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Highlights  Abstract  

▪ An reliable and effective method for detecting 

WT blade damage method is proposed. 

▪ It reduces the requirements for the number of 

measurement points and modal order. 

▪ The process is applied to NREL 5MW WT 

blade and achieved high-order accuracy result. 

 Wind turbine blades are among the most critical components of a wind 

turbine. Cracking is the most prevalent type of the WT blades damage, 

making it essential to develop methods for early detection and precise 

assessment of crack locations and severity. This paper proposes a novel 

method based on uniform load surface (ULS) curvature variation for 

determining the damage location in wind turbine blades. The Chebyshev 

polynomial is utilized instead of the central difference method to 

calculate ULS curvature. This method only needs the first-order natural 

frequency of the WT blade to detect the damage of the WT blade, and 

the numerical simulation results show that its calculation accuracy has 

low requirements on the number of measurement points. An 

experimental platform was established to collect modal data and a model 

updating technique was employed to adjust the simulation model 

parameters. Consequently, this method enhances the traditional modal 

curvature approach, offering a more comprehensive and reliable 

technique for structural health monitoring of wind turbine blades. 
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1. Introduction 

As wind power generation has become an increasingly vital 

source of green renewable energy, wind turbine blades, as 

critical components of the system, are often exposed to harsh 

environments, making them susceptible to various forms of 

damage, including surface depressions, delamination, and 

cracking[1-3]. Studies have shown that blade failures caused by 

cracks are particularly challenging to detect, highly destructive, 

and costly to repair. Engineers and technicians employ multi-

directional inspection techniques and regular maintenance 

strategies to address this issue. This study aims to develop an 

effective method for detecting structural damage in wind 

turbine blades. 

Currently, traditional blade damage detection methods, such 

as infrared thermal imaging[4], ultrasound[5], and visual 

inspection[6], are limited by environmental temperature, 

material properties, equipment costs, and other factors. To 

enhance efficiency and accuracy while reducing costs and 

technical complexity, many researchers have introduced novel 
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approaches for wind turbine blade structural damage detection, 

including digital image processing[7], laser scanning[8], 

machine learning[9-12], and nanomaterial sensors[13]. 

However, the effectiveness and feasibility of these methods 

require further validation. Among these, damage diagnosis 

techniques based on the modal parameters of blade vibrations 

are also gaining increasing attention[2, 14-18]. 

The method of diagnosing structural damage based on 

modal parameters dates back to the 1970s and was initially 

applied to beams, plates, and other structures in civil 

engineering[19]. Structural damage alters the system's stiffness, 

mass, and damping properties, reflected in measurable or 

calculable modal parameters such as natural frequencies and 

mode shapes. However, relying on a single modal parameter is 

insufficient; for instance, two damages located in different areas 

may exhibit the same natural frequency. Consequently, 

researchers have conducted extensive further studies on this 

topic. Pai P.F et al. [20] furthered research using the boundary 

effect detection (BED) method, employing a scanning laser 

vibrometer to measure the operational deflection shapes (ODS) 

of the beam and identify small damage locations. Viola et al. 

[21] proposed a method to identify damage in Timoshenko 

beams using modal test data, investigating the impact of cracks 

on the stiffness and uniform mass matrices by introducing the 

concept of local flexibility. Rodríguez et al. [22] presented the 

baseline stiffness method (BSM), which involves extracting the 

vibration modes, natural frequencies, and transverse stiffness of 

the beam before and after damage. The method analyzes the 

location and severity of the damage using singular value 

decomposition. Through the persistent efforts of researchers, 

fundamental modal parameters such as natural frequency and 

mode have been developed into more sensitive, complex, and 

user-friendly modal parameters. These advancements facilitate 

the diagnosis of plate and beam structures that more accurately 

reflect real-world conditions. Wei et al. [23] proposed the 

concepts of the damage location factor (DLF) matrix and the 

damage severity correction factor (DSCF) matrix from the 

perspective of strain energy. Identifying damage in plate 

structures was achieved through three steps: sensitive mode 

selection, damage localization, and quantification in plate-type 

structures. Huang et al.  [24] proposed a modal frequency strain 

energy assurance criterion (MFSEAC), along with a modal 

flexibility and enhanced moth-flame optimization damage 

diagnosis method, to identify damage in a simply supported 

steel beam and a three-story shear steel frame. This approach 

partially addresses low computational efficiency and the lack of 

a susceptible damage index. Wang [25] proposed a variability 

of modal strain energy residuals to detect damage in pile 

foundations of high-pile wharves. They established  

a quantitative relationship between modal strain energy residual 

variability and the degree of local damage. Jian-Xiong Gao [26] 

incorporated the effects of natural aging and fatigue loading to 

assess the residual strength of wind turbine blades. The results 

indicated that temperature significantly influenced the 

properties of glass fiber reinforced polymer. 

