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Highlights  Abstract  

▪ A novel approach of diagnosing faults of 

induction motors with acoustic data features. 

▪ The statistical parameters of IMFs are used as 

a features input.   

▪ A projected LSTM model proposed for motor 

diagnosis. 

▪ A fast and effective diagnosis of induction 

motor faults. 

 The use of acoustic signals in the diagnosis of electrical machines allows 

for non-invasive and rapid diagnostics. The author proposed the novel 

approach of acoustic diagnosis of single-phase induction motors, which 

is 98.67% accurate on the test set and allows for fault detection in circa 

0.042 s, and 97.33% accurate for 0.021 s long samples similarly. The 

research includes five classes of faults. In this method, intrinsic mode 

functions (IMFs) gained from the empirical mode decomposition (EMD) 

of the motor sound are used to calculate the following statistical 

parameters: mean, mean square, root mean square, standard deviation, 

energy, and norm. Next, these parameters are organized from a prepared 

matrix to a vector of parameters one IMF by one, suitable for neural 

network input. Such prepared data is then passed to the proposed 

architecture of the projected LSTM neural network. The training 

processes were fast - they took only 12 and 13 seconds selectively. The 

presented novel method is useful for acoustic fault diagnosis of electric 

motors and could be used for other motors. 
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1. Introduction 

Since the invention of semiconductor control devices and their 

application in induction machine control, the area of application 

of induction motors significantly increased. Nowadays, they 

play important roles in industry, power systems, agriculture, 

services, household appliances, and many others. For example, 

they are used as an electric drive in car services for car lifting, 

in workshops for tools drives, or in municipal services to drive 

water pumps. Three-phase induction motors are also used as an 

automotive drive. Depending on the context, the machines are 

used constantly, periodically, or incidentally. In each case, 

machine reliability plays an important role for human health and 

safety. The economic factor is also important. The fast and 

reliable diagnosis of motors is crucial for real-time monitoring 

systems or fast diagnosis by motor service in case of 

malfunction.  

In recent years, many types of measurement data have been 

discussed in literature. With machine learning techniques and 

appropriate preprocessing methods, they allow us to achieve 

high accuracies. One of the preprocessing methods is empirical 

mode decomposition (EMD). This method is mainly used with 
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Hilbert-Huang transform (HHT). It allows analysis of stationary 

and non-stationary (or non-linear) natural signals in the time-

frequency domain. Therefore, this is one of the significant 

research areas. The importance of preprocessing has been 

shown in [1]. The authors applied concatenation of EMD and 

wavelet packet decomposition to the single-phase current signal. 

As a result, they distinguished significant differences in energy 

and RMS of the signal for six levels of tested frequencies. In the 

article [2], the six-phase permanent magnet synchronous motors 

with open-circuit faults have been researched. The authors 

applied the least mean square error (LMS) filter to denoise data, 

EMD on the current signal data to calculate energy entropy, and 

normalized average current values of each current phase from 

IMFs. The SVM classifier with four sub-classifiers 

accomplished an accuracy of 100% for a healthy state, and 98.3-

98.8% for different open-circuit states. The current signal was 

also researched in [3], where the authors proposed method for 

feature extraction for broken rotor bar detection with usage of 

Modified Empirical Mode Decomposition (MEMD) and 

Adaptive Window Spectral Operation (AWSO). The authors 

presented fast working original solution for feature extraction. 

The current signal is obviously not the only type of data used in 

motor diagnostics. One of the promising areas of research 

includes the usage of electromagnetic flux, which allows us to 

classify different types of faults, such as inter‐turn short‐circuit, 

broken bars or airgap eccentricity [4]. The article [5] presents 

four original approaches for thermographic feature extraction: 

