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Highlights  Abstract  

▪ A novel Conv2D-PSE-iTransformer improves 

multivariate time series predictions. 

▪ Dynamic AHP adjusts temperature weights for 

transformer health assessment. 

▪ DRL-based path planning prioritizes high-risk 

equipment with optimized routes. 

▪ Simulated Annealing and Pruning enhance 

DRL efficiency and solution accuracy. 

 To address the challenge of robotic inspection and maintenance in 

unmanned environments, this paper presents an integrated approach 

combining Conv2D-PSE-iTransformer for equipment state prediction, 

Dynamic Analytic Hierarchy Process (D-AHP) for health assessment, 

and deep reinforcement learning for optimized path planning. The 

Conv2D-PSE-iTransformer accurately predicts the operational state of 

electrical equipment, which serves as a critical input for the D-AHP 

evaluation. Based on the predicted state, D-AHP dynamically assesses 

the health of the equipment, enabling the identification of high-risk 

components that require immediate attention. Based on these 

evaluations, the DRL-based path planning generates optimized 

inspection routes that prioritize these high-risk areas while ensuring 

complete coverage with minimal inspection time. Experimental results 

demonstrate the effectiveness of this integrated method, highlighting its 

ability to reduce inspection time and enhance the overall efficiency, 

safety, and reliability of robotic inspections in complex, high-risk 

environments. 
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1. Introduction 

The electrical inspection of equipment in unmanned substations 

on remote islands is critical for ensuring the safe operation of 

equipment and maintaining system stability[1-3]. These 

facilities are often exposed to harsh environmental conditions, 

such as high temperatures, salt spray, and hurricane, which 

accelerate equipment aging and increase the risk of failures 

[4-6]. Consequently, timely and accurate electrical inspections 

are essential to guarantee the reliability and integrity of island-

based power systems [7]. 

Traditional manual inspection methods are severely limited 

in such isolated and hazardous environments, suffering from 

low efficiency and posing significant safety risks to personnel. 

As a result, intelligent electrical inspection robots equipped 

with high-precision, multi-parameter real-time monitoring 
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capabilities have become indispensable[8, 9]. These robots can 

perform routine inspections without human intervention, 

effectively mitigating safety risks in complex conditions [10]. 

The intelligent electrical inspection robot system collects 

temperature and vibration data from electrical equipment to 

perform predictive analysis and comprehensive health 

assessments. This enables early fault detection and diagnosis 

[11, 12], significantly enhancing the scientific basis for 

maintenance decision-making. As a result, unplanned downtime 

is effectively reduced [13], ensuring the stable and efficient 

operation of island-based substations [14]. The deployment of 

intelligent inspection robots in unmanned substations on remote 

islands not only enhances inspection safety and coverage [15] 

but also significantly boosts equipment reliability and 

operational cost-efficiency[4, 16]. However, the intricate layout 

of electrical equipment introduces considerable challenges for 

inspection path planning, which is often subject to high levels 

of uncertainty and dynamic changes[17, 18]. Therefore, 

intelligent inspection systems must be equipped with robust 

adaptive capabilities to ensure the effective and efficient 

execution of inspection tasks. 

1.1. Literature review 

Predictive maintenance of equipment is a critical technology for 

ensuring the reliable operation of power systems. Current 

approaches to predictive maintenance predominantly leverage 

time series analysis [19, 20] and machine learning [21, 22], 

including methods such as Support Vector Machines (SVM)  

[23, 24], Long Short-Term Memory (LSTM) networks[25], and 

physics-based predictive models [26, 27]. These methods utilize 

historical data to construct models capable of predicting 

equipment health to support maintenance decision-making. 

Bakdi et al.[28] proposed a weakly supervised machine learning 

approach based on Multi-Instance Learning and Random 

Forests (RF) to analyze event logs from propulsion systems, 

enabling intelligent predictive maintenance. Similarly, Cipollini 

et al. [29] introduced a data-driven model that combines sensor 

historical data from propulsion systems with supervised data 

analysis techniques to implement precise, condition-based 

maintenance. This approach facilitates monitoring of equipment 

health and prediction of maintenance needs. However, 

traditional state prediction methods often struggle to address the 

challenges posed by highly dynamic and complex operational 

environments[30]. In island-based substations, where diverse 

types of equipment operate under harsh conditions with high 

interdependencies, these limitations become even more 

pronounced. Therefore, more adaptive and robust predictive 

methods are required to evaluate equipment operating 

conditions accurately, thereby enhancing the overall system 

reliability. 

The Analytic Hierarchy Process (AHP) is widely regarded 

as an ideal tool for assessing the condition of power equipment 

due to its strengths in multi-criteria decision-making, flexibility 

in priority setting, capacity to handle uncertainty and subjective 

judgments, strong compatibility, high transparency in 

evaluations, and optimization of resources [31]. Panmala et al. 

[32] developed a methodology that translates visible aging into 

numerical scores while incorporating condition factors to 

account for invisible aging and environmental influences, 

facilitating the comprehensive evaluation of gas-insulated 

switchgear. Similarly, Tanaka et al. [33] introduced a multi-

criteria evaluation framework based on AHP and pairwise 

comparisons to assess the health of substation equipment. This 

approach integrates multiple indicators to determine health 

levels and prioritize maintenance and upgrade planning. 

Hernandez et al. [34] further leveraged AHP to rank critical 

criteria for power equipment and employed pairwise 

comparisons to identify the most appropriate condition 

monitoring systems. Despite its extensive adoption across 

various domains, the traditional AHP framework is inherently 

static and struggles to accommodate dynamic and evolving 

decision-making scenarios [35]. 

The traditional AHP framework is unable to capture changes 

in equipment condition over time, leading to a lack of flexibility 

in long-term assessments and making it challenging to 

accommodate dynamic adjustments to equipment states [36]. To 

address this limitation, Raharjo et al.[37] proposed a time-

dependent compositional data forecasting approach. This 

method tackles the problem of changing AHP priorities over 

time by applying exponential smoothing, enabling dynamic 

priority prediction even when historical data is limited. The 

Dynamic AHP (D-AHP) framework offers significant 

advantages in responding to environmental changes and 

fluctuating decision-making conditions over time [30, 32]. By 
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dynamically adjusting priority weights based on temporal or 

contextual variations, D-AHP facilitates adaptive scheduling of 

maintenance tasks, reduces overall maintenance costs, and 

ensures high equipment availability[14]. 

Inspection robots leverage comprehensive analyses of 

equipment health conditions to prioritize high-risk areas, avoid 

obstacles, and optimize their inspection paths. This approach 

ensures complete coverage while minimizing inspection time, 

enabling efficient task execution and enhancing operational 

performance [38]. Traditional path planning algorithms, such as 

A*(A-Star), Rapidly-Exploring Random Tree (RRT), and 

Dijkstra, are widely used for determining optimal inspection 

routes [39]. Zhao et al. [40] developed a hybrid navigation 

algorithm that integrates reflectors and lasers with  

a dynamically weighted RRT algorithm, enabling cooperative 

path planning among multiple robots. Similarly, Azpúrua et al. 

[41] employed the Dijkstra algorithm to calculate optimal paths 

by minimizing costs related to distance, energy consumption, or 

terrain complexity, facilitating the safe and efficient traversal of 

challenging terrains. In another study, Khanam et al. [42] 

introduced a priority-enabled coverage path planning approach 

designed for autonomous inspections across multiple 

disconnected regions, particularly in hazardous or inaccessible 

areas. While these methods are effective in deterministic 

environments, they face significant limitations when dealing 

with the medium- to high-risk, dynamic, and uncertain 

conditions often found in electrical substation settings. Such 

environments demand more adaptive and resilient path planning 

strategies to address the inherent complexity and variability. 

In recent years, reinforcement learning-based path planning 

methods have gained significant traction in inspection tasks, 

especially within complex and high-risk environments. Among 

these, Q-learning is one of the most prevalent algorithms, 

renowned for its ability to optimize path planning by learning 

optimal policies, thereby improving both the efficiency and 

safety of inspection operations [43]. Low et al. [44] enhanced 

the initialization of Q-values by integrating global and local 

searches within the Flower Pollination Algorithm framework. 

This innovation endowed robots with preliminary 

environmental knowledge during the early stages of path 

exploration, resulting in accelerated convergence. Similarly, Yu 

et al. [45] introduced the Double Deep Q-Network algorithm, 

which formulates adaptive obstacle avoidance strategies for 

dynamic scenarios through reinforcement learning. Their model, 

grounded in state and reward functions, significantly improved 

the autonomous navigation capabilities of agricultural robots in 

complex farmland environments. Barros et al. [46] proposed an 

adaptive approach combining Reinforcement Learning (RL) 

and Learning Automata. By employing offline learning in 

simulated environments alongside heuristic search techniques, 

their method enabled effective path-following control and 

robust planning. 

Deep Reinforcement Learning (DRL) algorithms build on 

traditional reinforcement learning by incorporating neural 

networks, enabling dynamic optimization of path planning in 

real-world environments. This approach not only enhances the 

adaptability of reinforcement learning to unfamiliar states but 

also significantly improves its efficiency in addressing complex 

challenges [47, 48]. Hadi [49] utilized the Twin Delayed Deep 

Deterministic Policy Gradient algorithm to achieve real-time 

path planning and control for autonomous underwater vehicles 

operating in unknown ocean environments, effectively ensuring 

precise motion control and obstacle avoidance. Similarly, 

Krishna et al. [50] employed a hybrid architecture combining 

Convolutional Neural Networks (CNN) with LSTM networks, 

alongside the Actor-Critic Experience Replay algorithm. This 

approach enabled robots to execute low-cost coverage in real-

time scenarios, substantially enhancing coverage efficiency by 

optimizing path lengths and minimizing unnecessary shape 

transitions. Ren et al. [51] tackled the limitations of 

conventional DRL algorithms, such as slow convergence and  

a tendency to get trapped in local optima, by introducing a data 

collection method based on Dynamic Programming. This 

method generated high-quality training data, which, when 

combined with Extreme Learning Machine for initializing 

network parameters, resulted in a two-stage DRL framework 

that improved learning speed and performance. Despite these 

advancements, existing research continues to face significant 

challenges in integrating equipment condition predictions and 

risk assessment results for effective real-time path adjustment. 