As research progressed, engineers and technicians 

discovered that using singular value decomposition to reveal 

damaged information lacks robustness. They identified certain 

physical quantities more sensitive to damage and offer 

improved robustness. Kim [27] utilized the second derivative of 

the frequency response function as a damage index, identifying 

structural damage by measuring the dynamic behavior of the 

beam under varying levels of excitation force. Sung et al. [28] 

proposed a modal flexibility acquisition method for detecting 

damage in Bernoulli-Euler beams using normalized uniform 

load surface (NULS) curvature. This approach effectively 

identifies both single and multiple damage locations. Research 

indicates that NULS curvature is more sensitive and robust to 

damage compared to the singular value decomposition method. 

Wu [29] successfully applied uniform load surface (ULS) 

curvature to 2D flat structures, achieving more accurate results. 

Jiang et al. [30] employed a two-step method to detect damage 

in tablet structures, achieving favorable results. The curvature 

modal shape subtraction indicator was utilized in the first stage 

for damage localization. In the second stage, a database 

establishing the relationship between natural frequency and 

damage severity was developed, and damage severity was 

evaluated using particle swarm optimization (PSO). Ruoyang 

Bai et al. [31]employed Gramian Angular Field (GAF) and 

Squeeze and Excitation (SE) techniques to overcome the 

limitations associated with extended time series encoding and 

generalization, thereby enhancing the feature extraction 

capabilities for fault diagnosis in rotating machinery. 

The method for diagnosing structural damage in blades 
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based on modal parameters originates from damage detection 

techniques for plates and beams. Geometrically, wind turbine 

blades can be considered as curved beams with variable cross-

sections, which presents significant challenges. Nonetheless, 

many researchers have successfully applied this method to wind 

turbine blades. Wang et al. [32] conducted a dynamic analysis 

of fan blades using the finite element method (FEM). They 

detected damage locations by examining the mode shape 

difference curvature (MSDC) of the blades. Cadoret et al. [33] 

approximated the time-invariant model of a time-periodic 

system, derived a damage sensitivity index based on adaptive 

modal parameters, and applied Gaussian residuals to 

accommodate changes in the time-periodic system. Jiang et al. 

[34] utilized the singular value decomposition method to extract 

singular information from the operational deflection shapes 

(ODS) of fan blades and established a natural frequency 

database. They employed the whale optimization algorithm 

(WOA) to find the natural frequency closest to the damage 

within the database, enabling the localization and evaluation of 

blade damage. Pacheco-Chérrez [35] utilized operational modal 

analysis (OMA) to analyze the vibrations of wind turbine blades. 

They extracted acceleration time series generated by random 

excitation of the blades, highlighting the characteristics of the 

damaged blade using the frequency domain decomposition 

(FDD) algorithm. Chuangyan Yang[36] proposed an algorithm 

combining Gated Recurrent Unit (GRU) and Stacked Sparse 

Autoencoder (SSAE), integrating dynamic latent variable 

analysis with deep learning, which was successfully applied to 

the identification of wind power blade icing faults. 

It is well known that damage has a minimal impact on the 

lower-order natural frequencies and modes, while higher-order 

natural frequencies and modes are often difficult to excite. The 

detection of blade damage using mode shape difference 

curvature (MSDC) heavily relies on higher-order modal data. 

Similarly, the method of creating a database to optimize and 

assess damage also necessitates higher-order natural 

frequencies to enhance the accuracy of the results. Therefore, 

this study proposes a uniform load surface (ULS) curvature 

method based on Chebyshev polynomial approximation, 

allowing for accurate and clear representation of the position 

and severity of damage using first-order vibration mode data. 

The remainder of this article is organized as follows: The next 

section provides a brief overview of the process for calculating 

ULS curvature using Chebyshev polynomial approximation. In 

the third section, a numerical example is presented to assess 

blade damage using Chebyshev-ULS curvature, along with the 

experimental results. In the fourth section, the method is applied 

to a larger blade model, with added noise to assess the 

universality and robustness of the approach. The fifth section 

concludes the article. The flow chart of the proposed method is 

shown in Figure 1. 

 

Figure 1. Flow chart of damage detection method. 