DAMOM (Differences of Arithmetic Mean with Otsu's Method), 

DAM20HP (Differences of Arithmetic Mean with 20 Highest 

Peaks), DAMMH (Differences of Arithmetic Mean with Mean 

of the histogram) and IB (Ignore Binarization) and their usage 

with Nearest Neighbor (NN) and LSTM networks with grey-

scale image inputs. For presented methods, 100% of accuracy 

has been accomplished in each case. Another approach was 

presented in [6], in which three states (two faulty and one 

healthy) of commutator motors have been examined. For this 

purpose, the author proposed a method called MSAF-RATIO-

50-SFC and their variation MSAF-RATIO-50-SFC-

EXPANDED. The sum of RSoV was also used. The NN has 

achieved for the mentioned method selectively: 91.66-93.75% 

efficiency, the backpropagation neural network (BNN) has 

achieved selectively: 79.16- 91.66% efficiency, and the linear 

discriminant analysis (LDA) achieved: 85.41- 91.66% of 

efficiency. The vibration data have been also researched in the 

work [7]. The authors have applied CNN with HHT to diagnose 

bearing faults on vibration data. The accuracy of CNN with 

HHT was 98%, and it outperformed CNN with FFT (90%) and 

CNN with time series (93%) presented in the same paper. In 

article [8], the authors presented optimized CNN with 

hyperparameter selection, that achieved 99.8% accuracy on  

a test set for five classes of bearing faults (including healthy 

motor). The other area of research in motor faults classification 

is audio data. In paper [9], the Singular Spectrum Analysis (SSA) 

with Fast Fourier Transform (FFT) have been used to detect 

specific components of audio data of Line Start PMSMs with 

usage of smartphone. The identification of special features, for 

example in frequency spectrum, is one of the main approaches 

in classification tasks. The MSAF-20-MULTIEXPANDED was 

presented in [10] for single-phase induction motor fault 

detection with the usage of NN, Nearest Mean (NM), and 

Gaussian Mixture Models (GMM). The best from this research 

was NM, with a range of accuracy between 89.7-95.3%. The 

NN and Naive Bayes (NB) were also used in [11] for acoustic 

motor fault diagnosis. In this article, the SMOFS-NFC method 

was used, and the range of 89.33%-97.33% of accuracy was 

achieved for commutator motor fault detection, depending on 

the variation of the mentioned method. The genetic algorithms 

are also in use to save the computational resources. The acoustic 

data have been researched with Acoustic Spectral Imaging 

(ASI), FFT and CNNs, achieving 93.99-95.62% accuracy [12]. 

The combination of vibration data with current signals have 

been researched in [13]. The authors researched performance of 

KNN, MSVM, RF and ET with feature data obtained from 

MODWPT decomposition for six classes of bearing states (one 

healthy). The vibration data combined with magnetic flux have 

been researched in [14]. The authors proposed CNN with LSTM 

modules with feature extraction (frequency domain statistical 

parameters) for six bearing states classification. They achieved 

100% accuracy. In [15] presented an approach with the usage of 

HHT, envelope analysis (EA), and variational mode 

decomposition (VMD) for feature extraction, and memory 

space computation genetic algorithm (MSCGA) for feature 

selection. They were used with SVM, and K-Nearest Neighbor 

(KNN) classifiers and they achieved 99.4% and 99.14% of 
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accuracy respectively. Another approach is presented in [16]. 

The authors focused on bearing fault detection with usage of 

acoustic data from five microphones. They hired the following 

machine learning methods: 1D-CNN (accuracy 97.95% without 

proposed in this paper feature engineering), KNN (accuracy 

98.58% with proposed in paper feature engineering, also used 

for next methods), Decision Tree (98.30%), MLP (95.45%) and 

SVM (98.86%). Sometimes methods used in other fields are 

used to diagnose motor faults, like natural language processing. 

In article [17], the authors proposed method based on 

Transformer usage with Whale Optimization Algorithm for 

hyperparameters optimization task. The three-phase current, 

audio data and vibration data have been collected. The highest 

accuracy obtained is 99.10% in mentioned paper. Presented so 

far articles are based on real data for single faulty state at once. 

Unfortunately, sometimes situations are far more complicated – 

the data are hard to collect, or handling with composite faults is 

necessary. To address this issue of insufficient training data, the 

authors of article [18] proposed a digital twin-driven approach 

for composite fault diagnosis for subsea production system. 

This solution allows us to use virtual and real data in the training 

process, and the diagnosis time is 20 ms. A similar solution was 

presented in [19], where achieved accuracy is 90% and 

diagnosed time is 15 ms. In article [20], the digital-twin with 

cross-validation enhancement has been presented. All these 

digital-twin methods are promising areas of research, 

addressing problem of insufficient training dataset. 

The CNNs became popular in recent years due to their 

astonishing performances in many areas. Some of them were 

already mentioned in the previous paragraph. There are also 

methods, that are a variation on EMD, like EEMD, CEEMD, or 

noise eliminated ensemble empirical mode decomposition 

(NEEEMD) presented in [21] for the scalograms generation. 

This method used with CNN allowed authors to accomplish  

98% accuracy of fault detection on the test set. In [22] authors 

present multiscale 2D-CNN with attention mechanism and 

continuous wavelet transform (CWT) analysis of vibration data. 

