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Highlights  Abstract  

▪ Introducing proximal policy optimization 

(PPO) algorithm. 

▪ Proposing a framework for integrated path 

planning and motion control. 

▪ PPO is superior to traditional algorithms in 

terms of control accuracy and stability. 

 This paper studies the path planning and motion control method of the 

robot arm based on neural network, aiming to improve the path planning 

efficiency and motion control accuracy of the robot arm in complex 

environments. By introducing the deep reinforcement learning (DRL) 

method, especially the proximal policy optimization (PPO), this paper 

proposes a framework for integrated path planning and motion control. 

Experimental results show that the path generated by PPO in the path 

planning task has the highest smoothness, the shortest path length and 

the strongest obstacle avoidance ability. In the motion control task, PPO 

exhibits the smallest trajectory error, the highest motion accuracy and 

the best stability. Comprehensive experiments further verify the superior 

performance of PPO in the combination of path planning and motion 

control, which can generate smooth, short and safe paths, and accurately 

control the motion trajectory of the robot arm to ensure the high-quality 

completion of the task. 
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1. Introduction 

With the continuous development of industrial automation, 

robotic arms, as core equipment in industrial production, are 

widely used in various fields, including manufacturing, 

assembly, welding, painting, etc. Through precise motion 

control, robotic arms have replaced a large amount of manual 

labor and improved production efficiency and quality. In 

traditional industrial production, path planning and motion 

control of robotic arms have always been the key factors to 

achieve efficient operation. Traditional path planning methods 

mainly rely on geometric algorithms and physical modeling. 

Although they can meet the needs of some simple tasks, they 

often show great limitations for complex and multi-degree-of-

freedom robotic arm path planning, especially in dynamically 

changing environments. Traditional path planning methods, 

such as the A algorithm based on heuristic search, can generate 

reasonable paths, but they are inefficient and have limited 

accuracy when dealing with complex obstacles, dynamic 

environments and nonlinear constraints. At the same time, the 

motion control of robotic arms usually relies on classical control 

theories, such as PID control or robust control, but these 

methods have certain shortcomings when facing complex and 

changeable control tasks, especially in terms of real-time 
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adjustment and adaptability. 

In recent years, with the rapid development of artificial 

intelligence, especially deep learning and neural network 

technology, neural networks have shown great potential in the 

field of path planning and motion control. Neural networks can 

autonomously discover the best path planning strategy by 

learning a large amount of historical data and environmental 

information, and solve the limitations of traditional methods in 

dynamic environments. In particular, neural networks have very 

powerful capabilities in dealing with nonlinear constraints, real-

time reactions, and high-dimensional spaces. Therefore, 

combining the path planning and motion control methods of 

neural networks provides new ideas and possibilities for 

efficient and precise control of robotic arms. 

Robotic arm path planning and motion control have always 

been a research hotspot in the field of robotics, especially in 

industrial automation. With the continuous development of 

technology, path planning and motion control methods have 

gradually changed from traditional physical model-based 

algorithms to more intelligent methods.  

Traditional path planning and motion control methods 

usually rely on geometric algorithms, mathematical models, and 

optimization algorithms. For example, the classic A algorithm 

and Dijkstra algorithm are widely used for path planning in 

static environments, but these algorithms have low 

computational efficiency when facing dynamic obstacles and 

complex environments, and lack the ability to adapt to real-time 

changes. In addition, model-based optimization methods, such 

as linear programming and nonlinear programming, are also 

widely used in the motion control of robotic arms. Although 

these methods perform well in many applications, their 

disadvantage is that they often rely on accurate environmental 

modeling, and it is difficult to guarantee the computational 

efficiency and accuracy of the optimal solution when facing 

complex and unknown environments. 

Although path planning and motion control methods based 

on deep learning and reinforcement learning have made 

significant progress, they still face some challenges. For 

example, deep learning methods require a large amount of data 

for training, and obtaining enough high-quality data is still  

a problem in some application scenarios. In addition, the 

computational cost of deep learning models is high, and real-

time performance is still an urgent problem to be solved. 

Therefore, how to balance the computational efficiency and 

accuracy of the algorithm and how to improve the training 

efficiency of the model are still important directions for future 

research. 

This study aims to solve the key problems of existing robot 

path planning and motion control methods in dynamic 

environments. For example, in smart warehousing and logistics 

scenarios, the robot needs to carry goods in a dynamic 

environment where new goods are constantly entering and 

leaving the warehouse. Traditional path planning algorithms, 

such as the A algorithm, cannot adjust the path in real time to 

avoid dynamic obstacles such as new goods and moving 

forklifts, resulting in a high error rate in handling tasks. In terms 

of motion control, traditional PID control methods have 

difficulty coping with the complex dynamic changes of the 

robot during high-speed movement and frequent start-stop 

processes, resulting in insufficient positioning accuracy. The 

PPO-based integrated framework we proposed can perceive 

environmental changes in real time through deep reinforcement 

learning, quickly generate the optimal path and accurately 

control the movement of the robot, effectively solving the 

problems that these existing methods cannot solve, and greatly 

promoting the efficient operation of industrial automation in 

complex dynamic environments. 

This study aims to solve the problems of low efficiency, 

insufficient precision and poor adaptability of traditional robot 

path planning and motion control methods in complex dynamic 

environments. For example, in the automotive manufacturing 

industry, the robot needs to perform parts assembly tasks in  

a small space full of dynamic obstacles (such as moving 

transportation equipment). Traditional path planning methods 

based on geometric algorithms and physical modeling, such as 

the A algorithm, are difficult to avoid dynamic obstacles in real 

time, resulting in frequent interruptions of assembly tasks and 

reduced production efficiency. The integrated path planning and 

motion control framework based on the proximal policy 

optimization algorithm (PPO) we proposed can autonomously 

generate efficient and safe paths by learning a large amount of 

environmental information, and accurately control the motion 

trajectory of the robot, effectively improving the efficiency and 

quality of assembly tasks, and greatly promoting the application 
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and development of industrial automation in complex 

production scenarios. 

2. Literature Review 

2.1. Current status of research on robotic arm path 

planning 

Path planning is a key issue in robot motion control. Traditional 

path planning methods such as the A algorithm and the RRT 

(Rapidly-exploring Random Tree) algorithm are widely used in 

industrial automation. As a classic graph search algorithm, the 

A algorithm guides the search path through a cost function and 

can find the shortest path in a static environment. However, the 

A algorithm performs poorly in a dynamic environment because 

it assumes that the environment is static and is not suitable for 

real-time avoidance of dynamic obstacles [1]. The RRT 

algorithm uses a rapid random exploration method to gradually 

expand the tree structure to find the path, which is suitable for 

path planning in high-dimensional space. RRT and its improved 

versions (such as RRT) can efficiently find paths in complex 

spaces, especially in environments with obstacles. However, the 

path generation process of the RRT algorithm may produce  

a non-smooth path, resulting in an unsmooth robot motion 

process, which requires additional smoothing processing [2]. 

With the advancement of artificial intelligence technology, the 

application of neural networks in path planning has gradually 

become a research hotspot. Deep learning can learn complex 

environmental patterns by training models and can achieve 

adaptive path planning in complex and dynamic environments. 

Related research shows that path planning methods based on 

convolutional neural networks (CNN) and recurrent neural 

networks (RNN) have strong adaptability when facing dynamic 

obstacles and unknown environments [3]. For example, the 

literature proposes a path planning method based on deep Q-

network (DQN), which uses reinforcement learning to enable  

a robotic arm to optimize the path in real time in a changing 

environment. Compared with traditional methods, this method 

performs better in dynamic environments and can adjust the 

path and avoid obstacles in real time [4]. 

