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Highlights  Abstract  

▪ LESSECT enhances time-frequency resolution 

for non-stationary signals. 

▪ LESSECT excels in resolving closely spaced, 

non-proportional instantaneous frequencies. 

▪ LESSECT overcomes energy leakage and 

blurring issues in traditional TFA techniques. 

▪ LESSECT improves the reliability of fault 

detection in rotating machinery systems. 

 Under diverse conditions, the vibration signals of complex rotating 

machinery exhibit non-stationary behavior, multi-component 

characteristics, closely spaced frequencies, and non-proportionality, 

posing challenges to conventional time-frequency analysis (TFA) 

methods. These limitations hinder accurate instantaneous frequency (IF) 

estimation and time-frequency representation (TFR) construction, 

directly impacting machinery fault diagnosis. As such, we propose the 

Local Entropy Selection Scaling-Extracting Chirplet Transform 

(LESSECT), which optimizes entropy-based chirp rate (CR) selection to 

match non-proportional fundamental frequencies. By adaptively 

selecting multiple CRs at the same time center, LESSECT enhances TFR 

resolution and energy concentration, leading accurate IF identification. 

Experimental validation on bat echolocation, bearing fault, and planetary 

gearbox signals shows its superior performance in resolving non-

proportional, closely spaced IFs. This significantly improves state 

estimation and enhances machinery diagnostics, contributing to greater 

system reliability. 
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1. Introduction 

Vibration signals in complex rotating machinery under time-

varying operating conditions exhibit non-stationary, multi-

component, and non-proportional characteristics, posing 

significant challenges for signal processing and data analysis. 

The accuracy and precision of these analyses are crucial for 

assessing the health status and detecting faults in rotating 

machinery, directly impacting the system’s reliability and 

performance [1-3]. Reliable fault detection is essential to 

prevent catastrophic failures and ensure the continuous, 

efficient operation of machinery [4,5]. Therefore, the study of 

such signals has gained significant attention in the domain of 

reliability-centered fault detection and health monitoring [6-11]. 

In recent years, data-driven fault diagnosis methods, 

particularly those based on machine learning and deep learning, 

have emerged as powerful tools for identifying fault patterns 

and extracting meaningful features from vibration signals. 
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However, these approaches often encounter challenges such as 

data imbalance, limited generalization across different 

operating conditions, and the difficulty of capturing essential 

fault-related characteristics in raw signals. To mitigate these 

issues, researchers have explored generative models, such as 

Generative Adversarial Networks (GANs) and diffusion models, 

to augment fault datasets and improve the robustness of deep 

learning models [12]. Additionally, feature enhancement 

techniques, including attention mechanisms and domain 

adaptation strategies, have been introduced to improve the 

discriminative power of learned representations, thereby 

enhancing the performance of unsupervised fault diagnosis 

methods [13,14]. Despite these advancements, the effectiveness 

of data-driven methods heavily relies on the quality of input 

features, underscoring the importance of accurate time-

frequency representations (TFR) in fault diagnosis. 

Time-frequency analysis (TFA) methods are essential for 

processing raw vibration signals. They transform non-stationary 

signals into meaningful TFRs, providing crucial features for 

machine learning-based fault diagnosis. By providing detailed 

representations of signal characteristics in both time and 

frequency domains, TFA enhances feature extraction and 

contributes to the overall accuracy of data-driven approaches. 

Consequently, TFA techniques have become indispensable tools 

for analyzing non-stationary, time-dependent signals, 

particularly in reliable machinery monitoring systems [15,16]. 

The essence of TFA lies in refining spectral precision and 

improving the interpretability of TFRs, which are directly 

related to the reliability of fault diagnosis. Existing TFA 

methods can be broadly classified into two categories: one 

focuses on adjusting the basis functions to better match the 

frequency variations of the signal, while the other aims to 

improve the readability of the TFR, which in turn enhances 

the reliability of fault detection in complex systems. 

The classical methods of the first category of TFA include 

Short-Time Fourier Transform (STFT) [17], Continuous 

Wavelet Transform (CWT) [18], and Wigner-Ville Distribution 

(WVD) [19]. To varying extents, these approaches are 

constrained by the Heisenberg uncertainty principle and 

affected by cross-term interference, which hinders the 

acquisition of a clear TFR. These limitations can undermine the 

reliability of system condition monitoring. Inspired by STFT, 

researchers modulate the orthogonal basis using modulation 

terms, allowing the basis to rotate and aligning the frequency-

modulated basis with the tangents of the signal's instantaneous 

frequency (IF) ridge. Based on this concept, the Chirplet 

Transform (CT) [20] was proposed. This approach is well-suited 

for handling signals that exhibit linear frequency modulation 

characteristics but cannot handle nonlinear IF issues or multi-

component signals. However, these limitations undermine the 

reliability of machinery fault diagnosis in complex real-world 

environments. To accommodate the multi-component IF 

conditions in practical operating conditions, researchers have 

proposed numerous improvements, including General Linear 

Chirplet Transform (GLCT) [21], Velocity-Synchronized 

Linear Chirplet Transform (VSLCT) [22], Scaled Basis Chirplet 

Transform (SBCT) [23], self-tuning CT (STCT) [24], Slope-

Synchronized Chirplet Transform (SSCT) [25], and 

Proportional Extraction Chirplet Transform (PECT) [26], 

among others. While these methods improve TF resolution and 

energy concentration to varying extents and can identify multi-

component IF issues, they are typically based on the assumption 

that all frequency components are synchronous or proportional. 

Therefore, they still have significant limitations when analyzing 

non-proportional IF components composed of different 

fundamental frequencies. For example, both SBCT and CMCT 

attempt to match nonlinear IF trajectories by introducing 

polynomial and frequency-dependent kernel functions to 

enhance TF energy concentration. However, these methods 

assume that the IF of signal components are proportional to each 

other. Consequently, for multi-component signals containing 

multiple fundamental frequencies, the kernel functions of these 

two approaches fail to align with all components simultaneously, 

resulting in TF energy dispersion and blurring artifacts. 

The second category of TFA techniques emphasizes 

enhancing the clarity and interpretability of TFRs, such as the 

reassignment (RM) [27] method proposed by Auger et al., 

Generalized reassigning transform [28] method and the 

Synchronized Synchrosqueezed Transform (SST) [29], the 

Synchronized Extraction Transform (SET) [30], the 

Reassignment and Synchrosqueezing [31], and their various 

improvements. These methods generally focus on energy 

redistribution to concentrate the TF energy of the main signal, 

thereby improving the readability of the TFR and enhancing the 
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reliability of machinery fault diagnosis. Additionally, they 

utilize ridge extraction and optimization to accurately estimate 

the IF by tracking the TF ridges of the signal. Undoubtedly, TF 

post-processing techniques partially compensate for the 

limitations of the original TFR. Nonetheless, their effectiveness 

is significantly influenced by the quality of the initial TFR and 

the appropriateness of the parameter configurations. Therefore, 

if the original TFA fails to accurately analyze the IF trajectories 

of non-proportional components, the post-processing methods 

will not be able to extract the correct IF trajectories either. 

Both of the above-mentioned categories of TFA methods are 

unable to address the issue of closely spaced and non-

proportional IF. To address this problem, the following 

conditions must be met: 1) the ability to process multi-

component signals with closely spaced instantaneous 

frequencies; 2) the ability to match different fundamental 

frequency variations at the same time center. Some researchers 

have already explored solutions to the non-proportional IF 

problem. He et al. proposed the Entropy Matching Chirplet 

Transform (EMCT) [32], which is based on the basis functions 

of the GLCT. This method filters the region entropy values to 

obtain a TFR. EMCT can describe the vibration signals of 

multiple components that are not proportional to each other. For 

rotating mechanical equipment under complex working 

conditions, it is easy to have a small frequency interval between 

the IF ridges. At this time, EMCT cannot handle it well. Wu et 

al. proposed the General Chirplet Basis Transform (GCBT) [33], 

which, using the principle of local maxima search at the same 

time center, identifies multiple chirplet basis function 

parameters and selects those that match the fundamental 

frequencies. This approach is capable of handling non-

stationary signals that contain multiple non-proportional 

fundamental frequencies along with their harmonics. However, 

selecting multiple local maxima at the same time center can 

easily result in overlapping components between the signal 

components, which may, to some extent, affect the readability 

of the TFR. 