2. Basic theory 

2.1. Modal analysis 

In general, the analysis can be reduced to a multi-degree-of-

freedom system. By applying the Hamiltonian principle, the 

partial differential equation governing blade vibrations can be 

derived. The overall mass matrix, stiffness matrix, and damping 

matrix of the blade can then be obtained through discretization 

and assembly using the Galerkin method. In this context, the 

vibration equation of the blade can be simplified as follows: 

𝑴𝑥̈ + 𝑪𝑥̇ + 𝑲𝑥 = 𝑭    (1) 

where  𝑴 , 𝑪 , 𝑲 , and 𝑭  represent the global mass matrix, 

damping matrix, global stiffness matrix, and external load 

vector of the blade, respectively. The matrices 𝑥̈ , 𝑥̇ , and 𝑥 

denote the displacement, velocity, and acceleration matrices of 

the blade, respectively. The modal parameters obtained through 

modal analysis effectively represent the health status of the 

blade. Damage induces changes in the local element mass and 
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stiffness matrices surrounding the damaged area, subsequently 

affecting the overall mass and stiffness matrices. Minor damage 

can be considered negligible for the total mass of the blade, 

meaning that external loads and damping do not influence the 

modal parameters. Essentially, the focus is on studying the free 

vibration system of the blade. Equation (1) can be simplified as 

follows: 

𝑴𝑥̈ + 𝑲𝑥 = 𝟎    (2) 

Any free vibration can be considered a form of harmonic 

motion. By substituting the displacement term of the blade back 

into the equation, the generalized characteristic equation of the 

blade can be derived: 

(𝑲 − 𝜔𝑖
2𝑴)𝜙𝑖 = 0    (3) 

In the above formula, 𝜔 represents the circular frequency of 

the blade, 𝜙  denotes the modal vector, 𝑖  indicates the mode 

order of the blade, and 𝑖 = 1,2, … ,5 . The expressions for the 

blade's natural frequency, mass matrix, and stiffness matrix are 

provided below: 

𝑓𝑖 =
1

2𝜋
√

𝑲

𝑴
     (4) 

Since the measured natural frequency of a real blade is 

influenced by its geometric dimensions, material properties, and 

environmental conditions, the natural frequency calculated 

from the finite element model represents an ideal state. This 

discrepancy can result in a significant difference between the 

natural frequencies of the real and simulation models. To 

address this issue, the natural frequency error rate κ\kappaκ is 

introduced as an evaluation index, expressed as follows: 

𝜅 = |
𝑓−𝑓𝑇

𝑓𝑇
| × 100%    (5) 

where 𝑓  is the natural frequency calculated from the finite 

element model of the blade, and 𝑓𝑇  is the natural frequency 

measured from the real blade. To apply model updating 

techniques, the 'zero-setting' procedure for the natural 

frequency error rate 𝜅 is adopted and expressed as follows: 

|(2𝜋𝑓𝑇𝑖)
2𝑴̃ − 𝐸𝑚

𝑖 𝑲̃

𝐸
| = 0   (6) 

where 𝑴̃  and 𝑲̃  represent the global mass matrix and global 

stiffness matrix of the blade, respectively; 𝐸  is the Young's 

modulus of the real blade; 𝑖 denotes the modal order of the blade; 

and 𝐸𝑚
𝑖  is the modified Young's modulus corresponding to the 

natural frequency 𝑓𝑇𝑖 measured during the 𝑖-order experiment. 

2.2. Chebyshev Polynomial Approximation for ULS 

Curvature 

The accuracy of curvature calculation using the central 

difference method is highly dependent on mesh density. When 

the mesh is sparse, the central difference method introduces 

significant computational errors. Conversely, a dense mesh in  

a two-dimensional structure results in high computational costs. 

To address these issues, the first kind of Chebyshev polynomial 

with two variables is utilized to approximate the ULS curvature, 

enabling effective diagnosis of both the damage location and 

severity in the blade. First, define the overall deflection vector 

of the blade under a uniform load as follows: 

𝑈 = ∑ {
𝜙𝑘(𝑖) ∑ 𝜙𝑘(𝑡)𝑚

𝑡=1

𝜔𝑘
2 }𝑛

𝑘=1 = 𝑭 ∙ 𝑳  (7) 

In the above formula, 𝑘  represents the modal order of the 

blade, 𝜙𝑘(𝑖) is the displacement of point 𝑖 on the blade under a 

unit load at the 𝑘 -order mode, 𝜙𝑘(𝑡)  is the displacement of 

point 𝑘  on the blade under the unit load, 𝑭  is the flexibility 

matrix of the blade after normalization, and 𝑳 denotes the unit 

vector of the uniform load surface on the blade structure. The 

Chebyshev polynomial is then used to approximate the ULS 

distribution as follows: 

ϕ(𝑥, 𝑦) = ∑ ∑ 𝐶𝑖𝑗𝑇𝑖(𝑥)𝑁
𝑗=1 𝑇𝑗(𝑦)𝑀

𝑖=1   (8) 

Let 𝑀  and 𝑁  denote the terms of the Chebyshev 

polynomials, while 𝑇𝑖(𝑥)  and 𝑇𝑗(𝑦)  represent the expressions 

associated with the first-class Chebyshev polynomials. 

