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Highlights  Abstract  

▪ A Bayesian-based reliability analysis method 

by fusing prior and test data is proposed. 

▪ The prior data are expanded using neural 

network in combination with simulation data. 

▪ The mechanism kinematic accuracy reliability 

is quantified under small-sample condition. 

▪ The key variables affecting the retraction 

mechanism reliability are identified. 

 This study proposes a novel integrated system (IES) model to promote 

load distribution and thermal energy management by considering the 

turbulence effects, dynamic pressure fluctuations, and the nonlinear 

efficiency of energy conversion processes. This framework enhances the 

mass and energy balance equations, thus enhancing the accuracy of the 

hydraulic and thermal loss estimates. Further, a demand response (DR) 

model is also created, accounting for stochastic fluctuations in thermal 

and electrical demands and incorporating cross-elasticity effects. This 

will enable a more accurate representation of the consumer's reactions to 

changes in the pricing. We employ a modified particle swarm 

optimization (MPSO) algorithm to optimize the energy dispatch 

strategy. The modified version includes adjustable learning rates and 

changing inertia weights, which help it find solutions faster and more 

accurately. The algorithm successfully manages the distribution of 

electricity and heat energy, taking into account how energy storage 

works and the complexities in the conversion systems. 
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1. Introduction 

1.1. Background and motivation 

The increasing integration of renewable energy sources into 

modern power systems has introduced significant operational 

and economic challenges, necessitating advanced optimization 

strategies for efficient energy management [1]. Traditional 

energy supply systems, relying on centralized control systems, 

are challenged to cope with the intermittent nature of renewable 

energy production and customer consumption [2]. IESs offer  
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a feasible solution through various combinations of energy 

carriers, including electricity and thermal energy, to improve 

system optimization and flexibility. The development of energy 

management policies has also been affected by the advent of 

electrical Internet of Things (EIoT), which includes features 

consisting of real-time monitoring, smart scheduling of load, 

and predictive maintenance techniques [3]. By leveraging smart 

sensors with improved sensing technologies, data analysis, and 

enabling adaptive controls, EIoT ensures enhanced efficiency 

and reliability in integrated energy networks [4]. The intricate 

management of diverse energy sources and uncertainty in 

renewable energy production and utilization calls for high-level 

computing methods for optimizing system performance. The 

use of hierarchical dual-level optimization is one promising 

technique for IES dispatch to address such challenges. The 

technique allows for integrated decision-making at all levels of 

the energy system, thus promoting better economic 

optimization along with simultaneous operational flexibility [5]. 

Nevertheless, even with their potentials, such optimization 

techniques often do not effectively embrace IES's nonlinear 

behavior as well as relationships that limit their applicability. 

The present work introduces a novel optimization framework 

that integrates an MPSO technique in hierarchical dispatch to 

enhance the use of renewable energy sources along with cost-

effectiveness.  

1.2. Literature review 

Much research work has gone into investigating various 

optimization methods and models to improve the efficiency of 

IESs. This section provides a comprehensive review of the 

research conducted on optimization methods and models for 

IESs. Kong et al. [6] optimized IES using the Power Internet of 

Things (PIoT) framework. Enhanced information exchange in 

IES ensures greater network flexibility in interactions. The work 

introduces a new DR model that uses a two-level economic 

dispatch system to enhance overall performance and better 

manage resources on the demand side. The focus is on 

improving system performance and optimizing demand-side 

resource allocation. Ye et al. [7] highlighted that the overuse of 

traditional energy sources drives the need for carbon emission 

reduction to combat global warming. IESs enhance renewable 

energy use and efficiency, but uncertainties in generation and 

demand complicate optimization. To address this, power-to-gas 

technology is integrated for electricity-heat-gas cogeneration 

and CO2 absorption, with a carbon emission factor included to 

assess both economic and environmental impacts. Dou et al. [8] 

highlighted that the rise of renewable energy makes renewable-

based heat-electricity IESs a viable solution. The dispatch and 

scheduling of renewable-based heat-electricity IESs is complex 

due to economic, environmental, and security factors. In the 

study, a multi-objective hierarchical deep reinforcement 

learning method is proposed, using a multi-critic, single-actor 

structure to optimize objectives with decoupled rewards and 

hierarchical action value functions. Lei et al.  [9] proposed  

a market-based model for decentralized operation in multi-

microgrid systems to improve power distribution efficiency and 

reliability. Microgrids, consisting of controllable and 

uncontrollable generation units, storage systems, and loads, 

exchange energy within a network. Using IoT technology and 

cloud infrastructure, the system enables efficient data 

measurement, processing, and the exchange of technical and 

financial information. Jiang et al. [10] expressed that energy 

transformation and consumption improvements have advanced 

the planning and use of diverse energy sources. With the growth 

of IESs, integrated DR can help by reducing demand and 

facilitating the conversion and storage of energy, allowing users 

to engage more in network regulation. They introduced the 

concept of integrated DR, its hierarchical structure, and 

adaptable response resources, categorizing integrated DR into 

four response modes based on load management and user 

involvement. Zhou and Liu [11] highlighted that the rapid 

growth of digital technologies is driving the energy revolution, 

but their roles in sustainable transitions remain unclear. Their 

study reviewed advancements in these technologies for energy 

efficiency and integration, focusing on their impact on high-

efficiency, low-carbon building systems, including AI for 

performance predictions and optimization of systems like PVs, 

heat pumps, and multi-energy storage. Wu et al. [12] explored 

electricity trading in a deregulated retail market, aiming to 

coordinate energy consumption through DR and carbon 

emission mechanisms under dynamic pricing. Their goal was to 

minimize IES operating costs while balancing supply and 

demand. The challenge arises from the competitive interaction 

among prosumers, modeled as a Stackelberg-Nash game with 
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the retailer as the leader and PV prosumers as followers. 

Bahmanyar et al. [13] studied targeted research in IoT-based 

home energy management systems for the smart grid's demand 

side, with the ability to provide an advanced appliance 

scheduling, which would shift consumption from peak to off-

peak intervals. The multi-objective Archimedes Optimization 

algorithm with inclusions of Raspberry Pi, Node-RED, and 

NodeMCU modules was proposed for minimizing electricity 

costs and peak-to-average ratio while enhancing UC under the 

real-time-price and critical peak pricing tariff structures. 

Kazemi et al. [14] proposed an IoT-enabled approach to reduce 

costs and improve reliability in multi-carrier energy hubs (EHs) 

and IESs with renewable resources, CHP, and plug-in hybrid 

electric vehicles. The model used price-based DR to manage 

electrical and thermal demands in multi-EHs. By shifting loads 

during peak hours, energy bills were reduced, and renewable 

energy uncertainties were addressed. Simulation results 

highlighted the model's effectiveness in optimizing power and 

heat exchange, demonstrating its potential for cost-effective and 

reliable energy management in micro EHs. Masoomi et al. [15] 

studied the digitization of Renewable energy systems, focusing 

on the integration of clean energy and its optimization. The 

research identified barriers to IoT adoption in emerging 

economies like India, categorizing 16 issues into five 

dimensions. Technology barriers were found to be the primary 

challenge. Recommendations included structural and 

technological improvements, proactive governance, and 

updated market frameworks to enhance IoT integration with 

renewable energy for a smoother energy transition. Gao et al.  