In summary, to handle non-stationary signals with multiple 

closely spaced non-proportional fundamental frequencies, this 

paper develops a novel TFA tool, the Local Entropy Selection 

Scaling-extracting Chirplet Transform (LESSECT). The main 

contributions are as follows: First, by analyzing the limitations 

of SBCT, utilizing Chirp Rate (CR) to form an alternative sub-

TFR, and applying entropy optimization, multiple CRs are 

selected at the same time center to match each non-proportional 

fundamental frequency. The IF ridges are then re-extracted 

based on the generated TFR. Compared with other TFA methods, 

the TFR produced by LESSECT shows more focused TF energy 

and improves both TF resolution and system reliability. 

Furthermore, LESSECT effectively addresses the challenges 

associated with closely spaced and non-proportional IFs, 

facilitating the analysis of signals containing multiple complex 

frequency components. This precision in state estimation 

directly enhances the accuracy of fault detection, thereby 

playing a key role in improving the overall reliability and 

performance of the system. 

The organization of this paper is outlined as follows: Section 

2 discusses the principles and constraints of SBCT, while 

Section 3 describes the proposed method. In Section 4, the 

advantages and performance of the proposed method are 

validated through a series of simulated signals. Section 5 

provides verification of the proposed method using three sets of 

non-proportional experimental signals. Finally, Section 6 

summarizes the conclusions of this paper. 

2. Theoretical Basis and Research Motivation 

2.1. SBCT and Its Limitations 

Due to the limitations of CT in analyzing non-stationary, multi-

component, and nonlinear signals, Li et al. proposed the SBCT 

method as an enhancement of CT, which introduces 

multidimensional parameters and dynamic adjustment 

mechanisms, enabling the basis functions to dynamically align 

with the IF trajectories of various signal components. 

Simultaneously, the improved kernel phase function in SBCT 

can dynamically adjust the CR based on the signal's time and 

frequency centers, thus overcoming the limitations of CT and 

enhancing the accuracy and flexibility of TFA. The key 

improvements of SBCT are summarized as follows. 

To enhance the adaptability of the TF basis, SBCT 

introduces the time center offset Δu, allowing dynamic 

adjustment of the window function. By analyzing the rotation 

angle of the TF basis over the interval tc + Δu, SBCT aligns the 

basis function more effectively with the IF trajectory, thereby 

improving TF resolution. 
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−𝑡𝑎𝑛(𝜃) = ∑ 𝑘 ⋅ 𝑓𝑜𝑘𝑎𝑘 ⋅ (𝑘 + 1)(𝑢 − 𝑡𝑜 − Δ𝑢)
𝑘−1𝑚

𝑘=1        (1) 

In Equation (1), k=1, 2, …, K represents different frequency 

components, and fo and to represent the time center and 

frequency centers, respectively. Where θ denotes the rotation 

angle of the TF basis at the time center to, which varies with the 

frequency center fo. In other words, the CR is not constant like 

in CT. Instead, the angle of rotation for the TF basis varies as  

a function of Δu. When Δu shifts from -L/2 to L/2, the angle of 

rotation for the TF basis matches with the slope of the IF 

trajectory within the window. Furthermore, by appropriately 

selecting the values of a1, a2, …, am, the CR can closely mimic 

the slope of the IF trajectory, thereby achieving a better match 

with the characteristics of the signal. 

SBCT is particularly effective when dealing with signals 

whose IF exhibits a proportional or synchronized relationship, 

ensuring the accuracy of parameter estimation. It is important to 

note that the specific values of parameters a1, a2, …, am can only 

be determined when the IFs of the target signal are proportional 

to each other: 

𝜑𝑠
″(𝑓𝑜𝑣1,𝑢,𝑡𝑜)

𝜑𝑠
″(𝑓𝑜𝑣2,𝑢,𝑡𝑜)

=
𝑓𝑜𝑣1∑ 𝑘⋅𝑎𝑘⋅(𝑘+1)(𝑢−𝑡𝑜)

𝑘−1𝑚
𝑘=1

𝑓𝑜𝑣2∑ 𝑘⋅𝑎𝑘⋅(𝑘+1)(𝑢−𝑡𝑜)
𝑘−1𝑚

𝑘=1
         (2) 

where fov1 and fov2 denote the central frequencies of two IFs of 

the target signal at the time center to, providing a basis for 

determining the values of a1, a2, …, am. 

However, this assumption confines SBCT to signals where 

all frequency components exhibit a proportional or 

synchronized relationship, limiting its applicability in many 

real-world scenarios. For example, in industrial equipment, 

different driving components, such as pumps, compressors, or 

gearboxes, may operate at different rotational speeds, leading to 

non-proportional frequency components. Such non-

proportional signals can be represented as: 

𝑧(𝑡) = ∑ 𝑧𝑘(𝑡)
𝑁
𝑘=1 =

∑ ∑ 𝐴𝑘𝑖(𝑡) 𝑒𝑥𝑝(−𝑗2𝜋 ∫ 𝑣𝑘𝑖𝑓𝑘(𝑡)𝑑𝑡)
𝑝𝑘
𝑘=1

𝑁
𝑘=1 + 𝜎(𝑡)            (3) 

where the signal z(t) consists of multiple fundamental frequency 

families zk(t), each containing its harmonics. The harmonic 

frequencies are determined by the nonstationary fundamental 

frequency fk(t) and the multipliers vki corresponding to each 

harmonic. N denotes the total count of fundamental frequency 

families, and pk represents the number of harmonic components 

within the k-th family. Aki(t) is the instantaneous amplitude (IA) 

of the i-th harmonic in the k-th family, varying over time. The 

phase of each harmonic is given by exp(-j2π∫vkifk(t)dt), where vki 

scales the harmonic frequency relative to fk(t) and ∫vkifk(t)dt 

represents the accumulated phase. The noise term σ(t) accounts 

for the random component with an amplitude σ. Finally, Zk(t) 

denotes the contribution of the k-th family and its harmonics to 

the overall signal Zk(t). 

From a signal with non-proportional frequency components, 

selecting any two fundamental frequency components f1 and f2, 

and denoting their time derivatives as f1' and f2', the subsequent 

relationship can be derived: 

𝑓𝑖

𝑓𝑖
′ ≠

𝑓𝑗

𝑓𝑗
′ , 𝑖, 𝑗 ∈ [1, 𝑁], 𝑎𝑛𝑑 i ≠ 𝑗         (4) 

From Eq. (2) and Eq. (4), it can be concluded that the SBCT 

method has significant limitations in handling non-proportional 

signals. Its core assumption relies on all frequency components 

in the signal having a clear proportional relationship and 

synchronization. However, in non-proportional signals, the IF 

trajectories of the fundamental components vary independently, 

which violates the theoretical assumptions of SBCT. This 

results in failure in parameter estimation and decrease in the 

matching accuracy of the basis functions. Consequently, SBCT 

cannot effectively process non-proportional signals, requiring 

more advanced methods to address these issues. 

To further illustrate the impact of non-proportional 

components on SBCT’s performance, we designed controlled 

numerical experiments to compare its effectiveness on both 

proportional and non-proportional signals. 

First, we construct a set of proportionally simulated signals, 

as follows: 

𝑥𝑝𝑟𝑜𝑝(𝑡) = ∑ 𝑠𝑖𝑛 (2𝜋 ∫ 𝑣𝑖(𝑢)𝑑𝑢
𝑡

0
)6

𝑖=1          (5) 

where vi(u) represents the base frequency for each component 𝑖. 

The term ∫vi(u)du represents the cumulative integral of each 

base frequency signal vi(u) over time from 0 to t, reflecting the 

time evolution of the base frequency. The factor 2𝜋 scales the 

result before applying the sine function. The summation of these 

sinusoidal functions, each corresponding to a different base 

frequency, results in the simulated signal 𝑥prop(t). 