Furthermore, let 𝐶𝑖𝑗 denote the coefficients of these expressions. 

To normalize the physical plate domain of the blade, we define 

two mapping transfer functions: 

𝜉 =
2𝑥

𝐿𝑥
− 1     (9-a) 

𝜁 =
2𝑦

𝐿𝑦
− 1     (9-b) 

In the above expression, 𝐿𝑥  and 𝐿𝑦  represent the potential 

regions of damage in the blade, where {𝑥, 𝑦} = [0, 𝐿𝑥] × [0, 𝐿𝑦] 

and {𝜉, 𝜁} = [−1,1] × [−1,1] . Consequently, the Chebyshev 

polynomial in terms of the variable 𝑥 can be expressed as: 

𝑇1(𝑥) =
1

√𝜋
 ,    𝑇2(𝑥) = √

2

𝜋
𝜉 ,   (10-a) 

𝑇𝑖+1(𝑥) = 2 × 𝜉 × 𝑇𝑖(𝑥) − 𝑇𝑖−1(𝑥)  (10-b) 

Similarly, the Chebyshev polynomial with respect to the 

variable 𝑦 can be expressed as: 
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𝑇1(𝑦) =
1

√𝜋
 ,    𝑇2(𝑦) = √

2

𝜋
𝜁 ,   (11-a) 

𝑇𝑗+1(𝑦) = 2 × 𝜁 × 𝑇𝑗(𝑦) − 𝑇𝑗−1(𝑦)  (11-b) 

Without loss of generality, Equation (8) can be expressed in 

matrix form, and the coefficient matrix {𝐶𝑖𝑗} can be derived 

through straightforward fitting procedures : 

{𝐶𝑖𝑗}
𝑉×1

= ([𝑇(𝑥𝑖)𝑇(𝑦𝑗)]
𝑊×𝑉

𝑇
[𝑇(𝑥𝑖)𝑇(𝑦𝑗)]

𝑊∗𝑉
)

−1

× 

[𝑇(𝑥𝑖)𝑇(𝑦𝑗)]
𝑊×𝑉

𝑇
× {𝜙(𝑥𝑖 , 𝑦𝑗)}

𝑊×1
                   (12) 

Because of the orthogonality of the Chebyshev polynomial, 

respectively, the equation (12) can be approximated as the 

second and mixed derivatives of 𝑥 and 𝑦 : 

𝑢𝑥𝑥(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗
𝜕𝑇𝑖

2(𝑥)

𝜕𝑥2 𝑇𝑗(𝑦)𝑁
𝑗=1

𝑀
𝑖=𝑖   (13-a) 

𝑢𝑦𝑦(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗𝑇𝑖(𝑥)
𝜕𝑇𝑗

2(𝑦)

𝜕𝑦2
𝑁
𝑗=1

𝑀
𝑖=𝑖   (13-b) 

𝑢𝑥𝑦(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗
𝜕𝑇𝑖(𝑥)

𝜕𝑥

𝜕𝑇𝑗(𝑦)

𝜕𝑦

𝑁
𝑗=1

𝑀
𝑖=1   (13-c) 

Furthermore, a damage index for the blade is developed. As 

previously noted, damage to the structure results in alterations 

to both the natural frequency and mode shape. The severity of 

the damage correlates positively with the extent of change in the 

vibration mode. By subtracting the ULS curvature of the 

damaged blade from that of the healthy blade, irregularities in 

the ULS curvature difference can be detected. Consequently, the 

damage index can be expressed as follows: 

𝑑(𝑥𝑖 , 𝑦𝑖) = [𝛼𝑥𝑥|𝑢𝑥𝑥
𝐷 − 𝑢𝑥𝑥| + 𝛼𝑦𝑦|𝑢𝑦𝑦

𝐷 − 𝑢𝑦𝑦| +

𝛼𝑥𝑦|𝑢𝑥𝑦
𝐷 − 𝑢𝑥𝑦|]

2
  (14) 

In the formula above, 𝑢𝑥𝑥, 𝑢𝑦𝑦 and 𝑢𝑥𝑦 represent the axial, 

radial, and mixed curvature of the healthy blade, respectively. 

