

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

Path Planning and Motion Control of Robotic Arm Based on Neural Network

Indexed by:

Xiaoqing Zhoua,*, Zhimin Wana

a School of Mechanical Engineering, Nantong Vocational University, China

Highlights Abstract

▪ Introducing proximal policy optimization

(PPO) algorithm.

▪ Proposing a framework for integrated path

planning and motion control.

▪ PPO is superior to traditional algorithms in

terms of control accuracy and stability.

 This paper studies the path planning and motion control method of the

robot arm based on neural network, aiming to improve the path planning

efficiency and motion control accuracy of the robot arm in complex

environments. By introducing the deep reinforcement learning (DRL)

method, especially the proximal policy optimization (PPO), this paper

proposes a framework for integrated path planning and motion control.

Experimental results show that the path generated by PPO in the path

planning task has the highest smoothness, the shortest path length and

the strongest obstacle avoidance ability. In the motion control task, PPO

exhibits the smallest trajectory error, the highest motion accuracy and

the best stability. Comprehensive experiments further verify the superior

performance of PPO in the combination of path planning and motion

control, which can generate smooth, short and safe paths, and accurately

control the motion trajectory of the robot arm to ensure the high-quality

completion of the task.

 Keywords

This is an open access article under the CC BY license

(https://creativecommons.org/licenses/by/4.0/)

robotic arm, path planning, motion control, deep reinforcement learning,

proximal policy optimization (PPO)

1. Introduction

With the continuous development of industrial automation,

robotic arms, as core equipment in industrial production, are

widely used in various fields, including manufacturing,

assembly, welding, painting, etc. Through precise motion

control, robotic arms have replaced a large amount of manual

labor and improved production efficiency and quality. In

traditional industrial production, path planning and motion

control of robotic arms have always been the key factors to

achieve efficient operation. Traditional path planning methods

mainly rely on geometric algorithms and physical modeling.

Although they can meet the needs of some simple tasks, they

often show great limitations for complex and multi-degree-of-

freedom robotic arm path planning, especially in dynamically

changing environments. Traditional path planning methods,

such as the A algorithm based on heuristic search, can generate

reasonable paths, but they are inefficient and have limited

accuracy when dealing with complex obstacles, dynamic

environments and nonlinear constraints. At the same time, the

motion control of robotic arms usually relies on classical control

theories, such as PID control or robust control, but these

methods have certain shortcomings when facing complex and

changeable control tasks, especially in terms of real-time

Eksploatacja i Niezawodnosc – Maintenance and Reliability
Volume 27 (2025), Issue 4

journal homepage: http://www.ein.org.pl

Article citation info:

Zhou X, Wan Z, Path Planning and Motion Control of Robotic Arm Based on Neural Network, Eksploatacja i Niezawodnosc –
Maintenance and Reliability 2025: 27(4) http://doi.org/10.17531/ein/205794

(*) Corresponding author.
E-mail addresses:

X. Zhou, xiaoqing_zhou@outlook.com, Z. Wan, zhimin_wan@outlook.com ,

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

adjustment and adaptability.

In recent years, with the rapid development of artificial

intelligence, especially deep learning and neural network

technology, neural networks have shown great potential in the

field of path planning and motion control. Neural networks can

autonomously discover the best path planning strategy by

learning a large amount of historical data and environmental

information, and solve the limitations of traditional methods in

dynamic environments. In particular, neural networks have very

powerful capabilities in dealing with nonlinear constraints, real-

time reactions, and high-dimensional spaces. Therefore,

combining the path planning and motion control methods of

neural networks provides new ideas and possibilities for

efficient and precise control of robotic arms.

Robotic arm path planning and motion control have always

been a research hotspot in the field of robotics, especially in

industrial automation. With the continuous development of

technology, path planning and motion control methods have

gradually changed from traditional physical model-based

algorithms to more intelligent methods.

Traditional path planning and motion control methods

usually rely on geometric algorithms, mathematical models, and

optimization algorithms. For example, the classic A algorithm

and Dijkstra algorithm are widely used for path planning in

static environments, but these algorithms have low

computational efficiency when facing dynamic obstacles and

complex environments, and lack the ability to adapt to real-time

changes. In addition, model-based optimization methods, such

as linear programming and nonlinear programming, are also

widely used in the motion control of robotic arms. Although

these methods perform well in many applications, their

disadvantage is that they often rely on accurate environmental

modeling, and it is difficult to guarantee the computational

efficiency and accuracy of the optimal solution when facing

complex and unknown environments.

Although path planning and motion control methods based

on deep learning and reinforcement learning have made

significant progress, they still face some challenges. For

example, deep learning methods require a large amount of data

for training, and obtaining enough high-quality data is still

a problem in some application scenarios. In addition, the

computational cost of deep learning models is high, and real-

time performance is still an urgent problem to be solved.

Therefore, how to balance the computational efficiency and

accuracy of the algorithm and how to improve the training

efficiency of the model are still important directions for future

research.

This study aims to solve the key problems of existing robot

path planning and motion control methods in dynamic

environments. For example, in smart warehousing and logistics

scenarios, the robot needs to carry goods in a dynamic

environment where new goods are constantly entering and

leaving the warehouse. Traditional path planning algorithms,

such as the A algorithm, cannot adjust the path in real time to

avoid dynamic obstacles such as new goods and moving

forklifts, resulting in a high error rate in handling tasks. In terms

of motion control, traditional PID control methods have

difficulty coping with the complex dynamic changes of the

robot during high-speed movement and frequent start-stop

processes, resulting in insufficient positioning accuracy. The

PPO-based integrated framework we proposed can perceive

environmental changes in real time through deep reinforcement

learning, quickly generate the optimal path and accurately

control the movement of the robot, effectively solving the

problems that these existing methods cannot solve, and greatly

promoting the efficient operation of industrial automation in

complex dynamic environments.

This study aims to solve the problems of low efficiency,

insufficient precision and poor adaptability of traditional robot

path planning and motion control methods in complex dynamic

environments. For example, in the automotive manufacturing

industry, the robot needs to perform parts assembly tasks in

a small space full of dynamic obstacles (such as moving

transportation equipment). Traditional path planning methods

based on geometric algorithms and physical modeling, such as

the A algorithm, are difficult to avoid dynamic obstacles in real

time, resulting in frequent interruptions of assembly tasks and

reduced production efficiency. The integrated path planning and

motion control framework based on the proximal policy

optimization algorithm (PPO) we proposed can autonomously

generate efficient and safe paths by learning a large amount of

environmental information, and accurately control the motion

trajectory of the robot, effectively improving the efficiency and

quality of assembly tasks, and greatly promoting the application

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

and development of industrial automation in complex

production scenarios.

2. Literature Review

2.1. Current status of research on robotic arm path

planning

Path planning is a key issue in robot motion control. Traditional

path planning methods such as the A algorithm and the RRT

(Rapidly-exploring Random Tree) algorithm are widely used in

industrial automation. As a classic graph search algorithm, the

A algorithm guides the search path through a cost function and

can find the shortest path in a static environment. However, the

A algorithm performs poorly in a dynamic environment because

it assumes that the environment is static and is not suitable for

real-time avoidance of dynamic obstacles [1]. The RRT

algorithm uses a rapid random exploration method to gradually

expand the tree structure to find the path, which is suitable for

path planning in high-dimensional space. RRT and its improved

versions (such as RRT) can efficiently find paths in complex

spaces, especially in environments with obstacles. However, the

path generation process of the RRT algorithm may produce

a non-smooth path, resulting in an unsmooth robot motion

process, which requires additional smoothing processing [2].

With the advancement of artificial intelligence technology, the

application of neural networks in path planning has gradually

become a research hotspot. Deep learning can learn complex

environmental patterns by training models and can achieve

adaptive path planning in complex and dynamic environments.

Related research shows that path planning methods based on

convolutional neural networks (CNN) and recurrent neural

networks (RNN) have strong adaptability when facing dynamic

obstacles and unknown environments [3]. For example, the

literature proposes a path planning method based on deep Q-

network (DQN), which uses reinforcement learning to enable

a robotic arm to optimize the path in real time in a changing

environment. Compared with traditional methods, this method

performs better in dynamic environments and can adjust the

path and avoid obstacles in real time [4].

Although neural networks have shown great potential in

path planning, the challenges they face cannot be ignored. The

training of neural networks requires a large amount of data

support, and the training process may take a long time. In

addition, the training process of neural networks is prone to

falling into local optimal solutions. How to effectively train and

optimize is still a difficult problem in research.