𝑣1(𝑢) =
1

5000
⋅ (𝑢 − 30)2 + 0.5         (6) 

where V2(u), V3(u), V4(u), V5(u), and V6(u) are 0.25, 2.5, 4, 5.2, 

and 7.1 times the value  of V1(u), respectively. The waveform 
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and IFs are illustrated in Figures 1(a) and 1(b), Using a similar 

approach, generate a series of non-proportional synthesized 

waveforms: 

𝑥𝑛𝑜𝑛−𝑝𝑟𝑜𝑝(𝑡) = ∑ 𝑎𝑗 ⋅ 𝑠𝑖𝑛 (2𝜋 ∫ 𝑣𝑗(𝑢)𝑑𝑢
𝑡

0
+ 𝜑𝑗)

6
𝑗=1         (7) 

where vj(u) represents the time-dependent frequency for the j-th 

component, governing the oscillation and time variation of the 

j-th signal's frequency: 

{
 
 
 

 
 
 𝑣1(𝑢) =

1

300
⋅ (𝑢 − 30)2 + 5

𝑣2(𝑢) = 0.8 ⋅ 𝑣1(𝑢) + 0.3

𝑣3(𝑢) = 1.5 ⋅ 𝑣1(𝑢) + 0.2

𝑣4(𝑢) = −
1

500
⋅ (𝑢 − 25)2 + 3

𝑣5(𝑢) = 2.1 ⋅ 𝑣4(𝑢) + 0.4

𝑣6(𝑢) = 1.1𝑣4(𝑢) + 0.5

         (8) 

Amplitude a1, a2, a3, a4, a5, and a6 are 2.0, 0.8, 1.2, 2, 1.1, 

and 3; phase φ1, φ2, φ3, φ4, φ5 and φ6, are 0, π/6, π/4, 2π/3, π/2, 

and π/3, respectively. the waveform and IFs are depicted in 

Figures 1(c) and1(d), respectively, with a sampling frequency 

of 20 Hz. 

 

Figure 1. proportional multi-component signal xprop(t): (a) waveform, (b) IFs; non-proportional multi-component signal xnon-

prop(t): (c) waveform, (d) Ifs. 

 

Figure 2. SBCT: (a) TFRs of proportional signal and (b) TFRs of non-proportional signal. 

The TFRs obtained by using SBCT to analyse both 

proportional and non-proportional signals are shown in Figures 

2(a) and 2 (b). The TFR corresponding to the proportional signal 

exhibits concentrated energy and clear trajectories, while the 

TFR derived from the non-proportional signal shows  

a dispersed energy distribution and blurred trajectory 

boundaries, making it difficult to accurately distinguish 

different components. This demonstrates that SBCT is not 

suitable for handling non-proportional signals. 
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2.2. Motivation 

Therefore, based on the previous analysis, it is crucial to 

develop an innovative TFA approach that addresses the 

challenges posed by signals with non-proportional frequency 

components. To tackle this issue, the proposed method focuses 

on handling the complex frequency variations and overlapping 

component trajectories of non-proportional signals. It integrates 

dynamic filtering with local optimization to isolate key 

frequency components, based on the signal's local 

characteristics. Additionally, the analysis window is 

dynamically adjusted according to energy distribution 

properties to optimize the matching of IF trajectories. To further 

improve accuracy, a multi-level block-by-block analysis and 

global integration technique is employed. This strategy 

effectively mitigates issues related to frequency overlap and 

energy dispersion in complex signals, resulting in significant 

improvements in energy concentration and the clarity of the 

TFR. 

2.3. CR Matching for Non-Proportional Signals 

This section presents the core concept of our proposed method, 

which involves optimizing multiple CRs at the same time center 

using Rényi entropy to match different frequency components. 

The proper selection of CRs is crucial for constructing an 

adaptive window function, as it directly affects the energy 

concentration and resolution of the TFR. To ensure that the 

selected CRs accurately capture the modulation characteristics 

of the signal, we employ a discretized CR estimation strategy. 

Specifically, a set of predefined discrete CRs is used to 

approximate the instantaneous modulation parameters of the 

signal, and the optimal CR is chosen to enhance energy 

concentration in the TFR. The mathematical formulation for 

determining the discrete CRs is presented is as follows. 

𝐶 = 𝑡𝑎𝑛( 𝜃) ⋅
𝐹𝑆

2𝑇𝑆
           (9) 

In this equation, C represents the discrete chirp rate, while θ 

is the rotation angle parameter that determines the orientation 

and rate of rotation of the TF basis function. The term Ts denotes 

the sampling period, where Fs is the sampling frequency, which 

dictates the time resolution in the discrete domain. The function 

tan(θ) controls the tilt of the TF basis function, influencing the 

adaptability of the transformation to the signal’s varying 

frequency components. 

𝜃 = −
𝜋

2
+

𝜋

𝑁𝑐+1
, −

𝜋

2
+

2𝜋

𝑁𝑐+1
,  … ,   −

𝜋

2
+

𝑁𝑐𝜋

𝑁𝑐+1
     (10) 

Equation (10) defines the discrete set of rotation angles used 

to determine the corresponding CRs. Here, θ represents the set 

of discrete angle values associated with different predefined 

chirp rates. The parameter Nc controls the total number of 

discrete chirp rate levels, ensuring adequate coverage of 

possible modulation variations in the signal. While the term 

−2π/(Nc+1) represents the discretization step size of the angle, 

ensuring an even distribution of the CR candidates.  

By using this predefined set of discrete angles, the method 

can effectively approximate the optimal chirp rate for different 

signal components, enhancing the accuracy of TFR. 

In this context, the optimal CR for the windowed signal is 

determined by minimizing the Rényi entropy. This ensures that 

the selected CR aligns precisely with the IF of the windowed 

signal, thereby enhancing energy concentration in the time-

frequency domain (TFD). The underlying principle can be 

rigorously derived, as demonstrated in the following equation. 

𝐻𝛼 =
1

1−𝛼
𝑙𝑜𝑔2 (∫ ∫ (

�̑�(𝑡,𝜇)

∫ ∫ �̑�(𝑡,𝜇)𝑑𝑡𝑑𝜇
+∞
−∞

+∞
−∞

)
𝛼

𝑑𝑡𝑑𝜇
+∞

−∞

+∞

−∞
)      

(11) 

Here, Hα represents the entropy of the TFR. Here, Hα represents 

the entropy of the TFR, where α is typically set to 3. It is 

minimized when the CR matches the IF of the signal, leading to 

better energy concentration in the TFR. The entropy expression 

generalizes the energy distribution across time and frequency. 

The integral over S(t, μ), the signal's TFR, represents the energy 

spread across frequency bands. Lower entropy indicates energy 

concentration in specific regions, which occurs when the CR 

aligns with the signal's frequency components. 

𝐻(𝑐)

=
1

1 − 𝛼
𝑙𝑜𝑔2 (∫ ∫ (

𝑒−�̑�
2(𝜇−𝜙′(𝑡))2

∫ ∫ 𝑒−�̑�
2(𝜇−𝜙′(𝑡))2𝑑𝑡𝑑𝜇

+∞

−∞

+∞

−∞

)

𝛼

𝑑𝑡𝑑𝜇
+∞

−∞

+∞

−∞

) 

=
1

1 − 𝛼
𝑙𝑜𝑔2 (∫ ∫ (

𝑒−(�̑�𝜇−�̑�𝜙
′(𝑡))2

∫ ∫ 𝑒−(�̑�𝜇−�̑�𝜙
′(𝑡))2𝑑𝑡𝑑𝜇

+∞

−∞

+∞

−∞

)

𝛼

𝑑𝑡𝑑𝜇
+∞

−∞

+∞

−∞

) 

= 𝐻(𝑐)|𝜎=1  − 𝑙𝑜𝑔2( �̑�)   (12) 

From Equation (12), we observe that Hα decreases as the CR 

increases. The optimal CR corresponds to the point where it 

aligns perfectly with the IF, minimizing entropy and ensuring  
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a concentrated TFR. 

