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Highlights  Abstract  

▪ Proposes TimeGAN-CNN-LSTM-Attention 

model for precise contact resistance prediction. 

▪ TimeGAN-generated synthetic data validated 

via PCA/KDE to resolve degradation data. 

▪ Combines adversarial data generation and deep 

learning in resource-limited systems. 

▪ Achieves 30.22% R² boost , demonstrating 

superior prediction accuracy. 

 Electromagnetic relays are critical in aerospace and military systems, 

affecting the safety and stability of applications like aircraft control, 

satellite communication, and missile launchers. However, the scarcity of 

degradation data and complex variations in contact resistance pose 

challenges. Traditional methods often struggle with small samples. To 

address these issues, propose a novel framework integrating TimeGAN 

with a CNN-LSTM-Attention model. TimeGAN generates synthetic 

degradation data that aligns with the statistical distribution of the original 

dataset, mitigating data scarcity. Data quality is evaluated using PCA and 

KDE. The CNN-LSTM model captures multi-scale temporal features, 

while the attention mechanism highlights critical features to improve 

contact resistance prediction accuracy. Experimental results show that 

the proposed framework outperforms traditional methods, 

demonstrating robust performance even without data augmentation. 

These findings offer a valuable foundation for health monitoring and 

fault prediction in high-reliability systems. 
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1. Introduction 

Electromagnetic relays play a pivotal role in aerospace and 

military applications. In the aerospace sector, they are widely 

employed in satellite communication, attitude control, and the 

operation of propulsion systems, where their high reliability 

ensures the long-term stability of spacecraft. In military 

applications, electromagnetic relays are critical components in 

missile launching systems and radar equipment, facilitating 

high-precision signal switching and control—both essential for 

the proper functioning of key systems. These relays are 

designed for extended storage durations and exhibit slow 

degradation, making it challenging to accumulate sufficient 

failure data within a short period due to the gradual degradation 

process and the influence of multiple external factors. 

Traditional reliability assessment methods often struggle to 

accurately evaluate their long-term storage reliability1-2. 

Although accelerated degradation testing has emerged as an 

important research approach, uncertainties in degradation 

mechanisms pose significant challenges in selecting appropriate 

stress conditions and developing suitable test equipment. 

Furthermore, issues such as high testing costs, prolonged testing 
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cycles, and limited sample availability further complicate 

research efforts3-4. 

Contact resistance serves as a critical indicator of 

electromagnetic relay degradation, with its temporal evolution 

directly dictating operational reliability and lifespan. During 

repeated switching operations, mechanical wear and electrical 

arcing induce surface roughening and oxide layer formation at 

the contact interface5. This progressive deterioration elevates 

contact resistance, leading to increased Joule heating and 

localized temperature rise, which further accelerates material 

oxidation—a self-reinforcing degradation mechanism6. 

Experimental studies demonstrate that a 20% increase in contact 

resistance correlates with a 35% reduction in relay lifespan 

under rated loads, as excessive voltage drops (ΔV > 50 mV) 

compromise signal integrity in aerospace control systems. 

Traditional reliability models often oversimplify these 

nonlinear interdependencies, treating resistance as a static 

parameter rather than a dynamic precursor to failure. This gap 

motivates our data-driven approach to capture the 

spatiotemporal degradation signatures encoded in resistance 

trajectories, enabling proactive health management. 

Data augmentation techniques have been widely applied in 

regression tasks and image classification, yet their adoption for 

time-series data remains relatively underexplored7-8. Generative 

Adversarial Networks (GANs)9 offer a promising approach to 

data augmentation by generating synthetic samples that align 

with the statistical distribution of real data through an 

adversarial learning process. Building upon this foundation, 

Yoon et al. proposed Time-series Generative Adversarial 

Networks (TimeGAN)10, which combine supervised and 

unsupervised learning techniques to model temporal 

dependencies while maintaining the diversity of distributions. 

