly divided into 

two steps:  

1) The nodes of the T-S fuzzy fault tree correspond to each 

node of BN.  

2) Determine the conditional probability table.

 

Figure 5. T-S fuzzy fault tree mapping to BN directed acyclic graph. 

It is a characteristic of directed acyclic graphs in Bayesian 

networks that non-descendant nodes are independent of each 

other. Therefore, when the top event 𝑦2 fails, the posterior 

failure probability of the bottom event𝑥2is: 

𝑃(𝑦2 = 𝑦2
𝑖 ) = ∑ 𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , 𝑦2 =𝑥1,𝑥2,⋯,𝑥𝑛

                    𝑦2
𝑖 ) = 𝑃(𝑦2 = 𝑦2

𝑖 |𝑥1 = 𝑥1
𝑖 , ⋯ , 𝑥𝑛 = 𝑥𝑛

𝑖 )        （15） 

2.2.4. Probability importance of the root node 

The significance of a root node’s contribution to the failure of a 

leaf node is crucial in system reliability analysis and fault 

diagnosis. The data obtained from BN importance analysis are 

computed based on the mean value of the evidence interval. 

Definition 1: When the root node’s fault state is𝑥𝑖
𝑘𝑖  , the 

probability importance of the leaf node’s fault state is: 

𝐼𝑇𝑞

𝑃𝑟(𝑥𝑖 = 𝑥𝑖
𝑘𝑖) = 𝑃(𝑇 = 𝑇𝑞\𝑥𝑖 = 𝑥𝑖

𝑘𝑖) − 𝑃(𝑇 = 𝑇𝑞\𝑥𝑖 = 0) （16） 

In the equation 15, 𝑃(𝑇 = 𝑇𝑞\𝑥𝑖 = 𝑥𝑖
𝑘𝑖) represents the 

occurrence probability of leaf node T failure state being 𝑇𝑞 

when the fault function state of root node 𝑥𝑖 is 𝑥𝑖
𝑘𝑖  , and 

𝐼𝑇𝑞

𝑃𝑟(𝑥𝑖 = 𝑥𝑖
𝑘𝑖)represents the occurrence probability of leaf node 

T failure state being when the fault state of root node 𝑥𝑖 is 𝑥𝑖
𝑘𝑖 .  

Definition 2: The probability importance degree of root node 

xi to the failure state of leaf node𝑇𝑞is: 
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𝐼𝑇𝑞

𝑃𝑟(𝑥𝑖) =
1

ℎ𝑖−1
∑ 𝐼𝑇𝑞

𝑃𝑟ℎ𝑗

ℎ𝑗=4 (𝑥𝑖 = 𝑥𝑖
𝑘𝑖)  

 （17） 

Where, ℎ𝑖 is the number of failure states of root node𝑥𝑖. 

2.2.5. Sensitivity 

Sensitivity reflects the responsiveness of leaf nodes to the extent 

of failure. Analyzing sensitivity allows us to discern the impact 

of distribution parameters of root nodes on the reliability 

relationship of leaf nodes. This analysis can result in significant 

variations in leaf node reliability even when the degree of root 

node failure changes minimally. Identifying high-risk events 

that contribute to system failure becomes possible through this 

approach, thereby offering a theoretical foundation for 

establishing risk control measures. Definition 1: The sensitivity 

of root node xi to the failure state of leaf node𝑇𝑞is: 

𝑆𝑇𝑞

(𝐼)
(𝑥𝑖 = 𝑥𝑖

𝑘𝑖) =
𝐼𝑇𝑞

𝑃𝑟(𝑥𝑖=𝑥
𝑖

𝑘𝑖)

𝑃(𝑇=𝑇𝑞\𝑥𝑖=0)
   （18） 

Where: 𝐼𝑇𝑞

𝑃𝑟(𝑥𝑖 = 𝑥𝑖
𝑘𝑖) is the probability importance of the root 

node.  

