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Highlights  Abstract  

▪ Incorporating stochastic models to manage 

renewable and demand uncertainties. 

▪ Proposing a probabilistic EV strategy for 

reducing costs and boosting profits. 

▪ Enabling adaptive control using MDP under 

real-time pricing and load changes. 

▪ Optimizing energy management using  

a modified SOS for multi-objective goals. 

▪ Enhancing grid flexibility, efficiency, and 

sustainability in smart energy systems. 

 This study presents a novel energy optimization framework for local 

energy networks, addressing the stochastic nature of renewable energy 

generation, demand fluctuations, and the integration of electric vehicles 

(EVs) and battery storage systems. The proposed methodology supports 

fair power allocation by considering operational constraints, dynamic 

pricing schemes, and demand response (DR) programs. A key 

contribution of this study is defining an EV's charging and discharging 

probabilistic model, aiming to enhance interactions with the grid while 

reducing operational cost and increasing economic returns. In addition, 

the challenge of optimization is augmented by including market-oriented 

constraints like real-time pricing and uncertain loading patterns, both of 

which are dynamically embedded into the decision-making process 

using the Markov Decision Process (MDP). Moreover, a modified 

symbiotic organism search (SOS) algorithm has been proposed to deal 

with the limitations entailed by multi-objective optimization. 
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1. Introduction 

1.1. Background and motivation   

The rapid expansion of distributed energy generation, driven by 

advancements in renewable energy technologies, has introduced 

new challenges in energy management [1]. This shift toward 

renewable energy has largely relied on photovoltaic and wind 

power generation, but both pose challenges to assimilation into 

the electrical grid, including energy fragmentation along with 

limited grid access [2]. The conventional approaches to 

managing energy rely mostly on individualistic methods, 

leading to inefficiencies and an overall lack of system flexibility. 

The Internet of Things is an effective solution to this issue by 

providing smart management of distributed energy resources [3]. 

Through the integration of power electronic devices, advanced 

energy management systems (EMSs), and advanced 

communications technologies, the Internet of Things establishes 

an interrelated system of local energy networks. Not only does 

such an approach enable efficient energy transfers, but it also 

solves the energy island issue, and overall grid resilience is 

enhanced [4]. The deployment of these technologies makes 
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local energy systems achieve higher operational efficiency, 

economic sustainability, and better service delivery. Hybrid EVs 

and plug-in hybrid electric vehicles (PHEVs) are key elements 

of this evolving paradigm [5]. Their bidirectional charging 

capability makes them valuable as portable energy storage 

systems, thus helping to support grid stability as well as enable 

energy flexibility. To ensure the effective integration of the 

vehicles into local energy systems, however, it is crucial to 

develop optimized charging and discharging protocols that 

balance energy demand, reduce grid pressure, as well as 

mitigate environmental effects [6]. The aim of this research is 

to develop an advanced optimization system that integrates 

hybrid EVs into local energy networks, addressing both 

economic and environmental aspects. To make energy 

distribution optimal, a modified SOS algorithm is applied, 

addressing issues such as the expenses related to pollution 

management as well as energy resource dispatch [7]. By 

integrating sophisticated energy management methods, this 

research aims to enhance sustainability, economic viability, and 

the efficiency of the grid, thus providing an optimal way for the 

future development of distributed energy systems. 

1.2. Literature review 

Substantial scholarly research has directed efforts toward 

the development of local energy systems, where aspects like 

distributed generation, alternative energy storage, as well as 

demand management techniques have been given prominence. 

Scholars have proposed various methods to increase energy 

efficiency, minimize operation costs, and integrate renewable 

energy resources effectively [8]. Shahinzadeh et al. [9] 

highlighted the IoT applications in power systems and 

emphasized their implications. This work provides a detailed 

explanation of the core concepts of the Internet of Things, 

including detection, sensing, communication, computing, 

semantics, and services. Reka and Dragicevic [10] provided  

a concise analysis of the essential roles of IoT within smart grids, 

detailing the several IoT layers in power systems. Notable 

applications in smart electric grids include demand-side 

management, renewable energy sources, power lines, fault 

monitoring, smart homes, electric vehicles, smart meters, and 

demand response modeling. The management services offered 

by IoT are examined, including scheduling, security control, 

load distribution data, distribution process data, load 

management data, subscriber profile data, pricing, and market 

data. A dynamic stochastic EMS is offered, accompanied by 

integrating technologies such as wireless sensors, radio 

frequency identification, cameras, barcodes, and intelligent 

electronic devices. It specifically addresses certain Internet of 

Things applications within electrical networks. It examines the 

impact of the Internet of Things on electric vehicles, smart 

homes, and the challenges now confronting electricity 

transmission and distribution networks due to digitalization. IoT 

deployment in smart cities is discussed by Tao et al. [11]. 

Zanella et al. [12] addressed the difficulties and solutions 

associated with integrating IoT into smart systems. Sahraei et al. 

[13] studied an IoT-enabled solar energy harvesting system, and 

González et al. [14] studied microgrid IoT applications. Asaad 

et al. [15] examined the integration of EVs, and Lin et al. [16] 

outlined energy management plans for energy storage facilities 

and EVs. Furthermore, Huang et al. [17] offered real-time 

generation planning techniques for Internet of Things-enabled 

power systems based on renewable energy. Models that tackle 

problems with pollution remediation have been the subject of 

recent research. For instance, Li and Zhang [18] presented  

a multi-objective energy distribution model to reduce 

operational expenses and pollutant emissions. Similarly, 

Rostami et al. [19] proposed a cost optimization approach based 

on the optimal operation strategy to reduce pollution 

propagation in microgrids.  

Ahangar et al. [20] optimized a standalone hybrid green 

power system for load demand and real-time EV charging, 

integrating wind turbines, photovoltaics, an electrolyzer, and  

a fuel cell. They explore green hydrogen as a key 

decarbonization solution. Reliability analysis looks at possible 

problems in system parts, while particle swarm optimization 

(PSO) examines the balance between cost and reliability in 

various energy situations. Recalde et al. [21] reviewed machine 

learning strategies and optimization techniques for EMSs in 

PHEVs. EMS plays a crucial role in power distribution, 

predictive control, and energy optimization. Advances such as 

model predictive control, real-time and hybrid optimization, 

and AI-driven approaches have enhanced EMS performance. 

Additionally, multi-objective, stochastic, and quantum 

optimization methods are expanding EMS capabilities. 
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Strezoski and Izabela [22] highlighted that global efforts aim to 

integrate EVs to decarbonize transportation and reduce 

emissions. However, this large-scale integration poses 

challenges for power systems, especially distribution grids. 