By minimizing Hα, we select the CR that best matches the 

signal's modulation, resulting in optimal energy concentration 

in the TFR and an accurate representation of the TF structure. 

This confirms that the optimal CR minimizes the Rényi entropy 

and aligns with the signal's IF. 

Due to the significant modulation differences in both time 

and frequency domains in multi-component signals, it is 

essential to design a method that can effectively adapt to these 

differences. The key challenge lies in dynamically adjusting the 

CR according to the varying frequency components of the signal 

to achieve adaptive TFA. By observing the signal's 

characteristics in small time and frequency intervals, we find 

that the signal can be approximated as a linear frequency 

modulation signal in certain local regions, providing an 

effective approximation for TFA. 

Based on this observation, this study proposes a method of 

partitioning the entire TF plane into several TF blocks. By 

calculating the Rényi entropy for each TF block separately, we 

can quantify the energy distribution of the signal in each local 

region and optimize the analysis results. Specifically, a sliding 

window approach is used to partition the TFR S(t, μ) along the 

time and frequency axes, ensuring full coverage of the entire TF 

plane. The signal characteristics within each window influence 

the final TFR, helping to optimize the overall signal analysis. 

The partitioning of the TF plane and the Rényi entropy 

calculation process can be mathematically described by 

equations (13) and (14). This approach not only improves the 

accuracy of TFA but also better captures the changes and 

modulation characteristics of the frequency components in the 

signal, ultimately optimizing the overall signal processing 

performance. 

𝑅(𝑐, 𝑡, 𝜇) =

1

1−𝛼
𝑙𝑜𝑔2 (∫ ∫

|𝑆(𝑐,𝜁,𝛾)𝑀(𝜁−𝑡,𝛾−𝜇)|

∫ ∫ |𝑆(𝑐,𝜁,𝛾)|𝑀(𝜁−𝑡,𝛾−𝜇)𝑑𝜁𝑑𝛾
+∞
−∞

+∞
−∞

+∞

−∞

+∞

−∞
) 𝑑𝜁𝑑𝛾       

(13) 

In Equation (13), R(c,t,μ) represents the Rényi entropy of the 

TFR of a signal at a specific CR c, time t, and frequency μ. Here, 

α is the Rényi entropy order, determining the degree of 

concentration in the entropy calculation. The term S(c,ζ,γ) 

represents the TFR of the signal at chirp rate c and frequency 

variables ζ and γ, while M(ζ−t, γ−μ) is the windowing function 

used to partition the TFR.  

𝑀(𝑡, 𝜇) = {
1,   −

Δ𝑡

2
< 𝑡 <

Δ𝑡

2
,   −

Δ𝜇

2
< 𝑡 <

Δ𝜇

2

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
     (14) 

In Equation (14), M(t,μ) is a binary window function that 

defines the TF region over which the entropy calculation is 

applied. It has a value of 1 within the window defined by the 

time and frequency intervals Δt and Δμ, respectively, and 0 

outside this region. Δt and Δμ represent the time and frequency 

sizes of the TF block, respectively.  

To better capture the TF characteristics of the signal, we 

introduce a new variable Nc and map the signal from the time 

domain to a three-dimensional TF space S(c,t,μ) with 

dimensions Nc×L×L/2. In this process, different CRs applied to 

SBCT yield a set of distinct TFRs. To improve the accuracy of 

the TFRs, we divide the signal's TFD into several TF blocks, 

specifically Mt×Mμ blocks. The Rényi entropy of each block is 

used to quantify the distribution of energy within that block. 

By applying Equation (13), we can calculate the Rényi 

entropy for each TF block, resulting in a new three-dimensional 

TF space S(c,t,μ), where the dimensionality is reduced from the 

original high-dimensional space to Nc×Mt×Mμ. The Rényi 

entropy value of each block reflects the degree of energy 

concentration in both the time and frequency directions. The 

block with the lowest entropy is selected as the ideal TF block, 

indicating that its CR has achieved the best match with its 

corresponding TF characteristics. This can be expressed as: 

�̑�(𝑡, 𝜇) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

{𝑅(𝑐, 𝑡, 𝜇)}       (15) 

Through the above approach, we combine these selected 

blocks to construct a two-dimensional TFR with dimensions 

L×L/2, exhibiting higher energy concentration and significantly 

enhancing the overall clarity of the TFR. 

By utilizing the two-dimensional Rényi entropy-based 

calculation method, we effectively enhance the TF resolution of 

the TFR, enabling it to more accurately reflect the TF 

characteristics of the signal. This method improves the quality 

of the TFR by optimizing the selection of CRs and energy 

distribution. The resulting enhanced TFR better aligns with the 

signal’s frequency modulation characteristics, further 

improving the signal's interpretability. The TFR of the SBCT 

selected through entropy can be defined as the entropy- SBCT 

(ESBCT). 
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3. Local Entropy Selection Scaling-extracting Chirplet 

Transform 

This section focuses on improving the TF resolution of 

LESSECT to achieve a more refined TFR. To lay the 

groundwork for this enhancement, we first provide a brief 

overview of the original SET method. The core logic of SET is 

based on STFT, where only the energy related to the IF 

trajectory of the signal is retained, while the blurred parts of the 

distribution are discarded. This results in a TFR with enhanced 

energy focus. The TFR of a non-stationary signal obtained 

through STFT is given by: 

{
𝐹(𝑡, 𝜇) = ∫ 𝑔(𝜑 − 𝑡) ⋅ 𝑠(𝜑) ⋅ 𝑒−𝑗𝑤(𝜑−𝑡)𝑑𝜑

∞

−∞

𝑠(𝑡) = 𝐴(𝑡) ⋅ 𝑒
𝑗𝜃(𝑡)

      (16) 

where g(φ-t) is the window function, and s(t) denotes the non-

stationary signal, A(t) corresponding to the IA and θ(t) 

corresponding to the Instantaneous phase (IP), respectively. 

With parseval’s theorem, an additional phase shift ejξt as: 

𝐹(𝑡, 𝜇) = (1/2𝜋) ∫ �̑�(𝜇 − 𝜑) ⋅ �̑�(
∞

−∞
𝜑) ⋅ 𝑒𝑗𝜉𝑡𝑑𝜑     (17) 

we employ the model of a purely harmonic signal，the STFT 

given in Eq. (19) can be elaborated as: 

𝐹(𝑡, 𝜇) = 𝐴 ⋅ �̑�(𝜇 − 𝜇0) ⋅ 𝑒
𝑗𝜔0𝑡       (18) 

where A denotes the fixed amplitude and μ0 represents constant 

frequency. 

The SET can only capture the TF points along the IF 

trajectory μ0(t,μ)，The IF is calculated by taking the time 

derivative of F(t, μ). 

∂𝐹(𝑡,𝜇)

∂𝑡
= ∫𝑠(𝜑) ⋅

𝑔(𝜑−𝑡)

∂𝜑
⋅ 𝑒−𝑗𝜇𝜑𝑑𝜑 = 𝐹(𝑡, 𝜇) ⋅ 𝑖𝜇0     (19) 

With Eq. (22), the IF trajectory μ0(t, μ) is structured as: 

𝜔0(𝑡, 𝜇) = −𝑖 ⋅ [
∂𝐹(𝑡,𝜇)

∂𝑡

𝐹(𝑡,𝜇)
]       (20) 

From Eq. (23). if F(t, μ) is not zero, the IF associated with 

the STFT coefficients must always correspond to μ0(t, μ). The 

Dirac expression of the SEO is given below: 

𝛿(𝜇 − 𝜇0(𝑡, 𝜇)) = {
1, 𝜇 = 𝜇0(𝑡, 𝜇)
0, 𝜇 ≠ 𝜇0(𝑡, 𝜇)

       (21) 

To avoid errors in the estimation of IFs and attain more 

precise computation of the temporal derivative of the STFT 

∂tF(t, μ) the following formula is provided: 

∂𝐹(𝑡,𝜇)

∂𝑡
= 𝑗𝜇 ⋅ 𝐹(𝑡, 𝜇) − 𝐹(𝑔)(𝑡, 𝜇)        (22) 

where F(g)(t,μ) represents the derivative of the window function. 