According to Equation 17, the sensitivity of root node x to 

the failure state of leaf node T is: 

𝑆𝑇𝑞

(𝐼)(𝑥𝑖) =
1

𝑘𝑖−1
∑ 𝑆𝑇𝑞

(𝐼)𝑘𝑖
𝑎𝑖=1 (𝑥𝑖 = 𝑥𝑖

𝑘𝑖)  （19） 

Where, ℎ𝑖is the number of failure states of root nodeℎ𝑖. 

3. Experiment 

3.1. Reliability Assessment Case Study 

The failure data for this analysis is derived from a valve level 

sensor for monitoring regulator failure data provided by a gas 

transmission site. Since valve failure cycles are typically long 

and single-device failures are rare, This paper chose to analyze 

typical cases by monitoring the same manufacturer and size 

regulator. This approach was taken to minimize potential result 

inaccuracies arising from data variations. 

3.1.1. Data preprocessing 

A total of 51 sets of fault interval values of Supervisory 

Regulators seats were collected from the gas transmission 

stations, and according to the preprocessing method, the fault 

interval values were sorted from smallest to largest. According 

to the pre-processing method, the observed values of failure 

interval time are sorted from smallest to largest, and the specific 

data are shown in Table 3:

Table 3. fault interval values of Supervisory Regulators’ seats. 

serial number commissioning time downtime failure interval 

1 2010/12/6 2018/4/15 20 

2 2017/4/16 2017/9/23 160 

3 2017/6/13 2017/11/25 165 

⋮ ⋮ ⋮ ⋮ 

49 2003/10/6 2015/11/10 4418 

50 2003/10/16 2017/10/11 5109 

51 2003/10/1 2017/10/12 5125 

Table 4. The failure data, the empirical probability distribution observations (F). 

serial number F 

1 0.013619 

2 0.033074 

3 0.052529 

⋮ ⋮ 

49 0.947471 

50 0.966926 

51 0.986384 

After obtaining the failure data, the empirical probability 

distribution observations (F) for failure interval times were 

calculated using the previously introduced median rank formula, 

as shown in Table 4. Additionally, an empirical probability 

distribution graph was generated, as depicted in Figure 5. 

 

Figure 6. The failure data, the empirical probability 

distribution observations (F). 
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3.1.2. Parameter Estimation for the Lifespan Distribution 

Model 

To further assess the distribution function type of the electric 

ball valve failure interval data, fits were performed with the 

three commonly used distributions introduced in section 2.1.5. 

The goodness of fit of these three assumed distributions was 

observed using probability plots. As seen in Figures 6, the fits 

for the normal distribution and Weibull distribution appear to be 

relatively good. Still, it is impossible to directly evaluate the 

goodness of fit visually. On the other hand, the fit for the 

exponential distribution appears to be relatively poorand the 

possibility of this model distribution can be ruled out.

             

            a)                                                                                                      b)  

 

c) 

Figure 7. Three types of fitting. 

Table 5. Fitting distribution parameters. 

Lifespan 

Distribution Model 
Distribution Parameters 

Normal Distribution 
𝜇 𝜎 

2041.70588 1316.89019 

Weibull Distribution 
𝛽 𝜂 

1.49883 2244.24509 

Regarding the linearly transformed failure interval data, 

parameter estimation was performed using the least squares 

method as introduced in Section 2.1.5 for fitting the transformed 

actuator filter cartridge failure interval data to the theoretical 

distribution. The calculation results are presented in Table 5. 

3.1.3. Selection of Lifespan Distribution Model 

To further validate the goodness of fit of the failure data to the 

four distributions, the Kolmogorov-Smirnov (K-S) test method 

was employed. The specific results are presented in Table 6: 

Table 6. KS calibration results. 