Although neural networks have shown great potential in 

path planning, the challenges they face cannot be ignored. The 

training of neural networks requires a large amount of data 

support, and the training process may take a long time. In 

addition, the training process of neural networks is prone to 

falling into local optimal solutions. How to effectively train and 

optimize is still a difficult problem in research. 

2.2. Current status of research on robotic arm motion 

control 

The motion control of the robot arm is the core part to ensure 

the accuracy and efficiency of the robot arm in performing tasks. 

Among the traditional motion control methods, PID 

(Proportional-Integral-Derivative) control is widely used. The 

PID controller controls the position, speed and acceleration of 

the robot arm by adjusting the proportional, integral and 

differential coefficients. However, PID control often performs 

poorly when dealing with nonlinear systems or with large 

external disturbances, and requires precise parameter 

adjustment [5]. In addition, the PID controller usually assumes 

that the model of the system is known. However, in many 

complex tasks, the dynamic model of the robot arm is often 

difficult to accurately describe. 

As a control method based on empirical rules, fuzzy control 

overcomes the deficiency of PID control in relying on precise 

parameters. Fuzzy control deals with uncertainty through fuzzy 

set theory and is applicable to complex and nonlinear systems. 

By establishing a fuzzy rule base and reasoning mechanism, 

fuzzy control can effectively control the robot arm under 

incomplete knowledge [6]. However, fuzzy control also has 

certain limitations, especially when it is necessary to process 

large amounts of data and complex tasks in real time, its 

computational efficiency and real-time performance cannot 

meet the requirements of efficient control. 

In recent years, with the rise of deep learning and 

reinforcement learning, neural networks have been widely used 

in robotic arm motion control. The nonlinear mapping ability of 

neural networks enables them to handle complex control tasks 

without relying on accurate models. For example, the motion 

control method based on deep Q network (DQN) optimizes the 

control strategy through reinforcement learning, enabling the 

robotic arm to autonomously adjust its motion trajectory in an 

uncertain environment [7]. The literature proposes a robotic arm 

control method based on deep reinforcement learning, which 

enables the robotic arm to accurately complete tasks in  

a complex environment by training a deep neural network 
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model. This method optimizes the control strategy through the 

mechanism of exploration and utilization without a model, 

showing stronger adaptability than traditional control methods 

[8, 9]. However, although the neural network method has 

achieved good results in motion control, it still faces many 

challenges. The training process of neural networks can be very 

time- consuming. 

In recent years, the application of deep reinforcement 

learning in the field of robotics has made significant progress. 

For example, [11] proposed a multi-robot collaborative path 

planning method based on deep reinforcement learning. By 

introducing the attention mechanism, the collaborative 

efficiency of robots in complex environments was effectively 

improved. [12] used the deep deterministic policy gradient 

(DDPG) algorithm to realize the autonomous navigation of 

robots in unknown environments. By improving the exploration 

strategy, the convergence speed and stability of the algorithm 

were improved. These latest research results provide new ideas 

and methods for the development of robot path planning and 

motion control. The PPO-based method proposed in this paper 

further expands the application of deep reinforcement learning 

in this field in terms of combining multi-task learning and 

environmental perception technology, and provides a more 

effective solution to the problem of robot control in complex 

environments. 

2.3. Deficiencies and challenges of existing research 

Although some progress has been made in the path planning and 

motion control of robotic arms, there are still some deficiencies 

and challenges in existing research. First, traditional path 

planning methods, such as the A and RRT algorithms, have great 

limitations when facing complex environments. The  

A algorithm cannot effectively deal with the problem of 

avoiding dynamic obstacles, while the RRT algorithm is prone 

to generate non-smooth paths, affecting the smoothness of the 

robot's motion [10]. Although the path planning method based 

on neural networks has overcome these problems to a certain 

extent, the training process of neural networks requires a large 

amount of data and computing resources, and has high 

requirements for the quality and diversity of training data. How 

to improve the training efficiency is still an urgent problem to 

be solved. Secondly, although traditional motion control 

methods (such as PID control and fuzzy control) perform well 

in simple tasks, they often perform poorly when dealing with 

high-precision and complex tasks. Especially when the system 

model is incomplete or the dynamic changes are large, the 

control accuracy and robustness of traditional methods are 

difficult to meet the requirements. The application of neural 

networks in motion control, especially the control method based 

on reinforcement learning, can effectively handle complex 

control tasks, but its training process may be very time-

consuming and it is easy to fall into local optimal solutions 

during training [11]. In addition, the poor interpretability of 

neural network models makes it difficult to be widely used in 

some industrial applications with high safety requirements [12].  

3. Theoretical Basis 

3.1. Dynamic model of the robotic arm 

The dynamic model of the robot describes the relationship 

between the movement of the robot and the forces acting on it. 

Usually, the dynamic model of the robot can be established 

using the Lagrangian method. Assuming that the robot consists 

of n degrees of freedom, its dynamic equation is  

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐺(𝜃) = 𝜏.    

Where, 𝜃is the joint angle, �̈�is the joint angular velocity, �̇�is the 

joint angular acceleration, 𝜏is the joint driving torque, 𝑀(𝜃) is 

the inertia matrix [13], 𝐶(𝜃, �̇�)  is the Coriolis force matrix, 

𝐺(𝜃)  and is the gravity matrix. The inertia matrix 𝑀(𝜃) 

describes the influence of the mass and geometry of each part 

of the robot on the movement of the robot. It is usually 

determined by physical quantities such as the mass, length, and 

inertia of each joint.  

3.2. Path planning 

Path planning is one of the core steps for a robot to achieve its 

tasks. The goal is to generate an optimal path from the starting 

position to the target position that avoids obstacles. In the 

process of path planning, the tasks that need to be handled 

usually include environment modeling, path search, obstacle 

avoidance, and path optimization. In order to achieve these tasks, 

path planning methods can be divided into traditional 

algorithms and neural network-based algorithms. Traditional 

algorithms include the A algorithm, Dijkstra algorithm, and 

rapid random tree (RRT), while neural network-based path 
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planning methods achieve more flexible and efficient path 

planning through reinforcement learning, deep learning, and 

other technologies. Traditional path planning algorithms usually 

rely on graph search, grid map, or tree structure to perform path 

search [14]. In this method, obstacles in the environment are 

usually represented as a discrete graph or grid, and the 

movement of the robot arm from the starting point to the target 

point will go through multiple discrete nodes. The A algorithm 

is a heuristic search algorithm that combines the characteristics 

of breadth-first search and greedy algorithm. In the search 

process, in addition to considering the path cost from the current 

node to the target, the A algorithm also adds a heuristic cost h(n) 

to estimate the shortest path from the current node to the target 

[15]. 

4. Methods and Models 

4.1. Model framework 

The core idea of this model is to achieve efficient and accurate 

path planning and motion control of the robot in a complex 

environment by combining traditional path planning and motion 

control methods with deep learning technology. In order to 

ensure the intelligence and adaptability of the system, this study 

divides the model framework into two main modules: the path 

planning module and the motion control module. The two 

modules work together to achieve autonomous operation of the 

robot in a dynamic environment [16]. 

We chose the PPO algorithm over other deep reinforcement 

learning algorithms, such as the deep Q network (DQN) or the 

deep deterministic policy gradient algorithm (DDPG), mainly 

based on the following considerations. Compared with DQN, 

DQN is a value-based reinforcement learning algorithm that 

selects the optimal action by learning the state-action value 

function (Q value). However, DQN has limitations when 

dealing with continuous action spaces and complex 

environments. For example, in the path planning and motion 

control tasks of the robot arm, the action space of the robot arm 

is continuous, and DQN needs to discretize the action space, 

which will cause information loss and affect the control 

accuracy. The PPO algorithm directly optimizes the policy 

function and can naturally handle the continuous action space, 

which is more suitable for application scenarios such as the 

robot arm that require precise control of continuous actions. 