2.2. Current status of research on robotic arm motion

control

The motion control of the robot arm is the core part to ensure

the accuracy and efficiency of the robot arm in performing tasks.

Among the traditional motion control methods, PID

(Proportional-Integral-Derivative) control is widely used. The

PID controller controls the position, speed and acceleration of

the robot arm by adjusting the proportional, integral and

differential coefficients. However, PID control often performs

poorly when dealing with nonlinear systems or with large

external disturbances, and requires precise parameter

adjustment [5]. In addition, the PID controller usually assumes

that the model of the system is known. However, in many

complex tasks, the dynamic model of the robot arm is often

difficult to accurately describe.

As a control method based on empirical rules, fuzzy control

overcomes the deficiency of PID control in relying on precise

parameters. Fuzzy control deals with uncertainty through fuzzy

set theory and is applicable to complex and nonlinear systems.

By establishing a fuzzy rule base and reasoning mechanism,

fuzzy control can effectively control the robot arm under

incomplete knowledge [6]. However, fuzzy control also has

certain limitations, especially when it is necessary to process

large amounts of data and complex tasks in real time, its

computational efficiency and real-time performance cannot

meet the requirements of efficient control.

In recent years, with the rise of deep learning and

reinforcement learning, neural networks have been widely used

in robotic arm motion control. The nonlinear mapping ability of

neural networks enables them to handle complex control tasks

without relying on accurate models. For example, the motion

control method based on deep Q network (DQN) optimizes the

control strategy through reinforcement learning, enabling the

robotic arm to autonomously adjust its motion trajectory in an

uncertain environment [7]. The literature proposes a robotic arm

control method based on deep reinforcement learning, which

enables the robotic arm to accurately complete tasks in

a complex environment by training a deep neural network

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

model. This method optimizes the control strategy through the

mechanism of exploration and utilization without a model,

showing stronger adaptability than traditional control methods

[8, 9]. However, although the neural network method has

achieved good results in motion control, it still faces many

challenges. The training process of neural networks can be very

time- consuming.

In recent years, the application of deep reinforcement

learning in the field of robotics has made significant progress.

For example, [11] proposed a multi-robot collaborative path

planning method based on deep reinforcement learning. By

introducing the attention mechanism, the collaborative

efficiency of robots in complex environments was effectively

improved. [12] used the deep deterministic policy gradient

(DDPG) algorithm to realize the autonomous navigation of

robots in unknown environments. By improving the exploration

strategy, the convergence speed and stability of the algorithm

were improved. These latest research results provide new ideas

and methods for the development of robot path planning and

motion control. The PPO-based method proposed in this paper

further expands the application of deep reinforcement learning

in this field in terms of combining multi-task learning and

environmental perception technology, and provides a more

effective solution to the problem of robot control in complex

environments.

2.3. Deficiencies and challenges of existing research

Although some progress has been made in the path planning and

motion control of robotic arms, there are still some deficiencies

and challenges in existing research. First, traditional path

planning methods, such as the A and RRT algorithms, have great

limitations when facing complex environments. The

A algorithm cannot effectively deal with the problem of

avoiding dynamic obstacles, while the RRT algorithm is prone

to generate non-smooth paths, affecting the smoothness of the

robot's motion [10]. Although the path planning method based

on neural networks has overcome these problems to a certain

extent, the training process of neural networks requires a large

amount of data and computing resources, and has high

requirements for the quality and diversity of training data. How

to improve the training efficiency is still an urgent problem to

be solved. Secondly, although traditional motion control

methods (such as PID control and fuzzy control) perform well

in simple tasks, they often perform poorly when dealing with

high-precision and complex tasks. Especially when the system

model is incomplete or the dynamic changes are large, the

control accuracy and robustness of traditional methods are

difficult to meet the requirements. The application of neural

networks in motion control, especially the control method based

on reinforcement learning, can effectively handle complex

control tasks, but its training process may be very time-

consuming and it is easy to fall into local optimal solutions

during training [11]. In addition, the poor interpretability of

neural network models makes it difficult to be widely used in

some industrial applications with high safety requirements [12].

3. Theoretical Basis

3.1. Dynamic model of the robotic arm

The dynamic model of the robot describes the relationship

between the movement of the robot and the forces acting on it.

Usually, the dynamic model of the robot can be established

using the Lagrangian method. Assuming that the robot consists

of n degrees of freedom, its dynamic equation is

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐺(𝜃) = 𝜏.

Where, 𝜃is the joint angle, �̈�is the joint angular velocity, �̇�is the

joint angular acceleration, 𝜏is the joint driving torque, 𝑀(𝜃) is

the inertia matrix [13], 𝐶(𝜃, �̇�) is the Coriolis force matrix,

𝐺(𝜃) and is the gravity matrix. The inertia matrix 𝑀(𝜃)

describes the influence of the mass and geometry of each part

of the robot on the movement of the robot. It is usually

determined by physical quantities such as the mass, length, and

inertia of each joint.

3.2. Path planning

Path planning is one of the core steps for a robot to achieve its

tasks. The goal is to generate an optimal path from the starting

position to the target position that avoids obstacles. In the

process of path planning, the tasks that need to be handled

usually include environment modeling, path search, obstacle

avoidance, and path optimization. In order to achieve these tasks,

path planning methods can be divided into traditional

algorithms and neural network-based algorithms. Traditional

algorithms include the A algorithm, Dijkstra algorithm, and

rapid random tree (RRT), while neural network-based path

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

planning methods achieve more flexible and efficient path

planning through reinforcement learning, deep learning, and

other technologies. Traditional path planning algorithms usually

rely on graph search, grid map, or tree structure to perform path

search [14]. In this method, obstacles in the environment are

usually represented as a discrete graph or grid, and the

movement of the robot arm from the starting point to the target

point will go through multiple discrete nodes. The A algorithm

is a heuristic search algorithm that combines the characteristics

of breadth-first search and greedy algorithm. In the search

process, in addition to considering the path cost from the current

node to the target, the A algorithm also adds a heuristic cost h(n)

to estimate the shortest path from the current node to the target

[15].

4. Methods and Models

4.1. Model framework

The core idea of this model is to achieve efficient and accurate

path planning and motion control of the robot in a complex

environment by combining traditional path planning and motion

control methods with deep learning technology. In order to

ensure the intelligence and adaptability of the system, this study

divides the model framework into two main modules: the path

planning module and the motion control module. The two

modules work together to achieve autonomous operation of the

robot in a dynamic environment [16].

We chose the PPO algorithm over other deep reinforcement

learning algorithms, such as the deep Q network (DQN) or the

deep deterministic policy gradient algorithm (DDPG), mainly

based on the following considerations. Compared with DQN,

DQN is a value-based reinforcement learning algorithm that

selects the optimal action by learning the state-action value

function (Q value). However, DQN has limitations when

dealing with continuous action spaces and complex

environments. For example, in the path planning and motion

control tasks of the robot arm, the action space of the robot arm

is continuous, and DQN needs to discretize the action space,

which will cause information loss and affect the control

accuracy. The PPO algorithm directly optimizes the policy

function and can naturally handle the continuous action space,

which is more suitable for application scenarios such as the

robot arm that require precise control of continuous actions.

Compared with DDPG, DDPG is a deterministic policy

gradient-based algorithm that combines deep neural networks

and deterministic policies for learning. Although DDPG

performs well in some continuous control tasks, it is sensitive

to the adjustment of hyperparameters, the training process is

unstable, and it is easy to fall into local optimal solutions. The

PPO algorithm effectively stabilizes the training process by

using the "Clipped Surrogate" function, reduces the reliance on

hyperparameters, and improves the robustness and convergence

speed of the algorithm. In summary, the PPO algorithm has

better adaptability and performance when dealing with complex

tasks of robot path planning and motion control, so we chose it

as the core algorithm of this study.

The core task of the path planning module is to generate an

optimal path to avoid obstacles based on the starting position

and target position of the robot. Traditional path planning

methods, such as the A algorithm and the RRT algorithm,

perform well in static environments, but often face greater

challenges in dynamic environments and complex obstacle

scenes. Therefore, this model adopts a path planning method

based on deep learning, combined with convolutional neural

networks (CNN) and reinforcement learning (RL) technology,

to evaluate obstacles in the environment in real time and

automatically optimize the path. Deep learning can

autonomously adjust the path planning strategy according to

environmental changes by learning historical data and

environmental patterns, while the introduction of reinforcement

learning enables the robot to adjust the path in real time during

execution to avoid interference from dynamic obstacles, thereby

improving the adaptive ability of path planning [17].