[16] highlighted that buildings account for 40 % of primary 

energy use and 36 % of greenhouse gas emissions. They 

developed a new IoT-based framework for zero-energy building 

energy modeling to address variable loads, occupant comfort, 

and thermal issues. The system optimized heating, ventilation, 

and air conditioning control using deep reinforcement learning 

and aligned energy usage with solar production. It managed 

building loads, electric vehicle charging, and energy storage, 

with empirical validation showing its potential for sustainable 

zero-energy buildings.  Kumar et al.  [17] explored the 

transformative impact of Industry 4.0 technologies on IoT in 

warehousing and logistics. The study revealed that IoT research 

was more focused on logistics than warehousing, with most 

studies from industrialized countries and limited theoretical 

frameworks. Lv et al. [18] analyzed the challenges and 

opportunities of Industrial IoT and digital twin for monitoring 

hazardous gas leakage. They proposed an optimization 

framework, using a three-tier edge computing network and  

a dual-stage tracking algorithm, efficiently tracked gas 

boundaries, reduced energy consumption, and showed high 

accuracy. Humayun et al. [19] proposed an energy optimization 

methodology for smart cities, leveraging IoT, 5G networks, and 

cloud computing to reduce energy consumption in areas like 

street lighting, billboard ads, smart homes, and intelligent 

parking. IoT sensors detected motion, 5G enabled low-latency 

data transfer, and cloud computing supported storage and 

processing, offering significant potential for improving energy 

efficiency in urban settings. Kuthadi et al. [20] addressed data 

dissemination issues in IoT-based wireless sensor networks, 

proposing an optimized energy management model for data 

dissemination. This framework, using non-adaptive routing, 

collaborative systems, and priority planning, increased data 

transmission by 96.33 % and reduced energy consumption by 

20.11 %, demonstrating its effectiveness. Kolhe et al. [21] 

highlighted the importance of technology in addressing 

urbanization challenges and enhancing resilience in smart cities, 

especially during disasters. This study used IoT with cloud 

computing to collect and normalize data, applying the Advanced 

Random Forest algorithm for machine-to-machine interaction. 

The proposed adaptive cloud computing virtual machine 

resource allocation technique optimization method showed 

improved efficiency in simulations, supporting smart city 

development. Rind et al. [22] explored the evolution of smart 

energy systems, highlighting their integration across sectors like 

power, smart grids, and logistics through communication 

technologies and cloud computing. They emphasized 

advancements in sensing, communication, and system 

integration, which have enhanced the precision, reliability, and 

adaptability of smart energy systems. Smart meters were also 

discussed as key IoT devices, becoming more complex and 

adaptable for flexible designs. Saleem et al. [23] presented  

a smart energy management system utilizing IoT technology to 

optimize energy usage, emphasizing demand-side management 

to improve efficiency and decrease costs. The system linked 

devices to energy controllers equipped with sensors and 
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actuators, aggregated data for real-time analysis through  

a centralized cloud middleware, and underwent testing in four 

buildings. Jia et al. [24] discussed how IoT revolutionized 

renewable energy integration by improving efficiency, 

reliability, and sustainability in power systems. IoT enables 

real-time monitoring, data analysis, and automation for load 

management, DR, and energy storage. Despite challenges like 

data security and communication standardization, key 

developments such as smart grids and energy management 

systems have enhanced grid stability. The study also highlighted 

IoT's role in electric vehicle performance through improved 

battery management. 

Majhi et al. [25] explored how IoT is transforming power 

systems for sustainable, low-carbon energy solutions. They 

identified IoT applications including renewable energy 

integration, automation of power plants, smart protection 

devices, smart homes, and smart meters. While IoT shows 

significant potential for the power sector, challenges remain, 

and the review provided insights for decision-making and 

further development in this field. Bai et al. [26] developed  

a framework for energy consumption and decarbonization 

optimization in Industrial IoT, considering IESs, carbon capture, 

hydrogen storage, and carbon trading. Using CPLEX, they 

optimized energy procurement, carbon trading costs, and carbon 

dioxide sales, showing significant reductions in operational 

costs and carbon footprints.  Sharma et al. [27] proposed an AI-

based framework for optimal electricity demand load shifting, 

reducing power outages and peak-to-average ratio in grid loads. 

By utilizing IoT devices and machine learning algorithms, the 

framework analyzed real-time and historical data to forecast and 

shift energy demands, improving load optimization, distribution 

efficiency, and offering cost-saving opportunities for utilities 

and consumers. 

1.3. The previous scientific gaps and research gaps 

In recent years, significant advancements have been made in the 

optimization of IESs, particularly in the context of enhancing 

renewable energy utilization and improving cost efficiency. 

However, several gaps persist in the existing research, 

particularly regarding the efficient coordination of multi-energy 

systems under fluctuating renewable generation and demand 

patterns. Traditional optimization methods often fail to account 

for the nonlinearities inherent in energy conversion processes 

and the complex interdependencies between various energy 

carriers. Moreover, many existing frameworks lack the ability 

to adapt to the dynamic nature of energy systems, particularly 

in integrating real-time data from smart sensors and IoT-enabled 

devices. Additionally, while DR models have been integrated 

into IES frameworks, they often oversimplify consumer 

behavior or fail to capture the full spectrum of stochastic 

variations in energy consumption. Modern models presented in 

the literature have problems with effectively integrating various 

energy sources, such as electricity, heat, and gas, mainly due to 

their inability to optimize energy distribution in thermal and 

electrical sectors. In addition, traditional optimization methods, 

for instance, traditional particle swarm optimization (PSO), 

typically have slow rates of convergence along with being 

suboptimal in solving complicated, multi-objective problems 

associated with IES. 

This study remedies these deficiencies through the 

presentation of a new optimization technique comprising an 

MPSO algorithm within a bi-level dispatching system. It 

improves the accuracy and efficiency of electric and thermal 

energy distribution through consideration of the dynamic and 

complex natures of energy conversion systems. The MPSO 

algorithm enhances the solution quality and speed of discovery 

by employing variable learning rates and adaptive inertia 

weights, thereby addressing the slow convergence and precision 

issues of conventional PSO. Moreover, this study proposes a DR 

model that captures the behavior of customers as a reaction to 

the random variations in electricity and heating demand, as well 

as their reaction to price changes. The two-level optimization 

model enables us to include various sources of energy, which 

makes the IES more flexible and responsive, and hence more 

appropriate for real-world applications where renewable energy 

generation and consumption may have large variations. The key 

contributions and novelties presented in this paper are as 

follows: 

1. Presenting a novel dual-level dispatch strategy for 

IESs, optimizing both electrical and thermal energy 

dispatch simultaneously.  

2. Employing an MPSO algorithm to solve the 

optimization problem. The MPSO algorithm is 

designed to enhance the speed of convergence and 
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solution accuracy compared to traditional optimization 

methods, making it highly effective for complex, 

nonlinear, multi-objective problems in IES. 

3. Introducing a more advanced DR model, which 

captures the stochastic variations in electrical and 

thermal loads. This model accounts for real-time 

pricing fluctuations and better reflects consumer 

behavior, filling a critical gap in traditional DR 

strategies. 

4. Integrating diverse energy sources, including 

electricity, heat, and gas, into a unified optimization 

framework. It enables the dynamic and efficient 

management of energy resources, enhancing the 

overall performance and sustainability of the IES. 

5. Enhancing applicability to real-world energy systems 

by adapting to fluctuating renewable energy generation 

and demand variations defines the strength of the 

optimization framework.  

2. Problem formulation 

2.1. Electrical Internet of Things  

The EIoT, situated across four distinct layers - perception, 

network, platform, and application - represents a transformative 

paradigm for enhancing energy systems.  Each layer is crucial 

for the functionality and efficacy of the system, as it facilitates 

advanced monitoring, data collection, and analysis that enhance 

decision-making inside IESs [6]. Important parts include data 

collection, edge computing, and other edge infrastructures 

working together at the comprehension layer to provide 

thorough information gathering and effective monitoring of 

appliances. Depending on the application, communication 

channels between edge computer systems and sensing devices 

vary using technologies like Ethernet, PLC, RS-485, or another 

suitable approach. Supporting perfect connection with 4G, 5G, 

and fiber optic technologies, the system layer facilitates data 

flow between the demand side and the transmission core.  

Analyzing the data acquired from the edge computing system, 

the platform layer maintains open channels of communication 

to the dispersion center and conducts analysis.  At last, the 

operations center controls the system's functioning coordination 

while the application layer shows the user interface utilizing 

mobile applications or other devices, therefore allowing the user 

to engage with the IES. 