1.2. Proposed approach 

This study introduces a novel Complete Coverage Path 

Planning (CCPP) method tailored to inspection tasks in island-
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based substations. The proposed approach seamlessly integrates 

advanced state prediction, health assessment techniques, and  

a DRL-based framework to achieve enhanced performance. The 

methodology begins with the use of the Parallel Series 

Embedding (PSE) framework, augmented by 2D Convolution 

(Conv2D) and iTransformer techniques, to accurately predict 

the operational conditions of electrical equipment. These 

predictions provide reliable inputs for downstream analyses. 

Subsequently, the Dynamic Analytic Hierarchy Process  

(D-AHP) is applied to evaluate equipment health, offering  

a systematic and adaptive framework for health assessment. 

Based on the health evaluation outcomes, a newly designed 

DRL algorithm is employed for CCPP of inspection robots. The 

algorithm dynamically adjusts inspection routes in real-time, 

adapting to evolving equipment conditions to optimize task 

efficiency. By synergizing predictive modeling, health 

evaluation, and DRL-based path planning, the proposed method 

achieves significant improvements in inspection accuracy and 

responsiveness. It reduces both time and energy consumption, 

ultimately enhancing the operational and maintenance 

efficiency of island-based power systems. 

2. Timing prediction of electrical equipment 

Whether dispatched to inspect a malfunctioning system or 

deployed to perform on-site maintenance tasks, robotic 

inspection and maintenance operations can incur significant 

time delays, particularly when responding to unexpected 

equipment failures. These time demands can lead to 

inefficiencies and prolonged system downtime. To address this 

issue, predictive maintenance plays a crucial role. By 

proactively scheduling inspection and maintenance tasks, it 

helps reduce unnecessary delays, thereby enhancing overall 

operational efficiency and system reliability. 

Transformers are critical components in substation power 

systems, where their reliable operation directly impacts the 

stability and efficiency of electricity distribution. Predicting 

transformer oil temperature is paramount for monitoring the 

operational status and assessing the health condition of 

transformers. Accurate predictions can effectively provide early 

warnings of potential failures, extend the lifespan of the 

equipment, and enhance the reliability of the power grid. 

However, multivariate time series data often pose challenges, 

such as feature complexity, long-short term dependencies, and 

missing features for future time steps [52]. Traditional models 

struggle to capture nonlinear dynamics and complex 

dependencies between variables, often introducing noise or 

redundancy, which can compromise prediction accuracy. To 

address these challenges, we propose a novel structural 

framework, Conv2D-PSE-iTransformer, which integrates the 

PSE module with Conv2D and iTransformer. The Conv2D-PSE 

module processes temperature features, while iTransformer 

handles contextual features, preserving their individual 

properties. The convolutional layers extract local temporal 

patterns, thereby enhancing the performance of multivariate 

modeling [53]. 

2.1. The Conv2D-based Parallel Series Embedding 

Module  

Convolutional Neural Networks (CNNs) have become widely 

adopted for extracting features from time series data, with 2D 

Convolution (Conv2D) [54] standing out for its ability to 

capture local patterns and interdependencies across multiple 

variables. Time series data is typically represented as a two-

dimensional tensor, where each row corresponds to a different 

feature, and each column represents a time step. Conv2D 

leverages convolutional filters that slide across both the 

temporal and feature dimensions, effectively extracting local 

dynamic characteristics and correlations among variables. In 

this study, Conv2D is utilized within the Parallel Series 

Embedding (PSE) [55] module, which aims to efficiently embed 

both the target sequence and contextual features. 

Time series data is typically represented as a 2D tensor 𝑋 ∈

𝑅𝑇×𝐹 , where 𝑇  denotes the number of time steps and 𝐹 

represents the feature dimension. The Conv2D operation 

extracts the local dynamic features of the time series and the 

correlation between features by sliding the convolution kernel 

in the time dimension and feature dimension. The specific 

computation is given by the following formula: 

𝑌(𝑖, 𝑗) = 𝜎(∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝜃(𝑚, 𝑛) + 𝑏𝑊
𝑛=1

𝐻
𝑚=1 )      (1) 

Where, 𝜃 ∈ 𝑅𝐻×𝑊 is the convolutional kernel, 𝐻 and 𝑊 are the 

kernel sizes along the temporal and feature dimensions, 

respectively, 𝑏  denotes the bias term, and 𝜎  is the activation 

function; 𝑌 ∈ 𝑅(𝑇−𝐻+1)×(𝐹−𝑊+1)  is the input feature map, 

capturing the local patterns of the tensor. 
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In the proposed framework, the target sequence and 

contextual features are processed independently using separate 

Conv2D layers, ensuring that the trend information of the target 

values and the inter-variable dependencies of contextual 

features are modeled separately. The Conv2D layers utilize  

a kernel size of 𝐻 = 1 to capture short-term dynamic patterns 

along the temporal dimension, while 𝑊 = 1 is applied to model 

individual feature variables. Furthermore, causal parameters [54] 

are applied to constrain the receptive field of the convolutional 

kernel, ensuring that it covers only the current and preceding 

time steps. This prevents the incorporation of future information 

and enhancing the model's interpretability and adaptability. 

2.2. iTransformer 

The iTransformer [56] is an innovative Transformer architecture 

specifically designed for time series forecasting tasks, 

enhancing the modeling of time series and multivariate features 

through a deliberate inversion of the core functions within key 

modules. Unlike traditional approaches, which treat time steps 

as the fundamental units (time-step tokens), the iTransformer 

utilizes the variables themselves as the central modeling units 

(variable tokens). The architecture comprises an encoder, with 

an optional decoder, and is constructed to capture both the 

intricate interdependencies among variables and the global 

temporal patterns. This design enables the iTransformer to 

handle multivariate time series tasks more effectively by 

inherently modeling variable interactions while simultaneously 

reducing computational complexity, thus improving both 

modeling efficiency and interpretability. 

Like the core Attention Mechanism in the standard 

Transformer [57], the iTransformer also utilizes Multi-Head 

Attention to model the relationships between variables. The 

input variable tokens are projected linearly to produce the Query 

(Q), Key (K), and Value (V) matrices, which are subsequently 

used to compute the attention according to the following 

formula: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 , 𝑉 = 𝐻𝑊𝑉   (2) 

Where, 𝑊𝑄,𝑊𝐾and𝑊𝑉represent the projection matrices for the 

Q, K, and V vectors, respectively; 𝐻 denotes the matrix of 

embedded variable tokens; and 𝑑𝑘indicates the dimensionality 

of the key vectors, which is used to scale the dot-product results. 

The design of iTransformer departs from the conventional 

use of positional embeddings, instead utilizing a feedforward 

network (FFN) to implicitly capture the global patterns in time 

series data. This innovative architecture further improves the 

model's predictive accuracy and generalization ability. By 

employing this reversed structure, iTransformer provides  

a robust solution for multivariate time series forecasting, 

particularly excelling in scenarios characterized by complex 

inter-variable dependencies. 

2.3. Conv2D-PSE-iTransformer 

This study presents the Conv2D-PSE-iTransformer architecture, 

which integrates an enhanced PSE Module with the 

iTransformer structure, providing an effective solution for 

multivariate time series forecasting tasks. Using the PSE 

Module, target values and contextual features are independently 

processed via Conv2D, facilitating the extraction of local 

dynamic patterns along the time dimension and identifying 

dependencies between contextual features. The key 

implementation of this module is demonstrated in the 

pseudocode in Table 1, which highlights the application of 

causal masking to prevent future information leakage, as well 

as the reduction of feature dimensionality to alleviate 

computational complexity. The resulting 𝑄𝑓, 𝐾𝑓, and 𝑉𝑓 vectors 

are input into the iTransformer, providing an efficient feature 

representation for subsequent global modeling. 

In the iTransformer, the variable 𝐻 is utilized to model the 

dependencies between various feature variables. The Multi-

Head Attention mechanism enables the calculation of feature 

interactions across multiple subspaces, while the FFN further 

captures global patterns along the temporal dimension, allowing 

the model to simultaneously capture short-term trends and long-

term dependencies. Ultimately, predictions for future time steps 

are generated through linear projection. The overall 

methodology is comprehensively presented through 

pseudocode, which illustrates the logical flow from parallel 

embedding to iTransformer modeling. Its modular design 

ensures both efficiency and adaptability, making it especially 

suitable for complex multivariate time series tasks. 
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Table 1：Pseudo code for Conv2D-PSE-iTransformer 

Input：𝑿𝒕𝒂𝒓𝒈𝒆𝒕 ∈ 𝑹𝑻×𝟏:Target value time series, length 𝑇； 

𝑿𝒄𝒐𝒏𝒕𝒆𝒙𝒕 ∈ 𝑹𝑻×𝑭: Context features time series, 𝐹 is the number of 

features. 