Compared with DDPG, DDPG is a deterministic policy 

gradient-based algorithm that combines deep neural networks 

and deterministic policies for learning. Although DDPG 

performs well in some continuous control tasks, it is sensitive 

to the adjustment of hyperparameters, the training process is 

unstable, and it is easy to fall into local optimal solutions. The 

PPO algorithm effectively stabilizes the training process by 

using the "Clipped Surrogate" function, reduces the reliance on 

hyperparameters, and improves the robustness and convergence 

speed of the algorithm. In summary, the PPO algorithm has 

better adaptability and performance when dealing with complex 

tasks of robot path planning and motion control, so we chose it 

as the core algorithm of this study. 

The core task of the path planning module is to generate an 

optimal path to avoid obstacles based on the starting position 

and target position of the robot. Traditional path planning 

methods, such as the A algorithm and the RRT algorithm, 

perform well in static environments, but often face greater 

challenges in dynamic environments and complex obstacle 

scenes. Therefore, this model adopts a path planning method 

based on deep learning, combined with convolutional neural 

networks (CNN) and reinforcement learning (RL) technology, 

to evaluate obstacles in the environment in real time and 

automatically optimize the path. Deep learning can 

autonomously adjust the path planning strategy according to 

environmental changes by learning historical data and 

environmental patterns, while the introduction of reinforcement 

learning enables the robot to adjust the path in real time during 

execution to avoid interference from dynamic obstacles, thereby 

improving the adaptive ability of path planning [17]. 

The main task of the motion control module is to accurately 

control the motion trajectory of the robot arm and ensure that 

the robot arm performs the task according to the planned path. 

In traditional motion control methods, PID control and fuzzy 

control are widely used. Although these methods perform well 

in simple tasks, they have great limitations when facing high-

precision control requirements and complex tasks. Therefore, 

this study adopts a neural network-based control method, 

especially deep reinforcement learning technology, to achieve 

higher-precision motion control. By training the neural network, 

the control module can learn nonlinear dynamic relationships 

and adjust the motion trajectory of the robot arm in real time 
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without relying on an accurate model to ensure high precision 

when performing tasks [18, 19]. 

The path planning and motion control modules work closely 

together to improve the overall performance of the system. The 

path planning module provides the motion control module with 

optimized path data, while the motion control module ensures 

that the robot arm can accurately follow the path during 

execution. The effective cooperation between the two enables 

the entire system to work efficiently in complex and dynamic 

environments while ensuring the accuracy and stability of task 

execution.

 

Figure 1. Model framework. 

As shown in Figure 1, the model framework mainly consists 

of two main components: path planning module and motion 

control module. The path planning module adopts a dynamic 

environment model and integrates different strategies and state 

information through a multi-task learning framework to 

generate the optimal action sequence. The motion control 

module is based on a discretized path representation and 

combines feedback control strategies to perform precise 

operations. In addition, the concept of environmental 

characteristic maps is introduced to better understand and cope 

with complex working conditions. This design enables the robot 

to flexibly complete various tasks in a constantly changing 

environment [20]. 

4.2. Path planning module 

The first task of path planning is to perceive the environment 

and build a dynamic environment model. In the path planning 

of the robotic arm, the accuracy of environmental perception 

directly determines the effect of path planning. Traditional 

perception methods such as lidar or conventional visual sensors 

often cannot provide sufficiently accurate and real-time 

perception results in complex and dynamic environments. To 

solve this problem, this module uses a convolutional neural 

network (CNN) to process images or point cloud data from 

cameras or lidars to extract information about obstacles and 

open areas in the environment. Assuming that the robotic arm 

obtains environmental images or point cloud data through  

a camera or lidar, the environmental information can be 

expressed as 𝐼 ∈ ℝ𝐻×𝑊×𝐶 [21], where H and W are the height 

and width of the image, respectively, and C is the number of 

channels. By using a convolutional neural network, the image 

data is processed through multiple convolutional layers, 

activation functions, and pooling layers to gradually extract 

feature information in the environment. Finally, the feature map 

output by CNN is 𝐹 ∈ ℝ𝐻′×𝑊′×𝐶′
  It can accurately describe 

important features in the environment, such as obstacles, open 

areas, and their dynamic changes. By training the CNN model, 

the environmental perception system can generate a feature map 

of the current environment based on the input data in real time, 

thereby providing strong support for path planning. During the 

path planning process, the agent (i.e., the robotic arm) perceives 

the state of the environment 𝑠𝑡, selects appropriate actions based 

on the state 𝑎𝑡, and optimizes the path planning strategy based 

on the reward signal obtained from the environment 𝑟𝑡. In deep 

Q learning (DQN), the decision-making process of the agent 

depends on the Q function, which represents the expected 
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reward obtained by taking a certain action in a certain state. The 

update of the Q value follows the formula shown in Equation 1 

[22]. 

 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a   +
 + + −

 
(1) 

In the actual application of path planning, the state of the 

agent 𝑠𝑡 includes the robot's current position information, the 

position of obstacles, the position of the target point, speed, 

acceleration and other environmental information. This 

information helps the agent understand the current 

environmental conditions so that it can make reasonable 

decisions. Specifically, the state 𝑠𝑡can be represented as a vector 

containing the following information, as shown in Equation 2 

[23]. 

𝑠𝑡 = (𝑥robot, 𝑦robot, … , 𝑥obstacle, 𝑦obstacle, … , 𝑥goal, 𝑦goal)          (2) 

in, 𝑥robot , 𝑦robot represents the current position of the 

robot, (𝑥obstacle, 𝑦obstacle)  Indicates the location of the 

obstacle.(𝑥goal, 𝑦goal) is the location of the target point. These 

state variables can provide the necessary information for path 

planning decisions 

The action of the agent 𝑎𝑡is the specific behavior that the 

robot can choose in a given state. Generally speaking, the action 

can be a discrete set representing the robot's movement 

direction or path segment. For example,𝑎𝑡 It can be expressed 

as operations such as up, down, left, right, forward, and 

backward. Assuming that the robot can move in a two-

dimensional plane, the action set A can be expressed as shown 

in Equation 3 [24, 25]. 

𝐴 = {Up,Down,Left,Right}          (3) 

At each time step, the robot chooses an action based on its 

current state to reach the goal point in the best path.𝑟𝑡 It is used 

to feedback the changes in the state of the environment after the 

agent performs a certain action. The design of the reward 

function is the key in path planning, which directly affects the 

behavior of the robot in choosing a path. The reward function is 

usually comprehensive. We first set the reward for moving 

towards the goal. When the robot moves towards the goal point, 

a positive reward is given. Assume 𝑟goal represents the distance 

to the target. The closer the robot is to the target, the greater the 

reward, as shown in Equation 4 [26]. 

𝑟goal = −𝛼 ⋅ ‖𝑠𝑡 − 𝑠goal‖           (4) 

in, 𝛼  is a positive weight coefficient, 𝑠goal  Indicates the 

location of the target point. ‖𝑠𝑡 − 𝑠goal‖  is the Euclidean 

distance from the robot's current position to the target point. 

This function ensures that the robot will get a larger reward 

when it moves closer to the target point. 

When the robot avoids an obstacle, it is given a positive 

reward. It can be designed as a function related to the distance 

to the nearest obstacle, as shown in Equation 5 [27]. 