By utilizing Eq. (23) and Eq. (25), a more precise estimation of 

the IF can be derived as: 

𝜇0(𝑡, 𝜇) = 𝜇 + 𝑖 ⋅
𝐹(𝑔)

′
(𝑡,𝜇)

𝐹(𝑡,𝜇)
        (23) 

where (g)' represents the derivative of the window function. By 

substituting Eq. (26) into Eq. (24), the SEO is revised as: 

𝛿(𝜇 − 𝜇0(𝑡, 𝜇)) = {
1,−𝑖 ⋅ (

𝐹(𝑔)
′
(𝑡,𝜇)

𝐹(𝑡,𝜇)
) = 0

0,−𝑖 ⋅ (
𝐹(𝑔)

′
(𝑡,𝜇)

𝐹(𝑡,𝜇)
) ≠ 0

       (24) 

employs the real component of the SEO, represented as: 

𝛿(𝜇 − 𝜇0(𝑡, 𝜇)) = {
1, |𝑅𝑒 (𝑖 ⋅

𝐹(𝑔)
′
(𝑡,𝜇)

𝐹(𝑡,𝜇)
)| < 𝛿

0, |𝑅𝑒 (𝑖 ⋅
𝐹(𝑔)

′
(𝑡,𝜇)

𝐹(𝑡,𝜇)
)| ≥ 𝛿

     (25) 

Delta represents the discrete frequency interval, which needs 

to be appropriately selected. An excessively small delta may 

result in the loss of some time-varying TF points. After dynamic 

adjustment, the SET is defined as: 

𝐹(𝑡, 𝜇) = 𝐹(𝑡, 𝜇) ⋅ 𝛿(𝜇 − 𝜇0)      (26) 

3.1. The Proposed LESSECT method 

As known from Section 2.1, the final TFR of the SBCT is: 

𝑆𝐵𝐶𝑇𝑠(𝑡, 𝜇) = ∫ 𝑠(𝜑)𝜇𝜎(𝜑 − 𝑡𝑜)𝑒
−𝑗𝜇(𝜑−𝑡)𝑑𝜑

+∞

−∞
     (27) 

As previously discussed in Section 2.3, the introduction of 

the two-dimensional Rényi entropy-based calculation 

effectively enhances the TF resolution by optimizing the 

selection of CRs and refining energy distribution. Building on 

this foundation, ESBCT is formulated to achieve better energy 

concentration in the TFR. Based on this, we further develop the 

LESSECT method. 

Referring to Eq. (21), Eq. (33) is further expressed as: 

𝐸𝑆𝐵𝐶𝑇𝑠(𝑡, 𝜇) = 𝐴 ⋅ �̑�(𝜇 − �̑�0) ⋅ 𝑒
𝑗�̑�0𝑡      (28) 

Further integrates into the form of Eq. (22). 

∂𝐹(𝑡,𝜇)

∂𝑡
= 𝐸𝑆𝐵𝐶𝑇𝑠(𝑡, 𝜇) ⋅ 𝑖�̑�0 = 𝐴 ⋅ �̑�(𝜇 − �̑�0) ⋅ 𝑒

𝑗�̑�0𝑡 ⋅ 𝑖�̑�0  (29) 

Update the IF trajectory μ0(t,μ) of Eq. (23) using Eq. (34). 

�̑�0(𝑡, 𝜇) = −𝑖 ⋅ (
𝛿𝐹(𝑡,𝜇)

𝛿𝑡

𝐹(𝑡,𝜇)
) = −𝑖 ⋅ (

𝛿𝐸𝑆𝐵𝐶𝑇𝑠(𝑡,𝜇)

𝛿𝑡

𝐸𝑆𝐵𝐶𝑇𝑠(𝑡,𝜇)
)     (30) 

Subsequently, the updated SEOSBCT can be obtained based on 

the original SEO. 
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𝛿𝑠(𝜇 − �̑�0(𝑡, 𝜇)) = {
1, 𝜇 = �̑�0(𝑡, 𝜇)
0, 𝜇 ≠ �̑�0(𝑡, 𝜇)

      (31) 

Referring to Eq. (26), a more accurate IF estimation is 

expressed as: 

�̑�1(𝑡, 𝜇) = 𝜇 + 𝑖 ⋅ (
𝛿𝐸𝑆𝐵𝐶𝑇(𝑔)

′
𝑠(𝑡,𝜇)

𝛿𝑡

𝐸𝑆𝐵𝐶𝑇𝑠(𝑡,𝜇)
)            (32) 

Similarly, the SEOSBCT in Eq. (34) can be updated as: 

𝛿𝑠(𝜇 − �̑�1(𝑡, 𝜇)) =

{
 
 

 
 
1,−𝑖 ⋅ (

𝛿𝐸𝑆𝐵𝐶𝑇(𝑔)
′
𝑠(𝑡,𝜇)

𝛿𝑡

𝐸𝑆𝐵𝐶𝑇𝑠(𝑡,𝜇)
) = 0

0,−𝑖 ⋅ (
𝛿𝐸𝑆𝐵𝐶𝑇(𝑔)

′
𝑠(𝑡,𝜇)

𝛿𝑡

𝐸𝑆𝐵𝐶𝑇𝑠(𝑡,𝜇)
) ≠ 0

         (33) 

The final algorithm implementation relies on the real 

component of the SEOSBCT, represented as: 

𝛿𝑠(𝜇 − �̑�1(𝑡, 𝜇)) =

{
 
 

 
 
1, |𝑅𝑒 𝑖 ⋅ (

𝛿𝐸𝑆𝐵𝐶𝑇(𝑔)
′
𝑠(𝑡,𝜇)

𝛿𝑡

𝐸𝑆𝐵𝐶𝑇𝑠(𝑡,𝜇)
)| < 𝛿

0, |𝑅𝑒 𝑖 ⋅ (
𝛿𝐸𝑆𝐵𝐶𝑇(𝑔)

′
𝑠(𝑡,𝜇)

𝛿𝑡

𝐸𝑆𝐵𝐶𝑇𝑠(𝑡,𝜇)
)| ≥ 𝛿

   (34) 

δ represents the discrete frequency interval used in the 

LESSECT method. It controls the resolution of the frequency 

analysis. A smaller delta can result in a higher frequency 

resolution, helping to capture more detailed features of the TFR. 

This can lead to a clearer, sharper result, especially when 

analyzing rapidly changing signals. However, choosing an 

excessively small delta can cause a loss of some time-varying 

TF points, particularly for signals with wide-band or rapidly 

changing characteristics. This is because smaller intervals may 

fail to capture the necessary information for certain parts of the 

signal. 

Therefore, it's important to strike a balance between  

a sufficiently small delta for enhanced resolution and a larger 

delta that preserves the time-varying nature of the signal. In 

practice, a delta value of 0.5 is often recommended, as it offers 

a good trade-off between frequency resolution and maintaining 

the integrity of the TF points. The SET method is then defined 

based on this chosen delta, dynamically adjusting the TF points 

while avoiding the loss of crucial signal features. 

Finally, according to Eq. (40), the proposed LESSECT can 

be formulated as: 

𝐿𝐸𝑆𝑆𝐸𝐶𝑇(𝑡, 𝜇) = 𝐸𝑆𝐵𝐶𝑇(𝑡, 𝜇) ⋅ 𝛿𝑠(𝜇 − �̑�1(𝑡, 𝜇))     (35) 

The structure and details of the LESSECT algorithm 

introduced in this study are summarized within Table 1. 

Table 1. LESSECT algorithm. 

TFA method: LESSECT 

Step 1: Initial parameter assignment 

（1） Input signal x(t), window size L, sampling rate Fs, and 

the number of gaussian window K, Number of divisions for 

rows and columns in localized entropy optimization. Nnd, Nnc, 

the parameters ε and delta. 

（2） sub-TFR←zeros(NF, Nk). 