The faults of rolling bearings have been examined, and the 

98.00% average accuracy has been accomplished. A similar 

issue was researched in [23] - this paper also presents the 2D-

CNN with CWT. For four examined classes the accomplished 

accuracy was 99.37%. An important issue in artificial 

intelligence is the study of “transfer learning” models. Many of 

them are CNNs. They have already found a lot of applications 

in many different fields, and the teaching methods used have 

included both supervised [24] and unsupervised [25] learning. 

The DenseNet with MobileViT Attention mechanism is one of 

them, which was researched in [24], where the authors 

combined four types of DenseNet (Standard DenseNet, MTF-

DenseNet, Gadf-Densenet and RP-DenseNet). As a result, the 

mean accuracy was between 97.35-99.14%, depending on the 

model. The attention mechanism researched in the mentioned 

article allowed to reduce diagnosis time by reducing the number 

of parameters, which is especially important for huge transfer 

learning models. Głowacz et al. proposed Differences of Word 

Vectors (DWV) for acoustic feature extraction for transfer 

learning models: ResNet-18 (100%), DenseNet-201 (100%) and 

ResNet-50 (100%) [26]. The effectiveness of CNNs in fault 

detection is undoubtable. 

The CNNs are often combined with LSTM networks in fault 

detection. LSTM networks are a kind of recurrent neural 

networks with self-loops, that are used for time series data, time 

steps data, and feature analysis. They seem to be a natural 

choice for current, vibration, or acoustic data analysis. The 

PMSM faults were the topic of the research in [27]. In this work, 

the CNN-LSTM architecture with a hybrid attention mechanism 

has been proposed for fault detection of 12 classes. The current 

signal has been used as input data. As the preprocessing method 

sliding segmentation, Butterworth filter, and FFT were applied. 

As a result, an accuracy of over 99% has been achieved. Another 

research [28] focused on PMSM's open-circuit detection with 

CNN and LSTM networks led to 99.8% accuracy. In [29] the 

vibration data for the CNN-LSTM network has been applied. 

The eight classes were examined, and the final accuracies 

(depending on the accelerometer) ranged from 98.88-99.96%. 

The Bidirectional LSTM with CNN layers was researched in 

[30], achieving 99.80% accuracy. Another approach of 1D-

LSTM-regulated residual neural network with CNN layer was 

presented in [31] (100%) accuracy). In [32] the authors 

proposed FTCNNLSTM (the combination of CNN and LSTM 

with Attentive Interpretable Tabular Learning) and achieved  

96% accuracy for ten classes of bearing faults. The used dataset 

was CWRU (Case Western Reserve University). Transfer 

learning CNNs are also combined with LSTMs. The article [33] 
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presents one of the approaches. The proposed VGG-LSTM 

achieved 99.53% on test set. Such combination was meant for 

better handling of long-sequence dependencies with previous 

feature extraction obtained from CNN transfer learning model. 

As we can see, the application of LSTMs in fault detection in 

combination with CNNs is promising. 

LSTMs are broadly used in many different fields – including 

motor fault detection. In [34] authors proposed Highway 

Bidirectional LSTM with attention mechanism (AHBi-LSTM) 

for bearing fault detection with usage of vibration data. The 

overall accuracy of proposed method was 98.23% for six classes, 

including one normal state. The Highway networks use 

learnable gating mechanism, which allows to reduce training 

parameters by controlling flow of information. The deep 

Bidirectional LSTM with attention mechanism (Abid-LSTM) 

was also researched in [35]. The input data were 

multidimensional: the researchers used three-phase current, 

acoustic data, and vibration data. They achieved an accuracy 

99.19%. The focus on complex sensor data is an interesting 

future research field. The LSTM and GRU networks were 

researched in [36] with three-phase current signal for PMSMs. 

For six classes, 98.23% accuracy for LSTM and 98.72% for 

GRU have been obtained. The acoustic data has been researched 

with LSTMs too. In [37] authors proposed LSTM-AE with 

MFCC and DFMT (dynamic feature maximization 

transformation) in EPS electronic motors’ anomaly detection, 

which achieved 99.2% accuracy for inner and outer rings of 

bearings state. The application of Huang transform with LSTM 

has been presented in [38] for audio data of induction motors. 

The proposed solution achieved an accuracy 96-98% for LSTM 

network. 

The diagnostics of single-phase induction motor faults using 

acoustic data is an important issue and is still one of the main 

research problems. The usage of acoustic signals is a universal 

method – it could be applied to any kind of motor. It is a non-

invasive type of measurement, and the microphones are very 

cheap in comparison to other measurement devices. Even 

smartphone microphones could be used. The assumption behind 

the research is the acoustic signals are informative enough to 

correctly classify the motor state. However, the methods of 

acoustic diagnosis must satisfy certain requirements. The goals 

of the research it to obtain reliable and fast working method, 

short training time and small required dataset of acoustic data.  