The integration of EIoT into energy systems, particularly in 

the dispatching and management of resources, presents both 

opportunities and challenges. An IES, as a multifaceted 

framework that includes energy routers and devices for 

conversion, storage, and connection of diverse energy sources, 

has the potential to address the dynamic needs of various sectors 

such as education, production, and residential life. The rise of 

EIoT has revolutionized the distribution system of IESs by 

expanding the scope of load-side data collection. This data now 

includes electrical and thermal energy consumption, along with 

parameters such as voltage, frequency, mass flow rate, and 

temperature. In addition, the frequency of these checks has 

increased from daily to hourly or even every 15 minutes, 

creating a huge amount of data volume. Augmentations in data 

flow bring increases in decision-making platforms' accuracy 

and efficiency, but they raise daunting challenges in terms of 

data transmission, processing speed, and costs in the dispatch 

center. The effectiveness of a cloud-edge scheduling system in 

tackling these challenges comes from edge computing, which 

does some calculations before sending combined data to 

dispatch center for scheduling. This minimizes communication 

bottlenecks, reduces processing speed, and ensures user privacy. 

The graded dispatching method, influenced by EIoT, allows for 

energy system distribution through a structured approach, 

where edge computing resources manage the lower levels of 

distribution and energy support. The dispatch center optimally 

manages controllable facilities, including electric generators, 

thermal generators, CHP systems, and renewable production, 

while controlling load-side control to enhance energy efficiency 

and minimize operational expenses. This approach not only 

optimizes energy resource distribution but also ensures a more 

responsive and efficient energy system that meets the demands 

of modern communities. 

2.2. Integrated load distribution  

Expanding the hydraulic model to include turbulence effects 

and dynamic pressure corrections, the mass flow balance is now 

given by [28]: 
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𝑚𝑞(𝑖, 𝑡) = ∑ (𝑚𝑆(𝑙, 𝑡) − α𝐾𝑆(𝑙, 𝑡)𝑚𝑆(𝑙, 𝑡)2

𝑙∈𝐿in,𝑆(𝑖,𝑡)

−
δ𝑃(𝑙, 𝑡)

𝑅𝑆(𝑙)
) − ∑ 𝑚𝑆(𝑙, 𝑡)

𝑙∈𝐿out,𝑆(𝑖,𝑡)

 

(1) 

𝑚𝑞(𝑖, 𝑡) = ∑ (𝑚𝑅(𝑙, 𝑡)

𝑙∈𝐿in,𝑅(𝑖,𝑡)

− β𝐾𝑅(𝑙, 𝑡)𝑚𝑅(𝑙, 𝑡)2 −
δ𝑃(𝑙, 𝑡)

𝑅𝑅(𝑙)
)

− ∑ 𝑚𝑅(𝑙, 𝑡)

𝑙∈𝐿out,𝑅(𝑖,𝑡)

 

(2) 

Additionally, pressure drop equations incorporating Darcy-

Weisbach friction loss and minor losses are given as: 

δ𝑃(𝑙, 𝑡) =
𝑓(𝑙)𝐿Pipe(𝑙)

𝐷(𝑙)

ρ

2
𝑚2(𝑙, 𝑡)

+ ∑ ξ𝑗

ρ

2
𝑗

𝑚2(𝑙, 𝑡) 
(3) 

To improve thermal loss estimation, heat transport is 

modeled dynamically: 

𝑇out,𝑆(𝑙, 𝑡) = 𝑇Am(𝑡) + (𝑇in,𝑆(𝑙, 𝑡) − 𝑇Solid(𝑙, 𝑡))

⋅ exp (
λ(𝑙)𝐿Pipe(𝑙)

𝐶𝑚𝑆(𝑙, 𝑡) + γ𝑇out,𝑆(𝑙, 𝑡)
) 

(4) 

𝑇out,𝑅(𝑙, 𝑡) = 𝑇Am(𝑡) + (𝑇in,𝑅(𝑙, 𝑡) − 𝑇Solid(𝑙, 𝑡))

⋅ exp (
λ(𝑙)𝐿Pipe(𝑙)

𝐶𝑚𝑅(𝑙, 𝑡) + γ𝑇out,𝑅(𝑙, 𝑡)
) 

(5) 

𝑄loss(𝑙, 𝑡) = λ(𝑙)𝐿Pipe(𝑙)(𝑇avg(𝑙, 𝑡) − 𝑇Am(𝑡)) (6) 

The temperature of a node considering thermal mixing is: 

𝑇𝑆(𝑖, 𝑡) =
∑ 𝑚𝑆(𝑙, 𝑡)𝑇out,𝑆(𝑙, 𝑡)𝑙∈𝐿in,𝑆(𝑖,𝑡)

∑ 𝑚𝑆(𝑙, 𝑡)𝑙∈𝐿in,𝑆(𝑖,𝑡)

 (7) 

𝑇𝑅(𝑖, 𝑡) =
∑ 𝑚𝑅(𝑙, 𝑡)𝑇out,𝑅(𝑙, 𝑡)𝑙∈𝐿in,𝑅(𝑖,𝑡)

∑ 𝑚𝑅(𝑙, 𝑡)𝑙∈𝐿in,𝑅(𝑖,𝑡)

 (8) 

The load DR to pricing and stochastic variations is: 

𝐷𝐻(𝑖, 𝑡) = 𝐷𝐻
base(𝑖) (1 − η𝐻

𝑃𝐻(𝑡) − 𝑃𝐻
ref

𝑃𝐻
ref

+ ξ𝐻𝒩(0, σ𝐻
2 )) 

(9) 

𝐷𝐸(𝑖, 𝑡) = 𝐷𝐸
base(𝑖) (1 − η𝐸

𝑃𝐸(𝑡) − 𝑃𝐸
ref

𝑃𝐸
ref

+ ξ𝐸𝒩(0, σ𝐸
2 )) 

(10) 

The total energy balance at a node account for electric and 

thermal storage systems: 

𝐸storage(𝑡 + 1) = 𝐸storage(𝑡) + ηch𝑃ch(𝑡) −
𝑃dis(𝑡)

ηdis

 (11) 

𝑄storage(𝑡 + 1) = 𝑄storage(𝑡) + ηch𝑄ch(𝑡)

−
𝑄dis(𝑡)

ηdis

 
(12) 

The iterative solution for balancing mass and thermal 

equations is: 

𝑋(𝑘+1) = 𝑋(𝑘) − 𝐽−1(Δ𝐹 + ϕ∇Δ𝐹) (13) 

2.3. Load estimation and load response program 

The heat load estimation model is refined by incorporating 

thermal inertia effects, dynamic heat transfer coefficients, and 

internal heat generation (e.g., occupants, appliances) [29]. The 

temperature evolution equation is given by: 

𝑇Bui(𝑖, 𝑡 + Δ𝑡) = 𝑇Bui(𝑖, 𝑡)𝑒
(−

Δ𝑡

τBui(𝑖,𝑡)
)

+ (1 − 𝑒
(−

Δ𝑡

τBui(𝑖,𝑡)
)
)

⋅ (𝑇Am(𝑡)

+
𝐻Load(𝑖, 𝑡) + 𝐻Int(𝑖, 𝑡)

𝑅Air(𝑖, 𝑡)
) 

(14) 

The thermal demand elasticity is now modeled as a 

nonlinear function of price variations to better capture real-

world consumer behavior: 

𝐸𝐻(𝑖, 𝑡) =
Δ𝐻Load(𝑖, 𝑡)

ρ(𝐷𝑅,𝐻)(𝑡)
⋅

ρ𝐻(𝑡)

𝐻(Load,Ori)(𝑖, 𝑡)

+ ξ𝐻𝒩(0, σ𝐻
2 ) 

(15) 

𝐻Load(𝑖, 𝑡) = 𝐻(Load,Ori)(𝑖, 𝑡)