Prior research has demonstrated the effectiveness of TimeGAN 

in addressing data scarcity challenges; for instance, one study11 

employed TimeGAN to generate synthetic fault samples 

resembling historical failure data, mitigating the issue of limited 

failure samples. In high-reliability applications, another study12 

combined TimeGAN with a CNN-BiLSTM-Attention model to 

generate health indicators for electro-hydrostatic actuators 

(EHAs). Additionally, research13 introduced Extraction 

TimeGAN to enhance aero-engine failure data, validating its 

performance using Principal Component Analysis (PCA) to 

ensure consistency with real data distributions. Furthermore, a 

Conditional Time-Series Generation Adversarial Network (C-

TimeGAN)14 was proposed to generate high-quality equipment 

trajectories by imposing specific constraints, thereby improving 

the accuracy of Non-Intrusive Load Monitoring (NILM) models. 

In this paper, we propose a contact resistance prediction 

method for electromagnetic relays based on TimeGAN and  

a CNN-LSTM-Attention framework to address the challenge of 

insufficient training data due to the scarcity of degradation 

samples. First, TimeGAN is utilized to generate synthetic 

degradation data that maintain statistical consistency with the 

original dataset, thereby expanding the training set. The 

distribution consistency of the generated data is verified using 

Principal Component Analysis (PCA) and Kernel Density 

Estimation (KDE). Second, a predictive model combining CNN, 

LSTM, and Attention mechanisms is constructed to extract 

multi-scale spatiotemporal features and key time-step 

information from the degradation data, enhancing the modeling 

capability for complex degradation processes. Finally, both the 

generated and original data samples are used to train the 

proposed model, and its performance is compared with the 

traditional CNN-LSTM model, standard LSTM model, GRU 

model and Transformer model. This approach establishes  

a novel paradigm for prognostics and health management (PHM) 

of electromechanical systems under data-limited conditions, 

effectively bridging adversarial data generation with deep 

feature learning to advance reliability prediction in resource-

constrained industrial applications. 

2. Related Mechanism Analysis 

2.1. TimeGAN  

The proposed TimeGAN framework demonstrates an 

innovative integration of unsupervised adversarial generation 

training (characteristic of GAN architectures) with supervised 

regression-based learning to effectively enhance datasets for 

analyzing degraded parameters of electromagnetic relays. The 

methodology systematically categorizes degradation data 

features into two distinct types: static features 𝑺 and dynamic 

features 𝑿, which respectively occupy orthogonal vector spaces 

𝜁  and 𝜒.Static features refer to time-invariant parameters that 

remain stable throughout the relay’s lifecycle, such as material 

properties , geometric configurations, and initial operational 
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states. These features characterize the intrinsic attributes of the 

electromagnetic relay. In contrast, dynamic features describe 

time-evolving parameters influenced by operational wear and 

environmental interactions, including transient contact 

resistance fluctuations, pickup/release times, over-travel 

displacement, and temperature-dependent degradation trends. 

The potential feature distributions 𝑝̂(𝑺, 𝑿1:𝑇) are learned from 

the real degradation data so that they are as close as possible to 

the actual distributions 𝑝(𝑺, 𝑿1:𝑇)  of the static and dynamic 

feature vectors. 

The TimeGAN architecture combines an autoencoder 

framework with adversarial training mechanisms to synthesize 

high-fidelity temporal data. The autoencoder component 

comprises an embedding network that compresses relay 

degradation data into a low-dimensional latent space and  

a recovery network that reconstructs the original data space, 

ensuring preservation of critical degradation features. 

Simultaneously, the adversarial network employs a generator 

that synthesizes realistic time-series data from noise-

conditioned latent vectors, while a discriminator evaluates the 

statistical congruence between generated and empirical 

distributions 15. This dual mechanism jointly optimizes feature 

reconstruction fidelity and distributional alignment, achieving a 

robust synthesis of degradation patterns as detailed in figure 1.

 

Figure 1. Structure of TimeGAN.  