Conversely, 𝑢𝑥𝑥
𝐷 , 𝑢𝑦𝑦

𝐷  and 𝑢𝑥𝑦
𝐷  denote the axial, radial, and 

mixed curvature of the damaged blade. Additionally, 𝛼𝑥𝑥, 𝛼𝑦𝑦 

and 𝛼𝑥𝑦 are weight factors, with values ranging from 0 to 1 in 

each of the three directions. 

The weight factor in equation (14) can be regarded as 

reflecting the importance of second-order derivative differences 

in the corresponding direction, used to adjust the contribution 

of curvature changes in that direction to the damage indicator. 

The weight factor is determined by factors such as the material, 

geometry, and damage type of the structure. For an ideal 

scenario involving an isotropic square plate with a through-hole, 

the weight coefficient can be set to 𝛼𝑥𝑥  𝛼𝑦𝑦  𝛼𝑥𝑦  1. The 

optimal distribution value of the weight coefficient for the 

corresponding case can be determined through experiments 

combined with optimization algorithms. 

3. Experimental verification 

3.1. Experiment description 

In this section, a dynamic analysis of the blade model is 

conducted, and the enhanced ULS curvature-based damage 

detection method is employed to identify both the location and 

severity of the damage. A schematic representation of the entire 

experimental arrangement is provided in Figure 2. The 

experimental setup for measuring the first five natural 

frequencies of the blade model using a laser vibrometer is 

illustrated in Figure 3. The terminal of the data acquisition 

system, depicted in Figure 3-a, consists of a signal generator 

(PSV-F-500), a host computer (PSV-W-500), and a power 

amplifier (2100E31-400). The front end of the system, shown in 

Figure 3-b, includes the fully digital scanning laser vibrometer 

(PSV-I-500), the shaker (2060E), and the sample blade.

 

Figure 2. Experimental device connection diagram. 
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Figure 3. The experimental setup of WT blade. 

 

Figure 4. The damage type of WT blade. 

The material of the blade is regarded as fiberglass, and its 

material properties are assumed to be isotropic. One end of the 

blade is fully clamped, while the other end is free. The free end 

of the blade is subjected to vibration induced by the vibration 

exciter. A laser beam emitted by the laser head is directed onto 

the surface of the blade, and the reflected laser beam is received. 

Interference effects are applied to detect the minute 

displacement changes on the blade surface, with variations in 

displacement corresponding to different damage conditions. 

The extent of damage is quantified by the crack depth, and 

the corresponding formula is provided as follows: 

𝜆𝑖 =
ℎ𝑖

𝐻
     (15)  

Here, 𝜆𝑖 represents the damage degree of the 𝑖 -th crack, ℎ𝑖 

denotes the depth of the 𝑖-th crack, and 𝐻 is the thickness of the 

blade at the damaged location. The damage severity is further 

classified as follows: when 0 < 𝜆 ≤ 0.3 , the damage is 

considered mild; when 0.3 < 𝜆 ≤ 0.6, the damage is classified 

as moderate; and severe damage is identified when 𝜆 > 0.6 . 

Accordingly, four distinct damage levels are defined, with 

detailed damage information provided in Table 1 and Figure 4. 

The damage discussed below refers to open cracks. 

Table 1. Damage information for four types of damaged blades 

Case 
 Damage information 

 𝑥1 𝑦1 𝜆1 𝑥2 𝑦2 𝜆2 

Blade with 

mild damage 
 -0.005 0.165 0.3    

Blade with 

moderate 

damage 

 0.0075 0.37 0.6    

Blade with 

severe 

damage 

 0.0075 0.37 0.8    

Blade with 

two damages 
 0.04 0.125 0.2 0.0075 0.37 0.15 

The laser vibrometer leverages the coherence and wave 

properties of laser light to detect optical path variations caused 

by the motion of an object. When the WT blade vibrates, the 

reflected measurement beam undergoes a Doppler shift due to 

the transverse reciprocating motion of its surface. This shift is 

utilized to calculate the vibration velocity of the blade. Finally, 

high-precision vibration parameters are obtained by the FFT 

analysis. 
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Figure 5. Spectrum diagram of the five blade models under 

harmonic excitation signals. 

The key parameters of the experiment were selected as 

follows: a sampling frequency bandwidth of 1.25 kHz,  

a sampling frequency of 5 kHz, and a sampling duration of 1.5 

s. The spectral diagram of the final scanning acquisition is 

presented in Figure 5. The measured natural frequencies of the 

intact blade are provided in Table 2 for the calibration of the 

blade simulation model. From Table 2, the first order frequency 

is one-third of the third order frequency and the fourth order 

frequency is twice as much as the third frequency approximately. 