⋅ [1 + 𝐸𝐻(𝑖, 𝑡) ⋅ (
ρ(𝐷𝑅,𝐻)(𝑡)

ρ𝐻(𝑡)
)

β

] 
(16) 

Unlike thermal loads, electrical demand elasticity exhibits 

both self-elasticity (response to electricity price) and cross-

elasticity (response to heat price changes) [30]. This is now 

captured by: 

𝐸𝐸(𝑖, 𝑡) =
Δ𝑃Load(𝑖, 𝑡)

ρ(𝐷𝑅,𝐸)(𝑡)
⋅

ρ𝐸(𝑡)

𝑃(Load,Ori)(𝑖, 𝑡)

+ η𝐻𝐸

ρ𝐻(𝑡)

ρ𝐸(𝑡)
 

(17) 

𝑃Load(𝑖, 𝑡) = 𝑃(Load,Ori)(𝑖, 𝑡)

⋅ [1 + 𝐸𝐸(𝑖, 𝑡) ⋅ (
ρ(𝐷𝑅,𝐸)(𝑡)

ρ𝐸(𝑡)
)

α

+ ∑ 𝐸𝐸(𝑖, τ)

τ≠𝑡

⋅ (
ρ(𝐷𝑅,𝐸)(τ)

ρ𝐸(τ)
)] 

(18) 

2.4. Equipment 

Energy conversion devices, including electric boilers, CHP 

units, and energy storage systems, play a crucial role in 

balancing electricity and heat demand in IESs. The following 

formulations enhance the modeling of these components by 

incorporating dynamic efficiency factors, nonlinear conversion 

characteristics, and adaptive storage management [31]. Electric 
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boilers convert electrical power into thermal energy. However, 

their efficiency is influenced by factors such as operating load, 

ambient temperature, and aging effects. Instead of a fixed 

efficiency, the model introduces a load-dependent conversion 

efficiency: 

𝑃Boiler(𝑖, 𝑡) =
𝐻Boiler(𝑖, 𝑡)

ηBoiler(𝑖, 𝑡) + κloss ⋅ (1 −
𝐻Boiler(𝑖, 𝑡)

𝐻max
)

 (19) 

CHP units generate both electricity and heat. The 

relationship between output electricity and heat is influenced by 

fuel type, turbine load, and operating conditions. Instead of a 

static ratio, the heat-to-power correlation is dynamically 

adjusted: 

𝑃CHP(𝑖, 𝑡) =
𝐻CHP(𝑖, 𝑡)

𝐶𝑀 + α ⋅ (1 −
𝐻CHP(𝑖, 𝑡)

𝐻max
)

 (20) 

The fuel-based efficiency relation is also given by: 

𝑃CHP(𝑖, 𝑡) = −
𝐻CHP(𝑖, 𝑡)

η𝐸𝐹in + 𝑍 + γ ⋅ (
𝐻CHP(𝑖, 𝑡)

𝐻max
)

 (21) 

This model enhances the realistic performance 

characteristics of CHP units, making them more adaptable to 

fluctuating loads. Energy storage plays a key role in balancing 

power fluctuations and optimizing energy dispatch. The 

charge/discharge dynamics of thermal and electrical storage 

systems are now formulated with state-dependent efficiency: 

𝑆𝑂𝐶𝐸(𝑖, 𝑡 + 1) = 𝑆𝑂𝐶𝐸(𝑖, 𝑡) ⋅ η(𝑆,𝐸)(𝑖)

+ 𝑃Chr,E(𝑖, 𝑡) ⋅ ηChr,E(𝑖)

−
𝑃Dis,E(𝑖, 𝑡)

ηDis,E(𝑖)
 

(22) 

𝑆𝑂𝐶𝐻(𝑖, 𝑡 + 1) = 𝑆𝑂𝐶𝐻(𝑖, 𝑡) ⋅ η(𝑆,𝐻)(𝑖)

+ 𝑃Chr,H(𝑖, 𝑡) ⋅ ηChr,H(𝑖)

−
𝑃Dis,H(𝑖, 𝑡)

ηDis,H(𝑖)
 

(23) 

2.5. High level objective function 

The objective function can be expanded to reflect more 

comprehensive operational costs, penalties, and incentives for 

energy production, energy storage, and demand-side 

management. The goal is to minimize total operational costs 

while maintaining reliability and sustainability. Let the total cost 

𝐶𝑇𝑜𝑡𝑎𝑙 be represented by the following equation: 

minimize 𝐶𝑇𝑜𝑡𝑎𝑙 =

∑ (∑ 𝐶𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡)𝑖∈𝑁(Source) +𝑇
𝑡=1

∑ 𝐶𝐴𝑏𝑎𝑛(𝑖, 𝑡)𝑖∈𝑁(re) + ∑ 𝐶𝐷𝑅(𝑖, 𝑡)𝑖∈𝑁(𝐿) +

∑ 𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝑖, 𝑡)𝑖∈𝑁(storage) +

∑ 𝐶𝐵𝑢𝑦,𝑈𝑝𝑝𝑒𝑟(𝑡)𝑖∈𝑁(Buy,Upper) )  

(24) 

Energy source costs include not only power generation but 

also considerations for energy storage. The equation 

incorporates energy storage systems into the cost calculations: 

𝐶𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡) = α0(𝑖) + α1(𝑖) ⋅ 𝑃𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡)

+ α2(𝑖) ⋅ (𝑃𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡))
2

+ α3(𝑖) ⋅ 𝐻𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡) + α4(𝑖)

⋅ (𝐻𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡))
2

+ α5(𝑖)

⋅ (𝐻𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡) ⋅ 𝑃𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑡))

+ α6(𝑖) ⋅ 𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝑖, 𝑡) 

(25) 

The load response compensation model is reformulated to 

reflect both electrical and thermal demand-side management, 

including penalties and incentives for both: 

𝐶𝐷𝑅(𝑖, 𝑡) = ρ𝐷𝑅,𝐸(𝑡) ⋅ Δ𝑃𝐿𝑜𝑎𝑑(𝑖, 𝑡) + ρ𝐷𝑅,𝐻(𝑡)

⋅ Δ𝐻𝐿𝑜𝑎𝑑(𝑖, 𝑡) 
(26) 

The penalty for reducing renewable energy generation 

should be dynamically adjusted, considering storage 

availability and system capacity: 

𝐶𝐴𝑏𝑎𝑛(𝑖, 𝑡) = ρ𝐴𝑏𝑎𝑛(𝑡) ⋅ 𝑃𝐴𝑏𝑎𝑛(𝑖, 𝑡)

⋅ (1 − γ ⋅ StorageEff(𝑖, 𝑡)) 
(27) 

Finally, the cost of purchasing electricity from the regional 

energy system is based on demand variations and pricing signals: 

𝐶𝐵𝑢𝑦,𝑈𝑝𝑝𝑒𝑟(𝑡) = ρ𝐸,𝑈𝑝𝑝𝑒𝑟(𝑡) ⋅ 𝑃𝐵𝑢𝑦,𝑈𝑝𝑝𝑒𝑟(𝑡)

⋅ (1 + ζ ⋅ DemandLoad(𝑡)) 
(28) 

2.6. Low level objective function  

The low-level dispatch aims to minimize the total cost of 

electrical and thermal energy procurement while accounting for 

boiler operations and DR adjustments. The overall objective 

function can be represented as follows: 

min 𝐶𝐿𝑜𝑤𝑒𝑟 (𝑖, 𝑡) = ∑ (𝐶𝐵𝑢𝑦,𝐿𝑜𝑤𝑒𝑟(𝑡)

𝑡𝑑

𝑡=1

+ 𝐶𝐵𝑜𝑖𝑙𝑒𝑟(𝑖, 𝑡) + 𝐶𝑂𝑝,𝐿𝑜𝑤𝑒𝑟(𝑖, 𝑡)

− 𝐶𝐷𝑅(𝑖, 𝑡)) 

(29) 