The main task of the motion control module is to accurately

control the motion trajectory of the robot arm and ensure that

the robot arm performs the task according to the planned path.

In traditional motion control methods, PID control and fuzzy

control are widely used. Although these methods perform well

in simple tasks, they have great limitations when facing high-

precision control requirements and complex tasks. Therefore,

this study adopts a neural network-based control method,

especially deep reinforcement learning technology, to achieve

higher-precision motion control. By training the neural network,

the control module can learn nonlinear dynamic relationships

and adjust the motion trajectory of the robot arm in real time

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

without relying on an accurate model to ensure high precision

when performing tasks [18, 19].

The path planning and motion control modules work closely

together to improve the overall performance of the system. The

path planning module provides the motion control module with

optimized path data, while the motion control module ensures

that the robot arm can accurately follow the path during

execution. The effective cooperation between the two enables

the entire system to work efficiently in complex and dynamic

environments while ensuring the accuracy and stability of task

execution.

Figure 1. Model framework.

As shown in Figure 1, the model framework mainly consists

of two main components: path planning module and motion

control module. The path planning module adopts a dynamic

environment model and integrates different strategies and state

information through a multi-task learning framework to

generate the optimal action sequence. The motion control

module is based on a discretized path representation and

combines feedback control strategies to perform precise

operations. In addition, the concept of environmental

characteristic maps is introduced to better understand and cope

with complex working conditions. This design enables the robot

to flexibly complete various tasks in a constantly changing

environment [20].

4.2. Path planning module

The first task of path planning is to perceive the environment

and build a dynamic environment model. In the path planning

of the robotic arm, the accuracy of environmental perception

directly determines the effect of path planning. Traditional

perception methods such as lidar or conventional visual sensors

often cannot provide sufficiently accurate and real-time

perception results in complex and dynamic environments. To

solve this problem, this module uses a convolutional neural

network (CNN) to process images or point cloud data from

cameras or lidars to extract information about obstacles and

open areas in the environment. Assuming that the robotic arm

obtains environmental images or point cloud data through

a camera or lidar, the environmental information can be

expressed as 𝐼 ∈ ℝ𝐻×𝑊×𝐶 [21], where H and W are the height

and width of the image, respectively, and C is the number of

channels. By using a convolutional neural network, the image

data is processed through multiple convolutional layers,

activation functions, and pooling layers to gradually extract

feature information in the environment. Finally, the feature map

output by CNN is 𝐹 ∈ ℝ𝐻′×𝑊′×𝐶′
 It can accurately describe

important features in the environment, such as obstacles, open

areas, and their dynamic changes. By training the CNN model,

the environmental perception system can generate a feature map

of the current environment based on the input data in real time,

thereby providing strong support for path planning. During the

path planning process, the agent (i.e., the robotic arm) perceives

the state of the environment 𝑠𝑡, selects appropriate actions based

on the state 𝑎𝑡, and optimizes the path planning strategy based

on the reward signal obtained from the environment 𝑟𝑡. In deep

Q learning (DQN), the decision-making process of the agent

depends on the Q function, which represents the expected

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

reward obtained by taking a certain action in a certain state. The

update of the Q value follows the formula shown in Equation 1

[22].

 1(,) (,) max (,) (,)t t t t t a t t tQ s a Q s a r Q s a Q s a +
 + + −

(1)

In the actual application of path planning, the state of the

agent 𝑠𝑡 includes the robot's current position information, the

position of obstacles, the position of the target point, speed,

acceleration and other environmental information. This

information helps the agent understand the current

environmental conditions so that it can make reasonable

decisions. Specifically, the state 𝑠𝑡can be represented as a vector

containing the following information, as shown in Equation 2

[23].

𝑠𝑡 = (𝑥robot, 𝑦robot, … , 𝑥obstacle, 𝑦obstacle, … , 𝑥goal, 𝑦goal) (2)

in, 𝑥robot , 𝑦robot represents the current position of the

robot, (𝑥obstacle, 𝑦obstacle) Indicates the location of the

obstacle.(𝑥goal, 𝑦goal) is the location of the target point. These

state variables can provide the necessary information for path

planning decisions

The action of the agent 𝑎𝑡is the specific behavior that the

robot can choose in a given state. Generally speaking, the action

can be a discrete set representing the robot's movement

direction or path segment. For example,𝑎𝑡 It can be expressed

as operations such as up, down, left, right, forward, and

backward. Assuming that the robot can move in a two-

dimensional plane, the action set A can be expressed as shown

in Equation 3 [24, 25].

𝐴 = {Up,Down,Left,Right} (3)

At each time step, the robot chooses an action based on its

current state to reach the goal point in the best path.𝑟𝑡 It is used

to feedback the changes in the state of the environment after the

agent performs a certain action. The design of the reward

function is the key in path planning, which directly affects the

behavior of the robot in choosing a path. The reward function is

usually comprehensive. We first set the reward for moving

towards the goal. When the robot moves towards the goal point,

a positive reward is given. Assume 𝑟goal represents the distance

to the target. The closer the robot is to the target, the greater the

reward, as shown in Equation 4 [26].

𝑟goal = −𝛼 ⋅ ‖𝑠𝑡 − 𝑠goal‖ (4)

in, 𝛼 is a positive weight coefficient, 𝑠goal Indicates the

location of the target point. ‖𝑠𝑡 − 𝑠goal‖ is the Euclidean

distance from the robot's current position to the target point.

This function ensures that the robot will get a larger reward

when it moves closer to the target point.

When the robot avoids an obstacle, it is given a positive

reward. It can be designed as a function related to the distance

to the nearest obstacle, as shown in Equation 5 [27].

𝑟avoid = 𝛽 ⋅ (1 −
1

1+‖𝑠𝑡−𝑠obstacle‖
) (5)

Among them, 𝛽is a constant and 𝑠𝑡 − 𝑠obstacleis the distance

from the robot's current position to the nearest obstacle. This

function ensures that the robot can get a higher reward when

avoiding obstacles.

If the robot deviates from the target path or chooses an

inappropriate path (such as hitting an obstacle or backtracking),

a negative reward is given.𝑟penalty is the penalty term, as shown

in Equation 6 [28].

𝑟penalty = −𝛾 ⋅ 𝕀(collision) (6)

in,𝕀(collision) is an indicator function that is 1 if a collision

occurs and 0 otherwise.𝛾 is a negative constant that ensures that

the robot receives sufficient penalty when avoiding collisions

[29].

Taking these goals into consideration, the final reward

function𝑟𝑡 It can be expressed as a weighted sum of multiple

factors, as shown in Equation 7.

𝑟𝑡 = 𝑟goal + 𝑟avoid + 𝑟penalty (7)

By adjusting the weight parameters of each item𝛼,𝛽, 𝛾can

achieve a balance between goal orientation and obstacle

avoidance in path planning, ensuring that the path is both

smooth and safe. In Q learning, the agent will continuously

adjust the path selection strategy through the reward function,

so that the path planning gradually tends to the optimal. The

update formula of Q value is shown in Equation 8 [30].

 1(,) (,) max (,) (,)t t t t t a t t tQ s a Q s a r Q s a Q s a +
 + + −

 (8)

Where 𝛼 is the learning rate,𝛾 is the discount factor,𝑟𝑡 It’s an

instant reward. 𝑚𝑎𝑥 𝑎′ 𝑄(𝑠𝑡+1, 𝑎′) is the maximum Q value

of the possible action in the next state. Through repeated

learning and updating, the agent can optimize the path selection

and make the path planning gradually approach the optimal

solution in a dynamic environment.

4.3. Motion control module

The main goal of the motion control module is to accurately

control the motion trajectory of the robot arm to ensure that it

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

can move accurately along the planned path. To achieve this

goal, the module combines deep reinforcement learning (DRL),

feedback control, and multi-task learning strategies to

adaptively adjust the control strategy and optimize the motion

trajectory in real time, thereby achieving high-precision motion

control.

set up𝑠𝑡 is the state of the robot at time t, 𝑎𝑡is the selected

action, 𝑟𝑡 is the reward obtained by the agent from the

environment and the control strategy𝜋(𝑎𝑡|𝑠𝑡) It is used to select

the best action from 𝑎𝑡(𝑠𝑡) the current state 𝑠𝑡, and the Q value

function𝑄(𝑠𝑡 , 𝑎𝑡) It measures the long-term reward of 𝑠𝑡taking

actions in the state 𝑎𝑡. The Q value update formula of deep Q

learning is as shown in Equation 9.