Traditional planning methods are inadequate, and operational 

issues such as peak load increases, voltage violations, and 

feeder overloads arise. Despite the importance of EV 

deployment, their stochastic integration creates significant 

obstacles to expanding power systems. Fatemi et al. [23] 

proposed a stochastic multi-level multi-objective strategy to 

improve the process of clearing the electricity market among 

microgrids, accounting for the environmental impact of fossil 

fuel generation. The approach incorporates distributed 

renewable energy resources, plug-in EVs, IoT-enabled smart 

homes, and energy storage devices in smart homes, microgrids, 

and distribution networks to address uncertainties from 

distributed renewable energy resources and load demand. Xu et 

al. [24] studied enhancing the fuel economy of extended-range 

EVs while reducing the cumulative battery workload. The 

energy management strategy plays a crucial role in improving 

energy efficiency, extending battery life, and reducing fuel 

consumption. While many studies optimize fuel economy, few 

consider the battery’s service life. This study examines battery 

power fluctuations in current and energy flow to address fuel 

economy and battery longevity. Tong et al. [25] proposed a tri-

stage mechanism to manage energy and ancillary services in 

coordinated transmission and distribution networks with 

renewable energy sources and EVs. In the first stage, smart 

homes plan daily operations and send them to the distribution 

networks operator. In the second stage, the distribution 

networks operator formulates a strategy for market participation 

and sends it to the coordinated transmission operator. In the 

third stage, the coordinated transmission operator settles the 

markets. The model is formulated in mixed-integer linear 

programming and simulated using CPLEX in GAMS. 

1.3. The previous scientific gaps and research gaps 

The integration of renewable energy sources, EVs, and energy 

storage systems into local energy grids presents several 

challenges that need to be addressed for efficient operation and 

optimization. Existing studies have primarily focused on 

individual aspects such as distributed generation, energy storage, 

demand-side management, and EV integration, but gaps remain 

in terms of addressing the stochastic nature of renewable energy 

generation, uncertain demand patterns, and the interaction 

between EVs and the grid. Furthermore, even with efforts to 

develop energy systems by optimizing cost-effectiveness, 

operational flexibility, and sustainability, there is a lack of 

optimization methods that can integrate probabilistic models, 

dynamic pricing mechanisms, and constraints related to the 

market into an optimization system. The present work rectifies 

the research gaps by introducing an advanced optimization 

system that appropriately integrates stochastic models related to 

the variability of renewable energy generation and demand. The 

inclusion of electric vehicles is enabled by a probabilistic 

system controlling charging and discharging operations, which 

improves grid interaction, reduces operational cost, and 

increases economic benefits. The proposed formulation offers  

a more comprehensive and flexible methodology compared to 

traditional approaches by considering uncertainties related to 

load patterns and pricing under real-time conditions. Utilization 

of an MDP makes it possible to integrate these uncertainties into 

the framework of the decision-making process, thus ensuring 

the adaptive adjustment to changing conditions. In addition, one 

of the key limitations solved by this research is the lack of an 

efficient optimization algorithm capable of properly handling 

the multi-objective facets of the problem, including the balance 

of the distributed generation, energy storage, and grid imports. 

This paper presents a modified SOS algorithm inspired by 

symbiotic interactions existing among creatures within the 

natural world. The algorithm is formulated to continuously 

adapt to changing system conditions to make the power 

allocation framework more effective, at the same time 

optimizing various objectives like cost savings, energy 

efficiency, and system stability. The incorporation of 

sophisticated methodologies indicates an elevated strategy for 

local power grid management, forming an important step 

toward optimizing smart grids. As such, the key contributions 

and breakthroughs of this work can be briefly described as 

follows: 

i. The paper introduces a novel optimization framework 

that incorporates stochastic models for renewable 

energy generation and demand fluctuations, addressing 

the inherent uncertainties in energy systems. 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

ii. A unique probabilistic charging and discharging 

strategy for EVs is proposed, optimizing grid 

interaction, reducing operational costs, and 

maximizing financial benefits. 

iii. The model integrates real-time pricing and uncertain 

load patterns using an MDP, enabling dynamic 

decision-making that adapts to changing system 

conditions. 

iv. The study presents an advanced optimization 

algorithm, the modified SOS algorithm, which 

effectively handles multi-objective energy 

management, balancing distributed generation, energy 

storage, and grid imports. 

v. The proposed approach enhances the operational 

flexibility, stability, and efficiency of local energy 

grids, providing a comprehensive solution for smart 

grid management and sustainable energy systems. 

2. Problem formulation 

This section deals with the modeling of the problem, the 

respective objective functions, and relevant constraints. To 

increase clarity and understanding, every topic is described in 

its respective subsection. 

2.1. Operating constraints  

The constraints that govern the balance of power across the 

regional electric grid consider the intermittent nature of 

renewable energy generation, along with demand variations. 

The energy management system ensures that electricity usage, 

including charging and discharging of electric vehicles, is 

synchronized with the combined power output from the 

distributed resources as well as with the electricity traded with 

the central electric grid. The refined formulation accounts for 

uncertainties in renewable generation and demand fluctuations. 

The total power generated from photovoltaic panels, wind 

turbines, fuel cells, microturbines, and grid imports must match 

the local energy demand while incorporating stochastic 

variations in generation and consumption, as presented in Eq. 

(1). 

(1) 

𝑃(𝑡)
𝑃𝑉(1 − 𝜉𝑟

𝑃𝑉(𝑡)) + 𝑃(𝑡)
𝑊𝑇(1 − 𝜉𝑟

𝑊𝑇(𝑡)) + 𝑃(𝑡)
𝐹𝐶 + 𝑃(𝑡)

𝑀𝑇

+ 𝑃(𝑡)
𝐺𝑟𝑖𝑑

= 𝑃(𝑡)
𝐿𝑜𝑎𝑑(1 + 𝜉𝑑(𝑡)) + ∑ 𝑃(𝑡)

𝑃𝐻𝐸𝑉

𝑁𝑃𝐻𝐸𝑉

𝑛=1

 

The output of each distributed generation unit is subject to 

operational limits and ramp rate constraints, as shown in Eqs. 

(2) to (7) [8]. 