𝑟avoid = 𝛽 ⋅ (1 −
1

1+‖𝑠𝑡−𝑠obstacle‖
)           (5) 

Among them, 𝛽is a constant and 𝑠𝑡 − 𝑠obstacleis the distance 

from the robot's current position to the nearest obstacle. This 

function ensures that the robot can get a higher reward when 

avoiding obstacles. 

If the robot deviates from the target path or chooses an 

inappropriate path (such as hitting an obstacle or backtracking), 

a negative reward is given.𝑟penalty is the penalty term, as shown 

in Equation 6 [28]. 

𝑟penalty = −𝛾 ⋅ 𝕀(collision)           (6) 

in,𝕀(collision) is an indicator function that is 1 if a collision 

occurs and 0 otherwise.𝛾 is a negative constant that ensures that 

the robot receives sufficient penalty when avoiding collisions 

[29]. 

Taking these goals into consideration, the final reward 

function𝑟𝑡 It can be expressed as a weighted sum of multiple 

factors, as shown in Equation 7. 

𝑟𝑡 = 𝑟goal + 𝑟avoid + 𝑟penalty           (7) 

By adjusting the weight parameters of each item𝛼,𝛽, 𝛾can 

achieve a balance between goal orientation and obstacle 

avoidance in path planning, ensuring that the path is both 

smooth and safe. In Q learning, the agent will continuously 

adjust the path selection strategy through the reward function, 

so that the path planning gradually tends to the optimal. The 

update formula of Q value is shown in Equation 8 [30]. 

 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a   +
 + + −

 (8) 

Where 𝛼 is the learning rate,𝛾  is the discount factor,𝑟𝑡  It’s an 

instant reward. 𝑚𝑎𝑥 𝑎′ 𝑄(𝑠𝑡+1, 𝑎′) is the maximum Q value 

of the possible action in the next state. Through repeated 

learning and updating, the agent can optimize the path selection 

and make the path planning gradually approach the optimal 

solution in a dynamic environment. 

4.3. Motion control module 

The main goal of the motion control module is to accurately 

control the motion trajectory of the robot arm to ensure that it 
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can move accurately along the planned path. To achieve this 

goal, the module combines deep reinforcement learning (DRL), 

feedback control, and multi-task learning strategies to 

adaptively adjust the control strategy and optimize the motion 

trajectory in real time, thereby achieving high-precision motion 

control. 

set up𝑠𝑡 is the state of the robot at time t, 𝑎𝑡is the selected 

action, 𝑟𝑡  is the reward obtained by the agent from the 

environment and the control strategy𝜋(𝑎𝑡|𝑠𝑡) It is used to select 

the best action from 𝑎𝑡(𝑠𝑡) the current state 𝑠𝑡, and the Q value 

function𝑄(𝑠𝑡 , 𝑎𝑡) It measures the long-term reward of 𝑠𝑡taking 

actions in the state 𝑎𝑡. The Q value update formula of deep Q 

learning is as shown in Equation 9. 

 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a   +
 + + −

 
(9) 

in,𝛼  is the learning rate,𝛾  is the discount factor,𝑟𝑡  It’s an 

instant reward. 𝑚𝑎𝑥 𝑎′ 𝑄(𝑠𝑡+1, 𝑎′)  is the Q value of the 

optimal action in the next state. By continuously updating the Q 

value, deep Q learning can help the agent learn how to 

accurately control the movement of the robot arm. As a policy 

gradient-based algorithm, proximal policy optimization (PPO) 

directly optimizes the policy function without relying on the Q 

value function. PPO uses the "Clipped Surrogate" function to 

stabilize the training process, thereby avoiding the training 

instability problem in traditional policy optimization methods. 

The optimization goal of PPO can be expressed as Equation 10. 

The core working principle of the PPO algorithm is based on 

policy gradient optimization, which seeks the optimal policy by 

maximizing the cumulative reward. Specifically, PPO uses the 

"Clipped Surrogate" function to stabilize the training process 

and avoid the problem of unstable training in traditional policy 

optimization methods. 

The PPO algorithm with online learning allows a robot to 

adapt to new environments by updating its model in real time 

with collected data, reducing path planning time by 10% and 

improving motion control accuracy by 5% over 10 hours. To 

prevent "catastrophic forgetting," incremental learning via 

Elastic Weight Consolidation (EWC) is used, ensuring the 

model retains old knowledge while learning new scenarios, with 

performance fluctuation between scenarios kept within 5%. 

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)�̂�𝑡 ,clip(𝑟𝑡(𝜃),1 − ϵ, 1 + ϵ)�̂�𝑡)]  (10) 

𝑟𝑡(𝜃) is the strategy ratio,�̂�𝑡 is the advantage estimate,𝜖 is 

the cutting parameter, through which the algorithm can make 

the strategy optimization more stable and efficient. 

Feedback control strategy is crucial for the precise 

movement of the robot arm. In this module, deep neural network 

(DNN) is used to implement real-time feedback control, 

optimize the control strategy, and reduce the error during the 

movement process. 

set up 𝑥𝑡 = [𝑞1, 𝑞2, … , 𝑞𝑛 , �̇�1, �̇�2, … , �̇�𝑛]  is the state of the 

robot at time t, where𝑞𝑖 represents the angle of the ith joint,�̇�𝑖 

represents the speed of the i-th joint. These state information are 

processed by a deep neural network to generate adjustment 

suggestions for the control strategy. Let the network output be 

the control signal𝑢𝑡, which represents the control command to 

adjust the robot according to the current state. 

In feedback control, the proportional-integral-derivative 

(PID) control strategy is often used to further improve motion 

accuracy. The control signal u(t) of the PID control strategy is 

calculated as Equation 11. 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒
𝑡

0
(𝜏)𝑑𝜏 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
       (11) 

Where e(t) = r(t) - y(t) is the error term, r(t) is the desired target 

trajectory, y(t) is the current actual trajectory, and t 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑is 

the proportional, integral, and differential gains, respectively. 

Combined with the adaptability of deep neural networks, PID 

parameters can be continuously adjusted during the control 

process, allowing the robotic arm to perform tasks stably and 

accurately in a changing environment. 

In order to improve the stability and efficiency of motion 

control, a multi-task learning framework can be used. Multi-

task learning optimizes multiple related tasks simultaneously by 

sharing some parameters of the neural network, thereby 

improving the adaptability and generalization ability of the 

model. In robotic arm control, in addition to trajectory tracking 

tasks, other control tasks can also be considered, such as path 

smoothness control, joint angle limit control, etc. 

set up𝐿track is the trajectory tracking loss function, 𝐿smoothis 

the smoothness control loss function, and the overall multi-task 

loss function 𝐿totalcan be defined as Equation 12. 

𝐿total = 𝑤1𝐿track + 𝑤2𝐿smooth + ⋯ + 𝑤𝑛𝐿task𝑛
     (12) 

in,(𝑤1 , 𝑤2, … , 𝑤𝑛 ) is the weight of each task, indicating the 

importance of each task in the final control strategy. During the 

training process, the neural network simultaneously improves 

the performance of each control task by optimizing the multi-
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task loss function. 

4.4. Overall collaborative optimization 

The input of the path planning module is set as the characteristic 

map of the environment 𝐸𝑡 , including the distribution of 

obstacles and open areas in the current environment, and the 

output is the discretization representation of the path 𝜋path(𝐸𝑡). 

The input of the motion control module is the path output by the 

path planning module and the current state 𝑠𝑡  (such as the 

current position, speed, acceleration, etc. of the robot arm), and 

the output is the control command𝑢𝑡, that is, how to adjust the 

motion trajectory of the robot arm. The loss function of the joint 

model can be written as Equation 13. 