The author spotted a suspicious research gap regarding 

LSTM networks in single-phase induction motor fault detection 

with usage of acoustic data. Especially with EMD as  

a preprocessing method. Most of the works are focused on 

CNNs or combined CNN-LSTM networks. Moreover, most 

articles do not examine LSTMs with acoustic data. Also, 

LSTM-P networks have not been researched yet with single-

phase induction motors acoustic data. Especially with a set of 

statistical parameters of IMFs and residuum obtained from 

EMD. To the best knowledge of the author, there is no similar 

research work presenting a statistical based method with  

a presented set of data using EMD and LSTM with projection 

layers network. The proposed solution provides fast and highly 

efficient results in single-phase induction motor diagnosis. It is 

a promising area for further research. In the presented article, 

the application of the DNNs with projected LSTM layers 

requires only 12.5 s long samples for each type of fault to train 

and test the proposed neural network with 98.67% accuracy on 

0.042 s long recordings, and similarly, 6.25 s long recordings to 

get 97.33% accuracy on 0.021 s long samples. Therefore, it also 

solves the problem of small audio datasets, similarly as transfer 

learning does. Also, the proposed solution is compact and 

outperforms many other audio classification methods.  

The original and novel contributions of the author are:  

(1) Proposed novel method of classification based on 

proposed novel architecture of projected LSTM 

network with the set of statistical parameters 

calculated from acoustic data with EMD preprocessing 

method for single-phase induction motor diagnostics, 

(2) high effectiveness, fast work, fast training, fast testing 

and small requirements of training data of the proposed 

method. This method addresses the issue of small 

datasets, similar as transfer learning. Moreover, the 

proposed neural network is smaller than most transfer 

learning models. 

The rest of the article is organized as follows: Section 2 

presents examined induction motors and their faults - the subject 

of this research. Section 3 provides detailed information about 

data collection, data preprocessing, and proposed neural 

network. In section 4 the results of the research have been 

contained in. The conclusions of the paper are presented in 
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section 5. 

2. The examined induction motors 

The majority of produced energy is consumed by electric 

motors. The induction motors are amongst others, one of the 

most popular motors due to power electronics controllers, low 

prices, and good work parameters. We can distinguish 

mechanical faults and electrical faults. Mechanical damage 

involves moving parts and material structures, such as damaged 

bearings, damaged fans, damaged shafts, shaft misalignment, 

and others. Electrical damage refers to components through 

which electric current flows. Examples include open circuits in 

the rotor or stator coil, short circuits in the stator coil, damaged 

insulation, and others. The other way to divide motor faults can 

be done by the hierarchical level of fault, such as minor faults 

(minor bearing damage, small shaft’s misalignment), moderate 

faults (medium bearing damage, medium shaft’s misalignment) 

or severe (broken cage, short-circuit). The faulty machines are 

also less effective, therefore there is also economic justification 

for monitoring their states. Some of the faults, like short-circuits 

in the stator winding, can strongly damage the machine and 

create a dangerous situation for the user due to the fast increase 

of temperature in the machine. Other faults may result in louder 

work, lower torque, an increase in the friction and reduction of 

the speed or efficiency, and many others. These consequences, 

like louder work, may also affect human health, and all of these 

may lead to a significant reduction in motor life. Therefore,  

a fast diagnosis is important. The early detected fault should not 

damage other parts of the machine. It is crucial to detect these 

kinds of faults before the side effects of faults severely damage 

the machine. It is estimated that 50% of all faults are bearing 

faults, and 10% are rotor cage faults [39].  

In this research, the following faults have been researched: 

damaged bearing (moderate fault), broken cage (severe fault), 

short circuit in starting wiring (severe fault), and short circuit 

both in starting wiring and work wiring (severe fault), and the 

healthy motor – 5 classes.  The motor with damaged bearing 

was one machine, the motor with broken cage was second 

machine, and the motor with short circuit in starting wiring, 

short circuit both in starting wiring and work wiring and healthy 

state was third machine (3 states per one machine). Each fault 

has been artificially made. Each motor has only one fault state 

(or no-fault) at the time of working, so there are no composite 

faults. Therefore, the diagnostic task in this case is a multiclass 

classification problem. The proposed method does not 

distinguish fault levels - it treats each fault equally. The 

induction motor data and parameters: Promotor, MY 63 1-4 

model, PF = 0.95, speed 1390 rpm, power 0.12 kW, voltage 230 

V, mass 3.3 kg. Figure 1. presents all of the induction motors 

used in the research – (a) with damaged bearing, (b) with broken 

cage and (c) with both types of short circuit and healthy state.