The operational cost of the electric boiler depends on its heat 

output. The cost function considers linear and quadratic 

relationships between heat production and operational cost. The 

cost function for the electric boiler can be expressed as: 

𝐶𝐵𝑜𝑖𝑙𝑒𝑟(𝑖, 𝑡) = β0(𝑖) + β1(𝑖) ⋅ 𝐻𝐵𝑜𝑖𝑙𝑒𝑟(𝑖, 𝑡)

+ β2(𝑖) ⋅ (𝐻𝐵𝑜𝑖𝑙𝑒𝑟(𝑖, 𝑡))
2

 
(30) 

The cost of purchasing electrical and thermal energy from 

the external energy system is based on the dynamic pricing of 

electrical and thermal energy. The prices for electricity ρ𝐸(𝑡) 

and thermal energy ρ𝐻(𝑡) are time-dependent, and the total cost 

includes both electrical and thermal energy needs: 
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𝐶𝐵𝑢𝑦,𝐿𝑜𝑤𝑒𝑟(𝑖, 𝑡) = ρ𝐸(𝑡)

⋅ (𝑃𝐵𝑜𝑖𝑙𝑒𝑟(𝑖, 𝑡) + 𝑃𝐿𝑜𝑎𝑑(𝑖, 𝑡))

+ ρ𝐻(𝑡)

⋅ (𝐻𝐿𝑜𝑎𝑑(𝑖, 𝑡) − 𝐻𝐵𝑜𝑖𝑙𝑒𝑟 (𝑖, 𝑡)) 

(31) 

The DR program compensates for the changes in electrical 

and thermal load as a result of the load shifting or reduction. 

The compensation depends on the amount of load reduction and 

the corresponding prices for electrical and thermal response: 

𝐶𝐷𝑅(𝑖, 𝑡) = ρ𝐷𝑅,𝐸(𝑡) ⋅ Δ𝑃𝐿𝑜𝑎𝑑(𝑖, 𝑡) + ρ𝐷𝑅,𝐻(𝑡)

⋅ Δ𝐻𝐿𝑜𝑎𝑑(𝑖, 𝑡) 
(32) 

Besides the boiler costs and energy purchases, there may be 

additional operational costs, such as the maintenance of other 

resources or devices necessary for energy supply. These costs 

can be modeled as follows: 

𝐶𝑂𝑝,𝐿𝑜𝑤𝑒𝑟(𝑖, 𝑡) = ∑ γ𝑗(𝑖)

𝑗∈𝑁𝑂𝑝

⋅ 𝑂𝑗(𝑖, 𝑡) (33) 

2.7. Demand response program 

Demand Response involves dynamic adjustment of electric and 

thermal loads based on price elasticity changes, incentive load 

shifting, and the utilization of renewable energy in real-time. 

The customers change their usage levels based on energy and 

heating price fluctuations, accepting incentive payments to shift 

demand to off-peak usage times [32]. The strategy assists in 

maintaining system balance, minimizing curtailment of 

renewable energy, and optimizing costs. The electricity and heat 

demand under the DR program are given as: 

𝐷𝐸(𝑖, 𝑡) = 𝐷𝐸
base(𝑖) (1 − η𝐸

𝑃𝐸(𝑡) − 𝑃𝐸
ref

𝑃𝐸
ref

+ ξ𝐸𝒩(0, σ𝐸
2 )) 

(34) 

𝐷𝐻(𝑖, 𝑡) = 𝐷𝐻
base(𝑖) (1 − η𝐻

𝑃𝐻(𝑡) − 𝑃𝐻
ref

𝑃𝐻
ref

+ ξ𝐻𝒩(0, σ𝐻
2 )) 

(35) 

We implement a limitation on the minimum permissible load 

during reaction actions to ensure system stability and prevent 

sudden declines in demand. The demand flexibility is bounded 

by the reduction factors γ𝐸 and γ𝐻: 

𝐷𝐸(𝑖, 𝑡) ≥ (1 − γ𝐸)𝐷𝐸
base(𝑖) (36) 

𝐷𝐻(𝑖, 𝑡) ≥ (1 − γ𝐻)𝐷𝐻
base(𝑖) (37) 

This limitation mitigates substantial fluctuations in demand 

that could jeopardize the reliability of the electrical grid. 

Financial incentives are offered to encourage participation in 

the Demand Response program. The total decrease in energy 

consumption and the compensation rates dictate the 

remuneration for alterations on the demand side. The total 

incentive payment for DR is formulated as follows: 

𝐶𝐷𝑅(𝑖, 𝑡) = ρ𝐷𝑅,𝐸(𝑡) ⋅ Δ𝑃Load(𝑖, 𝑡) + ρ𝐷𝑅,𝐻(𝑡)

⋅ Δ𝐻Load(𝑖, 𝑡) 
(38) 

This formulation ensures that users receive financial 

benefits proportional to their participation, which encourages 

flexible load management. The DR model is integrated into the 

hierarchical optimization framework. At the lower level, real-

time adjustments in demand are made based on price signals and 

system constraints.  The upper-level optimization anticipates 

these responses and incorporates them into energy scheduling 

decisions, ensuring that the system operates efficiently. 

3. The proposed optimization algorithm  

PSO is inspired by the simulation of social behavior [33]. Each 

potential solution, referred to as a particle, has a velocity that 

drives these particles through the exploration of the search space. 

The initial phase involves the creation of a population of 

particles whose speed is continuously adjusted based on the 

individual experience of each particle and the collective wisdom 

of their peers. The purpose of this mechanism is to direct the 

particles towards the improved areas. The fitness evaluation of 

each particle depends on the objective function of the 

optimization problem. During the iterations, the velocity of each 

particle is calculated according to Eq. (39), which depends on 

variables such as the current position (𝑥(𝑖)(𝑡)), the previous best 

position of the particle ( 𝑃𝐵𝑒𝑠𝑡
(𝑖)

(𝑡) ), the overall best position 

among all particles (𝐺𝐵𝑒𝑠𝑡
(𝑖)

(𝑡)) and various parameters such as 

inertial weight (w), cognitive parameter (𝑐1), social parameter 

(𝑐2) as well as random coefficients (𝑟1 and 𝑟2). Also, the new 

position of the particle is subsequently determined through the 

process specified in Eq. (40). This iterative process continues 

until the predefined number is reached: 

𝑣(𝑖)(𝑡 + 1) = 𝑤𝑣(𝑖)(𝑡) + 𝑐1𝑟1[𝑃𝐵𝑒𝑠𝑡
(𝑖)

(𝑡) − 𝑥(𝑖)(𝑡)]

+ 𝑐2𝑟2[𝐺𝐵𝑒𝑠𝑡
(𝑖) (𝑡) − 𝑥(𝑖)(𝑡)] 

(39) 

𝑥(𝑖)(𝑡 + 1) = 𝑣(𝑖)(𝑡 + 1) + 𝑥(𝑖)(𝑡) (40) 

A high inertia weight increases exploration but prolongs 

convergence, while a low inertia weight accelerates 

convergence but may lead to local optima. Traditional PSO uses 

a fixed or linearly decreasing inertia weight, which often leads 

to premature convergence or poor exploration. To address this, 
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MPSO introduces an adaptive fitness proximity index (AFPI) to 

dynamically adjust the inertia weight: 

AFPI𝑖(𝑡) =
|𝐹(𝐺𝐵𝑒𝑠𝑡(𝑡)) − 𝐹𝑜𝑝𝑡|

|𝐹 (𝑃𝐵𝑒𝑠𝑡,𝑖(𝑡)) − 𝐹𝑜𝑝𝑡| + ϵ
 (41) 

Using AFPI, the dual-phase adaptive inertia weight is 

formulated as follows: 

𝑤𝑖(𝑡) = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ⋅

(
1

1+𝑒
−𝑎(1−AFPI𝑖(𝑡))

)  
(42) 

The velocity update rule in MPSO incorporates a dynamic 

inertia weight and an additional adaptive search radius term to 

enhance movement: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑖(𝑡)𝑣𝑖(𝑡) +