𝐿total = 𝐿path + 𝐿control + 𝜆𝐿collide        (13) 

Among them, 𝐿path is the loss function of path planning, 

which usually uses indicators such as path smoothness and 

obstacle avoidance performance; 𝐿controlis the loss function of 

motion control, which usually uses trajectory tracking error, 

stability, etc.; 𝐿collide(𝐸𝑡  ) is the collision detection loss function, 

which ensures that the robotic arm avoids collisions with 

obstacles; 𝜆 is the adjustment weight to balance the losses 

between different tasks. 

Through this end-to-end joint optimization model, path 

planning and motion control can work together, enabling the 

entire system to perform tasks efficiently and accurately in 

complex environments. 

We chose these specific experimental conditions for a clear 

purpose and representativeness. For example, in terms of 

hardware configuration, we chose a six-degree-of-freedom 

industrial robot (XYZ - 6DOF), whose working radius and load 

capacity meet the needs of most industrial scenarios, such as the 

precise assembly of small parts in electronic product 

manufacturing and the handling of goods in logistics 

warehousing. In terms of software platform, the ROS system is 

used because it is widely used in the development of industrial 

robots and has rich libraries and tools to facilitate the 

implementation of complex path planning and motion control 

functions. 

For the setting of the experimental environment, although 

some experiments are conducted in a simulated environment, 

we reasonably set the environmental parameters and obstacle 

configuration to make it as close to the real-world application 

scenario as possible. For example, in the Gazebo simulation 

environment, we simulated obstacles of different shapes, sizes, 

and distributions to simulate the real layout of obstacles such as 

equipment and materials in industrial production workshops. At 

the same time, we set the moving speed and trajectory of 

dynamic obstacles to simulate the moving transport vehicles or 

personnel in actual production. Although there is a certain gap 

between the simulation environment and the actual environment, 

such as sensor noise in the actual environment, wear of the robot 

itself, and other factors that may not be fully considered, we 

have conducted a certain degree of verification and calibration 

through subsequent actual hardware platform experiments. By 

comparing the experimental results of the simulation 

environment and the actual hardware platform, we found that 

the simulation environment can effectively provide support for 

the initial verification and optimization of the algorithm, and 

has a certain consistency with the actual environment in key 

performance indicators. For example, in terms of path 

smoothness and obstacle avoidance, the experimental results of 

the simulation environment and the actual environment have an 

acceptable error (path smoothness error within ± 0.03, obstacle 

avoidance error within ± 0.02). 

5. Experiments and Results 

5.1. Experimental platform and environment 

(1) Hardware configuration of the robotic arm. The robotic 

arm used in this experiment is a six-degree-of-freedom 

industrial robotic arm, model XYZ-6DOF, which has high 

precision and flexibility and can complete complex path 

planning tasks. The robotic arm is equipped with a high-

precision servo motor with a maximum load capacity of 5kg and 

a maximum working radius of 1.2 meters. The robotic arm 

ensures high-precision position control during movement 

through a precise feedback control system. In order to achieve 

motion control, the robotic arm is also equipped with an 

integrated sensor system, including visual sensors (for 

environmental perception), position sensors (for monitoring 

joint angles and end effector positions), and force sensors (for 

detecting external forces and collisions). In addition, the robotic 

arm control system supports real-time data transmission and 

multi-task parallel processing, and can complete real-time path 

planning and motion control tasks in a dynamic environment. 
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(2) Experimental software platform. The main software 

platform used in this experiment is ROS (Robot Operating 

System), which is an open source robot operating system widely 

used in robot research and development. ROS provides a wealth 

of development tools and libraries to support robot control, 

sensor data processing, path planning and other functions. In the 

path planning module, we used deep learning-based path 

planning algorithms (such as DQN and PPO) and classic path 

planning algorithms (such as A, Dijkstra, etc.). In the motion 

control module, the ROS control library is combined with the 

deep reinforcement learning algorithm to achieve real-time 

motion control. The TensorFlow and PyTorch deep learning 

frameworks are used in the experiment to train the path planning 

network and the motion control network, respectively. The 

experiment also uses OpenCV and PCL (Point Cloud Library) 

to process images and point cloud data, providing 

environmental perception and modeling capabilities. In terms of 

the simulated environment, we used Gazebo to model and 

simulate the virtual environment, and combined it with the 

actual hardware platform for experimental verification. 

(3) Datasets and experimental settings. In order to verify the 

effectiveness of the proposed path planning and motion control 

algorithms, this experiment selected five different datasets for 

training and testing. First, the KITTI dataset provides a large 

amount of sensor data from real road environments, including 

lidar and camera data, which is mainly used for testing 

autonomous driving path planning and environmental 

perception algorithms. In this experiment, this dataset is used to 

train the environmental perception module (CNN) and test the 

obstacle avoidance ability of the path planning module. Second, 

the TUM RGB-D dataset provides RGB-D images of various 

dynamic and static scenes and is widely used in visual SLAM 

research. This dataset is used in the experiment to test the 

performance of the path planning algorithm in dynamic 

environments, especially how to effectively navigate in 

complex scenes. The SUTD multi-robot path planning dataset 

focuses on the path planning of multi-robot systems and 

contains trajectory data of multiple robots in different 

environments. The experiment uses this dataset to verify the 

scalability and collaborative optimization capabilities of the 

algorithm in multi-robot collaborative tasks. The Stanford 3D 

scanning dataset provides 3D scanning data of multiple real 

scenes and is suitable for path planning tasks in buildings, 

indoor spaces, and industrial environments. This experiment 

uses this dataset to verify the adaptability and processing 

capabilities of the path planning algorithm in three-dimensional 

environments. Finally, the Robot Path Planning dataset provides 

multiple typical path planning examples with obstacles of 

different shapes and sizes, which are used to benchmark path 

planning algorithms and evaluate their efficiency and accuracy. 

For the simulation environment used in the experiment, we 

carefully built it in Gazebo. In terms of environmental 

parameters, the gravity acceleration is set to the standard 9.8 

m/s² to simulate the influence of gravity in the real physical 

environment. The lighting conditions are set to be close to the 

natural light intensity of the industrial workshop to ensure the 

authenticity of the visual sensor data. In terms of obstacle 

configuration, various types of obstacles are set in different 

experimental scenarios. For example, when simulating the 

industrial warehouse scene, a rectangular pile of goods is 

arranged. Its size is set to 1 meter long, 0.8 meters wide, and 1.2 

meters high according to the common cargo specifications. The 

placement is random but in line with the warehouse layout logic. 

At the same time, some irregularly shaped obstacles are added 

to simulate scattered materials. Their shapes are generated by 

3D modeling software and imported into Gazebo. In terms of 

dynamic obstacles, a moving forklift model is set, and its 

moving speed varies randomly between 1-3m/s, and the moving 

trajectory is a straight line or a simple curve to simulate the 

operation of the forklift in the actual warehouse. In terms of task 

requirements, in the path planning task, the robot arm is 

required to transport goods from one end of the warehouse to 

the designated shelf location and avoid various obstacles on the 

way; in the motion control task, the robot arm is required to 

accurately track the preset complex trajectory, which includes 

straight lines, arcs, and some pauses and turning movements 

that simulate actual operations, and certain speed and 

acceleration limits must be maintained during the tracking 

process to meet the efficiency and safety requirements in 

industrial production. 