TimeGAN effectively models the temporal dynamics of 

contact resistance degradation through a composite loss 

architecture integrating three critical components. The 

reconstruction loss (𝐿𝑅) preserves fundamental distributional 

characteristics of empirical resistance data by minimizing 

autoencoding errors. A physics-guided supervision loss ( 𝐿𝑆) 

enforces consistency between generated sequences and domain-

specific degradation models, ensuring adherence to known 

electromechanical principles. Concurrently, the adversarial loss 

(𝐿𝑈) facilitates cross-parameter correlation learning, capturing 

dynamic interactions between resistance evolution and auxiliary 

degradation indicators—including suction/release times and 

over-travel displacement—through discriminator-guided 

feedback mechanisms. By jointly optimizing these 

complementary objectives, the framework synthesizes 

temporally coherent degradation trajectories that maintain both 

local feature fidelity and global physical plausibility, as 

demonstrated through comparative analysis of synthetic and 

empirical spatiotemporal patterns. The three loss functions are 

shown below: 

𝐿𝑅 = 𝐸𝐒,𝐗1:𝑇~𝑃

[‖𝐒 − 𝐒̃‖
2

+ ∑ 𝑡‖𝐗𝑡 − 𝐗𝑡̃‖
2

] (1) 

𝐿𝑠 = 𝐸𝐒,𝐗1:𝑇~𝑃

[‖𝐡𝑡 − 𝑔𝜒(𝐡𝑠, 𝐡𝑡−1, 𝑧𝑡)‖
2

]   (2) 

𝐿𝑈 = 𝐸𝐒,𝐗1:𝑇~𝑃

[𝑙𝑜𝑔 𝑦𝑠 + ∑ 𝑙𝑜𝑔 𝑦𝑡𝑡 ] + 𝐸𝐒,𝐗1:𝑇~𝑃

[𝑙𝑜𝑔(1 −

𝑦𝑠̂) + ∑ 𝑙𝑜𝑔(1 − 𝑦𝑡̂)𝑡 ]   (3) 

2.2. CNN-LSTM model 

The model integrates Convolutional Neural Networks (CNN) 

and Long Short-Term Memory Networks (LSTM). The CNN 

layer uses a multi-scale convolutional kernel to extract local 

morphological features, which effectively identifies precursors 

to sudden changes in contact resistance. The two-layer LSTM 

structure captures long-term dependencies through its memory 

cell updating mechanism, enabling accurate localization of the 

transition point from the stable to the accelerating period. Zhi et 
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al.16constructed a harmonic reducer fault detection model based 

on the CNN-LSTM framework and a novel noise reduction 

algorithm (WRCTD), achieving noise reduction, feature 

extraction, and accurate fault classification for complex 

industrial vibration signals.Xu et al.17 introduced a hybrid 

model based on EMD-CNN-LSTM, aimed at improving the 

accuracy of short-term power load forecasting, particularly for 

the nonlinear and nonsmooth characteristics of load sequences. 

In this study, the CNN module consists of two convolutional 

layers and two pooling layers that alternate with each other. This 

design combines the principles of regional connectivity and 

weight sharing. The convolutional layer extracts latent features 

from the degraded data, with the CNN's convolution kernel 

being one-dimensional. This design is suitable since the contact 

resistance, pickup time, release time, and overtravel time of the 

electromagnetic relay are represented as one-dimensional time 

series.The pooling layer serves to compress the high-

dimensional feature maps generated during feature extraction, 

effectively compressing spatial dimensions while preserving 

critical data attributes. This dimensionality reduction 

mechanism lowers computational costs in subsequent 

processing stages and enhances model generalization by 

suppressing redundant parameters that may contribute to 

overfitting. The structure of the CNN-LSTM model is 

illustrated in figure 2. 

 

Figure 2. Structure of CNN-LSTM model. 