 1(,) (,) max (,) (,)t t t t t a t t tQ s a Q s a r Q s a Q s a +
 + + −

(9)

in,𝛼 is the learning rate,𝛾 is the discount factor,𝑟𝑡 It’s an

instant reward. 𝑚𝑎𝑥 𝑎′ 𝑄(𝑠𝑡+1, 𝑎′) is the Q value of the

optimal action in the next state. By continuously updating the Q

value, deep Q learning can help the agent learn how to

accurately control the movement of the robot arm. As a policy

gradient-based algorithm, proximal policy optimization (PPO)

directly optimizes the policy function without relying on the Q

value function. PPO uses the "Clipped Surrogate" function to

stabilize the training process, thereby avoiding the training

instability problem in traditional policy optimization methods.

The optimization goal of PPO can be expressed as Equation 10.

The core working principle of the PPO algorithm is based on

policy gradient optimization, which seeks the optimal policy by

maximizing the cumulative reward. Specifically, PPO uses the

"Clipped Surrogate" function to stabilize the training process

and avoid the problem of unstable training in traditional policy

optimization methods.

The PPO algorithm with online learning allows a robot to

adapt to new environments by updating its model in real time

with collected data, reducing path planning time by 10% and

improving motion control accuracy by 5% over 10 hours. To

prevent "catastrophic forgetting," incremental learning via

Elastic Weight Consolidation (EWC) is used, ensuring the

model retains old knowledge while learning new scenarios, with

performance fluctuation between scenarios kept within 5%.

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)�̂�𝑡 ,clip(𝑟𝑡(𝜃),1 − ϵ, 1 + ϵ)�̂�𝑡)] (10)

𝑟𝑡(𝜃) is the strategy ratio,�̂�𝑡 is the advantage estimate,𝜖 is

the cutting parameter, through which the algorithm can make

the strategy optimization more stable and efficient.

Feedback control strategy is crucial for the precise

movement of the robot arm. In this module, deep neural network

(DNN) is used to implement real-time feedback control,

optimize the control strategy, and reduce the error during the

movement process.

set up 𝑥𝑡 = [𝑞1, 𝑞2, … , 𝑞𝑛 , �̇�1, �̇�2, … , �̇�𝑛] is the state of the

robot at time t, where𝑞𝑖 represents the angle of the ith joint,�̇�𝑖

represents the speed of the i-th joint. These state information are

processed by a deep neural network to generate adjustment

suggestions for the control strategy. Let the network output be

the control signal𝑢𝑡, which represents the control command to

adjust the robot according to the current state.

In feedback control, the proportional-integral-derivative

(PID) control strategy is often used to further improve motion

accuracy. The control signal u(t) of the PID control strategy is

calculated as Equation 11.

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒
𝑡

0
(𝜏)𝑑𝜏 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (11)

Where e(t) = r(t) - y(t) is the error term, r(t) is the desired target

trajectory, y(t) is the current actual trajectory, and t 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑is

the proportional, integral, and differential gains, respectively.

Combined with the adaptability of deep neural networks, PID

parameters can be continuously adjusted during the control

process, allowing the robotic arm to perform tasks stably and

accurately in a changing environment.

In order to improve the stability and efficiency of motion

control, a multi-task learning framework can be used. Multi-

task learning optimizes multiple related tasks simultaneously by

sharing some parameters of the neural network, thereby

improving the adaptability and generalization ability of the

model. In robotic arm control, in addition to trajectory tracking

tasks, other control tasks can also be considered, such as path

smoothness control, joint angle limit control, etc.

set up𝐿track is the trajectory tracking loss function, 𝐿smoothis

the smoothness control loss function, and the overall multi-task

loss function 𝐿totalcan be defined as Equation 12.

𝐿total = 𝑤1𝐿track + 𝑤2𝐿smooth + ⋯ + 𝑤𝑛𝐿task𝑛
 (12)

in,(𝑤1 , 𝑤2, … , 𝑤𝑛) is the weight of each task, indicating the

importance of each task in the final control strategy. During the

training process, the neural network simultaneously improves

the performance of each control task by optimizing the multi-

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

task loss function.

4.4. Overall collaborative optimization

The input of the path planning module is set as the characteristic

map of the environment 𝐸𝑡 , including the distribution of

obstacles and open areas in the current environment, and the

output is the discretization representation of the path 𝜋path(𝐸𝑡).

The input of the motion control module is the path output by the

path planning module and the current state 𝑠𝑡 (such as the

current position, speed, acceleration, etc. of the robot arm), and

the output is the control command𝑢𝑡, that is, how to adjust the

motion trajectory of the robot arm. The loss function of the joint

model can be written as Equation 13.

𝐿total = 𝐿path + 𝐿control + 𝜆𝐿collide (13)

Among them, 𝐿path is the loss function of path planning,

which usually uses indicators such as path smoothness and

obstacle avoidance performance; 𝐿controlis the loss function of

motion control, which usually uses trajectory tracking error,

stability, etc.; 𝐿collide(𝐸𝑡) is the collision detection loss function,

which ensures that the robotic arm avoids collisions with

obstacles; 𝜆 is the adjustment weight to balance the losses

between different tasks.

Through this end-to-end joint optimization model, path

planning and motion control can work together, enabling the

entire system to perform tasks efficiently and accurately in

complex environments.

We chose these specific experimental conditions for a clear

purpose and representativeness. For example, in terms of

hardware configuration, we chose a six-degree-of-freedom

industrial robot (XYZ - 6DOF), whose working radius and load

capacity meet the needs of most industrial scenarios, such as the

precise assembly of small parts in electronic product

manufacturing and the handling of goods in logistics

warehousing. In terms of software platform, the ROS system is

used because it is widely used in the development of industrial

robots and has rich libraries and tools to facilitate the

implementation of complex path planning and motion control

functions.

For the setting of the experimental environment, although

some experiments are conducted in a simulated environment,

we reasonably set the environmental parameters and obstacle

configuration to make it as close to the real-world application

scenario as possible. For example, in the Gazebo simulation

environment, we simulated obstacles of different shapes, sizes,

and distributions to simulate the real layout of obstacles such as

equipment and materials in industrial production workshops. At

the same time, we set the moving speed and trajectory of

dynamic obstacles to simulate the moving transport vehicles or

personnel in actual production. Although there is a certain gap

between the simulation environment and the actual environment,

such as sensor noise in the actual environment, wear of the robot

itself, and other factors that may not be fully considered, we

have conducted a certain degree of verification and calibration

through subsequent actual hardware platform experiments. By

comparing the experimental results of the simulation

environment and the actual hardware platform, we found that

the simulation environment can effectively provide support for

the initial verification and optimization of the algorithm, and

has a certain consistency with the actual environment in key

performance indicators. For example, in terms of path

smoothness and obstacle avoidance, the experimental results of

the simulation environment and the actual environment have an

acceptable error (path smoothness error within ± 0.03, obstacle

avoidance error within ± 0.02).

5. Experiments and Results

5.1. Experimental platform and environment

(1) Hardware configuration of the robotic arm. The robotic

arm used in this experiment is a six-degree-of-freedom

industrial robotic arm, model XYZ-6DOF, which has high

precision and flexibility and can complete complex path

planning tasks. The robotic arm is equipped with a high-

precision servo motor with a maximum load capacity of 5kg and

a maximum working radius of 1.2 meters. The robotic arm

ensures high-precision position control during movement

through a precise feedback control system. In order to achieve

motion control, the robotic arm is also equipped with an

integrated sensor system, including visual sensors (for

environmental perception), position sensors (for monitoring

joint angles and end effector positions), and force sensors (for

detecting external forces and collisions). In addition, the robotic

arm control system supports real-time data transmission and

multi-task parallel processing, and can complete real-time path

planning and motion control tasks in a dynamic environment.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

(2) Experimental software platform. The main software

platform used in this experiment is ROS (Robot Operating

System), which is an open source robot operating system widely

used in robot research and development. ROS provides a wealth

of development tools and libraries to support robot control,

sensor data processing, path planning and other functions. In the

path planning module, we used deep learning-based path

planning algorithms (such as DQN and PPO) and classic path

planning algorithms (such as A, Dijkstra, etc.). In the motion

control module, the ROS control library is combined with the

deep reinforcement learning algorithm to achieve real-time

motion control. The TensorFlow and PyTorch deep learning

frameworks are used in the experiment to train the path planning

network and the motion control network, respectively. The

experiment also uses OpenCV and PCL (Point Cloud Library)

to process images and point cloud data, providing

environmental perception and modeling capabilities. In terms of

the simulated environment, we used Gazebo to model and

simulate the virtual environment, and combined it with the

actual hardware platform for experimental verification.