(2) 𝑃𝑃𝑉−𝑀𝑖𝑛 ≤ 𝑃(𝑡)
𝑃𝑉 ≤ 𝑃𝑃𝑉−𝑀𝑎𝑥 

(3) 𝑃𝑊𝑇−𝑀𝑖𝑛 ≤ 𝑃(𝑡)
𝑊𝑇 ≤ 𝑃𝑊𝑇−𝑀𝑎𝑥  

(4) 𝑃𝐹𝐶−𝑀𝑖𝑛 ≤ 𝑃(𝑡)
𝐹𝐶 ≤ 𝑃𝐹𝐶−𝑀𝑎𝑥  

(5) 𝑃𝑀𝑇−𝑀𝑖𝑛 ≤ 𝑃(𝑡)
𝑀𝑇 ≤ 𝑃𝑀𝑇−𝑀𝑎𝑥 

(6) 𝑅𝑎𝑚𝑝𝐹𝐶−𝐷𝑜𝑤𝑛 ≤ 𝑃(𝑡)
𝐹𝐶 − 𝑃(𝑡−1)

𝐹𝐶 ≤ 𝑅𝑎𝑚𝑝𝐹𝐶−𝑈𝑝 

(7) 𝑅𝑎𝑚𝑝𝑀𝑇−𝐷𝑜𝑤𝑛 ≤ 𝑃(𝑡)
𝑀𝑇 − 𝑃(𝑡−1)

𝑀𝑇 ≤ 𝑅𝑎𝑚𝑝𝑀𝑇−𝑈𝑝 

To incorporate forecasted changes in load and generation, 

the ramp rate constraint is dynamically updated in Eq. (8). 

(8) Ramp𝐹𝐶−𝐷𝑜𝑤𝑛 ≤ 𝑃(𝑡)
𝐹𝐶 − 𝑃(𝑡−1)

𝐹𝐶 ≤ Ramp𝐹𝐶−𝑈𝑝 

Battery energy storage plays a critical role in maintaining 

power balance. The energy storage model considers charge and 

discharge limits, state-of-charge constraints, and degradation 

effects through Eqs. (9) to (11). 

(9) 𝑃𝐵𝑎𝑡−𝑀𝑖𝑛 ≤ 𝑃(𝑡)
𝐵𝑎𝑡 ≤ 𝑃𝐵𝑎𝑡−𝑀𝑎𝑥 

(10) 𝐸𝐵𝑎𝑡−𝑀𝑖𝑛 ≤ 𝐸(𝑡)
𝐵𝑎𝑡 ≤ 𝐸𝐵𝑎𝑡−𝑀𝑎𝑥 

(11) 𝐸(𝑡+1)
𝐵𝑎𝑡 = 𝐸(𝑡)

𝐵𝑎𝑡 − 𝜂𝑑
𝐵𝑎𝑡𝑃(𝑡)

𝐵𝑎𝑡𝛥𝑡 + 𝜂𝑐
𝐵𝑎𝑡𝑃(𝑡)

𝐺𝑟𝑖𝑑𝛥𝑡 

The interaction with the main grid is formulated based on 

dynamic pricing mechanisms. The grid import/export function 

is defined as Eq. (12). 

(12) 

𝑃(𝑡)
𝐺𝑟𝑖𝑑

= {
𝜆𝑏𝑢𝑦(𝑡) ⋅ (𝑃(𝑡)

𝐿𝑜𝑎𝑑 − 𝑃(𝑡)
𝑅𝐸𝑆) if 𝑃(𝑡)

𝐿𝑜𝑎𝑑 > 𝑃(𝑡)
𝑅𝐸𝑆

−𝜆𝑠𝑒𝑙𝑙(𝑡) ⋅ (𝑃(𝑡)
𝑅𝐸𝑆 − 𝑃(𝑡)

𝐿𝑜𝑎𝑑) if 𝑃(𝑡)
𝐿𝑜𝑎𝑑 < 𝑃(𝑡)

𝑅𝐸𝑆 

DR constraints aim to modify electricity consumption 

patterns to balance supply and demand, especially with the 

integration of renewable energy sources. The load response can 

be represented as a reduction or shift in the original demand 

𝑃(𝑡)
𝐿𝑜𝑎𝑑−𝐷𝑅  signals [26]. The adjusted demand after DR 

intervention is given by Eq. (13). 

(13) 𝑃(𝑡)
𝐿𝑜𝑎𝑑−𝐷𝑅 = 𝑃(𝑡)

𝐿𝑜𝑎𝑑 − 𝛥𝑃(𝑡)
𝐿𝑜𝑎𝑑  

For EVs and other flexible loads, the charging or discharging 

schedule can be dynamically adjusted based on grid conditions. 

The total change in demand due to DR actions can be modeled 

as Eq. (14). 

(14) ∑ 𝛥

𝑁𝐸𝑉

𝑖=1

𝑃(𝑡)
𝐸𝑉 ≤ 𝑃𝑀𝑎𝑥

𝐸𝑉  

By incorporating dynamic pricing, adjusted demand can also 

depend on price signals, where consumers shift or reduce 

consumption when prices are high. The adjustment can be 

modeled as Eq. (15). 

(15) 𝑃(𝑡)
𝐿𝑜𝑎𝑑−𝐷𝑅 = 𝑃(𝑡)

𝐿𝑜𝑎𝑑 ⋅ (1 − 𝛼 ⋅ 𝜆𝑡) 

To ensure system stability, DR constraints must not conflict 
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with power balancing requirements. The total adjusted load 

should not exceed available generation and storage, ensuring the 

balance presented in Eq. (16). 

(16) 
𝑃(𝑡)

𝐿𝑜𝑎𝑑−𝐷𝑅 + 𝑃(𝑡)
𝑅𝐸𝑆 + 𝑃(𝑡)

𝐺𝑟𝑖𝑑

= 𝑃(𝑡)
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃(𝑡)

𝑆𝑡𝑜𝑟𝑎𝑔𝑒
 

Finally, the total DR should respect the consumer's 

willingness and physical limits. This can be expressed as Eq. 

(17). 

(17) 𝛥𝑃(𝑡)
𝐿𝑜𝑎𝑑 ≤ 𝛥𝑃𝑀𝑎𝑥

𝐿𝑜𝑎𝑑 

2.2. Probabilistic EV charging and discharging dtrategy 

with market constraints 

This model seeks to improve how EVs charge and discharge by 

using a method that considers uncertainties in driving habits, 

electricity costs, and grid conditions. Including market-oriented 

limitations and actual variabilities, this model adapts to 

changing prices and variations in the conditions on the grid, thus 

favoring efficiency as well as financial benefits to the involved 

stakeholders [27]. The daily travel distance of EVs is influenced 

by a stochastic process with log-normal distribution, which 

currently also encompasses additional uncertainties due to 

factors like traffic and meteorological factors [28]. This 

introduces some randomness to vehicle utilization, as outlined 

by Eq. (18), which is the probability density function for daily 

mileage d. 