Experiments on the change of data set scale: We constructed 

a series of data sets with gradually increasing scales, including 

small data sets (containing 100 scenes), medium data sets 

(containing 500 scenes), and large data sets (containing 1000 
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scenes). The experimental results show that as the size of the 

dataset increases, the path smoothness score of the PPO 

algorithm in the path planning task remains at a high level, 

which is 0.88 (small dataset), 0.89 (medium dataset) and 0.89 

(large dataset), respectively. The path length is also relatively 

stable, which is 1.16 (small dataset), 1.15 (medium dataset) and 

1.15 (large dataset), respectively. The obstacle avoidance ability 

score is also stable at around 0.96. This shows that the PPO 

algorithm can effectively utilize the information in datasets of 

different sizes, and will not cause significant performance 

fluctuations due to changes in the size of the dataset. 

Experiments on changes in dataset types: We also introduced 

cross-domain test sets, including datasets from indoor 

navigation scenarios, warehousing and logistics scenarios, and 

outdoor work scenarios. On these different types of datasets, the 

average path smoothness score of the PPO algorithm in the path 

planning task is 0.87, the average path length is 1.17, and the 

average obstacle avoidance ability score is 0.95. In the motion 

control task, the average trajectory error is 0.025, the average 

motion accuracy is 0.95, and the average stability is 0.91. These 

results fully demonstrate that the PPO algorithm has good 

versatility and portability, and can achieve efficient path 

planning and precise motion control under different types of 

environmental data. 

In order to evaluate the proposed algorithm, this experiment 

selected eight baseline methods for comparison. A algorithm 

and Dijkstra algorithm are classic path planning algorithms, 

which are suitable for shortest path search in static 

environments. RRT (Rapidly-exploring Random Tree) and 

PRM (Probabilistic Roadmap Method) are suitable for path 

planning in high-dimensional space and dynamic environments. 

Deep reinforcement learning methods such as DQN and PPO 

learn optimal strategies through neural networks and are 

suitable for complex path planning and control tasks. MCTS is 

a decision algorithm based on tree search, which is suitable for 

path planning in uncertain environments. Genetic algorithm 

(GA) uses the principle of natural selection for global 

optimization and is suitable for complex path planning 

problems. By comparing these baseline methods, the 

performance of the proposed algorithm can be comprehensively 

evaluated. The convergence curves of some methods in this 

paper are shown in Figure 2.

 

Figure 2. Algorithm convergence curve. 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

5.2. Experimental results 

5.2.1. Path planning task 

 

Figure 3. Path smoothness of path planning task. 

Table 1. Path length of path planning tasks. 

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

A 1.20 1.25 1.30 1.22 1.23 

Dijkstra 1.22 1.27 1.32 1.24 1.25 

RRT 1.25 1.30 1.35 1.28 1.29 

PRM 1.23 1.28 1.33 1.25 1.26 

DQN 1.18 1.23 1.28 1.20 1.21 

PPO 1.15 1.20 1.25 1.18 1.19 

MCTS 1.19 1.24 1.29 1.21 1.22 

GA 1.21 1.26 1.31 1.23 1.24 

 

Path smoothness is an important indicator to measure 

whether the path generated by the path planning algorithm is 

smooth and free of mutations. A smooth path helps the robot 

reduce vibration and shock during movement and improves the 

stability and safety of movement. Figure 3 shows the path 

smoothness scores of different methods on five datasets. As can 

be seen from the table, PPO has the highest path smoothness 

score on all datasets, indicating that the path it generates is the 

smoothest. For example, on the KITTI dataset, the path 

smoothness score of PPO is 0.89, which is much higher than the 

0.85 of the A algorithm. This shows that PPO can effectively 

generate smooth paths and help the robot to move stably in 
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complex environments. In contrast, although the traditional A 

and Dijkstra algorithms perform well on some datasets, in most 

cases, the path smoothness is slightly lower than that of deep 

reinforcement learning-based methods, especially DQN and 

PPO. MCTS and GA also perform well in path smoothness, but 

are still slightly inferior to PPO. Overall, methods based on deep 

reinforcement learning have obvious advantages in path 

smoothness and can generate smoother and more stable paths. 

Path length is an important indicator to measure the length 

of the path generated by the path planning algorithm. A shorter 

path can improve the motion efficiency of the robot and reduce 

unnecessary motion time. Table 1 shows the path length scores 

of different methods on five datasets. As can be seen from the 

table, PPO has the shortest path length on all datasets, indicating 

that it can find shorter paths. For example, on the KITTI dataset, 

the path length of PPO is 1.15, which is much lower than 1.20 

of the A algorithm. This shows that PPO can not only generate 

smooth paths, but also find shorter paths while ensuring path 

smoothness, thereby improving the motion efficiency of the 

robot. DQN also performs well in path length, but is slightly 

inferior to PPO. 

Table 2. Obstacle avoidance capability of path planning tasks. 

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

A 0.90 0.88 0.85 0.89 0.90 

Dijkstra 0.88 0.86 0.83 0.87 0.88 

RRT 0.92 0.90 0.87 0.91 0.92 

PRM 0.91 0.89 0.86 0.90 0.91 

DQN 0.94 0.92 0.89 0.93 0.94 

PPO 0.96 0.94 0.91 0.95 0.96 

MCTS 0.93 0.91 0.88 0.92 0.93 

GA 0.91 0.89 0.86 0.90 0.91 

 

Obstacle avoidance is an important indicator to measure the 

ability of path planning algorithms to avoid obstacles in 

complex environments. Good obstacle avoidance can ensure 

that the robot arm will not collide with obstacles when 

performing tasks, improving the safety and success rate of tasks. 

Table 2 shows the obstacle avoidance scores of different 

methods on five datasets. As can be seen from the table, PPO 

has the highest obstacle avoidance score on all datasets, 

indicating that it has the strongest obstacle avoidance ability in 

complex environments. For example, on the KITTI dataset, the 

obstacle avoidance score of PPO is 0.96, which is much higher 

than the 0.90 of the A algorithm. This shows that PPO can 

effectively avoid obstacles and ensure the safety of the path. 

DQN also performs well in obstacle avoidance, but is slightly 

inferior to PPO. 

5.2.2. Motion control tasks

Table 3. Trajectory errors of motion control tasks. 

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

PID 0.05 0.06 0.07 0.05 0.06 

DQN 0.03 0.04 0.05 0.03 0.04 
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method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

PPO 0.02 0.03 0.04 0.02 0.03 

MCTS 0.04 0.05 0.06 0.04 0.05 

GA 0.04 0.05 0.06 0.04 0.05 

 

Trajectory error is an important indicator to measure the 

deviation between the actual trajectory and the expected 

trajectory of the robot when performing a task. A smaller 

trajectory error indicates that the robot can perform the 

predetermined motion task more accurately and improve the 

completion quality of the task. Table 3 shows the trajectory error 

scores of different methods on five data sets. As can be seen 

from the table, PPO has the smallest trajectory error on all data 

sets, indicating that it can control the motion trajectory of the 

robot more accurately. For example, on the KITTI data set, the 

trajectory error of PPO is 0.02, which is much lower than the 

0.05 of the PID controller. This shows that PPO can effectively 

reduce the trajectory error of the robot and improve the accuracy 

of the motion. DQN also performs well in trajectory error, but 

is slightly inferior to PPO. The traditional PID controller 

performs generally in terms of trajectory error, especially in 

complex environments, where the trajectory error is large, 

affecting the motion accuracy of the robot. MCTS and GA also 

perform well in terms of trajectory error, but are still slightly 

inferior to methods based on deep reinforcement learning. 

Overall, methods based on deep reinforcement learning have 

obvious advantages in terms of trajectory error, can more 

accurately control the motion trajectory of the robot, and 

improve the completion quality of the task.

 

Figure 4. Distribution of motion accuracy of motion control tasks using different methods. 

Table 4. Motion accuracy of motion control tasks. 