LSTM, as a variant of RNN, can efficiently capture dynamic 

changes and long-term dependencies in degraded data through 

its unique gating mechanism, which consists of three parts: 

input gate, forgetting gate, and output gate. Its calculation 

formula is as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)    (4) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)             (5) 

𝐶̄𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)    (6) 

𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)    (7) 

ℎ𝑡 = 𝑂𝑡 𝑡𝑎𝑛ℎ( 𝐶𝑡)     (8) 

In the temporal gating architecture, input xt and hidden state 

ht are processed through three regulatory components: forget 

gate ft , input gate it ,and output gate Ot . Each gate operates 

through distinct parameter sets - weight matrices Wf , Wi , Wc , 

Wo and corresponding bias vectors bf , bi , bc , bo govern 

information flow regulation. The compressed feature maps from 

the pooling layer feed into a 128-unit LSTM network, followed 

by dimensionality transformation through a dense output layer 

for prediction generation. To optimize model robustness, 

dropout regularization is strategically implemented between 

network layers, effectively suppressing co-adaptation of hidden 

units. The training protocol employs two adaptive 

mechanisms:1) Early termination based on validation plateau 

detection.2) Cosine-annealed learning rate scheduling, 

collectively enhancing convergence efficiency while 

maintaining solution stability. 

2.3. Attention mechanism 

The Attention mechanism, inspired by biological selective 

perception principles, dynamically allocates feature weights to 

enable models to focus on critical information. This approach 

demonstrates cross-domain applicability in reliability 

engineering: In typhoon impact prediction, attention-enhanced 

CNN architectures process multimodal geospatial data 

(meteorological patterns, topographic features) combined with 

XGBoost to improve robustness in power grid disaster 

warnings18. For lithium battery health monitoring, an attention-

guided CNN-LSTM framework addresses insufficient temporal 

feature extraction in state-of-health (SOH) estimation through 

adaptive temporal saliency mapping19. Applied to contact 

resistance prediction, the mechanism automatically identifies 
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critical degradation phases while suppressing noise interference 

via learnable weight allocation, enhancing temporal pattern 

recognition without manual feature engineering. Cross-domain 

applications validate its effectiveness in extracting physically 

interpretable features from complex spatiotemporal degradation 

processes20. The calculation formula of the attention mechanism 

is: 

score(ℎ, ℎ̄𝑠) = ℎ̄𝑊ℎ̄𝑠       (9) 

𝛼𝑙𝑠 =
𝑒𝑥𝑝(score(ℎ,ℎ̄𝑠))

∑ 𝑒𝑥𝑝
𝑆∑scorē𝑠
𝑠=1

    (10) 

𝐶𝑡 = ∑ 𝛼𝑙𝑠𝑠 ℎ̄𝑠     (11) 

𝑎𝑡 = 𝑓(𝑐𝑡 , ℎ𝑡) = 𝑡𝑎𝑛ℎ( 𝑊𝑐[𝑐𝑡; ℎ𝑡])   (12) 

Where score(ℎ, ℎ̄𝑠) is the weight score, 𝛼𝑙𝑠 is the weight, ℎ̄𝑠 

is the hidden variables of all original moments, 𝐶𝑡 denotes the 

Attention-weighted feature vector, 𝑎𝑡  is the attention vector, 

and ℎ𝑡  is the hidden variables of the current moment. In this 

paper, the Attention mechanism is integrated into the dual 

LSTM layer, and the unit layer structure is schematically shown 

in figure 3. 

 

Figure 3. Schematic diagram of CNN-LSTM-Attention unit layer structure. 

3. TimeGAN-CNN-LSTM-Attention Model Construction 

In this paper, a total of 171 sets of electromagnetic relay 

degradation data are used, and less training data will cause 

overfitting problem of the deep learning model, in this regard,  

a contact resistance prediction method of electromagnetic relay 

based on TimeGAN and CNN-LSTM-Attention model is 

proposed, which utilizes TimeGAN for data enhancement of 

original degradation data, and at the same time extracts global 

features of the degradation data through CNN-LSTM-Attention 

to capture important time steps, to accurately achieve the 

contact resistance prediction. CNN-LSTM to extract the global 

features of the degraded data, combined with the Attention 

mechanism to assign weights to capture the important time steps, 

so as to accurately realize the prediction of contact resistance. 