According to the reference[30], the experimentally measured 

data is within in a reasonable range. 

Table 2. Experimentally measured natural frequency of healthy 

blade specimen. 

Case 𝑓1(Hz) 𝑓3(Hz) 𝑓4(Hz) 𝑓5(Hz) 

Intact blade 14.8 45.3 89.8 104.7 

Using small sample trials instead of large amounts of 

experimental data significantly achieves cost reduction and 

efficiency improvement [32,34]. The feasibility of the method 

is validated by combining small-scale blade experiments with 

simulations. The data obtained from modal analysis show an 

error within 1.5% compared to experimental data. The method 

is further applied to the NREL 5MW wind turbine blade model 

to verify its practicality. By combining FEA with small sample 

test data, the cost and time required for large amounts of 

experimental data are significantly reduced. 

3.2. Modal analysis 

Based on the measurements of the dimensions and contour of 

the selected 0.7 m intact physical blade model, as shown in 

Figure 6, modeling software was utilized to construct a scaled 

model of the actual blade, as illustrated in Figure 7. Additionally, 

a model updating method was employed to ensure that the three-

dimensional model closely aligns with the physical blade. The 

updated Young's modulus values are provided in Table 3.

 
Figure 6. The quarter chord of the WT blade model profiles. 

 
Figure 7. 3D solid model of the intact blade. 

Table 3. The modified Young’s modulus. 

Mode Number 1 3 4 5 

𝐸𝑚
𝑖 (Pa) 2.6e10 6.5e9 4.4e9 4.4e9 

 

Modal analysis of the modified blade model was conducted 

by using COMSOL. The natural frequencies and mode shapes 

of the healthy blade model are presented in Table 4 and Figure 
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8. In Table 5, the natural frequency error rate 𝜅 is maintained 

within 1%. Note that the second-order simulation results for the 

blade were excluded due to experimental equipment limitations; 

only the transverse vibration of the blade was measured, and the 

second-order torsional natural frequency obtained from the 

simulation could not be directly compared with the second-

order natural frequency measured experimentally. 

 

 

Table 4. The natural frequencies obtained by FEM. 

Case 𝑓1(Hz) 𝑓3(Hz) 𝑓4(Hz) 𝑓5(Hz) 

Intact blade 14.724 45.515 89.287 104.59 

Table 5. The error rate of the natural frequencies between FEM 

and experiment. 

Model type 𝑓1(Hz) 𝑓3(Hz) 𝑓4(Hz) 𝑓5(Hz) 

Experimental 

frequency(Hz) 
14.8 45.3 89.8 104.7 

FEM frequency(Hz) 14.724 45.515 89.287 104.59 

𝜅(%) 0.51 0.47 0.57 0.1 

  

(a) The first order mode shape (b) The second order mode shape 

  

(c) The third order mode shape (d) The fifth order mode shape 

Figure 8. WT blade’s model shape. 

Table 6. Four natural frequencies of different damaged WT 

blades with the experiment. 

Case 𝑓1(Hz) 𝑓3(Hz) 𝑓4(Hz) 𝑓5(Hz) 

Blade with mild damage 14.8 45.3 89.7 104.5 

Blade with moderate 

damage 
14.7 45.2 89.5 104.2 

Blade with severe 

damage 
14.4 44.9 89.2 103.6 

Blade with two damage 14.1 44.8 89 103.5 

Through the previous steps, the blade model and the actual 

blade have been standardized with greater precision, enabling 

the introduction of damage to the blade model. In the simulation, 

the local elastic modulus of the blade is reduced to simulate 

damage, effectively avoiding errors associated with grid 

changes due to notched damage. Tables 6 and 7 present the 

natural frequency values obtained from the experiment and the 

FEM simulation with four types of damaged blade specimens, 

respectively. 

Table 7. Four natural frequencies of different damaged WT 

blades with the FEM. 

Case 𝑓1(Hz) 𝑓3(Hz) 𝑓4(Hz) 𝑓5(Hz) 

Blade with mild damage 14.719 45.5 89.274 104.32 

Blade with moderate 

damage 
14.52 45.33 89.085 104 

Blade with severe damage 14.16 44.918 88.652 103.34 

Blade with two damage 13.99 44.804 88.521 102.73 

3.3. Damage Assessment 

In the previous section, the fourth-order natural frequencies of 

the blade obtained from both experiments and simulations were 

presented. It is evident from the tables that the natural 

frequencies of the blade decrease as the severity of damage 
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increases, with the impact of varying degrees of damage on the 

lower-order natural frequencies being less pronounced than that 

on the higher-order natural frequencies. In summary, while 

changes in natural frequency can indicate the presence of 

damage and provide an approximate assessment of its severity, 

it is essential to analyze the mode shape vector to accurately 

determine the specifics of the damage. 