Output： 𝒀𝒑𝒆𝒓𝒅 ∈ 𝑹𝝉×𝟏: Predicted future time steps, length 𝝉 

Parameters： 𝑑_𝑚𝑜𝑑𝑒𝑙 :Embedding feature dimension；

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒：Convolution kernel size for local feature extraction; 

𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠: Number of attention heads；𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠：Number of 

layers in iTransformer 

Prat 1 Parallel Series Embedding Module 

Function PSE (𝑋𝑡𝑎𝑟𝑔𝑒𝑡, 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝒅_𝒎𝒐𝒅𝒆𝒍, 𝒌𝒆𝒓𝒏𝒆𝒍_𝒔𝒊𝒛𝒆) 

Step1: Target value Embedding 

𝑌𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐶𝑜𝑛𝑣2𝐷(𝑋𝑡𝑎𝑟𝑔𝑒𝑡, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = (1, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒)) 

𝑄𝑧, 𝐾𝑧, 𝑉𝑧 = 𝐿𝑖𝑛𝑒𝑟𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑌𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑑_𝑚𝑜𝑑𝑒𝑙) 

Step2: Contextual feature Embedding 

𝒀𝒄𝒐𝒏𝒕𝒆𝒙𝒕 = 𝑪𝒐𝒏𝒗𝟐𝑫(𝑿𝒕𝒂𝒓𝒈𝒆𝒕, 𝒌𝒆𝒓𝒏𝒆𝒍_𝒔𝒊𝒛𝒆 = (𝟏, 𝒌𝒆𝒓𝒏𝒆𝒍_𝒔𝒊𝒛𝒆)) 

𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡
′ = 𝐴𝑝𝑝𝑙𝑦𝐶𝑎𝑠𝑢𝑎𝑙𝑀𝑎𝑠𝑘(𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡)  # Ensuring time 

consistency 

𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡
″ = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡

′ , 𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑚

= 1) 

𝑄𝑓, 𝐾𝑓, 𝑉𝑓 = 𝐿𝑖𝑛𝑒𝑟𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡
″ , 𝑑_𝑚𝑜𝑑𝑒𝑙) 

Return 𝑄𝑧, 𝐾𝑧 , 𝑉𝑧, 𝑄𝑓, 𝐾𝑓 , 𝑉𝑓 

 

Part 2 iTransformer Module 

Function iTransformer 

(𝑄𝑧, 𝐾𝑧 , 𝑉𝑧, 𝑄𝑓, 𝐾𝑓 , 𝑉𝑓, 𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠, 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠) 

Step1: 𝐻 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑇𝑜𝑘𝑒𝑛𝑠(𝑄𝑧, 𝐾𝑧 , 𝑉𝑧 , 𝑄𝑓, 𝐾𝑓 , 𝑉𝑓) 

Step2: Multi-layer Transformer structure 

for layer in range (𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝐻 =  𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻_𝑖𝑛𝑖𝑡, 𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠) 

𝐻 =  𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝐻) 

Step3: Final Projection 

𝑌𝑝𝑟𝑒𝑑  =  𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑎𝑦𝑒𝑟(𝐻_𝑢𝑝𝑑𝑎𝑡𝑒𝑑) 

Return 𝑌𝑝𝑟𝑒𝑑 

 

Part 3 Main 

Function main (𝑋𝑡𝑎𝑟𝑔𝑒𝑡, 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 

𝑄𝑧, 𝐾𝑧, 𝑉𝑧, 𝑄𝑓, 𝐾𝑓 , 𝑉𝑓 = 𝑃𝑆𝐸(𝑋𝑡𝑎𝑟𝑔𝑒𝑡, 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑑_𝑚𝑜𝑑𝑒𝑙

= 128, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3) 

𝑌𝑝𝑟𝑒𝑑  =  𝑖𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑄𝑧, 𝐾𝑧 , 𝑉𝑧, 𝑄𝑓, 𝐾𝑓 , 𝑉𝑓 , 𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠

= 8, 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 = 6) 

Return 𝑌𝑝𝑟𝑒𝑑 

Where, 𝑌𝑡𝑎𝑟𝑔𝑒𝑡  is the target sequence after Conv2D processing, 

𝑄𝑧 , 𝐾𝑧 , 𝑉𝑧  is Query, Key, and Value vectors for the target 

sequence, 𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡   is the context feature sequence after the 

initial Conv2D operation, representing extracted temporal 

patterns; 𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡
′  is the result after applying the causal mask to 

ensure temporal consistency; 𝑌𝑐𝑜𝑛𝑡𝑒𝑥𝑡
″  is the Feature dimension 

compressed representation of context features; 𝑄𝑓 , 𝐾𝑓 , 𝑉𝑓  is 

Query, Key, and Value vectors for context features.𝐻 represents 

the combined embeddings of target and context features, used 

as input for iTransformer; 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝐻  is the output of the 

Multi-Head Attention mechanism at each layer, capturing 

dependencies between variables.  

3. Dynamic health status assessment of unmanned power 

stations 

Predictive maintenance, a key application of condition-based 

assessment, enables the identification of potential faults through 

continuous monitoring and analysis of equipment performance 

data, thereby facilitating proactive interventions [34]. In 

contrast to traditional fixed-schedule maintenance, this 

approach is not only more cost-effective but also substantially 

reduces unnecessary downtime and maintenance costs. 

This study uses the health condition of transformers as a case 

study to evaluate the status of critical electrical equipment in 

substations. The Dynamic Analytic Hierarchy Process (D-AHP) 

offers a robust and adaptive framework for condition 

assessment. By dynamically integrating multiple evaluation 

criteria and considering the evolving nature of operational and 

environmental conditions, this method enhances real-time 

adaptability, thereby improving both the accuracy and relevance 

of the assessment. 

3.1. Health Assessment of Transformers Using AHP 

Health Index
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Figure 1. Transformer equipment health and standards. 
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To assess the health status of transformer equipment,  

a comprehensive set of evaluation criteria tailored to substation 

transformers has been developed, based on expert knowledge 

[58, 59]. These criteria encompass parameters such as oil 

temperature, gas content, load, electrical test parameters, 

equipment age, maintenance history, fault symptoms, climate 

and environmental conditions, and oil quality. Among them, oil 

temperature, equipment age, load, maintenance history and fault 

symptoms can effectively reflect the operating status of the 

transformer and have high practical operability. To simplify the 

model and enhance assessment efficiency, this study primarily 

focuses on these five critical parameters, as shown in Figure 1. 

3.2. Health assessment of transformers using D-AHP 

Although the traditional AHP method is widely adopted across 

various domains, its static nature renders it ill-suited for 

dynamic decision-making scenarios where conditions 

continuously evolve. Dynamic AHP (D-AHP) addresses this 

limitation by incorporating temporal dependencies, 

decomposing the decision problem into more tractable 

subproblems, and dynamically adjusting priorities in response 

to shifting conditions, thereby ensuring adaptability to changing 

environments [35, 60]. For instance, when a transformer's oil 

temperature significantly deviates from its normal range, a static 

AHP approach would retain the same weight for the temperature 

criterion as it would under normal operating conditions. This 

static method fails to account for the real-time influence of 

critical parameters on the overall health index, which may lead 

to the delayed identification of emerging risks or abnormal 

behaviors. 

To address this issue, we propose an enhanced framework 

that dynamically adjusts the weight of the temperature criterion 

according to the observed operating conditions. Specifically, the 

weight assigned to oil temperature is dynamically modified 

according to the degree of deviation from the normal range, 

ensuring that the health index accurately reflects the 

transformer's real-time status. This dynamic adjustment process 

utilizes the D-AHP, which integrates the traditional AHP with 

dynamic weight allocation. This approach not only enhances the 

accuracy of health assessments but also provides a more reliable 

foundation for decision making under varying operational 

conditions. The weight calculation method is presented in Fig 2.

Data 

pre-processing

Dynamic weighting

Constructing Hierarchy 

Calculation Matrix

Static weights 

correction

Synthetic weights

Dynamic Adjustment

Calculated score

 

Figure 2. Process of calculating dynamic weights for health assessment using D-AHP. 

This framework integrates oil temperature prediction data 

with other static criteria into a hierarchical calculation matrix, 

facilitating the dynamic evaluation of transformer health. 

Initially, the oil temperature data is preprocessed to eliminate 

noise and inconsistencies, thus laying the foundation for 

dynamic weighting. This preprocessing step ensures the 

reliability of the data and provides accurate inputs for 

subsequent health assessments. Based on the deviation of the oil 

temperature from normal operating conditions, the framework 

assigns varying weights to the temperature, thereby enabling 

real-time responses to temperature anomalies. The weight 

update formula is as follows: 

𝜔𝑖(𝑡) =
∑ 𝑎𝑖𝑗(𝑡)𝑛

𝑗=1

∑ ∑ 𝑎𝑖𝑗(𝑡)𝑛
𝑗=1

𝑛
𝑖=1

    (3) 

Where, 𝜔𝑖(𝑡)  represents the weight of criterion 𝐶𝑖  at time 𝑡 , 

𝑎𝑖𝑗(𝑡)  denotes the matrix judgment element derived from the 

comparison between criteria 𝐶𝑖 and 𝐶𝑗 at time 𝑡, and 𝑛 refers to 

the total number of evaluation criteria. Through dynamic 

adjustment, the weight of oil temperature can fluctuate in 

response to changes in the operational status of the equipment, 

thereby ensuring the system's real-time responsiveness to 

anomalies. Additionally, the weighting of static criteria (e.g., 

age, load, support history, and symptoms) are also adjusted at 

each assessment to preserve the overall balance and accuracy of 
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the assessment. 