                               

                      (a)                     (b) (c) 

Fig. 1. The examined single-phase induction motor. 

3. Materials and methods 

3.1. Data collection and preparation 

The first author’s step of the research was the data collection. 

The single-phase induction motor acoustic signals of five 

classes were collected. For this purpose, a personal computer 

and Fifine microphone, model K669B (condenser microphone, 

connectivity technology: wired with USB connection, 
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sensitivity: -34dB, channels: 1, frequency response: 20-20000 

Hz, sampling: 48 kHz / 16 b, impedance: 78 Ohm, cardioid 

directivity) were used. The microphone was staying on the 

tripod in front of the induction motor on the concrete floor, at  

a 0.2 m distance (Fig. 2). The measurements have been 

performed in a room 5 m × 3 m. The data has been saved in .m4a 

format. In the second step, the starts and the ends of the 

recordings have been cut to get rid of the silent and 

starting/ending parts. This step has been made in the Audacity 

program. Such prepared data has been split into 1000/48000 = 

0.0208 s ≈ 0.021 s long recordings and 2000/48000 = 0.041(6) 

s ≈ 0.042 s long recordings. The acoustic data were split without 

any overlapping. No filtering or denoising was used as  

a preprocessing method in this study, and no normalization has 

been applied. No dimensionality reduction has been applied. 

Splitting to samples and all further steps were done with 

MATLAB 2023b software. The computer parameters: OS: 

Windows 10 Home, processor: Intel(R) Core(TM) i7-9750H 

CPU, RAM: 12 GB. In further steps, 300 samples of each class 

have been used (1500 samples in total).  

 

Fig. 2. The measurement setup. 

3.2. Empirical mode decomposition, statistical parameters, 

data set preparation 

The EMD (and its variations) became one of the research areas 

in recent years in motor fault diagnosis [1, 2, 7, 15]. The EMD 

algorithm generates an unknown number of time-domain 

functions called intrinsic mode functions (IMFs). Each IMF 

represents one of the signal intrinsic mode oscillators. Among 

the identified oscillators we can distinguish oscillators without 

zero crossing, which are eliminated via a process called sifting, 

and they do not take part in further analysis. The IMF functions 

allow for fully and correctly reconstructing signals. These 

functions must fulfill the following requirements: zero-mean 

value and an equal number of maximum values and cross-zero 

values or their differ by at most one. The algorithm with steps 

is presented in detail in [40, 41]. The EMD could be applied 

both to stationary and non-stationary signals, therefore it is 

widely used. The motor signals (without noise and in the normal 

work state of the machine, not during the start) are stationary in 

most cases. The EMD is mainly used with Hilbert spectral 

analysis, which together form the Hilbert-Huang transform. 

This useful mathematical tool found already a lot of applications: 

in physics [42], neuroscience [43], power system fault diagnosis 

[44], seismic studies [45, 46], and many others. The HHT, and 

EMD also on their own, allow to analyze data in the time-

frequency domain. However, EMD provides IMFs and residual, 

which are still in the time domain. This can be shown by the 

formula (1) (from [32]).  

𝑥(𝑡) = ∑ 𝑥𝑛(𝑡) + 𝑟(𝑡)

𝑛

 

 

(1) 

where: x(t) is a signal, 𝑥𝑛(𝑡)  is an n-th IMF, and 𝑟(𝑡)  is a 

residual. Therefore, it is justified to use statistical parameters of 

signal typical for time domain analysis. The set of parameters 

presented below refers to the changes in acoustic signal 

depending on the type of motor class. In this research, following 

parameters have been applied: mean �̅� (2), mean square value 

𝑥𝑀𝑆  (3), root mean square 𝑥𝑅𝑀𝑆   (4), standard deviation 𝜎  (5), 

energy 𝐸 (6) and norm ‖𝑥‖ (7), where: 𝑥𝑛 n-th sample of signal, 

N – number of samples. 