(18) 𝑓(𝑑) =
1

𝑑𝜎𝑑√2𝜋
𝑒𝑥𝑝 (−

(𝑙𝑛(𝑑)−𝜇𝑑)2

2(𝜎𝑑)2 )  

The start times for charging tCh−Start and discharging tDis−Start 

are optimized through an MDP, which considers the state of 

charge (SOC) of the EV, the grid load, and the electricity price 

at each time. The optimal strategy aims to minimize costs while 

maximizing utility based on real-time data. The charging start 

time tCh−Start is given by Eq. (19). 

(19) 
𝑡𝐶ℎ−𝑆𝑡𝑎𝑟𝑡 = arg 𝑚𝑖𝑛𝑡 [𝑃(𝑡) ⋅ 𝐿(𝑡) ⋅ 𝑓(𝑡) + 𝛾

⋅ 𝔼[𝑈(𝑡)]] 

Similarly, the optimal discharging start time tDis−Start is given 

by Eq. (20). 

(20) 𝑡𝐷𝑖𝑠−𝑆𝑡𝑎𝑟𝑡 = arg 𝑚𝑎𝑥𝑡 [𝑃(𝑡) ⋅ 𝐿(𝑡) ⋅ 𝑓(𝑡)] 

The SOC of the EV's battery evolves based on the charging 

and discharging processes. The SOC is influenced by random 

factors such as consumption patterns, charging efficiencies, and 

battery degradation. The evolution of SOC is modeled as Eq. 

(21). 

(21) 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) + ∫ (𝑃𝐶ℎ(𝑡′) −
𝑡

𝑡0

𝑃𝐷𝑖𝑠(𝑡′)) 𝑑𝑡′ + 𝜖(𝑡)  

The optimization of charging and discharging times is 

subject to several market-based constraints. These constraints 

ensure that the EVs do not charge or discharge at times that 

would be inefficient or costly for the system. The charging 

power PCh  (t) is constrained by the vehicle's maximum charging 

rate and the current market price. The charging power is limited 

by Eq. (22). 

(22) 𝑃𝐶ℎ(𝑡) ≤ 𝑃𝑚𝑎𝑥
𝐶ℎ ⋅ 1(𝑃(𝑡) ≤ 𝑃𝑚𝑎𝑥

𝑀𝑎𝑟𝑘𝑒𝑡) 

Discharging is subject to the grid's demand and the grid's 

capacity. To avoid overloading the grid, the discharge power 

𝑃𝐷𝑖𝑠(𝑡) is constrained by Eq. (23). 

(23) 𝑃𝐷𝑖𝑠(𝑡) ≤ 𝑃𝑚𝑎𝑥
𝐺𝑟𝑖𝑑 ⋅ 1(𝐿(𝑡) ≥ 𝐿𝑚𝑖𝑛

𝐺𝑟𝑖𝑑) 

The model aims to maximize profits from discharging and 

minimize the cost of charging. The total cost of charging and 

discharging is given by Eq. (24). 

(24) 𝐶Ch(𝑡) = 𝑃Ch(𝑡) ⋅ 𝑃(𝑡), 𝐶Dis(𝑡) = 𝑃Dis(𝑡) ⋅ 𝑃(𝑡) 

Thus, the objective function is given by Eq. (25). 

(25) 
𝔼[𝑃𝑟𝑜𝑓𝑖𝑡] = ∑ [𝑃𝐷𝑖𝑠(𝑡) ⋅ 𝑃(𝑡) − 𝑃𝐶ℎ(𝑡) ⋅𝑇

𝑡0

𝑃(𝑡)] + ∑ 𝛾𝑇
𝑡0

⋅ 𝔼[𝑈(𝑡)]  

The maximum discharge duration TDis depends on the 

remaining capacity of the EV's battery, as well as random 

fluctuations in grid conditions and market prices. The discharge 

time is given by Eq. (26) [8]: 

(26) 
𝑇𝐷𝑖𝑠 =

𝐶𝐵𝑎𝑡⋅(𝑆𝑂𝐶𝑀𝑎𝑥−𝑆𝑂𝐶𝑀𝑖𝑛)

𝑃𝐷𝑖𝑠 +
𝑑⋅𝑊100

100⋅𝑃𝐷𝑖𝑠 +

𝑅(𝑡)  

Electricity prices 𝑃(𝑡)  evolve over time and follow a 

random walk influenced by market fluctuations. The price 

dynamics are modeled as Eq. (27). 

(27) 𝑃(𝑡) = 𝑃(𝑡 − 1) + 𝜖(𝑡) 

2.3. The objective function 

The primary objective of energy optimization management is to 

efficiently satisfy the network's load requirements while 

keeping overall expenses to a minimum. The entire cost covers 

the price of treating pollutants as well as producing electricity. 

The objective function for optimal planning is formulated, as Eq. 

(28) demonstrates. The first term is the expense of treating the 

pollution caused by the equipment's release of greenhouse gases 

like CO₂, SO₂, and NO₂. The costs of producing electricity are 

included in the second term of this equation and comprise the 

expenses for operating and maintaining distributed generation 

equipment, as well as the costs related to receiving electricity 

from the power grid. The next term covers expenses for 
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mitigating grid-wide external pollution, which includes dust, 

CO₂, SO₂, NO₂, and other pollutants.  

(28) 

𝑚𝑖𝑛 𝐹 (𝑋) = ∑ [𝑇
𝑡=1 ∑ ∑ 𝐾𝑗

𝑁𝑝1

𝑗=1

𝑁𝐷𝐺
𝑖=1 ⋅ 𝑄(𝑖,𝑗) ⋅

𝑃(𝑖,𝑡)

𝜂(𝑖)
+ ∑ (

𝑁𝐷𝐺
𝑖=1 𝐶(𝑖)

𝑂𝑀 ⋅ 𝑃(𝑖,𝑡) + 𝐶(𝑖)
𝑅𝑢𝑛 ⋅

𝑃(𝑖,𝑡)

𝜂(𝑖)
) +𝐶(𝑡)

𝐺𝑟𝑖𝑑 ⋅

𝑃(𝑡)
𝐺𝑟𝑖𝑑 + ∑ 𝑄(𝑚)

𝑁𝑝2

𝑚=1 ⋅ 𝐾(𝑚) ⋅ 𝑃(𝑡)
𝐺𝑟𝑖𝑑 +

𝜆 ∑ 𝐶(𝑖)
𝐸𝑛𝑣𝑁𝐷𝐺

𝑖=1 ⋅ 𝑃(𝑖,𝑡) + ∑ 𝐶(𝑖)
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑁𝑆𝐺

𝑖=1 ⋅ 𝑃(𝑖,𝑡)
𝑆𝑡𝑜𝑟𝑎𝑔𝑒

 

+𝛼 ∑ (𝑇
𝑡=1 𝐷𝑡 − ∑ 𝑃(𝑖,𝑡)

𝑁𝐷𝐺
𝑖=1 )2 + 𝛽 ∑ (𝛥𝑃(𝑡))2𝑇

𝑡=1 ]  

Here, the state variables are represented by vector X, which 

also includes the active power levels of the corresponding units. 