The dynamically updated and corrected weights are 

aggregated to generate a comprehensive health score, which 

accurately reflects the current condition of the transformer. This 

score is then fed back into the system's hierarchical computation 

matrix, facilitating iterative adjustments that enhance 

adaptability to changing conditions. By incorporating dynamic 

adjustments and feedback, the framework enhances the 

accuracy and reliability of health assessments, thereby 

facilitating proactive maintenance and informed decision-

making. 

3.3. From health assessment to actionable maintenance 

mapping 

As shown in Figure 3, the Conv2D-PSE-iTransformer 

framework proposed in this study effectively forecasts key 

performance indicators essential for transformer health, with 

particular emphasis on oil temperature. By incorporating the 

Dynamic Analytic Hierarchy Process (D-AHP), the framework 

dynamically adjusts the weight assigned to the temperature 

criterion, thereby ensuring that health assessments are adaptable 

to real-time conditions. This method preserves the relative 

stability of static weights for factors such as equipment age and 

maintenance history, while providing a comprehensive and 

responsive evaluation framework. Consequently, it successfully 

integrates prediction, assessment, and decision-making 

processes, thereby offering valuable support for proactive 

maintenance strategies.
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Figure 3. Predictive maintenance framework for transformer state estimation and evaluation. 

 

Figure 4. Transformation to simplified 2D map for maintenance planning. 

Subsequently, the aforementioned methodology was applied 

to assess the health status of 17 critical electrical components at 

an island substation in the East China Sea, employing a variety 

of assessment criteria. Based on the calculated health scores, the 

components were ranked to prioritize maintenance and 

inspection activities. To enhance visualization and operational 

efficiency, components with varying health scores were 

assigned distinct color codes, enabling rapid identification of 

their respective statuses. Furthermore, the evaluation results 

were incorporated into a simplified map, thereby streamlining 

subsequent inspection and maintenance tasks, as shown in 

Figure 4. It is important to note that, in this experiment, the 

model was simplified by excluding factors such as equipment 

size, with the primary focus placed on optimizing the substation 
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layout and inspection pathways at the island substation. 

4. Deep Reinforcement Learning for complete coverage 

path planning 

Due to the critical importance of island substations, regular and 

efficient inspections are essential for ensuring their operational 

safety and reliability. Predictive maintenance plays a pivotal 

role in enhancing inspection efficiency by enabling timely 

assessments of the health status of electrical equipment. Based 

on the health status maps generated through equipment 

evaluations, this study proposes a path planning method that 

leverages Deep Reinforcement Learning (DRL) for 

comprehensive substation inspection. The approach integrates 

Attention Mechanisms with Reinforcement Learning (RL) 

algorithms: a policy network guides the selection of node pairs, 

while a value network evaluates the actions taken, enabling 

iterative refinement of the solution. Additionally, to optimize 

path planning and enhance algorithmic efficiency, simulated 

annealing and pruning algorithms are incorporated. These 

techniques streamline the path selection process by eliminating 

redundant nodes and dynamically adjusting the route, thereby 

improving the overall optimization performance of the 

inspection path. By combining the feature extraction 

capabilities of Deep Learning (DL) with the optimization and 

exploration strengths of reinforcement learning, the proposed 

method effectively addresses complex path planning challenges, 

demonstrating robust generalization across diverse operational 

scenarios. 

4.1. Deep Learning based on Transformer 

In the DRL framework proposed in this study, the DL 

components are pivotal in capturing the intricate 

interdependencies between nodes and in generating and 

evaluating high-quality strategies for path optimization. The 

architecture primarily integrates a policy network and a value 

network, both of which leverage the robust capabilities of deep 

neural networks to achieve the RL objectives of path 

optimization. 

The policy network within this framework is constructed 

upon a deep neural architecture, as shown in Figure 5. It 

incorporates Multi-Head Attention Mechanisms, fully 

connected layers, and normalization layers to model both global 

and local relationships among nodes. Initially, node features, 

including their coordinates and scores, are projected into a high-

dimensional space through a linear projection layer. These 

embeddings are subsequently processed by stacked self-

attention layers, which, in conjunction with residual 

connections and batch normalization, capture long-range 

dependencies among nodes. The output of the attention layers 

is further refined through fully connected layers to model 

complex nonlinear relationships and is subsequently aggregated 

through global max pooling to extract key features.
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Figure 5. Transformer-based Policy Network. 

The final layer of the policy network comprises  

a compatibility layer and a masked max layer, which serve to 

map the extracted features to a probability distribution of 

potential actions, such as node pair swaps. Actions are sampled 
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from the generated probabilities, enabling the agent to select 

actions that interact with the environment by modifying the 

solution state. The network is trained within a reinforcement 

learning framework, where the policy gradient is updated based 

on the rewards received from the environment, ensuring that the 

policy progressively converges to generate more optimized 

solutions over time. The resulting embeddings are utilized to 

generate a probability distribution 𝜋 = (𝑎|𝑠; 𝜃)  over potential 

actions, with 𝜃  representing the parameters of the policy 

network, which directly guide the agent's decision-making 

process and enable continuous improvement of the proposed 

path. The optimization of the policy network aligns with the 

reinforcement learning objective of maximizing the expected 

cumulative reward: 

𝐽(𝜃) = 𝐸𝜋𝜃
[∑ 𝑅𝑘

𝐾
𝑘=0 ]    (4) 

Where, 𝑅𝑘  is the reward at time step 𝑘 , and 𝐸𝜋𝜃
 denotes the 

expectation over all possible paths of the policy 𝜋𝜃  . This 

approach, which integrates the attention mechanism with 

reinforcement learning, allows the network to effectively 

explore and exploit the solution space. 

In this framework, the value network, commonly referred to 

as the critic network， is responsible for estimating the value of 

a given state within the solution space during the optimization 

process. In contrast to the policy network, which is primarily 

responsible for generating action probabilities, the value 

network predicts a scalar value representing the expected 

cumulative reward for a given state[61]. In the current 

implementation, the value network employs a feedforward 

architecture with fully connected layers to process and encode 

the environmental input features. The node features (e.g., 

coordinates and scores) are initially embedded into a high-

dimensional space. These embeddings are then passed through 

a series of fully connected layers with nonlinear activation 

functions, each capturing increasingly abstract representations 

of the solution state. To stabilize the training process and 

enhance convergence rates, batch normalization is applied to 

intermediate outputs. The resulting value estimates inform the 

policy network, allowing it to adjust the policy in favor of 

higher-value states, thereby driving the optimization process. 

The value network plays a pivotal role in evaluating the 

effectiveness of the agent's actions and is integral to the 

continuous refinement of the policy, thereby contributing to the 

overall improvement of the system's performance. 

The primary advantage of this DL approach is its ability to 

simultaneously optimize both the policy and the value function 

through end-to-end learning. This architecture leverages the 

self-attention mechanism, enabling the model to capture long-

range dependencies between nodes in the graph, thereby 

overcoming the limitations of traditional path planning methods 

that depend on manually crafted features. Additionally, by 

integrating deep reinforcement learning with feature embedding, 

the network is more capable of exploring the solution space and 

adapting to varying problem scales and complexities. 

4.2 Actor-Critic Reinforcement Learning with path 

optimization 

DRL method plays a central role in the proposed framework 

of this paper, as shown in Fig. 6, which is designed to integrate 

the policy network and the value network to enable efficient 

path optimization in dynamic environments. The DRL process 

begins with state perception, constructing a closed-loop system 

that facilitates dynamic interaction from state perception to path 

optimization. The state information (𝑆𝑡) , generated by the 

environment, includes the current node's position on the map, 

the distribution of target nodes, and historical path records. This 

information is passed as input to the policy network. The policy 

network, utilizing attention-based encoding, predicts the action 

probabilities corresponding to potential modifications in the 

current path sequence, while the value network assesses the 

expected rewards of these actions, effectively serving as  

a baseline in the training process. The value network assesses 

the actions chosen by the policy network by estimating the 

cumulative return 𝑉(𝑆𝑡) and the advantage function 𝐴(𝑆𝑡,𝑎) , 

offering feedback to the policy network. This actor-critic 

architecture [50] integrates policy optimization with value-

based evaluation, effectively reducing the variance of policy 

updates via the value network, while steering the gradient 

direction of the policy network through the advantage function. 

During the reinforcement learning process, the reward signal 

and the discounted value of future states 𝛾 × 𝑉(𝑆𝑡+1) collectively 

contribute to policy optimization. The advantage function is 

defined as: 

𝐴(𝑆𝑡,𝑎𝑡+1) = 𝑅𝑒𝑤𝑎𝑟𝑑 + 𝛾 × 𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) (5) 

Through this function, the policy network iteratively adjusts 

its predictions during backpropagation, progressively refining 
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its action selection to converge towards the optimal solution.
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Figure 6. DRL Framework for Transformer-based Path Planning 

To further refine the solution space, the RL framework 

incorporates Simulated Annealing and Pruning techniques. 

Simulated Annealing, through its progressively decreasing 

temperature strategy, strikes a balance between global search 

and local exploration, facilitating a more comprehensive 

exploration of the solution space in complex path planning 

scenarios. Meanwhile, the Pruning mechanism discards low-

reward or irrelevant solutions during the optimization process, 

significantly narrowing the search space. The synergy of these 

two methods enhances the robustness of the reinforcement 

learning framework, enabling the model to efficiently identify 

the global optimum in high-dimensional, dynamic 

environments. 

5. Results and discussion 

All experiments in this study were conducted on a consistent 

computational platform to ensure the reliability and 

comparability of results. The computing system is equipped 

with an AMD Ryzen 7 processor operating at 3200 MHz. The 

dataset used in this study was collected from a power station on 

a reef island in the East China Sea.  