Distribution Type Static P-value Determination 

Normal Distribution 0.1532 0.2657 Obey 

Weibull Distribution 0.1366 0.3968 Obey 
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From the hypothesis test results in Table 6, it can be 

observed that the failure data of the valve level sensor do not 

follow the exponential distribution. When comparing the 

normal distribution and Weibull distribution, the Weibull 

distribution has the largest p-value, indicating a higher 

probability that the failure data conforms to the Weibull 

distribution. Additionally, the value of the hypothesis statistic 

for the Weibull distribution is smaller than that for the other two 

distributions. Therefore, based on the above analysis, it can be 

concluded that the failure data of the valve level sensor follows 

a Weibull distribution.  

3.1.4. Constructing Reliability Metrics Based on the 

optimized parameters of the Weibull distribution, the 

following can be calculated:  

Reliability 

𝑅(𝑡) = 𝑒𝑥𝑝 [− (
𝑡

2244.24509
)

1.49883

]   （20） 

Probability Distribution Function 

𝐹(𝑡) = 1 − 𝑅(𝑡) = 1 − 𝑒𝑥𝑝 [− (
𝑡

2244.24509
)

1.49883

]  （21） 

3.2. A case study of pressure regulating pry is carried out 

3.2.1. Construct a fuzzy fault tree  

When one or more components in the pressure-regulating pry 

system fail, the possibility of failure of the pressure-regulating 

pry is uncertain because of the different degrees of failure of 

each component: no fault, minor fault, and serious fault 

(complete fault). The failure of the pressure-regulating pry 

system is selected as the top event, and its T-S fuzzy fault tree 

is shown in Figure 7. The top event T is the output of T-S gate 

G1, and the middle event y is the output of G respectively. Table 

7 shows the components corresponding to each event in the T-S 

fuzzy fault tree of the pressure regulating pry.  

Assume that the common fault degree of the top event T is 

(0, 0.5, 1), where 0 indicates no fault, that is, the pressure 

regulator can work normally, the outlet pressure is stable, and 

the system can complete the specified working condition. 0.5 

indicates a slight fault state, that is, the working state of the 

pressure regulating pry is not stable, but it can still complete 

most of the work tasks; 1 indicates a complete fault. The system 

cannot work properly and needs timely maintenance. 

 

Figure 8. Fuzzy fault tree of pressure regulating pry system 

Taking the intermediate event node y as an example, each 

row in Table 

Table 7. Pry the parts corresponding to each event in the T-S fuzzy fault tree. 

Node code Name of parts 

𝑥1 Main diaphragm 

𝑥2 Valve position indicator 

𝑥3 Cutting spring 

𝑥4 Main diaphragm 

𝑥5 Valve level sensor 

𝑥6 Conductor diaphragm 

𝑥7 Conductor seal ring 

𝑥8 Conductor solenoid valve 

𝑥9 Main diaphragm 

𝑥10 Valve seat 

𝑥11 Flow sleeve 

𝑦1 Safety stop valve 

𝑦2 Monitor the pressure-regulating valve 

𝑦3 Operating pressure-regulating valve 

𝑦4 Main valve 

𝑦5 Conductor 

                                 T Pressure-regulating lever 
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3 represents a fuzzy rule. For example, the first and second 

lines represent the following rules:  

Rule 1: If the fault status of 𝑥1, 𝑥2, 𝑥3 is 0, the probability 

of𝑦1being 0 is 1, and the probability of 0.5 or 1 being 0 is 0.  

Rule 2: If the fault state of 𝑥1, 𝑥2 is 0 and the fault state of 

𝑥3 is 0.5, then the probability of𝑦1being 0 is 0.2, that of 0.5 is 

0.5, and that of 1 is 0.3.  

3.2.2. The fuzzy fault tree is mapped to the Bayesian 

network  

Each node in BN corresponds to each event in the T-S fuzzy 

fault tree of the pressure regulating pry respectively. The T-S 

fuzzy fault tree of the pressure regulating pry is mapped to the 

fuzzy BN model and the T-S fuzzy fault tree is mapped to the 

fuzzy Bayesian network:  

In Figure 7 Fuzzy fault tree of pressure regulating pry 

system, 𝑥1, 𝑥2, ⋯ , 𝑥11is the root node (basic event), T is the leaf 

node (top event), and𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 is the intermediate node 

(intermediate event).  