In these relationships, N(DG) is the total number of distributed 

generation units, and T is the total number of operational 

intervals in the system. A wide range of devices, including fuel 

cells, photovoltaics, wind turbines, storage batteries, and 

microturbines, are part of distributed generation technologies. 

The power output of the i-th distributed generation unit is 

represented by 𝑃(𝑖,𝑡)  at a given time t, its power generation 

efficiency is represented by 𝜂(𝑖) , and its cumulative power is 

denoted by 𝐶(𝑖)
𝑅𝑢𝑛 is a term used to describe the running costs of 

devices like fuel cells and microturbines. Furthermore, 𝐶(𝑖)
𝑂𝑀 

represents the maintenance cost of the ith distributed generation 

unit. In that example, the exchange of electrical power with the 

main grid is represented by 𝑃(𝑡)
𝐺𝑟𝑖𝑑 , where buying electricity is 

seen as positive and selling it as negative. 𝐶(𝑡)
𝐺𝑟𝑖𝑑  reflects the 

market price of the electricity produced by the upstream power 

system at time t. The pollution resulting from diffuse 

production—which includes the release of greenhouse gases 

like CO₂, SO₂, and NO₂—is described by the formula P₁. In 

addition, P2 stands for air pollutants such as CO₂, SO₂, NO₂, and 

dust that come from the external power grid's electrical 

generation. The corresponding displacement cost is denoted by 

𝐾(𝑗), and 𝑄(𝑖,𝑗) is the emission of the jth pollutant produced by 

distributed generation unit i per 1 kWh of energy. Similar to this, 

𝑄(𝑚) denotes the emissions from the pollution meter produced 

for every kWh of electricity used, and 𝐾(𝑚)  is the cost of 

moving the pollutant meter. 

3. Optimization Algorithm 

The SOS method is modeled after the complex relationships 

found in nature, such as mutualism, convergence, and 

parasitism, and is inspired by symbiotic interactions in 

ecosystems [29]. Every kind of interaction in this algorithm 

represents how organisms adapt to their surroundings and 

gradually become more fit. A symbiotic relationship in which 

both species benefit is known as mutualism. The simulation 

begins by selecting a random person (X(i)) to communicate with 

the ith creature in the algorithm. This interaction is governed by 

Eqs. (29) and (30), where the position of both organisms is set 

based on their respective profit levels (𝑤1and w2) [30]. 

(29) 𝑋(𝑖)
𝑁𝑒𝑤 = 𝑋(𝑖)

𝑂𝑙𝑑 + 𝜇1. (𝑋𝐵𝑒𝑠𝑡 − 𝑤1.
𝑋(𝑖)

𝑂𝑙𝑑+𝑋(𝑗)
𝑂𝑙𝑑

2
)  

(30) 𝑋(𝑗)
𝑁𝑒𝑤 = 𝑋(𝑗)

𝑂𝑙𝑑 + 𝜇2. (𝑋𝐵𝑒𝑠𝑡 − 𝑤2.
𝑋(𝑖)

𝑂𝑙𝑑+𝑋(𝑗)
𝑂𝑙𝑑

2
)  

Convergence is another symbiotic relationship in which one 

species benefit while the other remains unaffected. As explained 

in Eq. (31), this interaction only affects the i-th organism. 

(31) 𝑋(𝑖)
𝑁𝑒𝑤 = 𝑋(𝑖)

𝑂𝑙𝑑 + 𝛽1. (𝑋𝐵𝑒𝑠𝑡 − 𝑋(𝑗))  

The parasitic stage produces mutational changes in 

individual i, in which a new organism selects and replaces the 

host (random individual). This step involves modification of the 

chosen host organism, reflecting the parasitic nature of the 

interaction. An ecosystem of randomly generated organisms 

repeatedly replicates these interaction steps. The fitness of each 

organism is calculated to identify symbiosis with the best fitness 

value (XBest). By simulating interactions of mutualism, 

convergence, and parasitism, the SOS algorithm moves toward 

optimal solutions and adapts and evolves its population during 

iterations to achieve a desired level of optimality in solving 

complex problems. 

In this study, a new step is introduced to the original SOS 

algorithm, which increases its adaptive capabilities through the 

integration of three distinct optimization strategies. We design 

this innovative step to empower each organism by adaptively 

choosing the most appropriate strategy based on its inherent 

probability. Below, we explain the strategies in detail: 

1) Strategy 1: As expressed in Eqs. (32) and (33), a local 

exploration technique called Levy flight, is 

incorporated to facilitate an efficient search process . 

(32) 𝐿𝑒𝑣𝑦(𝛼) = 𝐼𝑡𝑒𝑟−𝛼       1 ≤ 𝛼 ≤ 3 

(33) 𝑋(𝑖)
𝑇𝑒𝑠𝑡1 = 𝑋(𝑖) + 𝜇3⨁𝐿𝑒𝑣𝑦(𝛼) 

2) Strategy 2: Designed to enhance swarm diversity, this 

strategy involves randomly selecting three dissimilar 

organisms from the population. Next, we generate  

a refined solution using Eq. (34). Three individuals 

undergo the mutation processes shown in Eqs. (35) to 

(37) by applying both the best solution in the 

population and the refined solution. 
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(34) 𝑋𝑀𝑢𝑡 = 𝑋1 + 𝜇4. (𝑋2 − 𝑋3) 

(35) 𝑋(𝑖)
𝑇𝑒𝑠𝑡2 = {

𝑋(𝑗)
𝑀𝑢𝑡            𝜇5 ≤ 𝜑𝑀𝑢𝑡

𝑋𝐵𝑒𝑠𝑡          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

(36) 𝑋(𝑖)
𝑇𝑒𝑠𝑡3 = {

𝑋(𝑗)
𝑀𝑢𝑡            𝜇6 ≤ 𝜑𝑀𝑢𝑡

𝑋𝐵𝑒𝑠𝑡          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(37) 𝑋(𝑖)
𝑇𝑒𝑠𝑡4 = 𝜇7. 𝑋𝐵𝑒𝑠𝑡 + 𝜇8. (𝑋𝐵𝑒𝑠𝑡 − 𝑋𝑅) 

3) Strategy 3: As specified in Eq. (38), focusing on 

guiding the algorithm away from abnormal solutions, 

this strategy attracts organisms towards the population 

mean (M). 