5.1. Prediction Analysis of Conv2D-PSE-iTransformer 

In the task of predicting transformer oil temperature, we 

conducted experiments using data from July 2022. 

Table 2. Key Parameter Settings of the Proposed and Compared Models. 

Parameters Ours PES-informer iTransformer Informer Transformer LSTM 

Input channels 1 1 \ \ \ \ 

Output channels 512 512 \ \ \ \ 

Convolution kernel size 3 3 \ \ \ \ 

Encoder input sequence length 60 60 60 60 60 \ 

Batch Size 32 32 32 32 32 32 

Number of Heads 32 32 32 32 32 \ 

Scaling Factor 1 1 1 1 1 \ 

 

To assess the performance of the proposed Conv2D-PSE-

iTransformer model in capturing oil temperature trends, we 

compared it with other classical models, including iTransformer, 

Informer, Transformer, PSE-Informer with Conv2D and LSTM. 
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The key parameter settings for each algorithm are summarized 

in Table 2. The primary objective of the experiment was to 

evaluate each model's ability to predict short-term fluctuations 

and long-term trends, particularly regarding the transformer oil 

temperature data from early July 2022. The experimental results, 

presented in Figure 7, compare the predicted curves from 

different models with the actual oil temperature values in the 

test set.

 

Figure7. Comparison of different methods for predicting transformer oil temperature. 

As shown in Figure 7, the Conv2D-PSE-iTransformer 

exhibits exceptional accuracy in capturing both short-term 

fluctuations and long-term trends of oil temperature, with the 

predicted curves closely aligning with the actual values. This 

demonstrates that the proposed method, by integrating Conv2D 

into the Parallel Series Embedding (PSE) module to first extract 

local features of the time series, and subsequently combining it 

with the iTransformer module, effectively enhances the model's 

ability to represent short-term dynamic changes and long-term 

patterns. 

In contrast, while the Transformer model effectively 

captures global dependencies, it exhibits noticeable 

discrepancies in both short-term and long-term predictions, 

leading to significant deviations from the true values. The 

LSTM model performs the weakest among all evaluated 

approaches, showing substantial prediction errors, particularly 

in modeling long-term trends. The iTransformer produces 

smoother prediction curves and captures long-term trends more 

effectively; however, it struggles with short-term variations, 

resulting in reduced accuracy for rapid fluctuations. The 

Informer, designed for long-range time series forecasting, 

shows improvements in handling extended temporal 

dependencies but lacks the capability to accurately model local 

features, leading to deviations in short-term predictions. The 

PSE-Informer, which incorporates Conv2D for local feature 

extraction, demonstrates enhanced short-term accuracy. 

However, its limited ability to model global dependencies 

prevents it from achieving the same level of long-term 

predictive performance as the proposed Conv2D-PSE-

iTransformer model. 

These findings suggest that the Conv2D-PSE-iTransformer 

provides a more comprehensive and balanced representation of 

both short-term and long-term patterns, offering improved 

predictive accuracy compared to the baseline models. 

To further quantify the predictive performance of each 

model, we calculated the Mean Absolute Error (MAE) and 

Mean Squared Error (MSE) on the test set, as shown in Table 3. 

Consistent with the comparison of the prediction curves, the 

Conv2D-PSE-iTransformer achieves significantly lower MAE 

and MSE values than the other baseline models.

Table 3. Comparison of loss values in oil temperature prediction by different methods. 

Methods Ours PSE-informer iTransformer informer Transformer LSTM 

MAE 1.322059 1.458531 1.628284 1.657975 1.709213 1.941401 

MSE 5.980411 7.202597 8.511854 8.951056 9.847434 11.1570501 
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Table 3 presents a quantitative comparison of model 

performance based on MAE (Mean Absolute Error) and MSE 

(Mean Squared Error) values. The proposed Conv2D-PSE-

iTransformer achieves the lowest prediction errors, with an 

MAE of 1.322059 and an MSE of 5.980411, demonstrating its 

superior accuracy and robustness in transformer oil temperature 

prediction. In contrast, the baseline models exhibit significantly 

higher errors: the PSE-Informer achieves an MAE of 1.458531 

and an MSE of 7.202597, while the iTransformer and Informer 

show even higher errors, with MAE values of 1.628284 and 

1.657975, and MSE values of 8.511854 and 8.951056, 

respectively. In addition, the MSE and MAE of LSTM and 

Transformer have the highest errors of all the compared models, 

reflecting their limitations in multivariate time series tasks. 

While the PSE-Informer improves upon the Informer by 

incorporating Conv2D layers to extract local temporal patterns, 

it still falls short of the proposed Conv2D-PSE-iTransformer 

due to its limited ability to model global dependencies. These 

results highlight the effectiveness of the Conv2D-PSE-

iTransformer in transformer oil temperature prediction, 

particularly its ability to balance the modeling of local features 

and global dependencies, leading to more accurate and robust 

predictions. 

To evaluate the computational efficiency of the proposed 

Conv2D-PSE-iTransformer model, we compared its inference 

time with those of other baseline models, including Transformer, 

Informer, LSTM, Transformer, and PSE-Informer. The results 

are summarized in Table 4.

Table 4. Inference Time Comparison of the Proposed and Baseline Models. 

Time Ours PES-informer iTransformer Informer Transformer LSTM 

Average Time 79.07s 83.37s 63.15 68.31 84.29s 9.97s 

 

Based on the inference time results presented in Table 4, the 

Conv2D-PSE-iTransformer model achieves an average 

inference time of 79.07 seconds, which is slightly lower than 

PSE-Informer (83.37s) but higher than iTransformer (63.15s) 

and Informer (68.31s). While the Transformer model exhibits a 

slightly longer inference time (84.29s), LSTM demonstrates the 

fastest performance, requiring only 9.97s per prediction. The 

slight increase in inference time for Conv2D-PSE-iTransformer 

can be attributed to the additional computational complexity 

introduced by the Conv2D layers and PSE module. However, 

considering that predictions are typically performed on an 

hourly or daily basis, this additional computational cost remains 

within an acceptable range and does not compromise the 

model’s real-time applicability. 

The experimental results demonstrate that the proposed 

Conv2D-PSE-iTransformer substantially outperforms the other 

comparison models in the transformer oil temperature 

prediction task, particularly in capturing both short-term 

fluctuations and long-term trends. Its innovative architecture, 

which integrates parallel sequence embedding with the reversed 

design, significantly enhances prediction accuracy. Although 

the model introduces additional computational steps, the 

increase in training and inference time is negligible in practical 

applications where predictions are made on an hourly or daily 

basis. Future research could focus on further optimizing the 

model's computational efficiency and expanding its application 

to other multivariate time series forecasting tasks. 

5.2. Results of transformer health assessment using D-

AHP 

To evaluate the health status of substation transformers, four 

key parameters were identified: load, maintenance history, 

symptoms, and operational age. These parameters were 

classified into five levels of importance: equally important, 

moderately important, strongly important, very strongly 

important, and extremely important [33], as summarized in 

Table 5.  

Table 5: Importance level of electrical equipment. 

Value Description 

1 equally important  

3 moderately important 

5 strongly important 

7 very strongly important 

9 extremely important 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

The pairwise comparison method, grounded in the AHP, was 

employed to assign weights to each parameter, with evaluations 

performed by power system experts from the China Southern 

Power Grid. The resulting weights were normalized to ensure 

comparability. Table 6 illustrates the weight distribution of the 

four parameters with respect to hardware integrity for the island 

substation in 2022. This approach systematically incorporates 

expert knowledge into the evaluation framework, ensuring 

consistency and reliability in parameter weighting is an 

essential requirement for accurate equipment health 

assessments.

Table 6. Hardware integrity evaluation weight distribution for Jan. 2022. 

Criteria Age Loading History Symptoms Weights 

Age 1 1/5 1/3 1/5 0.0735 

Loading 5 1 5/3 5/7 0.3381 

History 3 3/5 1 3/5 0.2206 

Symptoms 5 1 5/3 1 0.3678 

 

Based on expert recommendations, temperature is identified 

as a key variable in transformer health assessment due to its 

direct correlation with operational conditions and potential risks. 

In this framework, oil temperature is first analyzed as a dynamic 

parameter, with its weight adjusted in real time through  

a dedicated function to account for deviations from normal 

operating ranges. The results of the temperature analysis are 

subsequently integrated with the hardware integrity indicators 

to assess the health of the transformer comprehensively. This 

approach enables the simultaneous consideration of dynamic 

temperature variations and static hardware parameters, 

providing a systematic basis for evaluating transformer 

conditions. 

Specifically, when the oil temperature exceeds the standard 

range of 40-60°C [62], its weight increases significantly to 

capture the elevated risk associated with abnormal thermal 

conditions. Conversely, under normal operating conditions, the 

weight of oil temperature remains relatively low, allowing 

greater emphasis on other static factors, such as maintenance 

history and operational age. This dynamic adjustment 

mechanism, governed by a custom-designed function, ensures 

that the health assessment remains responsive to environmental 

changes and capable of adapting to critical operational 

variations. The specific change formula is as follows: 

𝑊(𝑇) = {
0.3 + 0.3 ⋅ 𝑒−0.5⋅(𝑇−30)         𝑇 < 40
0.3                                  40 ≤ 𝑇 ≤ 60

0.75 − 𝑒−0.1(𝑇−60)                 𝑇 > 60

       (6) 

To analyze the variation in parameter weights under varying 

operating conditions, average monthly oil temperature data 

sampled at the beginning of each month in 2022 were utilized 

to assess transformer health. The resulting weight distribution, 

illustrated in Figure 8, highlights the dynamic interplay between 

oil temperature and static parameters. During periods of 

elevated oil temperature, its weight increases significantly, 

reflecting heightened thermal risk, whereas the weights of static 

factors such as maintenance history and operational age are 

proportionally reduced. Under stable operating conditions, the 

weight distribution shifts to emphasize static parameters. These 

findings underscore the necessity of integrating both dynamic 

and static factors to achieve accurate and adaptive health 

assessments. By dynamically adjusting parameter weights, the 

D-AHP method enhances the accuracy of the health index, 

facilitating the real-time identification of high-risk equipment. 