�̅� =
1

𝑁
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𝜎 = √
1

𝑁
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𝑁−1
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 (5) 
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𝑛=0
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𝑁−1

𝑛=0

 (7) 

For each IMF a mentioned set of parameters is calculated. 
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They are organized into the matrix as follows: the row of 

parameters, and columns of IMFs. Next, the training set, 

validation set, and test set have been divided in proportion 

0.70:0.15:0.15 respectively. The dataset was balanced. Each 

class was present in number: 210 in the training set (1050 in 

total), 45 in the test set (225 in total), and 45 in the validation 

set (225 in total). The data have been converted into the vector, 

adequate for the neural network's feature input. Supervised 

learning has been applied. There was no data leaking between 

datasets, and the entire dataset was randomly shuffled before 

splitting into training, validation and test set. No augmentation 

has been performed. The flowchart of the entire process is 

presented in Fig. 3.

 

Fig. 3. The flowchart of the proposed method. 

3.3. Projected LSTM Deep Neural Network 

Long short-term memory (LSTM) has been invented to address 

the problem of numerical instability of the recurrent neural 

networks' training (vanishing gradient) and became, as did CNN, 

one of the most popular neural networks due to their high 

performances. The single neuron consists of the cell, input gate, 

output gate, and forget gate, where the cell is responsible for 

remembering and gates are responsible for data flow by 

assigning 0 or 1 weight for the particular state. The LSTM is 

well described in [47]. However, there is the possibility to 

improve LSTM networks by adding the projection layer. The 

projection layer is responsible for simple, additional matrix 

multiplication on the output of the LSTM layer by a new matrix 

called the projector matrix. This linear operation on the matrices 

reduces the number of learnable parameters. As a result, the 

numerical complexity of the neural network decreases and the 

accuracy may increase, depending on the task. Also, the training 

process is faster. The projector matrix is a learnable part of the 

layer [48,49]. The author proposed DAGNetwork with LSTM 

projection layers. The parameters of the proposed network are 

presented in Tab. 1., and their graph is presented in Fig. 4. 

The feature input layer was applied according to the 

characteristics of the dataset. We can consider the presented 

dataset as ordered sub-sequences of features. This layer also 

provides data normalization appropriate for this task. The first 

row in Table 1 shows that the input of the neural network 

depends on the number of IMFs. This solution allows us to 

automatically adjust the neural network's input to the changed 

settings (the number of IFMs, for example). For this kind of data, 

hiring the batch normalization layer provides an increased speed 

of training and better accuracy. This layer also increases the 

stability of the training process. The activation function in every 
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case is ReLU. The dropout layer is set to 0.4 value – this value 

was determined experimentally as the best and as a result, 

significantly increased the performance of both models. On the 

output of the neural network, there are fully connected layer 

with outputs equal to number of classes, a softmax layer 

(recommended for multiclass classification tasks), and  

a classification output layer. 

Table 1. Parameters of the proposed neural network. 

Name Type of layer Parameters 

Feature Input featureInput S = (NIMF + 1) ∙ NSP 

LSTM-P 1 lstmProjectedLayer 
HU = 108, OPS = 68, 

IPS = 108 

BatchNorm 1 batchNormalizationLayer - 

ReLU 1 reluLayer - 

LSTM-P 2 lstmProjectedLayer 
HU = 108, OPS = 68, 

IPS = 108 

BatchNorm 2 batchNormalizationLayer - 

ReLU 2 reluLayer - 

LSTM-P 3 lstmProjectedLayer 
HU = 216, OPS = 68, 

IPS = 108 

BatchNorm 3 batchNormalizationLayer - 

ReLU 3 reluLayer - 

FC 1 fullyConnectedLayer OS = 108 

BatchNorm 4 batchNormalizationLayer - 

ReLU 4 reluLayer - 

Concatenation concatenationLayer 3 inputs 

Dropout dropoutLayer 0.4 

FC 2 fullyConnectedLayer 
Number of classes = 

5 

Softmax softmaxLayer - 

ClassOutput classificationOutput - 

where: S - input size, NIMF - number of IMFs, NSP - number of statistical 

parameters, HU – number of hidden units, OPS – output projector size, IPS - 

input projector size, OS – output size. 

For both models, the following training options have been 

set: initial learning rate = 0.006, mini-batch size = 44, max 

epochs = 26, validation frequency = 44, execution environment 

= CPU, optimizer - SGDM. Total number of learnable 

parameters: 370900. The MATLAB environment with Deep 

Learning Toolbox was used. 

The presented approach integrates LSTM networks with 

EMD preprocessing method for acoustic data classification task. 

As was already meant in section 3.2., we can obtain with EMD 

oscillators, which are time-domain functions. Therefore, we can 

calculate their statistical parameters. The EMD allows us to 

obtain a lot of information from the signal. LSTM networks are 

famous due to their excellent performance in long sequences 

handling. The presented approach allows us to determine 

dependencies between statistical parameters of each oscillator 

and residual for each state of the motor with LSTM. This 

solution constitutes a noise reduction and identification process. 