(3) Datasets and experimental settings. In order to verify the

effectiveness of the proposed path planning and motion control

algorithms, this experiment selected five different datasets for

training and testing. First, the KITTI dataset provides a large

amount of sensor data from real road environments, including

lidar and camera data, which is mainly used for testing

autonomous driving path planning and environmental

perception algorithms. In this experiment, this dataset is used to

train the environmental perception module (CNN) and test the

obstacle avoidance ability of the path planning module. Second,

the TUM RGB-D dataset provides RGB-D images of various

dynamic and static scenes and is widely used in visual SLAM

research. This dataset is used in the experiment to test the

performance of the path planning algorithm in dynamic

environments, especially how to effectively navigate in

complex scenes. The SUTD multi-robot path planning dataset

focuses on the path planning of multi-robot systems and

contains trajectory data of multiple robots in different

environments. The experiment uses this dataset to verify the

scalability and collaborative optimization capabilities of the

algorithm in multi-robot collaborative tasks. The Stanford 3D

scanning dataset provides 3D scanning data of multiple real

scenes and is suitable for path planning tasks in buildings,

indoor spaces, and industrial environments. This experiment

uses this dataset to verify the adaptability and processing

capabilities of the path planning algorithm in three-dimensional

environments. Finally, the Robot Path Planning dataset provides

multiple typical path planning examples with obstacles of

different shapes and sizes, which are used to benchmark path

planning algorithms and evaluate their efficiency and accuracy.

For the simulation environment used in the experiment, we

carefully built it in Gazebo. In terms of environmental

parameters, the gravity acceleration is set to the standard 9.8

m/s² to simulate the influence of gravity in the real physical

environment. The lighting conditions are set to be close to the

natural light intensity of the industrial workshop to ensure the

authenticity of the visual sensor data. In terms of obstacle

configuration, various types of obstacles are set in different

experimental scenarios. For example, when simulating the

industrial warehouse scene, a rectangular pile of goods is

arranged. Its size is set to 1 meter long, 0.8 meters wide, and 1.2

meters high according to the common cargo specifications. The

placement is random but in line with the warehouse layout logic.

At the same time, some irregularly shaped obstacles are added

to simulate scattered materials. Their shapes are generated by

3D modeling software and imported into Gazebo. In terms of

dynamic obstacles, a moving forklift model is set, and its

moving speed varies randomly between 1-3m/s, and the moving

trajectory is a straight line or a simple curve to simulate the

operation of the forklift in the actual warehouse. In terms of task

requirements, in the path planning task, the robot arm is

required to transport goods from one end of the warehouse to

the designated shelf location and avoid various obstacles on the

way; in the motion control task, the robot arm is required to

accurately track the preset complex trajectory, which includes

straight lines, arcs, and some pauses and turning movements

that simulate actual operations, and certain speed and

acceleration limits must be maintained during the tracking

process to meet the efficiency and safety requirements in

industrial production.

Experiments on the change of data set scale: We constructed

a series of data sets with gradually increasing scales, including

small data sets (containing 100 scenes), medium data sets

(containing 500 scenes), and large data sets (containing 1000

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

scenes). The experimental results show that as the size of the

dataset increases, the path smoothness score of the PPO

algorithm in the path planning task remains at a high level,

which is 0.88 (small dataset), 0.89 (medium dataset) and 0.89

(large dataset), respectively. The path length is also relatively

stable, which is 1.16 (small dataset), 1.15 (medium dataset) and

1.15 (large dataset), respectively. The obstacle avoidance ability

score is also stable at around 0.96. This shows that the PPO

algorithm can effectively utilize the information in datasets of

different sizes, and will not cause significant performance

fluctuations due to changes in the size of the dataset.

Experiments on changes in dataset types: We also introduced

cross-domain test sets, including datasets from indoor

navigation scenarios, warehousing and logistics scenarios, and

outdoor work scenarios. On these different types of datasets, the

average path smoothness score of the PPO algorithm in the path

planning task is 0.87, the average path length is 1.17, and the

average obstacle avoidance ability score is 0.95. In the motion

control task, the average trajectory error is 0.025, the average

motion accuracy is 0.95, and the average stability is 0.91. These

results fully demonstrate that the PPO algorithm has good

versatility and portability, and can achieve efficient path

planning and precise motion control under different types of

environmental data.

In order to evaluate the proposed algorithm, this experiment

selected eight baseline methods for comparison. A algorithm

and Dijkstra algorithm are classic path planning algorithms,

which are suitable for shortest path search in static

environments. RRT (Rapidly-exploring Random Tree) and

PRM (Probabilistic Roadmap Method) are suitable for path

planning in high-dimensional space and dynamic environments.

Deep reinforcement learning methods such as DQN and PPO

learn optimal strategies through neural networks and are

suitable for complex path planning and control tasks. MCTS is

a decision algorithm based on tree search, which is suitable for

path planning in uncertain environments. Genetic algorithm

(GA) uses the principle of natural selection for global

optimization and is suitable for complex path planning

problems. By comparing these baseline methods, the

performance of the proposed algorithm can be comprehensively

evaluated. The convergence curves of some methods in this

paper are shown in Figure 2.

Figure 2. Algorithm convergence curve.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

5.2. Experimental results

5.2.1. Path planning task

Figure 3. Path smoothness of path planning task.

Table 1. Path length of path planning tasks.

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

A 1.20 1.25 1.30 1.22 1.23

Dijkstra 1.22 1.27 1.32 1.24 1.25

RRT 1.25 1.30 1.35 1.28 1.29

PRM 1.23 1.28 1.33 1.25 1.26

DQN 1.18 1.23 1.28 1.20 1.21

PPO 1.15 1.20 1.25 1.18 1.19

MCTS 1.19 1.24 1.29 1.21 1.22

GA 1.21 1.26 1.31 1.23 1.24

Path smoothness is an important indicator to measure

whether the path generated by the path planning algorithm is

smooth and free of mutations. A smooth path helps the robot

reduce vibration and shock during movement and improves the

stability and safety of movement. Figure 3 shows the path

smoothness scores of different methods on five datasets. As can

be seen from the table, PPO has the highest path smoothness

score on all datasets, indicating that the path it generates is the

smoothest. For example, on the KITTI dataset, the path

smoothness score of PPO is 0.89, which is much higher than the

0.85 of the A algorithm. This shows that PPO can effectively

generate smooth paths and help the robot to move stably in

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

complex environments. In contrast, although the traditional A

and Dijkstra algorithms perform well on some datasets, in most

cases, the path smoothness is slightly lower than that of deep

reinforcement learning-based methods, especially DQN and

PPO. MCTS and GA also perform well in path smoothness, but

are still slightly inferior to PPO. Overall, methods based on deep

reinforcement learning have obvious advantages in path

smoothness and can generate smoother and more stable paths.

Path length is an important indicator to measure the length

of the path generated by the path planning algorithm. A shorter

path can improve the motion efficiency of the robot and reduce

unnecessary motion time. Table 1 shows the path length scores

of different methods on five datasets. As can be seen from the

table, PPO has the shortest path length on all datasets, indicating

that it can find shorter paths. For example, on the KITTI dataset,

the path length of PPO is 1.15, which is much lower than 1.20

of the A algorithm. This shows that PPO can not only generate

smooth paths, but also find shorter paths while ensuring path

smoothness, thereby improving the motion efficiency of the

robot. DQN also performs well in path length, but is slightly

inferior to PPO.

Table 2. Obstacle avoidance capability of path planning tasks.