（3） We obtain a series of discretized angles using the 

following formula: 

𝜃𝑚 = −
𝜋

2
+

𝑚𝜋

𝑀 + 1
,𝑚 ∈ {1,2, . . . , 𝑀} 

Step 2: Calculate the sub-TFR 

for i=1:NF 

for j=1:NF 

sub-TFR(:,:,i,j)←SBCT(t, ω).  

sub-TFRg(:,:,i,j)←SBCTg‘(t, ω). 

end for 

end for 

Step3: Localized Entropy Selection 

（4） Introduce Rényi entropy and partition the sub-TFR 

blocks. 

for c = 1:N 

ESBCT(:, :) ← min(renyi(sub-TFR (:,:,c))) 

ESBCT (g)’(:, :) ← min(renyi(sub-TFRg(:,:,c))) 

end for 

Step 4: Synchroextracting 

（5） Calculate:E←mean(abs(s(t))). 

for i=1:Nk 

for j=1:Nk 

if abs(ESBCT(i,j))≥ε·E 

if abs(𝑹𝒆(𝒊 ⋅
𝑬𝑺𝑩𝑪𝑻(𝒈)

′
(𝒊,𝒋)

𝑬𝑺𝑩𝑪𝑻(𝒊,𝒋)
))<delta 

δs(i,j)=1 

end if 

end if 

end for 

end for 

（6） LESSET(i,j)←ESBCT(i, j)δs(i, j). 

（7） Output: LESSET(t, ω) 

4. Numerical simulations 

This section presents a simulation study to validate the 

effectiveness of LESSECT in analyzing non-proportional 

signals. The performance of LESSECT is assessed in 

comparison with other TFA techniques, with a primary 

emphasis on energy concentration, TF resolution, and the 

adaptability of the TFR. To illustrate this, we consider  

a complex set of signals, whose specific construction formulas 

are provided as follows: 

𝑠1(𝑡) = ∑ 𝐴𝑖(𝑡) ⋅ 𝑠𝑖𝑛( 2𝜋 ∫ 𝑓𝑖(𝑡)
𝑡

0
𝑑𝑡)5

𝑖=1 + 𝜎（𝑡）     (36) 
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To better reflect practical conditions, a synthetic signal is 

generated with an added 10 dB signal-to-noise ratio (SNR). In 

particular, the IF trajectories of each component are as follows: 

{
 
 
 

 
 
 
𝑓1(𝑡) = 71 + 20 𝑠𝑖𝑛(

𝜋

2
𝑡)

𝑓2(𝑡) = 68 + 20 𝑠𝑖𝑛(
𝜋

2
𝑡)

𝑓3(𝑡) =
1

300
(𝑡 − 30)2 + 40

𝑓4(𝑡) = 5 + 10 𝑠𝑖𝑛(
𝜋

4
𝑡)

𝑓5(𝑡) = 25 + 5 𝑐𝑜𝑠(
2𝜋

5
𝑡)

       (37) 

The magnitudes of these components are defined as follows: 

A1(t)=1.0, A2(t)=1.1, A3(t)=0.8, A4(t)=0.6, A5(t)=0.5. The 

synthetic signal is then processed using LESSECT. The target 

signal is sampled at a frequency of fs=200Hz and analyzed over 

a duration of ttend=4s. It is constructed by superimposing the 

individual signal components defined in the aforementioned 

equations. Finally, the time-domain representation of the noisy 

target signal s1(t) is presented. The signal waveform and its 

corresponding ideal TFR are illustrated in Figure 3(a) and 

Figure 3(b), respectively.

 

Figure 3. The synthetic signal s1(t): (a) Waveform; (b) Ideal TFR. 

 

Figure 4. TFR of s1(t) obtained using LESSECT. 

The LESSECT approach is applied to the synthetic signal 

s1(t) for TFA, with the results shown in Figure 4. LESSECT 

effectively captures the time-varying characteristics of all IFs, 

yielding a well-structured TFR with superior TF resolution and 
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energy concentration, demonstrating its enhanced performance 

in TFA. 

 

Figure 5. TFR results of s1(t) using different methods: (a) 

STFT; (b) CWT; (c) SET; (d) GLCT; (e) SBCT; (f) EMCT. 

To comprehensively evaluate the effectiveness of the 

LESSECT method, a comparative analysis was conducted 

against both traditional and advanced TFA techniques, including 

STFT, CWT, SET, GLCT, SBCT, and EMCT. The TFRs 

obtained from these methods are presented in Figure 5.  

A detailed examination of these results reveals that conventional 

approaches exhibit noticeable limitations. Specifically, the 

TFRs generated by these techniques tend to be blurry and lack 

coherent TFRs. The IF trajectories produced by these methods 

are often discontinuous, leading to poor interpretability. 

Additionally, varying degrees of energy leakage can be 

observed, further degrading the clarity and concentration of the 

TFRs.  

To quantitatively assess the energy concentration of 

different TFA methods, the Rényi entropy of each TFR was 

computed, as summarized in Table 2. This metric effectively 

measures the distribution of energy in the TF plane, where  

a lower entropy value indicates higher energy concentration. 

The results demonstrate that LESSECT achieves the lowest 

Rényi entropy, signifying superior energy localization. In 

contrast, GLCT exhibits the highest entropy, indicating severe 

energy dispersion. This suggests that LESSECT provides  

a more compact and well-defined TFR, mitigating the common 

issue of energy leakage encountered in conventional methods.  

Table 2. Rényi Entropy Comparison of 7 TFA Methods. 

method STFT  CWT SET GLCT SBCT EMCT LESSECT 

Rényi entropy 16.8664  16.8239 14.6617 18.4628 15.8744 16.7705 13.7877 

 

 

Figure 6. PSNR Comparison of Different TFA Methods. 

 

Figure 7. SSIM Comparison of Different TFA Methods. 

Beyond energy concentration, additional quantitative 

measures were introduced to further validate the performance 
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of LESSECT. Specifically, peak signal-to-noise ratio (PSNR) 

and structural similarity index (SSIM) were employed to 

evaluate the fidelity and structural integrity of the TFRs, 

respectively. PSNR quantifies the level of distortion in 

reconstructed signals, with a higher value indicating better 

preservation of the original signal characteristics. SSIM, on the 

other hand, measures the structural similarity between the 

estimated and reference TFRs, with values approaching 1 

signifying high resemblance. Figure 6 presents the PSNR values 

for different methods, highlighting that LESSECT achieves the 

highest PSNR. This suggests that LESSECT generates a more 

accurate and less distorted TFR compared to other approaches. 

Notably, GLCT exhibits the lowest PSNR, reinforcing its 

tendency to produce high levels of distortion. Similarly, Figure 

7 illustrates the SSIM comparison, where LESSECT attains the 

highest SSIM value, demonstrating its ability to closely 

replicate the ideal TFR structure. Conversely, GLCT shows the 

lowest SSIM, indicating a significant deviation from the 

expected representation.  

In summary, LESSECT consistently outperforms existing 

TFA techniques across multiple evaluation metrics. With 

superior energy concentration, minimal distortion, and high 

structural fidelity, it ensures a more coherent and continuous 

TFR. Notably, LESSECT excels in capturing intricate TF 

structures and accurately analyzing non-proportional signals, 

demonstrating strong adaptability and robustness for complex 

non-stationary signal processing. 

5. Practical verifications 

This section evaluates the performance of LESSECT using three 

sets of experimentally acquired signals. The first dataset 

consists of bat echolocation signals, the second comprises 

rolling bearing fault data collected from the Spectra Quest 

Machinery Fault Simulator (MFS-PK5M), and the third 

includes vibration signals recorded from a wind turbine 

planetary gearbox test rig. 

5.1. the test of Bats echolocation call 

The first experiment focuses on the analysis of bat echolocation 

calls. Bats emit ultrasonic pulses and rely on a series of high-

frequency short pulses for echolocation. When these sound 

waves encounter objects, they reflect back as echoes. The 

resulting signals exhibit non-proportional IF characteristics. To 

validate the effectiveness of LESSECT, the TFR obtained using 

LESSECT is compared against those produced by STFT, CWT, 

SET, GLCT, SBCT, and EMCT, demonstrating its ability to 

accurately capture the TF characteristics of such complex 

signals. 