To reduce computational complexity, the ULS curvature at 

the nodes in this section was calculated to identify the specific 

location and severity of damage by pinpointing intervals with 

significant differences in the mode shape vector between the 

healthy and damaged blades. Consequently, Chebyshev-ULS 

curves for four groups of damaged blade models were computed, 

with 𝑀 = 𝑁 = 5  for the Chebyshev polynomial to achieve  

a smooth fitting effect, as illustrated in Figure 9. When damage 

occurs at a site with a greater curvature, the influence of the 

damage is more significant. Even when the damage degree   

0.3, the affected area is no smaller than that when the damage 

degree   0.6. From both the forward and top views, the damage 

severity and location of the actual blade were found to be 

completely consistent. 

  

Figure 9. The damage information diagrams of Case 1 using the first order frequency. 

  

Figure 10. The damage information diagrams of Case 2 using the first order frequency. 

  

Figure 11. The damage information diagrams of Case 3 using the first order frequency. 
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Figures 10 and 11 depict Case 2 (moderate damage) and 

Case 3 (severe damage), respectively. In the experiment, these 

two cases serve as the control group. The control variable 

method was employed to assess the sensitivity of the approach 

to the degree of damage. A comparison of Figures 10-a and 11-

a reveals that the peak value for Case 3 is significantly higher 

than that for Case 2. In Case 4 (double-damaged blades), the 

Young's modulus of the damaged areas was reduced by 20% and 

15%, respectively, to simulate mild transverse damage as 

observed in the experiment. The weight factors used in the first 

two cases, where the two wave peaks were nearly equal to 1, did 

not effectively differentiate the severity of the damage. 

Consequently, 𝛼𝑦𝑦 in Equation (14) was set to 0.6. The resulting 

data is presented in Figure 12-a.

  

Figure 12. The damage information diagrams of Case 4 using the first order frequency. 

4. Numerical example 

4.1. NREL 5MW wind turbine blade model 

The NREL 5MW wind turbine blade is widely used in various 

experimental testing and analysis. In order to validate the 

effectiveness of this method, a three-dimensional model of the 

NREL 5MW WT blade was constructed in COMSOL and 280 

Chebyshev-ULS measuring nodes were selected totally. It 

consists of 19 distinct airfoil sections from the tip to the root, 

with a geometric length of 61.5m. From the viewpoints of 

aerodynamics and blade structural design, NACA 64-618 and 

DU 99-W-405 were respectively applied to the tip area and root 

of the blade. Smooth transitions between these two extreme 

sections were achieved through other airfoils of the DU series, 

as depicted in Figure 13. In general, the blade model is an 

aerodynamic shell with rubber segments along the trailing edge. 

As shown in Figure 14, the whole NREL 5MW WT blade model 

is generated through a sweeping mesh operation, resulting in 

5,984 boundary elements and 1,652 edge elements.

 

Figure 13. NREL 5MW WT blade 3D solid model. 

Two sets of damage cases were respectively established. 

Among them, in order to verify the anti-interference 

performance of the detection method against the environment, 

a 4% sinusoidal noise was applied in the second set of cases. 

The following formula was adopted to simulate the sinusoidal 

noise: 

𝑁𝑆𝑁𝑜𝑖𝑠𝑒 = (4% × sin(10π𝑡) + 1) × 𝑁𝑆 

 (16) 

where 𝑁𝑆 represents the node displacement data obtained from 

modal analysis, and 𝑁𝑆𝑁𝑜𝑖𝑠𝑒  denotes the node displacement 
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data after noise has been applied. The damage parameters of the 

two cases are: 

Case 1. 𝑥1 = 20.05 𝑚 , 𝑦1 = 0.75 𝑚 , 𝜆1 = 0.8 ; 𝑥2 =

20.05 𝑚, 𝑦2 = 1 𝑚, 𝜆2 = 0.6, as shown in Figure 12. 

Case 2. 𝑥1 = 10.2 𝑚 , 𝑦1 = 0 𝑚 , 𝜆1 = 0.5 ; 𝑥2 = 20 𝑚 , 

𝑦2 = −2 𝑚 , 𝜆2 = 0.3 ; 𝑥3 = 50.5 𝑚 , 𝑦3 = −1.7 𝑚 , 𝜆3 = 0.5 , 

as shown in Figure 12. 