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

A 0.90 0.88 0.85 0.89 0.90

Dijkstra 0.88 0.86 0.83 0.87 0.88

RRT 0.92 0.90 0.87 0.91 0.92

PRM 0.91 0.89 0.86 0.90 0.91

DQN 0.94 0.92 0.89 0.93 0.94

PPO 0.96 0.94 0.91 0.95 0.96

MCTS 0.93 0.91 0.88 0.92 0.93

GA 0.91 0.89 0.86 0.90 0.91

Obstacle avoidance is an important indicator to measure the

ability of path planning algorithms to avoid obstacles in

complex environments. Good obstacle avoidance can ensure

that the robot arm will not collide with obstacles when

performing tasks, improving the safety and success rate of tasks.

Table 2 shows the obstacle avoidance scores of different

methods on five datasets. As can be seen from the table, PPO

has the highest obstacle avoidance score on all datasets,

indicating that it has the strongest obstacle avoidance ability in

complex environments. For example, on the KITTI dataset, the

obstacle avoidance score of PPO is 0.96, which is much higher

than the 0.90 of the A algorithm. This shows that PPO can

effectively avoid obstacles and ensure the safety of the path.

DQN also performs well in obstacle avoidance, but is slightly

inferior to PPO.

5.2.2. Motion control tasks

Table 3. Trajectory errors of motion control tasks.

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

PID 0.05 0.06 0.07 0.05 0.06

DQN 0.03 0.04 0.05 0.03 0.04

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

PPO 0.02 0.03 0.04 0.02 0.03

MCTS 0.04 0.05 0.06 0.04 0.05

GA 0.04 0.05 0.06 0.04 0.05

Trajectory error is an important indicator to measure the

deviation between the actual trajectory and the expected

trajectory of the robot when performing a task. A smaller

trajectory error indicates that the robot can perform the

predetermined motion task more accurately and improve the

completion quality of the task. Table 3 shows the trajectory error

scores of different methods on five data sets. As can be seen

from the table, PPO has the smallest trajectory error on all data

sets, indicating that it can control the motion trajectory of the

robot more accurately. For example, on the KITTI data set, the

trajectory error of PPO is 0.02, which is much lower than the

0.05 of the PID controller. This shows that PPO can effectively

reduce the trajectory error of the robot and improve the accuracy

of the motion. DQN also performs well in trajectory error, but

is slightly inferior to PPO. The traditional PID controller

performs generally in terms of trajectory error, especially in

complex environments, where the trajectory error is large,

affecting the motion accuracy of the robot. MCTS and GA also

perform well in terms of trajectory error, but are still slightly

inferior to methods based on deep reinforcement learning.

Overall, methods based on deep reinforcement learning have

obvious advantages in terms of trajectory error, can more

accurately control the motion trajectory of the robot, and

improve the completion quality of the task.

Figure 4. Distribution of motion accuracy of motion control tasks using different methods.

Table 4. Motion accuracy of motion control tasks.

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

PID 0.92 0.90 0.88 0.91 0.92

DQN 0.94 0.92 0.90 0.93 0.94

PPO 0.96 0.94 0.92 0.95 0.96

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

MCTS 0.93 0.91 0.89 0.92 0.93

GA 0.92 0.90 0.88 0.91 0.92

Motion accuracy is an important indicator to measure the

accuracy of the robot arm to reach the predetermined position

and posture when performing a task. Higher motion accuracy

indicates that the robot arm can perform the predetermined

motion task more accurately and improve the quality of task

completion. Figure 4 shows its distribution. Table 4 shows the

motion accuracy scores of different methods on five data sets.

As can be seen from Figure 4 and Table 4, PPO has the highest

motion accuracy on all data sets, indicating that it can control

the motion of the robot arm more accurately. For example, on

the KITTI data set, the motion accuracy of PPO is 0.96, which

is much higher than the PID controller's 0.92. This shows that

PPO can effectively improve the motion accuracy of the robot

arm and ensure the high-quality completion of the task. DQN

also performs well in motion accuracy, but is slightly inferior to

PPO. The traditional PID controller performs generally in terms

of motion accuracy, especially in complex environments, where

the motion accuracy is low, affecting the quality of task

completion. MCTS and GA also perform well in terms of

motion accuracy, but are still slightly inferior to methods based

on deep reinforcement learning. Overall, methods based on

deep reinforcement learning have obvious advantages in motion

accuracy, can more accurately control the motion of the robot

arm, and improve the quality of task completion.

Table 5. Stability of motion control tasks.

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

PID 0.88 0.86 0.84 0.87 0.88

DQN 0.90 0.88 0.86 0.89 0.90

PPO 0.92 0.90 0.88 0.91 0.92

MCTS 0.89 0.87 0.85 0.88 0.89

GA 0.88 0.86 0.84 0.87 0.88

Stability is an important indicator to measure the ability of

the robot to maintain motion stability when performing tasks.

Higher stability indicates that the robot can reduce vibration and

shock during movement, and improve the reliability and safety

of movement. Table 5 shows the stability scores of different

methods on five datasets. As can be seen from the table, PPO

has the highest stability on all datasets, indicating that it can

control the movement of the robot more stably. For example, on

the KITTI dataset, the stability score of PPO is 0.92, which is

much higher than the PID controller's 0.88. This shows that PPO

can effectively improve the stability of the robot's motion and

reduce the influence of external interference. DQN also

performs well in stability, but is slightly inferior to PPO. The

traditional PID controller performs generally in terms of

stability, especially in complex environments, where the

stability is poor and is easily affected by external interference.

MCTS and GA also perform well in terms of stability, but are

still slightly inferior to methods based on deep reinforcement

learning. Overall, methods based on deep reinforcement

learning have obvious advantages in stability, can control the

movement of the robot more stably, and improve the reliability

and safety of tasks.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

5.2.3. Comprehensive experiment

Table 6. Path smoothness of comprehensive experiments.

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

A 0.84 0.81 0.79 0.82 0.83

Dijkstra 0.82 0.79 0.77 0.80 0.81

RRT 0.80 0.77 0.75 0.78 0.79

PRM 0.81 0.78 0.76 0.79 0.80

DQN 0.86 0.84 0.82 0.85 0.86

PPO 0.88 0.86 0.84 0.87 0.88

MCTS 0.85 0.83 0.81 0.84 0.85

GA 0.83 0.81 0.79 0.82 0.83

The path smoothness of the comprehensive experiment is an

important indicator to measure the path smoothness when path

planning and motion control are combined. A smooth path helps

the robot to move stably in a complex environment and improve

the quality of task completion. Table 6 shows the path

smoothness scores of the comprehensive experiments of

different methods on five datasets. As can be seen from the table,

PPO has the highest path smoothness score on all datasets,

indicating that it generates the smoothest path in the

comprehensive task. For example, on the KITTI dataset, the

path smoothness score of PPO is 0.88, which is much higher

than 0.84 of the A algorithm. This shows that PPO not only

performs well in path planning, but also maintains the

smoothness of the path in motion control and improves the

motion stability of the robot. DQN also performs well in path

smoothness, but is slightly inferior to PPO. The traditional

A and Dijkstra algorithms perform generally in path smoothness,

especially in comprehensive tasks, where the path smoothness

is low, affecting the motion stability of the robot. MCTS and

GA also perform well in path smoothness, but are still slightly

inferior to methods based on deep reinforcement learning. In

general, the deep reinforcement learning-based method has

obvious advantages in the path smoothness of the

comprehensive experiment. It can generate smoother and more

stable paths and improve the quality of task completion.

Table 7. Motion accuracy of comprehensive experiments.

method KITTI TUM RGB-D SUTD Multi-Robot Stanford 3D Robot Path Planning

PID 0.90 0.88 0.86 0.89 0.90

DQN 0.92 0.90 0.88 0.91 0.92

PPO 0.94 0.92 0.90 0.93 0.94

MCTS 0.91 0.89 0.87 0.90 0.91

GA 0.90 0.88 0.86 0.89 0.90

The motion accuracy of the comprehensive experiment is an important indicator to measure the motion accuracy when path

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

planning and motion control are combined. A higher motion

accuracy indicates that the robot can perform the predetermined

motion task more accurately and improve the quality of task

completion. Table 7 shows the motion accuracy scores of the

comprehensive experiments of different methods on five

datasets. As can be seen from the table, PPO has the highest

motion accuracy on all datasets, indicating that it can more

accurately control the motion of the robot in the comprehensive

task. For example, on the KITTI dataset, the motion accuracy of

PPO is 0.94, which is much higher than the 0.90 of the PID

controller. This shows that PPO not only performs well in path

planning, but also maintains high accuracy in motion control to

ensure high-quality completion of the task. DQN also performs

well in motion accuracy, but is slightly inferior to PPO. The

traditional PID controller performs generally in terms of motion

accuracy, especially in the comprehensive task, where the

motion accuracy is low, which affects the quality of task

completion. MCTS and GA also perform well in terms of

motion accuracy, but are still slightly inferior to the methods

based on deep reinforcement learning. Overall, the methods

based on deep reinforcement learning have obvious advantages

in terms of motion accuracy in the comprehensive experiment,

and can more accurately control the motion of the robot and

improve the quality of task completion.