 

Figure 8. The waveform of Bats echolocation call. 

The bat echolocation call is sampled at 450 Hz with  

a duration of 1.4 s. The vibration signal and the corresponding 

LESSECT-based TFR are presented in Figures 8 and 9, 

respectively. The window function length is set to 200. To assess 

the effectiveness of LESSECT, a comparative analysis is 

conducted against STFT, CWT, SET, GLCT, SBCT, and EMCT, 

ensuring consistent parameter settings across all methods. 

 

Figure 9. TFR of Bats echolocation call obtained using 
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LESSECT. 

 

Figure 10. TFR results of Bats echolocation call using different 

methods: (a) STFT; (b) CWT; (c) SET; (d) GLCT; (e) SBCT; 

(f) EMCT. 

In LESSECT accurately identifies the four frequency 

components of the bat echolocation signal and demonstrates  

a high level of energy concentration in the TFR. As shown in 

Figure 9, LESSECT provides superior TF resolution compared 

to other methods. In contrast, other TFA methods exhibit 

various limitations. Figure 10(a)–Figure 10(f) illustrate these 

shortcomings: GLCT fails to resolve the high-frequency 

components effectively; the TFR produced by SET lacks clarity; 

EMCT exhibits energy dispersion in certain TF regions, with 

non-smooth IF trajectories; and STFT, CWT, and SBCT suffer 

from varying degrees of energy leakage and blurring effects. 

To further quantify the differences in energy concentration 

among these methods, Table 2 presents the Rényi entropy values 

for each TFR. A lower Rényi entropy indicates higher energy 

concentration. As shown in the table, LESSECT achieves the 

lowest entropy value, suggesting its superior ability to maintain 

energy focus. In contrast, GLCT has the highest entropy, 

reflecting severe energy dispersion. 

 

Figure 11. SSIM-Based Evaluation of TFR Methods with 

LESSECT as the Reference. 

Additionally, to assess the structural similarity of different TFRs, 

the SSIM metric was employed for comparative analysis. 

Taking the TFR generated by LESSECT as the reference, Figure 

11 presents the SSIM values between LESSECT and the other 

six methods. The results reveal that SET and EMCT achieve 

relatively high SSIM values, indicating better preservation of 

TFR structures. Conversely, GLCT yields the lowest SSIM 

value, signifying a substantial deviation from the LESSECT-

generated TFR. Overall, the quantitative results confirm that 

LESSECT exhibits superior performance in both energy 

concentration and TFR clarity. 

In summary, the IF components of the analyzed signal exhibit  

a non-proportional frequency structure. Despite this complexity, 

LESSECT successfully generates a highly concentrated TFR 

with clear TF energy distribution. Compared to the six other 

TFA methods, LESSECT effectively mitigates the challenges 

posed by non-proportional IF components, demonstrating its 

superior capability in TFR. 

5.2. Fault testing of rolling bearing inner race defects 

The second set of experiments was conducted on the MFS-

PK5M platform to simulate rolling bearing faults, specifically 

targeting inner race defects [34,35]. 

Table 3. Rényi Entropy Comparison of 7 TFA Methods. 

method STFT CWT SET GLCT SBCT EMCT LESSECT 

Rényi entropy 14.5402 15.7009 13.0020 16.8362 14.1393 13.9399 11.5327 
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Figure 12. Test Platform for Rolling Bearing Fault Simulation Experiments. 

Figure 12 illustrates the test rig, while Table 3 details the 

specifications of the faulty bearing along with its fault 

characteristic frequencies (FCFs). In this context, fr represents 

the rotational frequency of the bearing. Vibration signals were 

acquired using accelerometers at a sampling rate of 200 kHz. 

During the experiment, the bearing's rotational speed ranged 

from 13 Hz to 25.7 Hz. 

The faulty bearing vibration signal is downsampled to 600 Hz 

over a duration of 4 s. Figure 13(a) and Figure 13(b) present the 

signal and the corresponding time-varying bearing speed curve, 

respectively. The window function size is set to 450. To evaluate 

the performance of LESSECT, a comparative analysis is 

conducted using STFT, CWT, SET, GLCT, SBCT, and EMCT, 

ensuring consistent parameter settings across all methods.

Table 4. Specifications for the bearings employed in the inner race fault test. 

Bearing type Fault type Pitch diameter Number of balls Ball diameter FCF 

ER16K inner race fault 38.52mm 9 7.94mm 5.43fr 

 

Figure 13. The vibration data from the faulty bearing: (a) Waveform; (b) RF. 

 

Figure 14. TFR obtained using LESSECT for the faulty bearing vibration signal. 

 

healthy 

bearing 
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Figure 15. TFR results for the faulty bearing vibration signal 

using different methods: (a) STFT; (b) CWT; (c) SET; (d) 

GLCT; (e) SBCT; (f) EMCT. 

As shown in Figure 14, LESSECT effectively captures the 

FCF with high accuracy and the bearing's harmonic 

frequencies, such as fr, 2fr, 3fr, 10fr, 11fr, 12fr, etc., with a high 

concentration of TF energy. However, among other TFA 

methods, STFT, CWT, and GLCT exhibit varying degrees of 

energy leakage and blurring effects, only being able to extract 

individual low-frequency components, As depicted in Figure 

15(a), Figure 15 (b), and Figure 15 (d). The SET method 

experiences energy disturbance, with intermittent and 

incomplete IF trajectories, and fails to fully identify relevant 

turning frequencies, as illustrated in Figure 15(c). In the TFR 

results calculated using SBCT and EMCT, more accurate 

observation of bearing FCF and some high-frequency 

components, such as 10 fr and 11 fr, can be seen. However, 

they are unable to accurately extract low-frequency signal 

components, showing blurring effects, as shown in Figure 15 

(e)–Figure 15 (f). 

Table 5. Rényi Entropy Comparison of 7 TFA Methods. 

method STFT CWT SET GLCT SBCT EMCT LESSECT 

Rényi entropy 19.3523 18.4348 17.1607 20.7281 18.0346 19.0019 15.7139 

 

Following the previous analysis of TFR results for the faulty 

bearing vibration signal, we further evaluate the energy 

concentration of different methods by computing their Rényi 

entropy, as shown in Table 4. A lower entropy value indicates 

a higher concentration of TF energy, while a higher entropy 

value suggests greater energy dispersion and blurring effects. 

The results demonstrate that LESSECT achieves the lowest 

Rényi entropy, highlighting its superior ability to maintain 

energy concentration. In contrast, GLCT exhibits the highest 

entropy, indicating severe energy diffusion in its TFR. 

Moreover, STFT, CWT, SBCT, and EMCT also yield 

relatively high entropy values, reflecting varying degrees of 

energy leakage and blurring. 

To further quantify the differences in TFR quality among the 

methods, SSIM is computed with the LESSECT-generated 

TFR serving as the reference for comparison. The SSIM 

values between LESSECT and the six other methods (STFT, 

CWT, SET, GLCT, SBCT, and EMCT) are presented in Figure 

16. A higher SSIM value indicates greater structural similarity 

between the compared TFR and the LESSECT baseline, 

signifying better TFR. The results show that SET achieves the 

highest SSIM, suggesting that its TFR closely resembles that 

of LESSECT, though it still exhibits minor energy 

disturbances. In contrast, STFT, CWT, and SBCT yield lower 

SSIM values, indicating greater distortion and blurring in their 

TFRs. GLCT, which records the lowest SSIM, further 

confirms its severe energy dispersion and inability to 

accurately extract fault characteristic frequencies. 

 

Figure 16. SSIM comparison of different TFR methods with 

LESSECT as the reference 
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In summary, the results demonstrate that LESSECT 

effectively processes tightly spaced non-proportional signals, 

capturing IF components with improved clarity and energy 

concentration. Its advantages are further supported by the 

lowest Rényi entropy and higher SSIM values, highlighting its 

potential for more accurate fault diagnosis in complex 

vibration signals. 