The specific prediction process of TimeGAN-CNN-LSTM-

Attention is shown as follows: 

(1) The degraded data is fed into the TimeGAN model for 

training, where unsupervised adversarial generation from GAN 

is combined with supervised training in the regression model. 

The difference between the generated data and the original 

degraded data is evaluated in three dimensions using the 

constructed loss functions, and the process iterates until the 

difference meets the specified criteria. 

(2) Normalize the original degraded data and the new data 

generated via TimeGAN. 

(3) The normalized dataset is fed into the CNN-LSTM 

hybrid architecture through a systematic computational pipeline. 

The convolutional stage employs sequential operations with 

3×3 kernel filters across alternating layers, generating 64-

channel feature maps that undergo spatial dimension 

compression via 2×2 pooling operations. These hierarchically 

abstracted representations are subsequently propagated into  

a two-tiered LSTM module: the initial recurrent layer with 128 

memory units integrates an attention mechanism to dynamically 

weight temporal dependencies, while the subsequent LSTM 

layer maintains identical 128-unit capacity to preserve 

sequential pattern integrity. The processed temporal features are 

then projected through a fully connected regressor to estimate 

contact resistance values. Throughout this computational 
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cascade, rectified linear unit (ReLU) activations govern 

nonlinear transformations across all learnable components. 

Upon completing the forward propagation setup, the Adam 

optimizer orchestrates parameter updates during 

backpropagation to minimize prediction errors, adhering to its 

inherent adaptive learning rate properties for stable convergence. 

(4) The 1000 sets of newly degraded data generated by the 

TimeGAN model in (1) are input into the constructed CNN-

LSTM-Attention model in (3) as a training set, and the test set 

is extracted from the original data. Eventually, the data are back-

normalized to accurately achieve the prediction of the contact 

resistance of the electromagnetic relay. 

To ensure the reproducibility of the experiments, the 

hyperparameter configurations for the CNN-LSTM-Attention 

model architecture and training protocol are detailed in table 1:

Table 1. Model implementation details. 

Component Parameter Value/Range 

CNN Module Number of Convolutional Layers 2 

 Kernel Size 3×3 

 Number of Kernels 64 per layer 

 Activation Function ReLU 

 Pooling Type Max Pooling 

 Pooling Window 2×2 

LSTM Module Number of Recurrent Layers 2 

 Hidden Units per Layer 128 

 Dropout Rate 0.2 

Attention Mechanism Attention Type Additive Attention 

 Weight Initialization Xavier Normal 

 Context Vector Dimension 64 

Training Strategy Optimizer Adam 

 Initial Learning Rate 0.001 

 Batch Size 24 

 Training Epochs 100 

 Learning Rate Schedule Cosine Annealing 

 

Figure 4. Flowchart for TimeGAN-CNN-LSTM-Attention model construction. 

The proposed CNN-LSTM-Attention model is trained on an 

NVIDIA Tesla V100 GPU with 32GB VRAM, utilizing 

PyTorch 2.0.1 and CUDA 11.7. The training process require 

approximately 1.5 hours for 100 epochs with a batch size of 24, 

achieving convergence at epoch 78 (early stopping triggered). 

The model contains 500 thousand parameters, with the LSTM 

module accounting for 68%, the CNN module 22%, and the 

attention mechanism 10%. For comparative analysis, the 
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baseline LSTM and CNN-LSTM models require 1.1 hours and 

1.2 hours, respectively, under identical hardware 

configurations. While the parameter scale exceeds lightweight 

architectures, the computational overhead remains manageable 

for cloud-based deployment. For edge devices with limited 

resources, future work may explore model pruning or 

quantization to reduce memory footprint without significant 

accuracy loss.  