 

Figure 14. Grid subdivision of NREL 5MW WT blade. 

4.2. Results discussions 

The first natural frequency and modal shape of the NREL 5MW 

wind turbine were obtained through finite element analysis, and 

noise was introduced in Example 2. The surface diagram was 

generated using Chebyshev-ULS fitting, as illustrated in Figure 

16 and Figure 17. 

Through the damage assessment of the NREL 5MW large 

wind turbine blades and the analysis of the results from 

Example 1, it was determined that the accuracy of damage 

localization remains intact. However, in evaluating damage 

severity, when the evaluation factor matches that of the test 

blade, 𝛼𝑥𝑥 = 𝛼𝑦𝑦 = 𝛼𝑥𝑦 = 0.4, the damage assessment results 

are not pronounced. Therefore, the damage area can be 

expanded by doubling the values of 𝛼𝑥𝑥 and 𝛼𝑥𝑦, as illustrated 

in Figure 15. 

The results of Example 2 were analyzed, with evaluation 

factors set to 𝛼𝑥𝑥 = 𝛼𝑥𝑦 = 0.8 and 𝛼𝑦𝑦 = 0.4. While noise did 

not affect the damage evaluation, it had a minor impact on 

damage localization, with the location error remaining below 

0.2%. 

 

Figure 15. Chebyshev-ULS fitting curve in NREL 5MW WT 

blade mid-line. 

It is important to note that the adjustment of the evaluation 

factors has a minimal impact on the undamaged area, with the 

calculated average difference exceeding four orders of 

magnitude. As shown in Figure 15, this is one of the notable 

advantages of Chebyshev-ULS. Furthermore, the adjustment of 

damage factors serves to enlarge or reduce the overall 

assessment without affecting the evaluation results. 

Compared to the second order central differencing curvature 

method, noise frequently induces abrupt variations at specific 

points on the blade, which can impact the accuracy of damage 

localization and even mislead the estimation of damage quantity. 

The proposed method effectively addresses this limitation by 

mitigating the influence of single-point noise. Furthermore, 

even in cases where noise within a particular region is 

exceptionally intense, the distortion caused by irregular noise 

can be minimized through the application of Chebyshev 

polynomial fitting.

  

Figure 16. The damage information diagrams of Case 1 using the first order frequency. 
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Figure 17. The damage information diagrams of Case 2 using the first order frequency. 

4.3. Comparison of Chebyshev-ULS method and SVD-

WOA method 

Compared to the SVD-WOA method[32], it combined 

optimization algorithm is employed to locate and assess damage. 

However, it suffers from two shortcomings: First, when the 

damage locations are in close proximity, the adjacent damage 

regions can interact, resulting in a stack effect that forms wave 

peaks, as illustrated in Figure 18. This effect is influenced by 

both the distance and severity of the damage, as singular value 

decomposition (SVD) does not effectively mitigate the regional 

impact of the damage. Secondly, the accuracy of damage 

evaluation is highly dependent on the completeness of the 

optimization dataset. Secondly, when multiple damages are 

present, the assessment becomes unstable, as shown in Figure 

19. If the degrees of damage are exactly equal, the database, 

which is constructed solely based on natural frequencies, may 

result in structural ambiguity. In this case, multiple damage 

combinations can correspond to the same natural frequency.

  

Figure 18. The diagrams of two damage WT blade using SVD-WOA method. 

  

Figure 19. The diagrams of three damage WT blade using SVD-WOA method. 
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5. Conclusion 

This paper presents a novel method for locating and evaluating 

structural damage in blades, utilizing Chebyshev polynomial 

approximation to compute ULS curvature. By replacing the 

central difference calculation with Chebyshev polynomials, the 

method reduces the number of required measuring points while 

maintaining accuracy. The flexibility matrix demonstrates 

increased sensitivity to damage and enhanced robustness, 

allowing the first natural frequency and mode of the blade to 

effectively indicate the severity and location of damage. 

Numerical simulations and experiments were conducted to 

validate the method's operability and accuracy. Finally, 

Chebyshev-ULS was applied to the NREL 5MW wind turbine 

blade model. For large blades, sensitivity tends to decrease; 

however, by adjusting the scale function factors to amplify the 

impact of damage, the method still achieves high accuracy. In 

addition, this method still has certain limitations for detecting 

damage in wind turbine blades, as it is not sufficiently sensitive 

to internal dents and small deformations of the blade. On 

balance, the approach for diagnosing structural faults in wind 

power blades using modal parameters is further optimized, 

providing a new direction for future research.
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