The determination of oscillators allows us to analyze shorter 

time samples for chosen number of functions, which results in 

faster work of neural network or possible real-time solution. 

Also, high accuracy has been achieved. This approach addresses 

the problems of small training dataset, fast working, fast 

training process and robust diagnosis of single-phase induction 

motor diagnosis. 

 

Fig. 4. The graph of the proposed LSTM-P network. 

4. Results 

The research was conducted for five classes of induction motors: 

four faults (damaged bearing, broken cage, short circuit in 

starting wiring, and short circuit both in starting wiring and 

work wiring) and one without faults. The labels have been 

conducted by the author for entire dataset. The induction motors 

were powered by a 230 V / 50 Hz voltage source. The author 

collected acoustic data, prepared data for further processing, 

proposed the novel method and the neural network's 

architecture, carried out the calculations and the experiment, 

and performed the evaluation of the obtained models. 
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One of the most important issues in this research was to find 

the best number of IMFs for neural network training. The 

accuracy of the networks on the test set depends on the number 

of IMFs. By trial-and-error method, the number of IMFs for 

0.042 s samples is optimal in 4 plus residual, and 6 plus residual 

for 0.021 s samples. For both cases, Fig. 5. and Fig. 6. present 

IMFs and residual for healthy induction motor of 0.042 s and 

0.021 s samples respectively. The training process took 13 s for 

0.021 s samples and 12 s for 0.042 s samples.

 

Fig. 5. The presentation of IMFs and residual for 0.042 s sample of healthy motor.  

 

Fig. 6. The presentation of IMFs and residual for 0.021 s sample of healthy motor.  

 

The confusion matrices are shown in Fig. 7 a) and b) for 

0.042 s and 0.021 s samples respectively. The shorts of classes 

are as follows: F1 – no faults, F2 – damaged bearing, F3 - short 

circuit in starting wiring, F4 - short circuit both in starting 

wiring and work wiring, F5 - broken cage. In both presented 

cases noteworthy is that the main misclassifications are between 

F3 and F4 classes, so two types of short-circuit, which are 

similar severe faults. There is no misclassification between F1 

and F3 or F4, therefore there are no seriously dangerous errors. 

The misclassification with fault F1 occurred with a damaged 
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bearing. For (a) there is 1 misclassification between classes F1 

and F2 - false healthy state (the true is damaged bearing, which 

is moderate fault), and for (b) it is false damaged bearing 

classification. Due to the balanced dataset, the metric used to 

evaluate the models is accuracy (8), where A – accuracy. The 

accuracy achieved for test set for 2000 probes per sample (0.042 

s) is 98.67%, and for 1000 probes per sample (0.021 s) is 

97.33%. For the validation set, the accuracies were equal 95.56% 

and 94.67% respectively. 

                           

   (a)                                                                                    (b) 

Fig. 7. The confusion matrices for (a) 0.042 s samples and (b) 0.021 s samples.  

𝐴 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
∙ 100% (8) 

The training process took only 12 s and 13 s respectively for 

0.042 s samples and 0.021 s samples; therefore, the training 

process is also very fast. The entire dataset contains 1500 

samples, 300 of each class. That means 12.5 s recordings of each 

class for 0.042 s samples are sufficient for the neural network's 

training and evaluation. Similarly, 6.25 s recordings of each 

class for 0.021 s samples are sufficient. This method also 

addresses the problem of small datasets. Furthermore, the time 

of diagnosis process from .wav file loading to end of 

classification process has been measured and presented below. 

For 0.042 s recordings it took 0.008 s on average for the entire 

dataset (11.957 s / 1500 samples). For 0.021 s recordings it took 

0.007 s on average for the entire dataset (10.954 s / 1500 

samples). 

5. Discussion 

The electrical motor faults classification have been widely 

researched within different types of data: current signal, 

vibrations, thermographic, magnetic flux and acoustic. The 

limitations of acoustic signal classification are weather 

conditions (e.g. storms), other working machines and 

appliances generating sounds, human speech and so on. As in 

other solutions, the conditions of measurements should be 

identified and carefully checked. 

Table 2 presents comparison of proposed method with 

findings from other articles. Some information about the entire 

process has not been provided in some of these articles, 

therefore appropriate information has been added to the table. 

Also, special attention should be paid when comparing the 

following metrics: training time and testing time - their values 

will depend on several factors, including the hardware on which 

the calculations were performed.  