According to the historical big data and mechanical 

characteristics of the system, the appropriate distribution 

function is selected for fitting the bottom event, the optimal 

distribution function is determined by the checking method, and 

the parameters of the distribution function are obtained by the 

parameter estimation method. The distribution function and 

parameters are shown in Table 9.

Table 8. T-S fuzzy gate 2. 

Rule 𝑥1 𝑥2 𝑥3 
𝑦1

0 0.5 1
 Rule 𝑥1 𝑥2 𝑥3 

𝑦1

0 0.5 1
 

1 0 0 0 1 0 0 15 0.5 0.5 1 0 0.2 0.8 

2 0 0 0.5 0.2 0.5 0.3 16 0.5 1 0 0.2 0.2 0.6 

3 0 0 1 0 0.4 0.6 17 0.5 1 0.5 0 0.4 0.6 

4 0 0.5 0 0.6 0.3 0.1 18 0.5 1 1 0 0.1 0.9 

5 0 0.5 0.5 0.2 0.3 0.5 19 1 0 0 0.3 0.3 0.4 

6 0 0.5 1 0 0.3 0.7 20 1 0 0.5 0.2 0.2 0.6 

7 0 1 0 0.4 0.4 0.2 21 1 0 1 0 0.2 0.8 

8 0 1 0.5 0.2 0.2 0.6 22 1 0.5 0 0.2 0.2 0.6 

9 0 1 1 0 0.2 0.8 23 1 0.5 0.5 0.1 0.2 0.7 

10 0.5 0 0 0.4 0.4 0.2 24 1 0.5 1 0 0 1 

11 0.5 0 0.5 0.2 0.3 0.5 25 1 1 0 0.2 0.2 0.6 

12 0.5 0 1 0 0.2 0.8 26 1 1 0.5 0.1 0.2 0.7 

13 0.5 0.5 0 0.2 0.3 0.5 27 1 1 1 0 0 1 

14 0.5 0.5 0.5 0.1 0.2 0.7        

 

In order to facilitate the introduction of the method and 

simplify the calculation, the following assumptions are made for 

the system reliability modeling:  

(1) Failure events with a low probability or components that 

do not cause system failure will be ignored. 

 (2) For the bottom event x, the probability curve of fault 

degree 0 is 𝑅(𝑡), while the probability curve of fault degrees 0.5 

and 1 is the same, both of which are 0.5(1 − 𝑟(𝑡)). 

 (3) Set the time in days to 3000 days.  

3.2.3. Posterior probability  

Using Bayesian networks and evidence theory, the prior 

probability of each basic event involved in regulating pressure 

can be analyzed, enabling the identification of weak nodes that 

might decrease system reliability. Additionally, the a posteriori 

probability of the Bayesian network can be utilized in backward 

reasoning for fault diagnosis of the pressure-regulating system. 

This approach helps save maintenance time and reduces worker 

workload. 

 

Figure 9. fuzzy Bayesian networks. 
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Table 9. Failure probability distribution of parts. 

Part 
Failure probability 

distribution 
Parameter 

𝑥1 Normal 𝜇 = 3298, 𝜎 = 1313 

𝑥2 Normal 𝜇 = 2274, 𝜎 = 1646 

𝑥3 Normal 𝜇 = 5940, 𝜎 = 1289 

𝑥4 Weibull 
𝛽 = 1.0377, 𝜇

= 1958 

𝑥5 Weibull 
𝛽 = 1.49883, 𝜇

= 2244 

𝑥6 Weibull 
𝛽 = 0.9668, 𝜇

= 1492 

𝑥7 Normal 𝜇 = 2202, 𝜎 = 1415 

𝑥8 Weibull 
𝛽 = 1.1298, 𝜇

= 1865 

𝑥9 Weibull 
𝛽 = 1.0787, 𝜇

= 2266 

𝑥10 Normal 𝜇 = 2744, 𝜎 = 1822 

𝑥11 Normal 𝜇 = 6980, 𝜎 = 1206 

Figure 7 shows the reliability change curve of 𝑥1, 𝑥2, ⋯ , 𝑥11 

when the regulator pry fails within 0-3000 days. 