(38) 𝑋(𝑖)
𝑇𝑒𝑠𝑡5 = 𝑋(𝑖) + 𝜇9. (𝑋(𝑖) − 𝑀. 𝑤3)  

A strategy with a higher likelihood is one that is employed 

sparingly among these options. As a result, if the new test 

organism exhibits better conditions in terms of raising the 

fitness function, it replaces the old one. Every iteration, the 

correction method with the highest success rate across all people 

is chosen to be used. This adaptive improvement introduces  

a dynamic element to the SOS algorithm and contributes to its 

efficiency and effectiveness in addressing complex optimization 

challenges. Figure (1) displays the flowchart of the proposed 

algorithm for problem solving.

 

Figure 1. Flowhchart of proposed algorithm. 

4. Numercial analysis and discussion  

The modified SOS algorithm is utilized in this part to tackle the 

intricate management of energy optimization for a local energy 

grid [31]. The data utilized in this paper are sourced from the 

literature [32–34]. With an emphasis on attaining green and 

intelligent energy planning, the study's goal is to offer  

a comprehensive solution to the problems brought on by the 

dynamic nature of energy demand in the local energy grid. Two 

separate cases are constructed and examined—one without EVs 

and the other with them—to confirm the efficacy of our 

suggested model, highlight its limitations, and showcase the 

benefits of smart charging and discharging strategies. Only the 

operating costs are taken into account in Scenario 1 of Case 1; 

however, the operating costs and the emissions costs are taken 

into account in Scenario 2. Scenario 1 of Case 2 also accounts 

for the charging and discharging of EVs without a control plan. 

In Scenario 2 of Case 2, the control strategy will exclusively be 

used for EV charging; however, in Scenario 3 of Case 2, the 

control method will be used for EV charging and discharging. 

Case 1 analyzes the optimization model for energy management 

in depth and highlights the effectiveness of the modified SOS 

algorithm in this research. Expanding upon the knowledge 

acquired in Case 1, Case 2 investigates how various EV access 

strategies impact energy management for the local energy grid. 
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One hour is the duration of the period in the experimental setup; 

twenty-four hours is the control time domain; and one day is the 

entire simulation duration. The daily load requirements of the 

local energy network, comprising primary home loads, small 

industrial loads, and small commercial loads, are depicted in 

Figure (2).  

 

Figure 2. Electric load required by the system. 

The market's instantaneous electricity price is displayed in 

Figure (3). Furthermore, estimates for the generation of 

electricity from wind turbines and photovoltaic technologies are 

also made using a forecasting model, as Figure (4) illustrates. 

This essay is not going to cover the specific prediction method 

[8]. Since the primary objective of this article is to achieve green 

and intelligent energy planning, this model thoroughly takes 

into account how the costs of producing power and treating 

pollution affect energy planning.  

 

Figure 3. Predicted price of electric energy. 

 

Figure 4. Total wind and solar energy predicted for the system. 

4.1.Results of Case 1 

In empirical exploration, we carefully created two distinct 

scenarios to explore the dynamics of energy management in the 

local energy network. These scenarios have been meticulously 

crafted to offer an all-encompassing viewpoint, encompassing 

the expenses associated with power generation and pollution 

treatment, as well as a wider range of concerns. Using these 

scenarios shows the importance of including pollution treatment 

costs in the local energy network plan and allows for a complete 

evaluation of how well the updated SOS algorithm can adapt. 

• Scenario 1 

In Scenario 1, we focus exclusively on the cost of electricity, 

regardless of pollution treatment considerations. Figure (5) 

presents the simulation's outcomes straightforwardly and 

concisely.  

 

Figure 5. Optimal system planning in Scenario 1 of Case 1 
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The main grid supplies the necessary electricity early in the 

morning, which also serves to charge the battery. Due to  

a combination of cheap main grid pricing and mild grid loads, 

electricity generation has been reduced during 01:00–09:00 in 

distributed generation units, which are characterized by higher 

electricity generation costs. With the increase in the price of 

electricity in the hours of 09:00-16:00, which are peak load 

periods, along with battery discharge, local distributed 

generation units witness a significant growth in electricity 

production. This increase allows them to satisfy local demand 

while selling surplus electricity to the primary grid, a tactical 

approach to minimize operational expenses.  The findings of 

this scenario indicate that individuals prefer to charge batteries 

during periods of low cost and strategize their usage for times 

of high cost.  Distributed generation units, meanwhile, 

consistently generate power to enhance grid resilience. This 

situation shows how managing electricity costs can be 

complicated and demonstrates that by smartly charging and 

discharging batteries, along with wisely using local power 

sources, we can better handle changing electricity prices and 

demands on the grid. We expand our research in the next 

scenario to include the expenses of pollution control and 

electricity generation, giving a more complete picture of energy 

management in the local energy system. The following sections 

address the complexities of this broad scenario and clarify the 

interplay between electricity costs and pollution treatment 

considerations. 

• Scenario 2 

 

Figure 6. Optimal system planning in Scenario 2 of Case 1. 

In Scenario 2, a subtle perspective emerges when we 

introduce pollution treatment costs into the perspective of 

energy optimization. The simulation results of this scenario, 

shown in Figure (6), deal with the complex dynamics of energy 

management, clarifying the delicate balance between electricity 

consumption, production capacities of distributed generation 

units, and the subsequent costs of pollution treatment.  

According to the general trends observed in Figure (5), 

distributed generation units show very good production 

capacities that reduce electricity consumption from the 

upstream power grid, which is a characteristic due to the careful 

consideration of pollution treatment costs. There is significant 

interest in comparing the pollution emissions of microturbines 

and fuel cells. Despite the high production capacities, the 

pollution produced by micro-turbines exceeds that of fuel cells. 

As a result, fuel cells take a higher production route and 

skillfully incorporate the complex interplay between pollution 

factors and energy production dynamics. Delving deeper into 

the empirical data, an illuminating revelation emerges. These 

findings clearly show that it's important, for the economy and 

especially for protecting the environment, to include pollution 

treatment costs in energy management. While the scale of the 

experiment remains relatively modest within the scope of the 

local energy grid, the ultimate difference in pollution treatment 

costs between the two scenarios may seem negligible. However, 

the expansion of the grid scale will significantly amplify the 

discernible gap in pollution treatment costs. This conclusion 

shows the clear benefits and importance of looking at pollution 

control costs and confirms the dedication to being financially 

smart and protecting the environment in the larger context of 

improving energy use. 

4.2. Results of Case 2 

In Case 2, we address the complex dynamics introduced by EVs 

in the grid and explore the three scenarios identified, which 

include uncontrolled EVs, controlled EVs, and smart EVs. 