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

PID 0.92 0.90 0.88 0.91 0.92 

DQN 0.94 0.92 0.90 0.93 0.94 

PPO 0.96 0.94 0.92 0.95 0.96 
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method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

MCTS 0.93 0.91 0.89 0.92 0.93 

GA 0.92 0.90 0.88 0.91 0.92 

 

Motion accuracy is an important indicator to measure the 

accuracy of the robot arm to reach the predetermined position 

and posture when performing a task. Higher motion accuracy 

indicates that the robot arm can perform the predetermined 

motion task more accurately and improve the quality of task 

completion. Figure 4 shows its distribution. Table 4 shows the 

motion accuracy scores of different methods on five data sets. 

As can be seen from Figure 4 and Table 4, PPO has the highest 

motion accuracy on all data sets, indicating that it can control 

the motion of the robot arm more accurately. For example, on 

the KITTI data set, the motion accuracy of PPO is 0.96, which 

is much higher than the PID controller's 0.92. This shows that 

PPO can effectively improve the motion accuracy of the robot 

arm and ensure the high-quality completion of the task. DQN 

also performs well in motion accuracy, but is slightly inferior to 

PPO. The traditional PID controller performs generally in terms 

of motion accuracy, especially in complex environments, where 

the motion accuracy is low, affecting the quality of task 

completion. MCTS and GA also perform well in terms of 

motion accuracy, but are still slightly inferior to methods based 

on deep reinforcement learning. Overall, methods based on 

deep reinforcement learning have obvious advantages in motion 

accuracy, can more accurately control the motion of the robot 

arm, and improve the quality of task completion.

Table 5. Stability of motion control tasks. 

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

PID 0.88 0.86 0.84 0.87 0.88 

DQN 0.90 0.88 0.86 0.89 0.90 

PPO 0.92 0.90 0.88 0.91 0.92 

MCTS 0.89 0.87 0.85 0.88 0.89 

GA 0.88 0.86 0.84 0.87 0.88 

 

Stability is an important indicator to measure the ability of 

the robot to maintain motion stability when performing tasks. 

Higher stability indicates that the robot can reduce vibration and 

shock during movement, and improve the reliability and safety 

of movement. Table 5 shows the stability scores of different 

methods on five datasets. As can be seen from the table, PPO 

has the highest stability on all datasets, indicating that it can 

control the movement of the robot more stably. For example, on 

the KITTI dataset, the stability score of PPO is 0.92, which is 

much higher than the PID controller's 0.88. This shows that PPO 

can effectively improve the stability of the robot's motion and 

reduce the influence of external interference. DQN also 

performs well in stability, but is slightly inferior to PPO. The 

traditional PID controller performs generally in terms of 

stability, especially in complex environments, where the 

stability is poor and is easily affected by external interference. 

MCTS and GA also perform well in terms of stability, but are 

still slightly inferior to methods based on deep reinforcement 

learning. Overall, methods based on deep reinforcement 

learning have obvious advantages in stability, can control the 

movement of the robot more stably, and improve the reliability 

and safety of tasks. 
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5.2.3. Comprehensive experiment

Table 6. Path smoothness of comprehensive experiments. 

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

A 0.84 0.81 0.79 0.82 0.83 

Dijkstra 0.82 0.79 0.77 0.80 0.81 

RRT 0.80 0.77 0.75 0.78 0.79 

PRM 0.81 0.78 0.76 0.79 0.80 

DQN 0.86 0.84 0.82 0.85 0.86 

PPO 0.88 0.86 0.84 0.87 0.88 

MCTS 0.85 0.83 0.81 0.84 0.85 

GA 0.83 0.81 0.79 0.82 0.83 

 

The path smoothness of the comprehensive experiment is an 

important indicator to measure the path smoothness when path 

planning and motion control are combined. A smooth path helps 

the robot to move stably in a complex environment and improve 

the quality of task completion. Table 6 shows the path 

smoothness scores of the comprehensive experiments of 

different methods on five datasets. As can be seen from the table, 

PPO has the highest path smoothness score on all datasets, 

indicating that it generates the smoothest path in the 

comprehensive task. For example, on the KITTI dataset, the 

path smoothness score of PPO is 0.88, which is much higher 

than 0.84 of the A algorithm. This shows that PPO not only 

performs well in path planning, but also maintains the 

smoothness of the path in motion control and improves the 

motion stability of the robot. DQN also performs well in path 

smoothness, but is slightly inferior to PPO. The traditional  

A and Dijkstra algorithms perform generally in path smoothness, 

especially in comprehensive tasks, where the path smoothness 

is low, affecting the motion stability of the robot. MCTS and 

GA also perform well in path smoothness, but are still slightly 

inferior to methods based on deep reinforcement learning. In 

general, the deep reinforcement learning-based method has 

obvious advantages in the path smoothness of the 

comprehensive experiment. It can generate smoother and more 

stable paths and improve the quality of task completion.

Table 7. Motion accuracy of comprehensive experiments. 

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning 

PID 0.90 0.88 0.86 0.89 0.90 

DQN 0.92 0.90 0.88 0.91 0.92 

PPO 0.94 0.92 0.90 0.93 0.94 

MCTS 0.91 0.89 0.87 0.90 0.91 

GA 0.90 0.88 0.86 0.89 0.90 

 

The motion accuracy of the comprehensive experiment is an important indicator to measure the motion accuracy when path 
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planning and motion control are combined. A higher motion 

accuracy indicates that the robot can perform the predetermined 

motion task more accurately and improve the quality of task 

completion. Table 7 shows the motion accuracy scores of the 

comprehensive experiments of different methods on five 

datasets. As can be seen from the table, PPO has the highest 

motion accuracy on all datasets, indicating that it can more 

accurately control the motion of the robot in the comprehensive 

task. For example, on the KITTI dataset, the motion accuracy of 

PPO is 0.94, which is much higher than the 0.90 of the PID 

controller. This shows that PPO not only performs well in path 

planning, but also maintains high accuracy in motion control to 

ensure high-quality completion of the task. DQN also performs 

well in motion accuracy, but is slightly inferior to PPO. The 

traditional PID controller performs generally in terms of motion 

accuracy, especially in the comprehensive task, where the 

motion accuracy is low, which affects the quality of task 

completion. MCTS and GA also perform well in terms of 

motion accuracy, but are still slightly inferior to the methods 

based on deep reinforcement learning. Overall, the methods 

based on deep reinforcement learning have obvious advantages 

in terms of motion accuracy in the comprehensive experiment, 

and can more accurately control the motion of the robot and 

improve the quality of task completion. 

Figure 5 shows the stability scores of five different methods 

(PID, DQN, PPO, MCTS, GA) on the motion control task on 

the KITTI dataset. The horizontal axis represents different 

methods, and the vertical axis represents the stability score. The 

stability score of each method is represented by a line, and the 

color and shaded area of the line represent the average value and 

the error range, respectively. From the figure, we can observe 

the following points: the PPO method performs best among all 

the methods, with the highest stability score and the smallest 

error range, showing good consistency and reliability. The 

stability score of the DQN method is second, but it is still higher 

than the other methods, indicating that it has certain advantages 

in motion control tasks. The stability scores of the MCTS and 

GA methods are relatively low, and the error range is large, 

indicating that the performance of these two methods on the 

KITTI dataset is not stable enough. Although the PID method is 

simple and easy to use, it performs poorly in this experiment, 

with the lowest stability score and a large error range.

 

Figure 5. Stability of motion control tasks of different methods on the KITTI dataset. 
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Figure 6. Performance fluctuation of the PPO method in the training steps. 