𝑐1,𝑖(𝑡)𝑟1 (𝑃𝐵𝑒𝑠𝑡,𝑖(𝑡) − 𝑥𝑖(𝑡)) +

𝑐2,𝑖(𝑡)𝑟2(𝐺𝐵𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + γ𝑅𝐴𝑆𝑅,𝑖(𝑡)  

(43) 

𝑅𝐴𝑆𝑅,𝑖(𝑡) is the adaptive search radius, formulated as: 

𝑅𝐴𝑆𝑅,𝑖(𝑡) = β ⋅ |𝑃𝐵𝑒𝑠𝑡,𝑖(𝑡) − 𝐺𝐵𝑒𝑠𝑡(𝑡)| (44) 

The new position is updated using: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (45) 

To further balance exploration and exploitation, MPSO 

integrates a hybrid search mechanism that dynamically switches 

between global and local search modes:

HGLSM𝑖(𝑡) = {

𝑥𝑖(𝑡 + 1) + 𝜆1𝑅𝐴𝑆𝑅,𝑖(𝑡),                       if AFPI𝑖(𝑡) < 𝛿1          

𝑥𝑖(𝑡 + 1) − 𝜆2𝑅𝐴𝑆𝑅,𝑖(𝑡),                       if 𝛿1 ≤ AFPI𝑖(𝑡) < 𝛿2

𝐺𝐵𝑒𝑠𝑡(𝑡) + 𝜆3(𝑃𝐵𝑒𝑠𝑡,𝑖(𝑡) − 𝐺𝐵𝑒𝑠𝑡(𝑡)), if AFPI𝑖(𝑡) ≥ 𝛿2          

 (46) 

 

 

 

Fig. 1. Overall dispatching and solving process. 

This mechanism ensures that: 

i. Particles far from the optimal region (𝐴𝐹𝑃𝐼𝑖(𝑡) < δ1) 

perform global exploration by moving beyond their 

computed positions. 

ii. Particles in a mid-range proximity (δ1 ≤ 𝐴𝐹𝑃𝐼𝑖(𝑡) <

δ2) adjust their movement slightly to maintain diversity. 

iii. Particles close to the optimal solution (𝐴𝐹𝑃𝐼𝑖(𝑡) ≥ δ2) 

conduct local exploitation around 𝐺𝐵𝑒𝑠𝑡(𝑡)  for fine-

tuning. 

Instead of using fixed acceleration coefficients, MPSO 

dynamically adjusts them based on the exploration-exploitation 

tradeoff: 

𝑐1,𝑖(𝑡) = 𝑐1,𝑚𝑎𝑥 − (𝑐1,𝑚𝑎𝑥 − 𝑐1,𝑚𝑖𝑛) ⋅ AFPI𝑖(𝑡) (47) 

𝑐2,𝑖(𝑡) = 𝑐2,𝑚𝑎𝑥 − (𝑐2,𝑚𝑎𝑥 − 𝑐2,𝑚𝑖𝑛) ⋅ AFPI𝑖(𝑡) (48) 

A flowchart of the proposed algorithm in solving the 

proposed problem is shown in Fig. 1. 
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4. Numerical results and discussion  

Fig. 2 provides a comprehensive structure of the studied energy 

network. The electrical system, with 33 interconnected nodes, 

presents a dynamic configuration. The E0 node establishes  

a critical link with the network and ensures integrity. It is 

noteworthy that nodes E24 and E32 are related to CHP, each of 

which is operated separately. At the same time, node E31 uses 

the power of a wind turbine, which represents a renewable 

energy source [6]. The CHP1 has faster output adjustment 

capabilities, albeit at a higher cost, making it particularly 

suitable for peak adjustment. In contrast, CHP2 has lower 

operating costs and is typically used to supply more loads. This 

dynamic is complexly characterized by the framework shown in 

Fig. 2. It’s worth mentioning that specific nodes, namely H2, 

H3, H4, H6, H7, H8, H9, and H10, serve as both demand nodes 

and host electric boilers. On the other hand, H12 is directly 

linked to a constant output heat source. The interconnected 

nodes enclosed in the dashed areas in Fig. 2 show entities in the 

same geographical area. Realizing the comprehensive operation 

of the IES requires a detailed understanding of various 

parameters. Therefore, the prices of electric and heating energy 

are accurately shown in Fig. 2, which strengthens the analysis. 

The topology and other parameters of the system are in 

references [34,35].

 

Fig. 2. Structure of the studied energy system. 
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Fig. 3 illustrates changes within the last 24 hours in the price 

of electrical energy and natural gas. The prices of electrical 

energy are presented by a green line, which was in a dynamic 

step-like fashion, starting from about $33.5/MW and peaking to 

about $38.5/MW around midday before falling later in the day. 

At the same time, in magenta, the prices of natural gas have 

remained rather flat at the $18/MW level, except for a slight drop 

to nearly $15.5/MW between 7:30 and 18:00. Such a trend would 

tend to indicate that electrical energy prices are more sensitive to 

the time of the day, likely hooked to demand or grid load, 

whereas natural gas prices have become relatively stable with 

few changes. 

 

Fig. 3. Price of electric and thermal energy in upstream 

networks. 

4.1. Case studies 

Essential to the purpose of the study, optimal dispatch of the 

desired energy system is revealed through three distinct case 

studies. In Case Study 1, a benchmark comparison is made where 

energy grid interactions remain limited, limiting demand-side 

synergies. In Case Study 2, the exchange between the transmit 

core and demands is facilitated via the integrated load response 

program, even though low-level dispatch remains inactive. 

Finally, Case Study 3 is the culmination of interactive synergies 

that include both central dispatch load flexibility and inter-

network communications. In this scenario, the high- and low-

level distributions synergistically contribute to multi-energy 

coordination. 

By visualizing the complex dynamics of Case Study 2, the 

production power of each unit is presented in Fig. 4. Obviously, 

nights often carry the potential for significant wind, which 

coincides with increased heat demand and relatively weak 

electricity demand. This correlation causes a significant growth 

in the production of CHP and reinforces the important 

relationship between wind availability and energy system 

capacity. However, the energy system faces challenges during 

nights when wind energy is abundant, which requires strategies 

to maximize wind energy utilization. The effectiveness of the 

load response program appears as a key lever for the use of wind 

energy in these windy nights. By strategically reducing thermal 

load demand through an integrated load management program, 

CHP unit output can be effectively reduced and further 

integration of renewable energy can be fostered. However, as 

shown in Fig. 5, the potential to modify the residents' energy 

demand is limited, which leads to an increase in the use of wind 

energy during the night. 

 

Fig. 4. Optimal dispatch of system equipment in Case Study 2. 

 

Fig. 5. The amount of wind energy use in case studies 1 and 2. 
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With the change of heating demand, Fig. 6 compares the 

initial heating needs with post-dispatch needs at different times. 

A recognizable trend appears that the decline of thermal load 

occurs basically in the hours of 00:00-06:00 and 21:00-24:00, 

which leads to more and more efficient use of the wind energy 

source. In other hours, the number of loads remains unchanged 

in the initial mode and dispatched to comply with the restrictions 

of the load response programs. 

 

Fig. 6. Comparison of thermal load in case studies 1 and 2. 

A detailed analysis of operating costs at different hours is 

revealed in Fig. 7. In this study, to use and integrate more 

renewable energy sources with the energy system, a heavy 

penalty for wasted renewable energy has been included for the 

system. Therefore, in the hours of 00:00 - 06:00 and 21:00 - 

24:00, when the amount of wind energy exceeds the power 

consumption and this causes some amount of renewable energy 

to be lost, the included penalty factor causes Operating costs will 

increase during these hours. According to Fig. 7, in Case Study 

1, where the load response program is not considered, the 

operating cost of the desired system is higher than in Case Study 

2 during the mentioned hours, because in Case Study 2, by using 

the load response program and load transfer to hours when 

renewable resources are high will prevent some waste of 

renewable energy, which will show its effect on the objective 

function. 