Based on the information presented in Table 2, we can 

clearly see the superiority of the proposed method in terms of 

training time, testing time and dataset size. Also, the sample 

length used in research is one of the shortest ones. The accuracy 

on test set is outperforming most LSTM-based approaches – 

only GRU presented in [36] performed slightly better for similar 

number of classes. Also, in [35] the 3D Chaotic MPIO ABid-

LSTM have higher accuracy, but it also has higher time metrics. 

The method from [8] using vibration data allows to achieve  

99.8% accuracy with similar length samples, 0.02 s, but longer 

training time (1256 s), larger dataset – 1500 samples per each 

class, less than 45 s per each class (in this research, the entire 

dataset for all five classes had similar size) and longer testing 

time, circa 0.030 s. However, presented in this article accuracy 

is still lower than for multidimensional data, e.g. in [35] - 

99.19%. In research [37] accuracy was slightly higher (99.2%), 

but number of classes was only two – normal work and anomaly. 

Therefore, the integration of EMD and LSTM networks 

provides promising results. For further research, improving 
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time diagnosis, shortening sample length, increasing accuracy 

and providing more robust solutions are the most important 

goals.

Table 2. Comparison of the proposed method with other methods in the literature.  

Reference Training time (s) Testing time (s) 
Accuracy on  

test set (%) 

Number of 

classes 
Dataset size (s) Sample length 

CNN [8] 1256 0.03 99.8 13 585 0.02 

LSTM [34] NP NP 89.57 7 770 NP 

Bi-LSTM [34] NP NP 91.60 7 770 NP 

Bi-LSTM+Highway [34] NP NP 93.44 7 770 NP 

Bi- LSTM+Attention [34] NP NP 95.41 7 770 NP 

AHBi-LSTM [34] NP NP 98.23 7 770 NP 

LSTM [35] 558 0.034 61.45 4 NP NP 

Bid-LSTM [35] 882 0.041 74.25 4 NP NP 

PIO-LSTM [35] 3684 0.045 90.14 4 NP NP 

HHO-Bid-LSTM [35] 4362 0.041 93.57 4 NP NP 

3D Chaotic MPIO ABid-

LSTM [35] 
3894 0.041 99.19 4 NP NP 

Transformer [35] 690 0.030 94.17 4 NP NP 

LSTM [36] 8240 NP 98.23 6 2304* 0.1 

GRU [36] 5100 NP 98.72 6 2304* 0.1 

LSTM [38] NP 1.8 98 8 NP NP 

Proposed: 42 ms 

21 ms 

13 

12 

0.008 

0.007 

98.67 

97.33 
5 

62.5 

31.25 

0.042 

0.021 

NP – not provided; * in total; for each scenario per each class, it was 48 s 

6. Conclusions 

The proposed novel method of statistical-based diagnosis of 

induction motors with EMD and LSTM-P network performed 

very well. It works very fast, and the training process is very 

short. The optimization of the neural network with dropout layer, 

selection of appropriate hyperparameters, selection of the best 

normalization layers, and activation functions provided higher 

accuracies. The hiring of the EMD and statistical parameters 

provided good performance. The statistical parameters have 

been selected very well. LSTM-P networks can be successfully 

used for this kind of task and should be considered in further 

research. All of this allows this method to be used in early fault 

detection systems, and real-time applications or to be used as an 

independent system or auxiliary sub-system of fault detection. 

Combination of audio data-based diagnosis sub-system with 

other types, e.g. vibration data, flux data and current data. 

Specifically, the real-time application in continuous motor 

diagnosis seems to be promising due to the short time of 

required samples, relatively simple preprocessing and fast work 

of proposed neural network. This method should be used 

successfully for other types of electrical motors, like other 

asynchronous motors, synchronous motors, commutator motors, 

DC motors and others. Therefore, it should be useful for 

diagnosis of electrical tools’ motors, tram motors, train motors 

and many others. 

The limitation of this method is the necessity to 

experimentally select the optimal number of IMFs. The number 

of IMFs affects the final accuracy. The small sample size of 

training set for each class required for proposed solution is  

a significant advantage and is within an acceptable range for 

presented task, but on the other hand it may affect the 

generalizability of the findings. Therefore, further research 

should be focused on larger datasets and datasets with higher 

number of classes. The generalizability of the model and 

method should be examined. Also, another set of statistical 

parameters should be investigated. Other types of motors and  

a bigger number of fault classes also should be tested. Another 

area of further research should include multi-label (or multi-

fault, in other words) diagnosis. Also, multisensory and 

multidimensional data should be researched, such as 

combination of current data, vibration data, and acoustic data.
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