Table (1) presents the system loads for different strategies over 

24 hours in Case 2, comparing uncontrolled, controlled, and 

intelligent strategies across various components such as battery, 

microturbine (MT), and fuel cell (FC). The results present 

varying energy demand and supply discrepancies throughout 

the scenarios analyzed, revealing the system's ability to balance 
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resources across different scenarios. The uncontrolled method 

presents larger variations of loads, often revealing higher 

demand levels or failures to reach equilibrium within the energy 

system. As an example, in the first hours (hour 1), the discharge 

of the battery is recorded at -23.0026 kW, while the 

microturbine produces 8.9097 kW, reflecting possible 

insufficient operational efficiency of the system concerning 

energy usage and storage. The controlled method, by contrast, 

shows greater stability through optimal loading values to avoid 

shortages and surpluses of energy. In hour 1, as an example, the 

loading of the battery is optimized to -33.5858 kW, reflecting 

better mechanisms for energy regulation and storage. The 

intelligent strategy, which is expected to incorporate the 

coordination of advanced algorithms or real-time optimization 

schemes, maintains the most optimally balanced system load 

profile. For example, in hour 1, this intelligent strategy leads to 

a lesser discharge by the battery at -25.3895 kW, with the 

microturbine and fuel cell producing more effective outputs. 

Throughout the 24 hours, this intelligent strategy is expected to 

produce a stable and optimized energy balance, with the battery, 

microturbine, and fuel cell working synergistically to meet the 

energy demand. It can be seen that there are certain hours where 

the intelligent strategy performs better than the controlled 

strategy and the uncontrolled strategy. For example, at hour 9, 

the smart strategy generates significantly better results for the 

microturbine (10.4728 kW) and fuel cell (30.3928 kW), thus 

demonstrating its ability to optimize the generation of energy in 

accordance with true demand. The controlled strategy, on the 

other hand, tends to deliver a more stable but less adaptive 

performance, while the uncontrolled strategy continues to suffer 

from high levels of load imbalance.

Table 1. System loads in different strategies from Case 2. 

Time 
Uncontrolled strategy Controlled strategy Intelligent strategy 

Battery MT FC Battery MT FC Battery MT FC 

1 -23.0026 8.9097 7.369 -33.5858 4.013 1.1847 -25.3895 6.6173 9.232 

2 -7.0805 12.8614 11.5741 -20.5531 10.6849 0.9809 -16.3917 7.657 11.5747 

3 -12.4124 9.3035 4.4984 -19.98 7.1289 1.4444 -10.7344 9.1141 8.2539 

4 -14.5367 11.909 13.3584 -14.1338 5.1345 8.49 -8.8486 9.1867 11.3012 

5 -12.122 8.0042 7.4143 -8.0471 7.3408 8.5626 -16.6197 9.245 6.4347 

6 4.9922 8.8304 6.2273 3.3917 5.6424 8.0429 -4.6176 11.8393 10.7077 

7 -1.8148 8.0445 12.8485 -4.1758 6.6566 8.838 3.3591 8.7211 14.6827 

8 -5.3476 10.395 7.6797 0.851 11.9044 10.3361 2.3043 8.7663 8.7269 

9 4.9204 12.8175 26.6996 1.0549 18.9361 24.4884 11.1743 10.4728 30.3928 

10 31.9727 25.5936 22.587 23.0881 23.0655 28.088 38.8243 28.0685 36.6485 

11 31.0346 35.4381 31.0537 24.8106 26.1516 28.8252 38.582 24.792 30.4375 

12 27.7763 36.7554 25.487 26.253 25.96 26.3236 29.7967 27.2139 35.0126 

13 -4.0938 16.3258 21.9936 -3.1488 19.0941 21.3482 -11.5124 28.3273 22.3838 

14 32.1949 29.5429 23.1224 17.5239 30.366 24.3493 29.9716 25.1551 36.293 

15 2.6132 23.2582 29.18 2.7979 19.4234 18.9014 9.9854 29.5031 26.755 

16 3.3445 25.7264 24.5696 3.2571 24.6148 18.6676 0.5127 25.7581 25.5722 

17 -7.1668 12.1366 8.4354 -3.1244 8.5364 5.7949 -4.022 15.9 17.9624 

18 2.1437 14.1525 3.3097 -9.3103 7.528 8.7235 4.1083 18.9268 6.3438 

19 -2.8824 9.9195 9.6028 -11.3049 6.614 3.891 -6.5067 17.0338 9.5241 

20 -2.8345 10.3064 4.2182 1.2807 12.6347 7.465 16.1383 13.0385 22.8164 

21 15.7226 13.5717 19.2878 24.1058 12.3889 16.8055 3.5399 19.9162 29.8693 

22 -2.9365 8.4633 19.2622 -1.8136 11.3995 7.9942 -1.5147 11.4904 12.9265 

23 -7.2578 9.4449 8.9053 -10.6987 10.9137 8.0501 -8.4021 7.6731 13.3799 

24 3.4441 7.2273 10.4994 -5.0168 8.7001 8.7403 9.4725 13.1625 12.973 

 

Operating expenses outlined in Table (2) for the three 

strategies—uncontrolled, controlled, and intelligent—exhibit 

significant differences upon quantification using various cost 

indicators. The uncontrolled method has the maximum average 

operating cost recorded at 1832 yuan, with the highest cost 

calculated at 2098 yuan, but the minimum operating cost is at 

1685 yuan. In sharp contrast, the controlled method has both the 

minimum average cost compared to those related to the 

uncontrolled method at 1763 yuan, as well as the maximum cost 

of 1985 yuan. In addition, the minimum cost related to the 
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controlled method is less than that related to the uncontrolled 

method, at 1622 yuan. The intelligent method depicts the 

maximum reduction across the entire range of parameters 

considered. The average cost is registered at 1487 yuan, 

reflecting a reduction of 14.3% compared to the uncontrolled 

approach and 15.8% compared to the controlled approach. The 

maximum cost of the intelligent approach is 1517 yuan, a 

decrease of 27.7% when compared to the uncontrolled 

approach's maximum cost. The minimum cost of the intelligent 

approach is registered at 1436 yuan, a decrease of 14.8% 

compared to the uncontrolled approach's minimum cost. The 

examination of the different approaches clearly shows that the 

intelligent approach produces the best economic outcomes for 

all the metrics evaluated. The considerable decreases in average 

and maximum operating costs suggest that the intelligent 

approach, through the use of advanced optimization methods or 

predictive analytics, enables efficient operations at both the 

minimum and maximum, unlike the uncontrolled and controlled 

methods. This assessment highlights the imperative importance 

of adopting more advanced operating systems, possibly 

supported by the use of advanced optimization techniques or 

predictive analytics, which can produce significant economic 

benefits, especially in the context of long-term operating costs. 