Figure 5 shows the stability scores of five different methods

(PID, DQN, PPO, MCTS, GA) on the motion control task on

the KITTI dataset. The horizontal axis represents different

methods, and the vertical axis represents the stability score. The

stability score of each method is represented by a line, and the

color and shaded area of the line represent the average value and

the error range, respectively. From the figure, we can observe

the following points: the PPO method performs best among all

the methods, with the highest stability score and the smallest

error range, showing good consistency and reliability. The

stability score of the DQN method is second, but it is still higher

than the other methods, indicating that it has certain advantages

in motion control tasks. The stability scores of the MCTS and

GA methods are relatively low, and the error range is large,

indicating that the performance of these two methods on the

KITTI dataset is not stable enough. Although the PID method is

simple and easy to use, it performs poorly in this experiment,

with the lowest stability score and a large error range.

Figure 5. Stability of motion control tasks of different methods on the KITTI dataset.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

Figure 6. Performance fluctuation of the PPO method in the training steps.

Figure 6 shows the performance fluctuation of the PPO

method over the training steps. As can be seen from the figure,

as the number of training steps increases, path smoothness (Path

Smoothness) and motion accuracy (Motion Accuracy) show

obvious periodic fluctuations. In the initial stage, the

fluctuations of the two indicators are more violent, indicating

that the model faces greater uncertainty in the early stages of

exploration. However, as the training progresses, the amplitude

of the fluctuation gradually decreases, indicating that the model

is gradually converging and stabilizing. It is worth noting that

at about the 50th step, the performance reaches a peak, and

although it decreases slightly afterwards, it still remains at

a high level. This shows that the PPO method can effectively

optimize path planning and motion control after a certain

amount of training, showing strong robustness and adaptability.

5.3. Discussion

This study significantly improves the performance of the robot

arm through neural network-based methods, especially the

application of deep reinforcement learning (DRL) in path

planning and motion control. Experimental results show that the

paths generated by PPO in path planning tasks have the highest

smoothness, shortest path length, and strongest obstacle

avoidance ability. In motion control tasks, PPO exhibits the

smallest trajectory error, the highest motion accuracy, and the

best stability. Comprehensive experiments further verify the

superior performance of PPO in the combination of path

planning and motion control, which can generate smooth, short,

and safe paths and accurately control the motion trajectory of

the robot arm to ensure high-quality completion of tasks.

Although PPO performs well in multiple tasks, it still has some

shortcomings. First, PPO takes a long time to train and requires

a lot of data and computing resources, which may be a challenge

in practical applications. Second, the PPO model has a high

complexity and requires strong computing power and storage

resources, which may require model compression and

optimization in resource-limited embedded systems. In addition,

the interpretability of deep reinforcement learning models is

poor, and it is difficult to intuitively understand the decision-

making process of the model, which may bring certain

challenges in some applications that require a transparent

decision-making process. Future research can focus on the

following directions: first, reduce the complexity of the PPO

model through model compression technology to improve its

feasibility in resource-limited embedded systems; second,

explore how to enhance the interpretability of the PPO model

through visualization technology and explanatory methods to

make it more practical in applications that require transparent

decision-making processes; finally, study how to optimize path

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

planning and motion control simultaneously through multi-task

learning to improve the overall performance of the robot in

complex environments. In-depth research in these directions

will further enhance the performance and application scope of

the path planning and motion control methods of the robot based

on neural networks.

The PPO algorithm faces many challenges when dealing

with unknown or semi-structured environments. For example,

in unknown environments, due to the lack of prior information,

the algorithm may find it difficult to quickly find an effective

path planning strategy in the initial stage, resulting in too long

exploration time. In semi-structured environments, such as

industrial workshops where some areas have regular obstacle

layouts, but at the same time there are some randomly placed

objects, the PPO algorithm may find it difficult to accurately

distinguish different types of environmental features, thus

affecting the efficiency and accuracy of path planning.

In order to improve these problems, we can adopt the

following methods. First, introduce a heuristic strategy based on

environmental exploration. At the beginning of the algorithm,

let the robot arm first perform a quick environmental scan to

obtain the general environmental structure information, and

then adjust the initial strategy of the PPO algorithm based on

this information to speed up the exploration speed. Secondly,

use multimodal perception technology, such as fusing multiple

sensor data such as vision, lidar and force sensors, so that the

algorithm can perceive environmental features more

comprehensively and improve the ability to recognize and adapt

to different environments. Through these improvements, it is

expected that the practicality of the PPO algorithm in unknown

or semi-structured environments will be further improved.

Although the PPO algorithm performs well in most cases,

there are still some problems in extreme cases. For example, in

industrial scenarios with long-term continuous operation, the

model performance may gradually decline due to factors such

as wear of the robot arm and changes in ambient temperature.

After a long period of experimental testing (100 hours of

continuous operation), we found that the path smoothness score

dropped from the initial 0.89 to 0.85, and the motion accuracy

dropped from 0.96 to 0.93. In an unknown environment, when

encountering a complex obstacle layout that has never been seen

before, the PPO algorithm may take a long time to explore an

effective path, resulting in reduced task execution efficiency.

For example, in a completely new irregular obstacle

environment, the path planning time of the PPO algorithm

increased by 50% compared to that in a known environment. In

order to solve these problems, in the future, it is possible to

consider introducing a regular model update and adaptive

adjustment mechanism to optimize the model parameters in real

time according to the operating status of the robot arm and

environmental changes, and improve the robustness and

adaptability of the model.

Comparison of experimental results in environments of

different complexity

To verify the robustness and adaptability of the PPO

algorithm in environments of different complexity, we designed

a series of experiments and constructed three environmental

scenarios: simple (a small number of regular obstacles),

medium (more regular and some irregular obstacles), and

complex (a large number of irregular and dynamic obstacles).

Path planning task: In a simple environment, the PPO

algorithm has a path smoothness of 0.90, a path length of 1.12,

and an obstacle avoidance capability of 0.97; in a medium

environment, the smoothness is 0.88, the path length is 1.15,

and the obstacle avoidance capability is 0.95; in a complex

environment, although the difficulty is greatly increased, it still

maintains high performance, with a smoothness of 0.86, a path

length of 1.18, and an obstacle avoidance capability of 0.93.

Motion control task: In a simple environment, the trajectory

error is 0.015, the motion accuracy is 0.97, and the stability is

0.93; in a medium environment, the trajectory error is 0.02, the

motion accuracy is 0.95, and the stability is 0.92; in a complex

environment, the trajectory error is 0.025, the motion accuracy

is 0.94, and the stability is 0.91.

Experiments show that the PPO algorithm can maintain

good performance in environments of different complexity,

showing strong robustness and adaptability.

6. Conclusion

This study introduces deep reinforcement learning (DRL),

especially the proximal policy optimization (PPO) algorithm,

and proposes a framework for integrated path planning and

motion control, aiming to improve the path planning efficiency

and motion control accuracy of the robot in complex

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

environments. Experimental results show that PPO performs

well in path planning and motion control tasks, can generate

smooth and short paths, has strong obstacle avoidance

capabilities, and is superior to traditional algorithms in terms of

control accuracy and stability. Through verification on multiple

data sets, PPO can not only cope with path planning in static

and dynamic environments, but also effectively handle multi-

robot collaborative tasks. In addition, PPO performs

outstandingly in reducing trajectory errors, improving motion

accuracy and stability, fully demonstrating its application

potential in industrial automation.

Looking ahead, with the development of emerging

technologies such as edge computing and 5G communications,

we can combine the PPO algorithm with these technologies to

further improve the performance of robot path planning and

motion control. For example, using edge computing technology,

some computing tasks can be transferred from the cloud to local

devices, reducing data transmission delays and improving the

real-time performance of the algorithm. At the same time, the

high rate and low latency characteristics of 5G communications

can ensure efficient data interaction between the robot and the

surrounding environment equipment, providing the algorithm

with richer and more timely environmental information, thereby

optimizing path planning and motion control strategies.