The specific TimeGAN-CNN-LSTM-Attention model 

construction flowchart is shown in figure 4. 

4. Experimental results and analysis 

4.1. Primary degradation data collection 

The experimental data was collected from a specific model of 

electromagnetic relay tested on the accelerated degradation test 

platform at Harbin Institute of Technology. This testing period 

spanned from January 18, 2012, to January 28, 2013, with 

degradation data recorded every 48 hours. The data includes 

measurements of contact resistance, pickup time, release time, 

and over-travel time. In this paper, contact resistance is treated 

as the primary target for prediction, while the other three metrics 

serve as multi-step inputs for the model. During the process of 

predicting contact resistance, it was noted that differences in 

units and magnitudes could impact prediction accuracy. To 

enhance the model's convergence and stability, all data were 

normalized to a range of [0, 1]. After normalization, the data 

will need to be back-normalized using the following formula: 

𝑥′ =
𝑥−𝑥min

𝑥max−𝑥min
     (13) 

𝑥 = 𝑥′ × (𝑥max − 𝑥min) + 𝑥min    (14) 

Where 𝑥，𝑥′  are the data before and after normalization, 

𝑥max ,𝑥min  are the maximum and minimum values in the data 

before normalization. 

4.2. Quality assessment of generated data 

To better evaluate the quality of the 1000 newly generated data 

sets and their suitability for practical use, the expanded data is 

analyzed using Principal Component Analysis (PCA) and 

Kernel Density Estimation (KDE). PCA is employed to reduce 

the dimensionality of the data, focusing on eliminating degraded 

components that could affect the reliability of electromagnetic 

relay storage. This reduction allows for a comparison of the 

feature distribution between the generated and original datasets 

in a two-dimensional space. Figure 5 presents the 2D feature 

distribution of both the generated and original data after 

dimensionality reduction, showing significant overlap between 

the two. KDE is utilized to examine the relative data density 

across different intervals. By overlaying multiple datasets, it 

becomes easier to assess the distributional differences and 

understand the gap between the model-generated data and the 

original data. Figure 6 illustrates that the KDE fitting is effective 

and aligns well with the original data.

 

Figure 5. Principal Component Analysis plot. 
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Figure 6. Kernel Density Estimation plot. 

4.3. Attention Weight Analysis 

In the context of electromagnetic relay degradation, critical 

time steps refer to specific operational intervals where abrupt 

changes in contact resistance or auxiliary parameters signal 

accelerated wear or impending failure. These steps are 

characterized by transient phenomena such as micro-arcing, 

oxide layer breakdown, or contact surface roughening, which 

precede macroscopic performance deviations. The proposed 

CNN-LSTM-Attention model explicitly identifies these steps 

through its attention mechanism, dynamically assigning higher 

weights to temporal features indicative of degradation 

acceleration. To validate the interpretability of the attention 

mechanism in identifying critical degradation phases of 1000 

groups, we visualize the temporal attention weights of the test 

set samples and correlate them with domain-specific 

degradation events in figure 7.

 

Figure 7. Temporal attention weights correlation with degradation phases. 

The red markers represent degradation events, and as shown, 

these events coincide with high attention weight values, 

particularly in the latter time steps. This correlation suggests 

that the model assigns more importance to time periods that are 

crucial for the degradation process, aligning with our domain 

knowledge of how degradation accumulates over time, 

particularly under operational stress conditions. This visual 

analysis helps clarify the relationship between attention weights 

and degradation events, making it evident that the model indeed 

focuses on critical time steps where degradation processes are 

most prominent, thus validating the model's ability to capture 

these important patterns. 
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4.4. Evaluation indicators 

Commonly used metrics in the evaluation of prediction 

algorithms include goodness of fit (R2), mean absolute error 

(MAE), mean square error (MSE), and root mean square error 

(RMSE). These indices collectively quantify deviations 

between model outputs and ground truth observations, 

systematically assessing predictive performance and error 

distribution characteristics. 