This approach establishes a robust foundation for predictive 

maintenance, optimized resource allocation, and enhanced 

transformer reliability. 

 

Figure 8. Weight distribution at different times and 

temperatures in 2022. 
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To further demonstrate the robustness, risk resilience, and 

generalization capability of the D-AHP method, we compared 

its health assessment results with those of the traditional AHP 

method and expert evaluations for different types of equipment 

under varying operational conditions. The comparison is 

summarized in Table 7.

Table 7. Comparison of Health Assessment Scores for Different Equipment. 

Equipment  Parameter Operational Condition Expert AHP D-AHP 

Transformer Oil Temperature Normal (50°C) 85 83 84 

Transformer Oil Temperature High Risk (70°C) 60 55 62 

Circuit Breaker Operation Count Normal (Low Operations) 88 86 87 

Circuit Breaker Operation Count High Risk (High Operations) 58 52 60 

Cable Insulation Condition Normal (Good Insulation) 90 88 89 

Cable Insulation Condition High Risk (Degraded Insulation) 62 55 64 

 

As shown in Table 7, under normal operating conditions, 

both D-AHP and AHP produce health assessment scores that are 

close to the expert evaluations, with minor deviations. However, 

under high-risk conditions, the traditional AHP method tends to 

underestimate the health score, failing to accurately reflect the 

increased risk. In contrast, the D-AHP method dynamically 

adjusts the weights of critical parameters and produces scores 

that are much closer to the expert evaluations, demonstrating its 

superior ability to capture and respond to risk factors across 

different types of equipment. 

This comparison highlights the key advantage of D-AHP: its 

dynamic weight adjustment mechanism enables it to adapt to 

changing operational conditions and diverse equipment types, 

providing more accurate and reliable risk assessments. By 

aligning more closely with expert evaluations, especially under 

high-risk scenarios and across various equipment types, D-AHP 

has proven to be a robust and generalizable tool for health 

assessment in complex and dynamic environments. 

5.3. Performance evaluation of DRL-based complete 

coverage path planning 

To validate the effectiveness of the proposed improved DRL 

algorithm for inspecting electrical equipment at island 

substations, experiments were conducted using data based on 

equipment prioritization that were obtained through D-AHP 

analysis. For comparative analysis, three substations with 

similar configurations were included. In the experiments, 

priority maps for electrical equipment, derived from D-AHP 

analysis, were used to optimize inspection paths, as illustrated 

in Figure 9. Specifically, Block (a) shows the priority map for 

the target substation, while Blocks (b), (c), and (d) present the 

priority maps for the three similar substations. In the figures, 

regions shaded in deeper red denote higher-priority equipment, 

indicating components requiring more immediate inspection. 

The priority information obtained from the D-AHP analysis 

serves as the reward signal in the DRL algorithm, guiding the 

optimization of path planning. This ensures that the inspection 

process prioritizes critical equipment while minimizing the total 

path length. By employing this method, differences in 

equipment priorities across various substations can be 

intuitively compared, validating the applicability and 

effectiveness of the improved DRL algorithm for multi-

objective inspection tasks.

(a) ( )b

(c) (d)
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(a) ( )b

(c) (d)
 

Figure 9. Gridded condition assessment maps of different compartments. 

In the path optimization process, this study employs an 

improved deep reinforcement learning (DRL) algorithm that 

integrates simulated annealing and pruning techniques. 

Simulated annealing effectively mitigates the risk of getting 

trapped in local optima, while pruning reduces the search space 

by eliminating irrelevant paths and insignificant nodes, thereby 

accelerating the path search process. The DRL network 

optimizes the inspection path by learning the relationship 

between equipment priorities and path costs, thereby ensuring 

that critical equipment is prioritized during inspection. 

Specifically, the policy network in the DRL framework selects 

the optimal action based on the current state, while the value 

network evaluates the current policy and provides reward 

signals as feedback to guide the path optimization process.

(a) ( )b

(c) (d)
 

Figure 10. The path planning results obtained by the model proposed in this study. 

Figure 10 presents the inspection paths optimized by the 

proposed improved deep reinforcement learning (DRL) 

algorithm. The experimental results demonstrate that the 

algorithm significantly enhances path planning performance by 

minimizing total path length while prioritizing the inspection of 

high-priority electrical equipment. Specifically, Blocks (a), (b), 
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and (c) highlight the algorithm's ability to achieve a balance 

between path length optimization and the prioritization of 

critical equipment, ensuring that high-priority inspection tasks 

are completed efficiently with minimal detours. In Block (d), 

while a slight increase in path length is observed due to the 

emphasis on inspecting high-priority equipment, the algorithm 

maintains its efficacy in achieving an optimal trade-off between 

path efficiency and priority-based task completion. These 

results underscore the algorithm's ability to ensure 

comprehensive inspection coverage while maintaining the 

operational integrity and safety of the equipment.

Table 8. The repetition rate, coverage rate and number of steps of the planning results. 

Block Algorithms Repeated coverage (%) Coverage (%) Step 

Block (a) 

Ours 0 100 17 

DQN 0 100 17 

Q-learning 0 100 18 

GA 5.3 100 19 

Block (b) 

Ours 0 100 20 

DQN 0 100 20 

Q-learning 4.7 100 21 

GA 13.6 100 22 

Block (c) 

Ours 0 100 18 

DQN 5 100 20 

Q-learning 10 100 20 

GA 10.5 100 19 

Block (d) 

Ours 5.9 100 17 

DQN 5.9 100 17 

Q-learning 5.9 100 17 

GA 11.1 100 18 

 

Table 8 presents the key performance indicators for path 

planning results across four distinct substation layouts: Block 

(a), Block (b), Block (c), and Block (d). The comparison 

includes the proposed improved deep reinforcement learning 

(DRL) method, Deep Q-Network (DQN), Q-learning, and the 

genetic algorithm (GA). 

In Blocks (a), (b), and (c), the proposed method 

demonstrates significant superiority in path length optimization 

compared to Q-learning and GA. Specifically, in Block (a), the 

proposed method achieves a path length of 17 steps, whereas Q-

learning requires 18 steps and GA requires 19 steps. Similarly, 

in Blocks (b) and (c), the proposed method achieves path 

lengths of 20 and 18 steps, respectively, outperforming both Q-

learning and GA. Although DQN exhibits competitive results 

with 17 steps in Block (a) and 20 steps in Block (b), the key 

distinction lies in redundant coverage. Notably, in Block (c), 

DQN yields a redundant coverage rate of 5%, whereas the 

proposed method maintains 0%, highlighting its superior ability 

to eliminate unnecessary path overlaps. 

For equipment coverage, all algorithms achieve 100% 

across all layouts, ensuring thorough inspection of all electrical 

equipment, particularly high-priority assets. The primary 

advantage of the proposed method lies in its ability to minimize 

path length while maintaining 100% equipment coverage. This 

is particularly evident in Blocks (a), (b), and (c), where the 

proposed method consistently outperforms Q-learning and GA 

in minimizing path length while avoiding unnecessary overlaps. 

Although DQN also achieves effective results, its slightly 

higher redundant coverage suggests suboptimal path 

exploration. 

In Block (d), although all algorithms achieve 100% 

equipment coverage, the redundant coverage rate of the 

proposed method increases to 5.9%, matching those of DQN 

and Q-learning. This increase, compared to the other three 

blocks, arises from prioritizing inspections of high-priority 

equipment, which may result in slight path overlaps to ensure 

thorough coverage of these critical assets. Despite this, the 

proposed method still outperforms GA, which exhibits the 

highest redundant coverage rate at 11.1%. Regarding path 

length, the proposed method achieves the shortest path with 17 
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steps, equivalent to DQN and Q-learning but superior to GA, 

which requires 18 steps. These results further validate the 

effectiveness of the proposed method in optimizing path length 

while balancing inspection completeness and path efficiency, 

even when prioritizing high-priority equipment. 

To further validate the effectiveness and stability of the 

proposed improved DRL algorithm, we analyzed the training 

process by monitoring the training loss curve, as illustrated in 

Figure 11. The curve demonstrates a consistent and smooth 

convergence trend, with the training loss decreasing from 0.020 

to 0.0009 over 30 epochs. This gradual reduction in loss 

indicates that the algorithm achieves stable learning and reliable 

optimization capabilities. Specifically, the loss curve shows no 

significant fluctuations or divergence, suggesting that the model 

effectively adapts to the training data and converges to an 

optimal solution. 

 

Figure 11. Training loss curve of the proposed DRL algorithm. 

In summary, the deep reinforcement learning-based path 

planning method proposed in this paper not only minimizes path 

length but also prioritizes the inspection of critical equipment, 

significantly improving the efficiency and safety of unmanned 

island substation operations and maintenance. In addition, the 

DRL-based path planning method proposed in this paper 

integrates simulated annealing and pruning algorithms to 

minimize the path length and prioritize the inspection of critical 

equipment. Specifically, the addition of simulated annealing 

reduces the risk of local optima, while pruning significantly 

narrows the search space by eliminating irrelevant paths and 

nodes. As a result, the total path planning time is reduced to 8m 

52.9s, which fully complies with the operational requirements 

of island substation inspection robots. This efficient planning 

time, combined with the ability to prioritize high-risk equipment, 

ensures timely and accurate inspections, thereby enhancing the 

reliability and safety of island substation operations. 