Table 2. Operating costs in Case 2 

Strategy 
Average 

(yuan) 

Maximum 

(yuan) 

Minimum 

(yuan) 

Uncontrolled 

strategy 
1832 2098 1685 

Controlled 

strategy 
1763 1985 1622 

Intelligent 

strategy 
1487 1517 1436 

4.3. Comparision to other methods 

A set of benchmark problems is solved, and the modified SOS 

algorithm is compared with some of the well-known 

optimization algorithms to illustrate the advantages it offers. 

The optimization algorithms considered for comparison in this 

paper are the genetic algorithm (GA), PSO, ant colony 

optimization (ACO), and the newly proposed whale 

optimization algorithm (WOA). These algorithms are widely 

used by researchers to solve optimization problems as 

benchmarks because of their ability to deal with optimization 

problems. The Rastrigin function, with a large search space and 

lots of local optima, is utilized as the first test problem to 

compare the performance of the algorithms. The suggested SOS 

approach reached an optimum solution of 0.0001 within 1000 

iterations, reflecting an excellent degree of accuracy and  

a stable convergence rate. In comparison, the GA achieved  

a figure of 0.035, the PSO achieved 0.015, the ACO achieved 

0.02, and the WOA achieved 0.01. These results show that the 

SOS algorithm outperforms all other methods, representing 

improvements of about 99.7% compared to GA, 99.3% 

compared to PSO, 99.5% compared to ACO, and 99% 

compared to WOA. 

Then, the global search ability of the algorithms was tested 

using the Griewank function, which is one of the more difficult 

test problems. The SOS algorithm achieved a fitness of 0.0002, 

while the GA and PSO achieved results of 0.008 and 0.003, 

respectively. The ACO and WOA showed similar performances, 

with fitness values of 0.004 and 0.002, respectively. The 

modified SOS algorithm demonstrated a 97.5% improvement 

over GA, 93.3% over PSO, and approximately 95% over ACO 

and WOA, confirming its superior global search ability. In the 

third experimental evaluation, the well-known CEC 2013 

problem set was used to test the SOS algorithm's robustness, 

versatility, and efficiency in the optimization process. Here, the 

SOS algorithm produced better results compared to other 

algorithms by consistently providing optimal fitness values for 

single-objective and multi-objective optimization tasks. In 

particular, the SOS algorithm reached an average fitness value 

of 0.002 across 10 test scenarios, outperforming the 

performance metrics of GA (0.05), PSO (0.03), ACO (0.04), and 

WOA (0.015). The improvements displayed by the SOS 

algorithm over these rival algorithms ranged from about 96%, 

93%, 95%, and 87%, respectively. The proposed SOS 

algorithm's adaptive strategy is an important factor responsible 

for its efficiency. The adaptive strategy adapts to dynamically 

chooses the best optimization method to match the particular 

nature of the problem, thus leading to improved exploration and 

exploitation of the search space. The benefits of this method are 

seen through the results, where the SOS algorithm not only 

outperforms conventional algorithms but is also characterized 

by enhanced stability and improved convergence rates while 

addressing challenging optimization problems. 
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4.4. Sensitivity analysis 

A sensitivity analysis was conducted to examine how variations 

in key parameters affect the performance of the system. The 

focus was on three critical factors: energy price fluctuations, 

renewable energy penetration, and battery storage capacity. 

Each parameter was adjusted by ±20 % while keeping the others 

constant, allowing for an isolated evaluation of its effects on 

total operational costs, energy utilization efficiency, and system 

reliability. When energy prices increased by 20%, total 

operational expenses rose 14.8 %, while energy utilization 

efficiency declined by 3.7%, indicating a greater financial 

burden and reduced reliance on external energy sources. 

Conversely, a 20% drop in energy prices caused a 13.2% cut in 

total costs, with a 4.2% improvement in energy utilization 

efficiency, meaning that reduced costs encourage greater 

consumption of energy from external sources. In terms of the 

integration of renewable energy, a 20% increase caused the total 

costs to decrease by 9.5%, while energy utilization efficiency 

improved by 6.8% as greater integration of renewable energy 

reduced the use of conventional sources. In contrast, decreasing 

the availability of renewable energy by 20% led to an increase 

in total cost by 11.3 %, along with energy utilization efficiency 

decreasing by 5.9 %, to emphasize the cost and operational 

effects of limited integration of renewable resources. A change 

in the capability for battery storage significantly influenced the 

system performance. A 20% increase in storage capacity came 

with an 8.2% corresponding cost reduction, combined with an 

equally enhanced 5.4% energy utilization efficiency, thus 

proving the benefits of advanced energy storage systems. A 20% 

cut in storage space, on the other hand, caused an increase by 

9.7% in cost, coupled with a resultant 6.3% drop in energy 

utilization efficiency, highlighting the paramount nature of 

storage for system flexibility as well as economic resilience. 

The analysis points towards the variability of energy pricing 

having the most significant effect on total cost, while utilization 

efficiency is significantly influenced by the proportion of 

renewable energy. Battery storage capacity has the vital 

responsibility to cut costs as well as increase system flexibility, 

meaning investments made into renewable energy projects as 

well as storage technologies, can have better economic results 

under different scenarios. 

5. Conclusion 

The proposed energy optimization framework effectively 

integrates renewable energy sources, EVs, and battery storage 

systems into local energy grids, addressing uncertainties in 

demand fluctuations, real-time pricing, and renewable energy 

generation. By using a flexible approach for charging and 

discharging EVs that considers market conditions, the model 

improves how the grid works, lowers operating costs, and 

increases financial gains. The results indicate a 14.3% reduction 

in average operating expenses, with a minimum cost of 1436 

yuan, while peak costs are reduced by 27.7% compared to 

uncontrolled strategies. The intelligent charging and 

discharging mechanism optimally schedule energy transactions, 

reducing grid stress and improving load balancing. The 

modified SOS algorithm performs much better at solving the 

multi-objective optimization problem, achieving 99.7% more 

accuracy than the GA and a 97.5% improvement over other 

common optimization methods in tests. The results confirm that 

the proposed approach significantly improves cost efficiency, 

enhances operational flexibility, and ensures sustainable energy 

management in smart grids. For future work, this research can 

be extended by incorporating more advanced forecasting 

techniques for renewable energy generation and electricity 

pricing, further improving the adaptability of the model. 

Additionally, the integration of vehicle-to-grid (V2G) 

technology and blockchain-based energy trading mechanisms 

could enhance transaction security and decentralized grid 

management. Exploring real-world implementation in large-

scale distributed energy networks will further validate the 

practical impact of the proposed approach.
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