R², also known as the coefficient of determination, is  

a statistical measure that quantifies how well a regression model 

explains the variability in the data. It ranges from 0 to 1, with 

higher values indicating a better fit and greater explanatory 

power of the model. A value closer to 1 suggests that the model 

accounts for a large proportion of the variance in the observed 

data. The formula for R² is as follows: 

𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖)2𝑛
𝑖=1

     (15) 

MAE is a metric that calculates the average of the absolute 

differences between the predicted values and the actual values, 

providing a measure of the average size of prediction errors.  

A lower MAE indicates more accurate predictions. The formula 

for MAE is as follows: 

MAE =
1

𝑛
∑ |𝑛

𝑖=1 𝑦𝑖 − 𝑦̂𝑖|    (16) 

MAPE is a metric that measures the relative error between 

predicted and actual values. It calculates the absolute difference 

between the predicted and actual values, expresses this error as 

a percentage, and then averages the percentages. A lower MAPE 

indicates better prediction accuracy. The formula for MAPE is 

as follows: 

MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1     (17) 

RMSE is the square root of the Mean Squared Error (MSE) 

and offers a measure of the error magnitude that aligns with the 

scale of the original data. It provides a direct indication of how 

far the predictions deviate from the actual values. The formula 

for RMSE is as follows: 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1     (18) 

In the formulas 𝑦̂𝑖，𝑦𝑖，𝑦
𝑖
 are the model predictions, the 

original values, and the average of the original values, 

respectively. 

4.5. Analysis of results 

Prior to model construction, a dataset consisting of 171 groups 

of degraded electromagnetic relay data is organized. The first 

124 groups are designated as the training set, while the 

remaining 47 groups are used for testing. To evaluate the 

performance of the CNN-LSTM-Attention model, it is 

compared with the traditional CNN-LSTM model, standard 

LSTM model, GRU model and Transformer model with the goal 

of achieving more accurate contact resistance predictions. 

Furthermore, to assess the impact of TimeGAN on data 

augmentation, 1000 new sets of degraded data are generated by 

TimeGAN, based on the original 171 groups. These newly 

generated datasets are then incorporated into the training set, 

while the original 47 groups remained as the test set. The data 

is input into the CNN-LSTM-Attention model for contact 

resistance prediction. During training, a batch size of 24 

samples is used for each weight update, and the training 

duration is set to 100 epochs to avoid both underfitting and 

overfitting.The comparison of the different contact resistance 

prediction methods, both before and after data enhancement by 

TimeGAN，is illustrated in figure 8 and 9. 

 

Figure 8. Comparison of contact resistance prediction of different models before enhancement. 
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Figure 9. Comparison of contact resistance prediction of different models after enhancement. 

TimeGAN-LSTM, TimeGAN-CNN-LSTM, TimeGAN-GRU, 

TimeGAN-Transformer,TimeGAN-CNN-LSTM-Attention and 

the specific evaluation metrics of each model before 

enhancement are shown in table 2. 

Table 2. Specific evaluation indicators for the model. 

Model R2 MAE MAPE RMSE 

LSTM 0.6741 0.0971 0.7773 0.1346 

CNN-LSTM 0.6782 0.1158 0.9378 0.1338 

GRU 0.4877 0.1415 1.1454 0.1688 

Transformer 0.7147 0.0994 0.0159 0.1259 

CNN-LSTM-Attention 0.7322 0.1047 0.8445 0.1220 

TimeGAN-LSTM 0.8287 0.0807 0.6513 0.0976 

TimeGAN -CNN-LSTM 0.8522 0.0751 0.6055 0.0907 

TimeGAN-GRU 0.6043 0.1258 0.0220 0.1483 

TimeGAN- Transformer 0.7425 0.1013 0.8171 0.1197 

TimeGAN-CNN-LSTM-Attention 0.9534 0.0396 0.3194 0.0509 

In terms of the performance of the base model, the gradual 

optimisation of LSTM, CNN-LSTM and CNN-LSTM-

Attention improves the R² from 0.6741 to 0.7322, and the 

RMSE decreases by 9.3%, which verifies the effectiveness of 

the convolutional layer with the attention mechanism for 

temporal feature extraction. However, the original GRU model 

performs weakly (R²=0.4877), while Transformer shows strong 

competitiveness (R²=0.7147), indicating that the self-attention 

mechanism has a unique advantage in the unenhanced data. 