Fig. 8 illustrates the output of each unit across different 

periods in Case Study 3. Fig. 9 provides a detailed comparison, 

for Case Studies 1 and 3, of available wind energy and real output 

produced by the wind turbine. Case Study 3 presents important 

changes in the distribution of the loads; during the night, there 

are almost no losses in wind energy. This is the most critical 

difference that makes Case Study 3 an outstandingly better case 

when compared to Case Studies 1 and 2, due to the better 

integration of renewable energies within the energy system with 

extraordinary optimization efficiency. 

 

Fig. 7. Hourly cost of the energy system in case studies 1 and 2. 

 

Fig. 8. Optimal dispatch of system equipment in Case Study 3. 

 

Fig. 9. The amount of wind energy use in case studies 1 and 3. 
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An insight into the pricing mechanisms of the load response 

program is revealed in Fig. 10, where the prices of case studies 

2 and 3 are placed together in different time frames. Significantly, 

the identification of load-side electric boilers as controllable 

assets enhances the flexibility of heat-to-electricity conversion 

and ultimately provides a broad distribution perspective.  

 

Fig. 10. Cost of load response program in case studies 2 and 3. 

The lower price of DR in Case Study 3 represents a wise 

balance that the reduction of thermal energy demand does not 

unduly compromise the comfort of the occupants. Therein, the 

costs are concentrated within two-time intervals: between 0:00–

6:00 and 21:00–24:00, while no recorded activities are present 

anywhere between 6:00 and 21:00. The green color bars 

represent Case Study 2, with slightly higher average cost ranges 

of about $6/MW, and Case Study 3 is in orange bars, showing 

about $4/MW. These would seem to suggest that there might be 

some time-framed costs of the program, like peak operational 

time or high demand, while Case Study 2 is the more marginally 

expensive when trying different response strategies or 

parameters. 

4.2. Comparison analysis 

The numerical results from the optimization tests on standard 

benchmark functions demonstrate that the proposed MPSO 

algorithm outperforms modern optimization algorithms such as 

PSO, Differential Evolution (DE), CS, Gray Wolf Optimization 

(GWO), and SSA. The selected benchmark functions for testing 

include the Sphere function, Rastrigin function, Griewank 

function, and Ackley function [36]. These functions are widely 

used to assess the performance of optimization algorithms due to 

their varied and challenging landscapes. The algorithms were 

implemented with a population size of 30 particles and tested for 

1000 iterations, with each function having a dimensionality of 

30. The parameters for each algorithm were tuned according to 

standard values in the literature. The results of the optimization 

algorithms are presented in the following Table 1. 

Table 1. The comparison table of different algorithms. 

Algorithm 
Sphere 

Function 

Rastrigin 

Function 

Griewank 

Function 

Ackley 

Function 

PSO 0.0023 6.4781 0.0045 1.8721 

DE 0.0009 5.6285 0.0018 1.2547 

CS 0.0006 4.9373 0.0012 1.1182 

GWO 0.0007 5.2162 0.0021 1.5245 

SSA 0.0005 4.2187 0.0009 1.0349 

Proposed 

MPSO 
0.0001 3.1524 0.0004 0.8321 

The numerical results from the optimization of standard 

benchmark functions reveal that the proposed MPSO algorithm 

significantly outperforms other popular optimization algorithms 

in terms of solution quality and convergence speed. The 

comparison based on the error values for each benchmark 

function demonstrates that MPSO consistently achieves the 

lowest objective function values across all test functions. In the 

case of the Sphere function, MPSO showed an error of 0.0001, 

which is approximately 85 % better than the second-best 

performing algorithm, SSA, with an error of 0.0005. This 

indicates that MPSO has a clear advantage in converging to the 

global optimum, as it achieves a substantially lower error with 

just a marginal difference in computational effort when 

compared to SSA. The significant improvement in performance 

for the Sphere function highlights the effectiveness of the 

dynamic adjustments to the inertia weight and search radius, 

which allow MPSO to explore the search space more efficiently. 

For the Rastrigin function, a benchmark known for its 

numerous local minima, MPSO achieved an objective function 

value of 3.1524, outperforming the other algorithms by  

a considerable margin. The second-best performing algorithm, 

CS, obtained an error of 4.9373, indicating a 36 % improvement 

for MPSO over CS. The excellence of MPSO is even more 

pronounced when considered in contrast to PSO, which had an 

error of 6.4781, thus registering a marked performance 

improvement of 51% for MPSO. The significant improvement is 

due to MPSO's better ability to explore, which helps it avoid 

getting stuck in local optima and reduces early convergence, 
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enabling it to search more effectively in the global space. The 

Griewank function with local optima is an especially tricky case 

to optimize. In such situations, MPSO surpassed other methods, 

with an error of 0.0004. SSA registered the next most preferable 

result at 0.0009, indicating an improvement of almost 55 % by 

MPSO. This performance shows that MPSO's adjustable inertia 

weight and search radius help it find a good balance between 

exploring new options and using known ones, help it avoid 

getting stuck too early, and allow it to navigate difficult 

situations better than others. In summary, the Ackley function, 

which has a complicated shape with steep, narrow valleys, 

showed that MPSO performed better, with an error of 0.8321. 

SSA was the next best algorithm, with an error of 1.0349, 

indicating that MPSO was 20 % more effective. SSA was the 

next best-performing algorithm, which had an error of 1.0349, 

thus reflecting a 20 % better performance than MPSO. The 

results confirm the superiority of MPSO in dealing with 

problems involving numerous local minima and complicated 

search spaces. The adjustment of the acceleration coefficients 

and the use of a mixed search method allow MPSO to 

successfully manage nearby searches and faraway explorations. 

MPSO achieved stable and notable improvements over the other 

methods in all the tested benchmark functions. MPSO attained  

a 30–50 % range of average performance improvement over 

traditional algorithms such as PSO, DE, and CS. The ability to 

adjust the inertia weight and acceleration coefficients based on 

the closeness of the search space to the optimal solution proves 

to be a judicious move in tackling difficult optimization 

problems. MPSO is a promising optimization technique for real-

world applications needing high precision and rapid convergence. 

5. Conclusion 

This research introduces an innovative optimization framework 

for IESs, utilizing the concepts of the EIoT. This research 

presents a hierarchical dual-level optimization strategy that 

integrates MPSO to tackle intricate energy dispatch issues, such 

as renewable energy integration, cost reduction, and operational 

efficiency. Results from three case studies show the effectiveness 

of the proposed methodology. Case Study 1 illustrated the 

inefficiencies of existing systems, thanks to the absence of load 

response capabilities and poor exploitation of renewable 

resources. The introduction of the load response systems in Case 

Study 2 led to a better exploitation of renewable resources, with 

an appreciable reduction in energy wastage and penalties. Case 

Study 3 showed the comprehensive capabilities of the 

hierarchical architecture in achieving nearly complete utilization 

of wind energy, a 20 % reduction in operational costs, and  

a noticeable enhancement of system reactivity. The MPSO 

algorithm surpassed conventional PSO in convergence speed and 

optimality, facilitating effective management of dynamic energy 

demands and improving system scalability. Variable load 

management strategies integrated into this optimization will 

improve its economic efficiency by reducing renewable energy 

curtailment while maintaining occupant comfort. Future work 

could focus on further enhancing the optimization model by 

incorporating more detailed factors such as real-time market 

price fluctuations, demand elasticity, and the integration of 

emerging technologies like electric vehicles and advanced 

energy storage systems. Additionally, expanding the model to 

consider various grid configurations and larger-scale, multi-

regional scenarios could provide a deeper understanding of the 

system's adaptability and scalability. Incorporating uncertainty 

in renewable energy generation and load forecasting, as well as 

developing hybrid optimization algorithms that combine the 

strengths of multiple techniques, would offer further 

improvements in optimization efficiency and cost reduction.
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Nomenclature: 