In addition, in view of the current PPO algorithm's

dependence on a large amount of training data, methods based

on small sample learning or transfer learning can be explored in

the future. By transferring knowledge of pre-trained models in

similar tasks or environments, the demand for large-scale

training data can be reduced, and the scalability and adaptability

of the algorithm in practical applications can be improved. For

example, in a new industrial scenario, a PPO model trained in

a similar scenario can be used for fine-tuning to quickly adapt

to the new environment and reduce training costs and time.

References

1. Wu BJ, Wu XH, Hui NM, Han XW. Trajectory planning and singularity avoidance algorithm for robotic arm obstacle avoidance based on

an improved fast marching tree. Applied Sciences-Basel. 2024; 14(8). https://doi.org/10.3390/app14083241

2. Meng BH, Godage IS, Kanj I. RRT*-based path planning for continuum arms. IEEE Robotics and Automation Letters. 2022; 7(3):6830-

7. https://doi.org/10.1109/LRA.2022.3174257

3. Zhang QL, Li HD, Duan JG, Qin JY, Zhou Y. Multi-objective point motion planning for assembly robotic arm based on IPQ-RRT* connect

algorithm. Actuators. 2023; 12(12). https://doi.org/10.3390/act12120459

4. Yu JB, Wu JG, Xu JP, Wang XY, Cui XY, Wang BY, et al. A novel planning and tracking approach for mobile robotic arm in obstacle

environment. Machines. 2024; 12(1). https://doi.org/10.3390/machines12010019

5. Velez-Lopez GC, Vazquez-Leal H, Hernandez-Martinez L, Sarmiento-Reyes A, Diaz-Arango G, Huerta-Chua J, et al. A novel collision-

free homotopy path planning for planar robotic arms. Sensors. 2022; 22(11). https://doi.org/10.3390/s22114022

6. García N, Rosell J, Suárez R. Motion planning by demonstration with human-likeness evaluation for dual-arm robots. IEEE Transactions

on Systems Man Cybernetics-Systems. 2019; 49(11):2298-307. https://doi.org/10.1109/TSMC.2017.2756856

7. Mi KN, Fu YW, Zhou CH, Ji WC, Fu ML, Liang R. Research on path planning of intelligent maintenance robotic arm for distribution lines

under complex environment. Computers & Electrical Engineering. 2024; 120. https://doi.org/10.1016/j.compeleceng.2024.109711

8. Chen L, Sun HX. Picking path optimization of mobile robotic arm based on differential evolution and improved A* algorithm. IEEE

Access. 2021; 9:154413-22. https://doi.org/10.1109/ACCESS.2021.3060738

9. Zhang N, Cui CC, Wu GL. Path planning of a 5-dof robotic arm based on BiRRT-APF algorithm considering obstacle avoidance.

Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science. 2022; 236(16) :9282-92.

https://doi.org/10.1177/09544062221091764

10. Tang XX, Zhou HB, Xu TY. Obstacle avoidance path planning of 6-DOF robotic arm based on improved A* algorithm and artificial

potential field method. Robotica. 2024; 42(2):457-81. https://doi.org/10.1017/S0263574723001546

11. Zhao D, Ding ZY, Li WJ, Zhao S, Du YH. Cascaded fuzzy reward mechanisms in deep reinforcement learning for comprehensive path

planning in textile robotic systems. Applied Sciences-Basel. 2024; 14(2). https://doi.org/10.3390/app14020851

12. Wang NY, Wang Q, Zhang QM, Xie JL. Adaptive grinding planning of robotic arms with minimal cost. IEEE Transactions on

Instrumentation and Measurement. 2024; 73. https://doi.org/10.1109/TIM.2024.3364268

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025

13. Cheng X, Zhou JM, Zhou Z, Zhao XM, Gao JJ, Qiao T. An improved RRT-Connect path planning algorithm of robotic arm for automatic

sampling of exhaust emission detection in Industry 4.0. Journal of Industrial Information Integration. 2023; 33.

https://doi.org/10.1016/j.jii.2023.100436

14. Kim J, Kim JG, Park J, Han BK, Kim S, Park DI. Dual-arm path-planning algorithm for wiring harness assembly using redundantly

actuated robotic systems. IEEE Access. 2023; 11:98427-35. https://doi.org/10.1109/ACCESS.2023.3306793

15. Muñoz J, López B, Quevedo F, Barber R, Garrido S, Moreno L. Geometrically constrained path planning for robotic grasping with

differential evolution and fast marching square. Robotica. 2023; 41(2):414-32. https://doi.org/10.1017/S0263574722000224

16. Velez-Lopez GC, Hernandez-Martinez L, Vazquez-Leal H, Sandoval-Hernández MA, Jimenez-Fernandez VM, Gonzalez-Lee M, et al.

Collision-free path planning applied to multi-degree-of-freedom robotic arms using homotopy methods. IEEE Access. 2024; 12:150702-

18. https://doi.org/10.1109/ACCESS.2024.3479095

17. Zhang LX, Meng XJ, Ding ZJ, Wang TS. Two stage path planning method for co-worked double industrial robots. Ieee Access. 2023;

11:126995-7010. https://doi.org/10.1109/ACCESS.2023.3332310

18. Zhao D, Ding ZY, Li WJ, Zhao S, Du YH. Robotic arm trajectory planning method using deep deterministic policy gradient with

hierarchical memory structure. IEEE Access. 2023; 11:140801-14. https://doi.org/10.1109/ACCESS.2023.3340684

19. Tang R, Guo SR, Wang KF, Lin HD, Huang LJ, Mou G. A framework of insole blanking robot based on adaptive edge detection and FSPS-

BIT* path planning. Scientific Reports. 2024; 14(1). https://doi.org/10.1038/s41598-024-71636-4

20. Shaw JS, Lee SY. Using genetic algorithm for drawing path planning in a robotic arm pencil sketching system. Proceedings of the

Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science. 2024; 238(14):7134-42.

https://doi.org/10.1177/09544062241230171

21. Feng MJ, Dai JB, Zhou WB, Xu HZ, Wang ZB. Kinematics analysis and trajectory planning of 6-dof hydraulic robotic arm in driving side

pile. Machines. 2024; 12(3). https://doi.org/10.3390/machines12030191

22. Zhang LX, Meng XJ, Ding ZJ. Collision avoidance strategy based on virtual body deformation for path planning of serial industrial robot.

Journal of Mechanical Science and Technology. 2024; 38(6):3113-29. https://doi.org/10.1007/s12206-024-0530-1

23. Batista JG, Ramalho GLB, Torres MA, Oliveira AL, Ferreira DS. Collision avoidance for a selective compliance assembly robot arm

manipulator using topological path planning. Applied Sciences-Basel. 2023; 13(21). https://doi.org/10.3390/app132111642

24. Hernández-Mejía C, Vázquez-Leal H, Torres-Muñoz D. A Novel Collision-free path planning modeling and simulation methodology for

robotical arms using resistive grids. Robotica. 2020; 38(7):1176-90. https://doi.org/10.1017/S0263574719001310

25. Zhuang M, Li G, Ding KX. Obstacle avoidance path planning for apple picking robotic arm incorporating artificial potential field and A*

algorithm. IEEE Access. 2023; 11:100070-82. https://doi.org/10.1109/ACCESS.2023.3312763

26. Wu NK, Jia DY, Li ZQ, He ZH. Trajectory planning of robotic arm based on particle swarm optimization algorithm. Applied Sciences-

Basel. 2024; 14(18). https://doi.org/10.3390/app14188234

27. Wall DG, Economou J, Knowles K. Quasi-real-time confined environment path generation for mobile robotic manipulator arms.

Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering. 2018; 232(3):270- 84.

https://doi.org/10.1177/0959651817751317

28. Xu Y, Li HW, Li H, Fang GH, Jia H. Path planning and intelligent control of a soft robot arm based on gas-structure coupling actuators.

Frontiers in Materials. 2022; 9. https://doi.org/10.3389/fmats.2022.1052538

29. Gal Y, Zarrouk D. Task-based motion planning using optimal redundancy for a minimally actuated robotic arm. Applied Sciences-Basel.

2022; 12(19). https://doi.org/10.3390/app12199526

30. Rybus T, Wojtunik M, Basmadji FL. Optimal collision-free path planning of a free-floating space robot using spline-based trajectories.

Acta Astronautica. 2022; 190:395-408. https://doi.org/10.1016/j.actaastro.2021.10.012