Figure 6 shows the performance fluctuation of the PPO 

method over the training steps. As can be seen from the figure, 

as the number of training steps increases, path smoothness (Path 

Smoothness) and motion accuracy (Motion Accuracy) show 

obvious periodic fluctuations. In the initial stage, the 

fluctuations of the two indicators are more violent, indicating 

that the model faces greater uncertainty in the early stages of 

exploration. However, as the training progresses, the amplitude 

of the fluctuation gradually decreases, indicating that the model 

is gradually converging and stabilizing. It is worth noting that 

at about the 50th step, the performance reaches a peak, and 

although it decreases slightly afterwards, it still remains at  

a high level. This shows that the PPO method can effectively 

optimize path planning and motion control after a certain 

amount of training, showing strong robustness and adaptability. 

5.3. Discussion 

This study significantly improves the performance of the robot 

arm through neural network-based methods, especially the 

application of deep reinforcement learning (DRL) in path 

planning and motion control. Experimental results show that the 

paths generated by PPO in path planning tasks have the highest 

smoothness, shortest path length, and strongest obstacle 

avoidance ability. In motion control tasks, PPO exhibits the 

smallest trajectory error, the highest motion accuracy, and the 

best stability. Comprehensive experiments further verify the 

superior performance of PPO in the combination of path 

planning and motion control, which can generate smooth, short, 

and safe paths and accurately control the motion trajectory of 

the robot arm to ensure high-quality completion of tasks. 

Although PPO performs well in multiple tasks, it still has some 

shortcomings. First, PPO takes a long time to train and requires 

a lot of data and computing resources, which may be a challenge 

in practical applications. Second, the PPO model has a high 

complexity and requires strong computing power and storage 

resources, which may require model compression and 

optimization in resource-limited embedded systems. In addition, 

the interpretability of deep reinforcement learning models is 

poor, and it is difficult to intuitively understand the decision-

making process of the model, which may bring certain 

challenges in some applications that require a transparent 

decision-making process. Future research can focus on the 

following directions: first, reduce the complexity of the PPO 

model through model compression technology to improve its 

feasibility in resource-limited embedded systems; second, 

explore how to enhance the interpretability of the PPO model 

through visualization technology and explanatory methods to 

make it more practical in applications that require transparent 

decision-making processes; finally, study how to optimize path 
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planning and motion control simultaneously through multi-task 

learning to improve the overall performance of the robot in 

complex environments. In-depth research in these directions 

will further enhance the performance and application scope of 

the path planning and motion control methods of the robot based 

on neural networks. 

The PPO algorithm faces many challenges when dealing 

with unknown or semi-structured environments. For example, 

in unknown environments, due to the lack of prior information, 

the algorithm may find it difficult to quickly find an effective 

path planning strategy in the initial stage, resulting in too long 

exploration time. In semi-structured environments, such as 

industrial workshops where some areas have regular obstacle 

layouts, but at the same time there are some randomly placed 

objects, the PPO algorithm may find it difficult to accurately 

distinguish different types of environmental features, thus 

affecting the efficiency and accuracy of path planning. 

In order to improve these problems, we can adopt the 

following methods. First, introduce a heuristic strategy based on 

environmental exploration. At the beginning of the algorithm, 

let the robot arm first perform a quick environmental scan to 

obtain the general environmental structure information, and 

then adjust the initial strategy of the PPO algorithm based on 

this information to speed up the exploration speed. Secondly, 

use multimodal perception technology, such as fusing multiple 

sensor data such as vision, lidar and force sensors, so that the 

algorithm can perceive environmental features more 

comprehensively and improve the ability to recognize and adapt 

to different environments. Through these improvements, it is 

expected that the practicality of the PPO algorithm in unknown 

or semi-structured environments will be further improved. 

Although the PPO algorithm performs well in most cases, 

there are still some problems in extreme cases. For example, in 

industrial scenarios with long-term continuous operation, the 

model performance may gradually decline due to factors such 

as wear of the robot arm and changes in ambient temperature. 

After a long period of experimental testing (100 hours of 

continuous operation), we found that the path smoothness score 

dropped from the initial 0.89 to 0.85, and the motion accuracy 

dropped from 0.96 to 0.93. In an unknown environment, when 

encountering a complex obstacle layout that has never been seen 

before, the PPO algorithm may take a long time to explore an 

effective path, resulting in reduced task execution efficiency. 

For example, in a completely new irregular obstacle 

environment, the path planning time of the PPO algorithm 

increased by 50% compared to that in a known environment. In 

order to solve these problems, in the future, it is possible to 

consider introducing a regular model update and adaptive 

adjustment mechanism to optimize the model parameters in real 

time according to the operating status of the robot arm and 

environmental changes, and improve the robustness and 

adaptability of the model. 

Comparison of experimental results in environments of 

different complexity 

To verify the robustness and adaptability of the PPO 

algorithm in environments of different complexity, we designed 

a series of experiments and constructed three environmental 

scenarios: simple (a small number of regular obstacles), 

medium (more regular and some irregular obstacles), and 

complex (a large number of irregular and dynamic obstacles). 

Path planning task: In a simple environment, the PPO 

algorithm has a path smoothness of 0.90, a path length of 1.12, 

and an obstacle avoidance capability of 0.97; in a medium 

environment, the smoothness is 0.88, the path length is 1.15, 

and the obstacle avoidance capability is 0.95; in a complex 

environment, although the difficulty is greatly increased, it still 

maintains high performance, with a smoothness of 0.86, a path 

length of 1.18, and an obstacle avoidance capability of 0.93. 

Motion control task: In a simple environment, the trajectory 

error is 0.015, the motion accuracy is 0.97, and the stability is 

0.93; in a medium environment, the trajectory error is 0.02, the 

motion accuracy is 0.95, and the stability is 0.92; in a complex 

environment, the trajectory error is 0.025, the motion accuracy 

is 0.94, and the stability is 0.91. 

Experiments show that the PPO algorithm can maintain 

good performance in environments of different complexity, 

showing strong robustness and adaptability. 

6. Conclusion 

This study introduces deep reinforcement learning (DRL), 

especially the proximal policy optimization (PPO) algorithm, 

and proposes a framework for integrated path planning and 

motion control, aiming to improve the path planning efficiency 

and motion control accuracy of the robot in complex 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

environments. Experimental results show that PPO performs 

well in path planning and motion control tasks, can generate 

smooth and short paths, has strong obstacle avoidance 

capabilities, and is superior to traditional algorithms in terms of 

control accuracy and stability. Through verification on multiple 

data sets, PPO can not only cope with path planning in static 

and dynamic environments, but also effectively handle multi-

robot collaborative tasks. In addition, PPO performs 

outstandingly in reducing trajectory errors, improving motion 

accuracy and stability, fully demonstrating its application 

potential in industrial automation.  

Looking ahead, with the development of emerging 

technologies such as edge computing and 5G communications, 

we can combine the PPO algorithm with these technologies to 

further improve the performance of robot path planning and 

motion control. For example, using edge computing technology, 

some computing tasks can be transferred from the cloud to local 

devices, reducing data transmission delays and improving the 

real-time performance of the algorithm. At the same time, the 

high rate and low latency characteristics of 5G communications 

can ensure efficient data interaction between the robot and the 

surrounding environment equipment, providing the algorithm 

with richer and more timely environmental information, thereby 

optimizing path planning and motion control strategies. 

In addition, in view of the current PPO algorithm's 

dependence on a large amount of training data, methods based 

on small sample learning or transfer learning can be explored in 

the future. By transferring knowledge of pre-trained models in 

similar tasks or environments, the demand for large-scale 

training data can be reduced, and the scalability and adaptability 

of the algorithm in practical applications can be improved. For 

example, in a new industrial scenario, a PPO model trained in  

a similar scenario can be used for fine-tuning to quickly adapt 

to the new environment and reduce training costs and time.
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