Enhanced by the introduction of TimeGAN data, the 

performance of all models jumped significantly, with 

TimeGAN-GRU (R²=0.6043) and TimeGAN-Transformer 

(R²=0.7425) showing a limited increase, though improved from 

the base version. While TimeGAN-CNN-LSTM-Attention 

stands out with an overwhelming advantage, with R² reaching 

0.9534, a 30.2% improvement over the pre-enhancement 

version, RMSE sharply decreasing by 58.3% to 0.0509, and 

MAE (0.0396) and MAPE (31.94%) decreasing by more than 

60%, with breakthroughs leading in all four metrics. This proves 

that the deep synergy between temporal generation adversarial 

network and CNN-LSTM-Attention architecture can not only 

expand the diversity of temporal patterns through data 

enhancement, but also accurately capture the deep temporal 

dependency through multi-scale feature extraction and dynamic 

weight allocation mechanism, and ultimately achieve the double 

qualitative change of prediction accuracy and stability. 

5. Conclusions 

1) Propose a prediction method based on TimeGAN with 

CNN-LSTM-Attention. The high-quality time-series data 

generated by TimeGAN substantially expands the training 

dataset, effectively tackling the issue of small sample sizes. 

Experimental results demonstrate that the model's goodness-of-

fit (R²) increases from 0.7322 to 0.9534, while the root mean 

square error (RMSE) drops from 0.1220 to 0.0509 after 

incorporating TimeGAN. These enhancements emphasize the 

critical role of data augmentation in accurately modeling 

complex degradation features. 

2) The constructed CNN-LSTM-Attention model integrates 

the feature extraction capabilities of convolutional neural 

networks, the time series dependency modeling abilities of 

LSTMs, and the attention mechanism's capability to focus on 

key time steps. This combination effectively enhances the 

modeling accuracy of contact resistance time series data. 
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Compared to the traditional LSTM model, the method presented 

in this study improves the R² value by 41.45% and reduces the 

RMSE by 62.17%. These enhancements significantly decrease 

prediction errors and highlight the model's potential for 

application in the health monitoring of high-reliability 

equipment. 

3) Comparative analysis before and after enhancement 

shows that the method in this study has significant advantages 

in data-scarce scenarios. The mean absolute error (MAE) of the 

TimeGAN-CNN-LSTM-Attention model decreases from 

0.1047 to 0.0396, and the relative percentage error (MAPE) 

decreases from 0.8445 to 0.3194, with an error reduction of 

more than 60%, verifying the feasibility and effectiveness of 

data augmentation combined with deep learning models. 

Although this study achieved good results in model accuracy 

and small sample scenarios, there are still some limitations: (1) 

the quality of TimeGAN-generated data is greatly affected by 

the distribution of the original data and noise, which may reduce 

the enhancement effect in high-noise scenarios; (2) the 

computational complexity of the CNN-LSTM-Attention model 

is high, which is not applicable to real-time monitoring 

scenarios with limited resources ; (3) the interpretability of 

model-generated data is weak, and the adaptability in special 

failure modes needs to be improved. In the future, the 

computational efficiency of the model can be considered to be 

enhanced by dimensionality reduction techniques and parallel 

processing. In terms of data preprocessing, methods such as 

variational self-encoder can be tried to enhance the robustness 

of the model and strengthen the ability to handle outliers and 

missing data.
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