5.3. Wind energy turbine planetary gear system 

evaluation 

For the third dataset, the experimental setup and gear system 

structure are shown in Figure 17(a) and Figure 17(b), 

respectively. The system consists of a speed-increasing gearbox, 

a decelerating gearbox, a load system, a cooling unit,  

a frequency controller, and a drive motor. Both gearboxes on the 

test bench share the same design, incorporating two dual-stage 

fixed-axis gear assemblies and a single-stage planetary gear 

mechanism. In the dual-stage fixed-axis gear system, the tooth 

counts are as follows: 73 for the input stage, 21 for the 

intermediate stage, 66 for the second intermediate stage, and 23 

for the output stage. The planetary gear mechanism consists of 

a central gear, three planetary gears, and a ring gear, with tooth 

counts of 17, 79, and 31, respectively . 

 

Figure 17. The wind turbine gearbox system: (a) Experimental 

setup; (b) Gearbox configuration.

 

Figure 18. Vibration Signal from the Speed-Increasing Gearbox: (a) Waveform; (b) RF 

 

Figure 19. The LESSECT-derived TFR for the oscillation data from the speed-increasing gearbox. 
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The test system is driven by a motor regulated by a variable 

frequency drive, which supplies high-pressure fluid to the load 

system to simulate operational conditions. A 3056B1 

accelerometer is mounted on the acceleration gearbox to capture 

vibration data. To analyze the vibration signal, the original 

signal is downsampled to 720 Hz, covering a duration of 1.5 s. 

Figure 18(a) and Figure 18(b) illustrate the signal waveform and 

the variation in rotational frequency, respectively.

Table 6. Rényi Entropy Comparison of 7 TFA Methods. 

method STFT CWT SET GLCT SBCT EMCT LESSECT 

Rényi entropy 16.2471 16.5834 13.9578 18.5285 14.8585 16.2209 11.2064 

 

 

Figure 20. The TFR outcomes for the acceleration gearbox's 

vibration signal: (a) STFT; (b) CWT; (c) SET; (d) GLCT; (e) 

SBCT; (f) EMCT. 

Figure 19 presents the TFR obtained using LESSECT with 

a window length of 450. Several characteristic frequency 

trajectories of physical significance are clearly distinguishable, 

including the system’s inherent frequencies and their harmonic 

orders [36]. To further evaluate the effectiveness of LESSECT, 

its TFR is compared with those generated by STFT, CWT, SET, 

GLCT, SBCT, and EMCT. As shown in Figure 20(a)–Figure 

20(f), most alternative methods fail to fully and accurately 

capture the key frequency components and structural natural 

frequency trajectories. Specifically, GLCT identifies only the 

structural natural frequencies, failing to extract resonance 

harmonics. CWT produces highly blurred TFRs with significant 

energy leakage. STFT, SBCT, and EMCT reveal partial 

rotational frequency harmonics but suffer from varying degrees 

of energy leakage. Although SET extracts resonance harmonic 

components to some extent, the IF trajectories of each harmonic 

order are severely distorted. Overall, these methods exhibit 

energy dispersion and fail to provide an accurate TFR. 

To quantify the energy concentration of each method, Table 

5 presents the Rényi entropy values. A lower entropy value 

indicates a more concentrated energy distribution. LESSECT 

achieves the lowest entropy, demonstrating its superior ability 

to concentrate TF energy. In contrast, other methods, such as 

GLCT and CWT, exhibit higher entropy, indicating more 

dispersed energy distributions. 

 

Figure 21. SSIM comparison of different TFR methods with 

LESSECT as the reference. 

To further assess the quality of the TFRs, SSIM is employed 

to compare the TFRs obtained from different methods against 

the LESSECT-generated TFR. SET achieves the highest SSIM 

among the alternative methods, indicating a relatively higher 

structural similarity. However, other methods, particularly 

GLCT and CWT, yield significantly lower SSIM scores, 

suggesting a substantial loss of structural integrity. Figure 21 

visually presents the SSIM comparison across different methods. 

These results reaffirm the advantages of LESSECT in 

preserving structural details and achieving a more accurate TFR. 
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In conclusion, LESSECT outperforms other TFA methods in 

accurately capturing IF components with enhanced clarity and 

energy concentration. Its effectiveness is validated by the lowest 

Rényi entropy and the highest structural similarity to an ideal 

TFR, further demonstrating its potential in handling complex, 

non-stationary signals. 

6. Conclusion 

Under dynamic conditions, vibration signals in rotating 

machinery exhibit non-proportional and highly asynchronous 

behaviors across different components. These characteristics 

lead to severe energy leakage in existing TFA methods, making 

it difficult to accurately capture all key frequency trajectories. 

Such inaccuracies can compromise the reliability of fault 

diagnosis and condition monitoring in rotating machinery 

systems. To address these challenges, this study introduces  

a novel TFA method, LESSECT. This approach constructs  

a second-order nonlinear chirplet basis function, incorporating 

Rényi entropy to extract multiple CRs at the same time center, 

thereby effectively matching all frequency components. The IF 

ridges are subsequently re-extracted based on the generated 

TFR. By redistributing energy to the TF positions 

corresponding to the target components, LESSECT 

significantly reduces interference from non-target signals and 

enhances TFR readability. Through evaluations on one synthetic 

dataset and three sets of vibration measurements, along with 

comparisons against six additional TFA techniques, LESSECT 

demonstrates its capability to accurately identify closely spaced 

and non-proportional IF components while producing a TFR 

with higher energy concentration. This not only improves fault 

detection accuracy but also enhances system reliability through 

precise state estimation. 

Given its ability to achieve high energy concentration and 

accurately capture IF components in complex non-stationary 

signals, LESSECT holds significant potential for industrial 

applications. In rotating machinery fault diagnosis, precise TFR 

representation plays a crucial role in detecting early-stage faults 

and distinguishing closely spaced frequency components. 

LESSECT’s superior performance in these aspects can 

contribute to more reliable condition monitoring and predictive 

maintenance strategies, reducing unexpected downtime and 

maintenance costs. Additionally, its robustness in handling non-

proportional and highly asynchronous signals makes it well-

suited for diagnosing faults in complex gear transmission 

systems, rolling bearings, and other critical rotating components 

under variable operating conditions. These advantages indicate 

that LESSECT can serve as a valuable tool for improving fault 

detection accuracy and ensuring the operational reliability of 

industrial equipment. 

Despite its advantages, LESSECT has certain limitations. It 

faces challenges in extracting weak fault features at early 

degradation stages due to the inherently low energy of these 

components, which may affect early fault detection sensitivity. 

Additionally, compared to conventional TFA methods, 

LESSECT requires a higher computational cost, which may 

limit its feasibility for real-time industrial applications. Future 

research will focus on improving the method’s capability in 

weak fault feature extraction and optimizing the algorithm’s 

computational efficiency, making it more adaptable for real-

time condition monitoring and large-scale industrial 

deployment.
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Nomenclature and Abbreviations 

TFA Time-frequency analysis SST Synchro-squeezing transform 

IF Instantaneous frequency SET Synchro-extracting transform 

TFR Time-frequency representation SRT Synchronized Reassignment Transform 

CR Chirp rate EMCT Entropy Matching Chirplet Transform 

STFT Short-time Fourier transform GCBT Generalized Chirplet basis transform 

CWT Continuous wavelet transform RF Rotational frequency 

WVD Wigner-Ville Distribution TFD Time-frequency distribution 

CT Chirplet transform TF Time-frequency 

GLCT General linear Chirplet transform IP Instantaneous phase 

VSLCT Velocity synchronous linear Chirplet transform IA Instantaneous amplitude 

SBCT Scaling-basis Chirplet transform SEO Synchro-extracting operators 

CMCT Component matching Chirplet transform ESBCT entropy- SBCT 

SSCT Slope-Synchronized Chirplet Transform FCF fault characteristic frequencies 

PECT Proportional Extraction Chirplet Transform RF Rotation frequency 

RM reassignment   

 