6. Conclusion 

This paper proposes an integrated framework for predictive 

state assessment and path planning in island-based power 

systems, emphasizing robotic inspections in unmanned 

environments. The primary contributions include the 

development of a novel Conv2D-PSE-iTransformer framework, 

integrating Convolutional Neural Networks (Conv2D), the 

Parallel Series Embedding (PSE) method, and the iTransformer 

architecture to provide precise and reliable temperature 

predictions. Furthermore, a comprehensive health assessment of 

substation electrical equipment was conducted using the 

Dynamic Analytic Hierarchy Process (D-AHP). Building on 

this assessment, we developed a Deep Reinforcement Learning 

(DRL)-based path planning algorithm that adapts to real-time 

equipment conditions. The algorithm efficiently prioritizes 

high-risk areas for inspection while optimizing path lengths to 

ensure complete coverage. By integrating predictive modeling, 

dynamic health assessment, and optimized path planning, the 

proposed method significantly improves the efficiency and 

accuracy of robotic inspections in complex unmanned 

environments. This work advances autonomous inspection 

systems, enhancing the safety, reliability, and operational 

efficiency of electrical island substations and other high-risk 

environments. 

7. Discussion 

While the proposed method demonstrates significant 

improvements in optimizing inspection time and prioritizing 

critical equipment, this study has certain limitations that warrant 

further investigation. Specifically, the performance variations 

across environments of different complexities, computational 

cost comparisons with traditional methods, and key metrics 

such as false detection rate and equipment state prediction 

accuracy were not extensively analyzed. These limitations stem 

from the primary focus of this work, which was to introduce  

a novel framework integrating predictive assessment with 

inspection path planning, rather than providing  
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a comprehensive quantitative evaluation. 

Future research will address these gaps by evaluating the 

method's robustness in diverse operational environments, 

conducting detailed computational cost analyses against 

traditional approaches, and examining critical performance 

indicators, including false detection rates and prediction 

accuracy. These efforts will further validate the method's 

applicability and provide a more holistic understanding of its 

performance under varying conditions.

Acknowledge 

National Key R&D Program of China (Key Special Project for Marine Environmental Security and Sustainable Development of 

Coral Reefs 2022-3.1,NO: 2022YFC3102805) 

Independent research and development project of Naval Engineering University: Identification of ship cabin equipment based on 

multispectral images 

Reference 

1. K.-H. Lee, M.-G. Kim, J. Lee, and P.-S. Lee, "Recent Advances in Ocean Nuclear Power Plants," Energies, vol. 8, no. 10, pp. 11470-11492, 

2015. https://doi.org/10.3390/en81011470 

2. S. Fu, Y. Yu, J. Chen, B. Han, and Z. Wu, "Towards a probabilistic approach for risk analysis of nuclear-powered icebreakers using FMEA 

and FRAM," Ocean Engineering, vol. 260, 2022. https://doi.org/10.1016/j.oceaneng.2022.112041 

3. S. E. Hirdaris et al., "Considerations on the potential use of Nuclear Small Modular Reactor (SMR) technology for merchant marine 

propulsion," Ocean Engineering, vol. 79, pp. 101-130, 2014. https://doi.org/10.1016/j.oceaneng.2013.10.015 

4. T. Zheng et al., "Nuclear power plant pipeline detection robot based on a new radiation-proof material," Annals of Nuclear Energy, vol. 

202, 2024. https://doi.org/10.1016/j.anucene.2024.110455 

5. I. Tsitsimpelis, C. J. Taylor, B. Lennox, and M. J. Joyce, "A review of ground-based robotic systems for the characterization of nuclear 

environments," Progress in Nuclear Energy, vol. 111, pp. 109-124, 2019. https://doi.org/10.1016/j.pnucene.2018.10.023 

6. X. Zhang, C. Sheng, W. Ouyang, and L. Zheng, "Fault diagnosis of marine electric thruster bearing based on fusing multi-sensor deep 

learning models," Measurement, vol. 214, 2023. https://doi.org/10.1016/j.measurement.2023.112727 

7. F. Cheng, J. Li, L. Zhou, and G. Lin, "Fragility analysis of nuclear power plant structure under real and spectrum-compatible seismic waves 

considering soil-structure interaction effect," Engineering Structures, vol. 280, 2023. https://doi.org/10.1016/j.engstruct.2023.115684 

8. H. Vairagade, S. Kim, H. Son, and F. Zhang, "A nuclear power plant digital twin for developing robot navigation and interaction," Frontiers 

in Energy Research, vol. 12, 2024. https://doi.org/10.3389/fenrg.2024.1356624 

9. C. Mineo and Y. Javadi, "Robotic Non-Destructive Testing," Sensors (Basel), vol. 22, no. 19, Oct 9 2022. 

https://doi.org/10.3390/s22197654 

10. P. Rea and E. Ottaviano, "Design and development of an Inspection Robotic System for indoor applications," Robotics and Computer-

Integrated Manufacturing, vol. 49, pp. 143-151, 2018. https://doi.org/10.1016/j.rcim.2017.06.005 

11. X. Xu, X. Yan, K. Yang, J. Zhao, C. Sheng, and C. Yuan, "Review of condition monitoring and fault diagnosis for marine power systems," 

Transportation Safety and Environment, vol. 3, no. 2, pp. 85-102, 2021. https://doi.org/10.1093/tse/tdab005 

12. A. Mérigaud and J. V. Ringwood, "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable 

Energy Reviews, vol. 66, pp. 53-78, 2016. https://doi.org/10.1016/j.rser.2016.07.071 

13. D. Shanahan, Z. Wang, and A. Montazeri, "Robotics and Artificial Intelligence in the Nuclear Industry: From Teleoperation to Cyber 

Physical Systems," in Artificial Intelligence for Robotics and Autonomous Systems Applications: Springer, 2023, pp. 123-166. 

https://doi.org/10.1007/978-3-031-28715-2_5 

14. J. Cullum, J. Binns, M. Lonsdale, R. Abbassi, and V. Garaniya, "Risk-Based Maintenance Scheduling with application to naval vessels and 

ships," Ocean Engineering, vol. 148, pp. 476-485, 2018. https://doi.org/10.1016/j.oceaneng.2017.11.044 

15. J. Zhou, J. Fu, R. Pan, G. Tian, and Y. Li, "Structural design and research of underwater inspection robot for nuclear power plant," presented 

at the 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), 2022. 

https://doi.org/10.1109/TOCS56154.2022.10015995 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

16. Y. Liu, M. Hajj, and Y. Bao, "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy 

Reviews, vol. 158, 2022. https://doi.org/10.1016/j.rser.2022.112187 

17. S.-Y. Park et al., "Digital Twin and Deep Reinforcement Learning-Driven Robotic Automation System for Confined Workspaces: A Nozzle 

Dam Replacement Case Study in Nuclear Power Plants," International Journal of Precision Engineering and Manufacturing-Green 

Technology, vol. 11, no. 3, pp. 939-962, 2024. https://doi.org/10.1007/s40684-023-00593-6 

18. M.-k. Li et al., "Dynamic minimum dose path-searching method for virtual nuclear facilities," Progress in Nuclear Energy, vol. 91, pp. 1-

8, 2016. https://doi.org/10.1016/j.pnucene.2016.04.001 

19. N. M. Thoppil, V. Vasu, and C. S. P. Rao, "Deep Learning Algorithms for Machinery Health Prognostics Using Time-Series Data: A 

Review," Journal of Vibration Engineering & Technologies, vol. 9, no. 6, pp. 1123-1145, 2021. https://doi.org/10.1007/s42417-021-00286-

x 

20. W. Zhang, Z. Sun, D. Lv, Y. Zuo, H. Wang, and R. Zhang, "A Time Series Prediction-Based Method for Rotating Machinery Detection and 

Severity Assessment," Aerospace, vol. 11, no. 7, 2024. https://doi.org/10.3390/aerospace11070537 

21. T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. d. P. Francisco, J. P. Basto, and S. G. S. Alcalá, "A systematic literature review of machine 

learning methods applied to predictive maintenance," Computers & Industrial Engineering, vol. 137, 2019. 

https://doi.org/10.1016/j.cie.2019.106024 

22. A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, "Predictive maintenance enabled by machine learning: Use cases and 

challenges in the automotive industry," Reliability Engineering & System Safety, vol. 215, 2021. https://doi.org/10.1016/j.ress.2021.107864 

23. C. J. Burges, "A tutorial on support vector machines for pattern recognition," Data mining and knowledge discovery, vol. 2, no. 2, pp. 121-

167, 1998. https://doi.org/10.1023/A:1009715923555 

24. S. Liu, Y. Hu, C. Li, H. Lu, and H. Zhang, "Machinery condition prediction based on wavelet and support vector machine," Journal of 

Intelligent Manufacturing, vol. 28, no. 4, pp. 1045-1055, 2015. https://doi.org/10.1007/s10845-015-1045-5 

25. X. Li, Q. Ding, and J.-Q. Sun, "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability 

Engineering & System Safety, vol. 172, pp. 1-11, 2018. https://doi.org/10.1016/j.ress.2017.11.021 

26. S. Tapan Kumar and P. Prithwiraj, "Smart Transformer Condition Monitoring and Diagnosis," in Transformer Ageing: Monitoring and 

Estimation Techniques: IEEE, 2017, pp. 403-439. https://doi.org/10.1002/9781119239970.ch9 