According to the analysis in Figure 9, when T (pressure 

regulator pry) fails, the reliability of 𝑥6 (conductor diaphragm) 

declines the fastest within 0-1000 days. In 1000-2000 days, the 

𝑥7 (conductor seal ring) showed the fastest decline in reliability; 

There is little decrease in reliability of the flow sleeve of the 

regulator operating for 0-2000 days. Therefore, It can be 

inferred that in the event of pressure regulator failure, the 

conductor diaphragm and conductor seal ring have the highest 

likelihood of encountering failure.  

3.2.4. Sensitivity  

The sensitivity measures how leaf nodes respond to failure and 

analysis can determine how distribution parameters of root 

nodes affect leaf node reliability. Small changes in root node 

failure can result in significant differences in leaf node 

reliability, so high-risk events leading to system failure can be 

identified. This provides a theoretical foundation for risk control.  

According to the analysis of Figure 10, Figure 11 and Figure 

12, 𝑥6 (conductor diaphragm) and 𝑥7 (conductor seal ring) have 

the highest sensitivity when the regulator pry is slightly faulty, 

but the lowest sensitivity 𝑥2 (valve position indicator) is very 

close when the regulator pry is seriously faulty.  

The 𝑥5  (valve level sensor) and 𝑥11  (flow sleeve) are the 

opposite. Although 𝑥11 (flow sleeve) has a high sensitivity, it is 

not a high-risk event, because the probability of flow sleeve 

failure is small, that is, a small probability event.  

 

Figure 10. Reliability of 𝑥1, 𝑥2, ⋯ , 𝑥11 in case of failure of 

pressure regulating pry. 

Based on sensitivity analysis, several system optimization 

plans can be proposed: (1) Priority allocation; (2) Dynamic 

adjustment of parameter threshold; (3) Redundant design 

enhancement; (4) Human computer interaction optimization. 

Regarding the maintenance schedule, it is possible to: (1) 

Dynamically sort the maintenance priority; (2) Optimization of 

preventive maintenance cycle; (3) Seasonal maintenance 

resource allocation; (4) Intelligent management of spare parts 

inventory. 

4. Conclusion 

This study tackles the challenge of diagnosing pressure lever 

faults by employing the fuzzy Bayesian network method 

alongside component reliability models. The method presented 

here successfully navigates the intricacies involved in the T-S 

fuzzy fault tree approach’s inference and resolves issues related 

to determining the structure and conditional probability tables 

of Bayesian networks. Notably, it seamlessly integrates 

temporal domains, capitalizing on the individual strengths of 

each method. To validate the effectiveness of this approach, the 

regulation system’s regulator skid in the processing system of 

the natural gas station is subjected to analysis. The method 

adeptly identifies weak areas within the system that periodically 

impact its reliability, offering valuable insights for optimizing 

maintenance procedures. This application demonstrates the 

robustness of the proposed methodology in addressing pressure 

lever faults and underscores its potential for enhancing the 
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reliability of natural gas station systems. In the future, fuzzy C-

means (FCM) clustering of polymorphic fault data can be used 

to generate fuzzy state partitioning.  

Build a DBN structure with nodes containing fuzzy states 

(such as "pressure=high/medium/low") and fault modes. 

Dynamically adjust membership function parameters (such as 

mean/variance) based on real-time sensor data. Use 

approximate reasoning algorithms (such as Loop Belief 

Propagation) to accelerate calculations. 

 

Figure 11. Sensitivity of each bottom event at 𝑇 = 0.5 

 

Figure 12. Sensitivity of each base event when 𝑇 = 1 

 

Figure 13. The expected sensitivity of each base event at 𝑇 =

0.5 and 𝑇 = 1.
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