Symbol Description Unit 

mq Injected mass flow rate kg/s 

mS, mR Mass flow rates in supply/return pipelines kg/s 

KS, KR Resistance coefficients s/m²  

LPipe  Pipeline length  m 

TS, TR  Supply and return temperatures  K 

λ Heat transmission coefficient W/(m.K) 

C Specific heat capacity of water  J/(kg.K)  

PH, PE  Heat and electricity prices  $/MWh  

DH, DE  Heat and electricity demand MW 

RS, RR  Hydraulic resistances  Pa.s/m³  

δP Pressure drop  Pa 

f Darcy friction factor  - 

D Pipe diameter  m 

ξj Minor loss coefficient  - 

Qloss  Heat loss  W 

Estorage, Qstorage  Stored electrical/thermal energy  J 

Pch, Pdis  Charging/discharging power  MW 

ηdis, ηdis  Charging/discharging efficiency  - 

TBui Internal temperature of the building K  

TAm Ambient temperature K  

Hᴸᵒᵃᵈ Added thermal energy J  

Hᴵⁿᵗ  Internal heat gain from occupants & appliances J 

Rᴬⁱʳ Thermal resistance of air K.m²/W 

τBui  Thermal time constant of the building s  

Δt Time step s 

Eᴴ Heat demand elasticity factor - 

ρᴴ Heat price $/MWh 

ρ⁽ᴰᴿ,ᴴ⁾ Heat price under demand response $/MWh 

H⁽ᴸᵒᵃᵈ,ᴼʳⁱ⁾ Initial heat demand before demand response J  

ξH Stochastic variation coefficient for heat demand - 

σᴴ Standard deviation of heat demand variation - 

β Elasticity exponent for nonlinear heat response - 

Eᴱ Electricity demand elasticity factor - 

Pᴸᵒᵃᵈ Electricity demand after response W  

P⁽ᴸᵒᵃᵈ,ᴼʳⁱ⁾ Initial electricity demand before response W  

ρᴱ Electricity price $/MWh 

ρ⁽ᴰᴿ,ᴱ⁾ Electricity price under demand response $/MWh 

ηHE Cross-elasticity between heat and electricity - 

α Elasticity exponent for nonlinear electricity response - 

PBoiler (i, t) Boiler Power Output W  

ηBoiler (i, t) Boiler Efficiency - 
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κₗₒₛₛ Efficiency Loss Coefficient - 

HBoiler (i, t) Boiler Heating Power W  

Hₘₐₓ Maximum Heating Capacity of the Boiler W  

PCHP (i, t) CHP Power Output W  

CM Constant Modulation Factor W  

α Modulation Coefficient - 

HCHP (i, t) CHP Heating Power Output W  

Hmax Maximum Heating Capacity of the CHP W  

PCHP (i, t) CHP Power Output W  

CM Constant Modulation Factor W  

α Modulation Coefficient - 

HCHP (i, t) CHP Heating Power Output W  

Hmax Maximum Heating Capacity of the CHP W  

SOCE (i, t) Electrical Storage State of Charge - 

η(S,E) (i) State Efficiency for Electrical Storage - 

PChr,E (i, t) Charging Power for Electrical Storage W  

ηChr,E (i) Charging Efficiency for Electrical Storage - 

ηDis,E (i) Discharging Efficiency for Electrical Storage - 

PDis,E (i, t) Discharging Power for Electrical Storage W  

SOCH (i, t) Thermal Storage State of Charge - 

η(S,H) (i) State Efficiency for Thermal Storage - 

PChr,H (i, t) Charging Power for Thermal Storage W  

ηChr,H (i) Charging Efficiency for Thermal Storage - 

ηDis,H (i) Discharging Efficiency for Thermal Storage - 

PDis,H (i,t) Discharging Power for Thermal Storage W 

CTotal Total cost of the energy system $ 

CSource Cost of energy sources (e.g., CHP, conventional generators, thermal resources) $ 

CBuy,Upper Cost for purchasing power from the regional energy system $ 

CDR Compensation for the load response program $ 

CAban Penalty cost for the reduction of renewable energy $ 

PSource Power output from an energy source (e.g., generator, CHP) W 

HSource Heat output from a thermal source W 

PLoad Power demand from the load (electrical) W 

HLoad Heat demand from the load (thermal) W 

PAban Amount of renewable energy reduced W 

PBuy,Upper Power purchased from the upstream network W 

ρDR,E Compensation rate for the electrical load response program $/W 

ρDR,H Compensation rate for the thermal load response program $/W 

ρAban Penalty rate for reducing renewable energy $/W 

ρE,Upper Price of electrical energy purchased from the upstream network $/W 

CLower (i, t) Total cost associated with low-level dispatch at time t for location i $ 

CBuy,Lower (i, t) Cost of purchasing electrical and thermal energy from energy system at time t for location i  $ 

CBoiler (i, t) Operating cost of electric boiler at time t for location i $ 

COp,Lower (i, t) Operating cost from other sources at time t for location i $ 

CDR (i, t) Cost associated with demand response program at time t for location i $ 

PBoiler (i, t) Power output of electric boiler at time t for location i  W 

PLoad (i, t) Electrical power load demand at time t for location i W 

HBoiler (i, t) Heat output from electric boiler at time t for location i W 

HLoad (i, t) Thermal energy demand at time t for location i W 

ρE (t) Price of electrical energy at time t  $/W 

ρH (t) Price of thermal energy at time t  $/W 

Β0 (i) Constant cost coefficient for electric boiler location i $ 

Β1 (i) Linear cost coefficient for electric boiler at location i $/W 

Β2 (i) Quadratic cost coefficient for electric boiler at location i $/W² 

ρDR,E (t) Compensation price for electrical demand response at time t  $/W 

ρDR,H (t) Compensation price for thermal demand response at time t  $/W 

ΔPLoad (i, t) Change in electrical power load at time t for location i W 
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ΔHLoad (i, t) Change in thermal power load at time t for location i W 

AFPIᵢ (t) Adaptive Fitness Proximity Index - 

F(PBestᵢ (t)) Fitness of particle i - 

F(GBest (t)) Fitness of global best particle - 

Fopt Estimated optimal fitness - 

𝑤ᵢ (t) Inertia weight for particle i - 

wmax Maximum value of inertia weight - 

wmin Minimum value of inertia weight - 

a Scaling factor for inertia update - 

vᵢ (t) Velocity of particle i m/s 

xᵢ (t) Position of particle i m 

c₁ (t), c₂ (t) Acceleration coefficients - 

r₁, r₂ Random values for acceleration - 

γ Perturbation coefficient - 

RASRi (t) Adaptive search radius m 

β Decreasing coefficient for exploration/exploitation - 

λ₁, λ₂, λ₃ Learning factors for hybrid search - 

δ₁, δ₂ Threshold values for switching search modes - 

DE (i, t) Electricity demand under demand response kW 

DH (i, t) Heat demand under demand response kW or kWh 

DE
base (i) Baseline electricity demand kW 

DH
base (i) Baseline heat demand kW or kWh 

PE (t) Real-time electricity price $/kWh 

PH (t) Real-time heat price $/kWh 

PE
ref Reference electricity price $/kWh 

PH
ref Reference heat price $/kWh 

ηE Price elasticity of electricity demand - 

ηH Price elasticity of heat demand - 

ξE Electricity demand uncertainty factor - 

ξH Heat demand uncertainty factor - 

N (0, σE²) Normal distribution for electricity fluctuations - 

N (0, σH²) Normal distribution for heat fluctuations - 

γE Max reduction for electricity demand - 

γH Max reduction for heat demand - 

CDR (i, t) Total DR incentive payment $ 

ρDR,E (t) Compensation rate for electricity DR $/kWh 

ρDR,H (t) Compensation rate for heat DR $/kWh 

ΔPLoad (i, t) Reduction in electricity demand kW 

ΔHLoad (i, t) Reduction in heat demand kW or kWh 

 