27. A. Doolgindachbaporn, G. Callender, P. Lewin, E. Simonson, and G. Wilson, "Data Driven Transformer Thermal Model for Condition 

Monitoring," IEEE Transactions on Power Delivery, vol. 37, no. 4, pp. 3133-3141, 2022. https://doi.org/10.1109/TPWRD.2021.3123957 

28. A. Bakdi, N. B. Kristensen, and M. Stakkeland, "Multiple Instance Learning With Random Forest for Event Logs Analysis and Predictive 

Maintenance in Ship Electric Propulsion System," IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 7718-7728, 2022. 

https://doi.org/10.1109/TII.2022.3144177 

29. F. Cipollini, L. Oneto, A. Coraddu, A. J. Murphy, and D. Anguita, "Condition-Based Maintenance of Naval Propulsion Systems with 

supervised Data Analysis," Ocean Engineering, vol. 149, pp. 268-278, 2018. https://doi.org/10.1016/j.oceaneng.2017.12.002 

30. G. Kabir and R. S. Sumi, "Power substation location selection using fuzzy analytic hierarchy process and PROMETHEE: A case study 

from Bangladesh," Energy, vol. 72, pp. 717-730, 2014. https://doi.org/10.1016/j.energy.2014.05.098 

31. P. H. Dos Santos, S. M. Neves, D. O. Sant’Anna, C. H. d. Oliveira, and H. D. Carvalho, "The analytic hierarchy process supporting decision 

making for sustainable development: An overview of applications," Journal of Cleaner Production, vol. 212, pp. 119-138, 2019. 

https://doi.org/10.1016/j.jclepro.2018.11.270 

32. N. Panmala, T. Suwanasri, and C. Suwanasri, "Condition Assessment of Gas Insulated Switchgear Using Health Index and Conditional 

Factor Method," Energies, vol. 15, no. 24, 2022. https://doi.org/10.3390/en15249393 

33. H. Tanaka, S. Tsukao, D. Yamashita, T. Niimura, and R. Yokoyama, "Multiple Criteria Assessment of Substation Conditions by Pair-Wise 

Comparison of Analytic Hierarchy Process," IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3017-3023, 2010. 

https://doi.org/10.1109/TPWRD.2010.2048437 

34. M. D. P. C. Hernandez and A. Labib, "Selecting a condition monitoring system for enhancing effectiveness of power transformer 

maintenance," Journal of Quality in Maintenance Engineering, vol. 23, no. 4, pp. 400-414, 2017. https://doi.org/10.1108/JQME-07-2015-

0027 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

35. V. González-Prida et al., "Dynamic analytic hierarchy process: AHP method adapted to a changing environment," Journal of 

Manufacturing Technology Management, vol. 25, no. 4, pp. 457-475, 2014. https://doi.org/10.1108/JMTM-03-2013-0030 

36. M. Bajaj and A. K. Singh, "An analytic hierarchy process-based novel approach for benchmarking the power quality performance of grid-

integrated renewable energy systems," Electrical Engineering, vol. 102, no. 3, pp. 1153-1173, 2020. https://doi.org/10.1007/s00202-020-

00938-3 

37. H. Raharjo, M. Xie, and A. C. Brombacher, "On modeling dynamic priorities in the analytic hierarchy process using compositional data 

analysis," European Journal of Operational Research, vol. 194, no. 3, pp. 834-846, 2009. https://doi.org/10.1016/j.ejor.2008.01.012 

38. L. Han, X. Tan, Q. Wu, and X. Deng, "An Improved Algorithm for Complete Coverage Path Planning Based on Biologically Inspired 

Neural Network," IEEE Transactions on Cognitive and Developmental Systems, vol. 15, no. 3, pp. 1605-1617, 2023. 

https://doi.org/10.1109/TCDS.2023.3237612 

39. T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, "Heuristic approaches in robot path planning: A survey," Robotics and Autonomous 

Systems, vol. 86, pp. 13-28, 2016. https://doi.org/10.1016/j.robot.2016.08.001 

40. B. Zhao, C.-d. Wu, X. Zhao, R.-h. Sun, and Y. Jiang, "Research on hybrid navigation algorithm and multi-objective cooperative planning 

method for electric inspection robot," Energy Reports, vol. 9, pp. 805-813, 2023. https://doi.org/10.1016/j.egyr.2023.05.204 

41. H. Azpúrua et al., "Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô," Journal of 

Intelligent & Robotic Systems, vol. 101, no. 4, 2021. https://doi.org/10.1007/s10846-021-01321-5 

42. Z. Khanam, S. Saha, S. Ehsan, R. Stolkin, and K. McDonald-Maier, "Coverage Path Planning Techniques for Inspection of Disjoint 

Regions With Precedence Provision," IEEE Access, vol. 9, pp. 5412-5427, 2021. https://doi.org/10.1109/ACCESS.2020.3044987 

43. J. Clifton and E. Laber, "Q-Learning: Theory and Applications," Annual Review of Statistics and Its Application, vol. 7, no. 1, pp. 279-

301, 2020. https://doi.org/10.1146/annurev-statistics-031219-041220 

44. E. S. Low, P. Ong, and K. C. Cheah, "Solving the optimal path planning of a mobile robot using improved Q-learning," Robotics and 

Autonomous Systems, vol. 115, pp. 143-161, 2019. https://doi.org/10.1016/j.robot.2019.02.013 

45. Y. Yu, Y. Liu, J. Wang, N. Noguchi, and Y. He, "Obstacle avoidance method based on double DQN for agricultural robots," Computers and 

Electronics in Agriculture, vol. 204, 2023. https://doi.org/10.1016/j.compag.2022.107546 

46. S. R. Barros dos Santos, S. N. Givigi, and C. L. Nascimento, "Autonomous Construction of Multiple Structures Using Learning Automata: 

Description and Experimental Validation," IEEE Systems Journal, vol. 9, no. 4, pp. 1376-1387, 2015. 

https://doi.org/10.1109/JSYST.2014.2374334 

47. Y.-H. Wang, T.-H. S. Li, and C.-J. Lin, "Backward Q-learning: The combination of Sarsa algorithm and Q-learning," Engineering 

Applications of Artificial Intelligence, vol. 26, no. 9, pp. 2184-2193, 2013. https://doi.org/10.1016/j.engappai.2013.06.016 

48. A. Fotouhi, M. Ding, and M. Hassan, "Deep Q-Learning for Two-Hop Communications of Drone Base Stations," Sensors (Basel), vol. 21, 

no. 6, Mar 11 2021. https://doi.org/10.3390/s21061960 

49. B. Hadi, A. Khosravi, and P. Sarhadi, "Deep reinforcement learning for adaptive path planning and control of an autonomous underwater 

vehicle," Applied Ocean Research, vol. 129, 2022. https://doi.org/10.1016/j.apor.2022.103326 

50. A. Krishna Lakshmanan et al., "Complete coverage path planning using reinforcement learning for Tetromino based cleaning and 

maintenance robot," Automation in Construction, vol. 112, 2020. https://doi.org/10.1016/j.autcon.2020.103078 

51. J. Ren, X. Huang, and R. N. Huang, "Efficient Deep Reinforcement Learning for Optimal Path Planning," Electronics, vol. 11, no. 21, 

2022. https://doi.org/10.3390/electronics11213628 

52. J. Xu, X. Jiang, S. Liao, D. Ke, Y. Sun, and L. Yao, "Enhanced feature combinational optimization for multivariate time series based 

dynamic early warning in power systems," Expert Systems with Applications, vol. 252, p. 123985, 2024. 

https://doi.org/10.1016/j.eswa.2024.123985 

53. X. Feng and Z. Lyu, "How features benefit: parallel series embedding for multivariate time series forecasting with transformer," in 2022 

IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), 2022: IEEE, pp. 967-975. 

https://doi.org/10.1109/ICTAI56018.2022.00148 

54. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Communications of the 

ACM, vol. 60, no. 6, pp. 84-90, 2017. https://doi.org/10.1145/3065386 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

55. S. Li et al., "Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting," Advances in neural 

information processing systems, vol. 32, 2019. 

56. Y. Liu et al., "itransformer: Inverted transformers are effective for time series forecasting," arXiv preprint arXiv:2310.06625, 2023. 

57. A. Vaswani, "Attention is all you need," Advances in Neural Information Processing Systems, 2017. 

58. X. Zhang, E. Gockenbach, V. Wasserberg, and H. Borsi, "Estimation of the Lifetime of the Electrical Components in Distribution 

Networks," IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 515-522, 2007. https://doi.org/10.1109/TPWRD.2006.876661 

59. R. E. Brown and T. M. Taylor, "Modeling the impact of substations on distribution reliability," IEEE Transactions on Power Systems, vol. 

14, no. 1, pp. 349-354, 1999. https://doi.org/10.1109/59.744554 

60. G. Improta, G. Converso, T. Murino, M. Gallo, A. Perrone, and M. Romano, "Analytic Hierarchy Process (AHP) in Dynamic Configuration 

as a Tool for Health Technology Assessment (HTA): The Case of Biosensing Optoelectronics in Oncology," International Journal of 

Information Technology & Decision Making, vol. 18, no. 05, pp. 1533-1550, 2019. https://doi.org/10.1142/S0219622019500263 

61. Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, "Learning improvement heuristics for solving routing problems," IEEE transactions on 

neural networks and learning systems, vol. 33, no. 9, pp. 5057-5069, 2021. https://doi.org/10.1109/TNNLS.2021.3068828 

62. International Electrotechnical Commission (IEC). (2005). IEC 60076-7: Power transformers - Part 7: Loading guide. Geneva: IEC 

 


