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Highlights  Abstract  

▪ A new single loop Kriging method for time-

variant reliability analysis is proposed. 

▪ A reliability-sensitive region-based adaptive 

learning mechanism is designed. 

▪ Four case studies illustrate the superiority of 

the proposed approach. 

▪ This study clarifies the importance of focusing 

reliability-sensitive space-time region. 

 The time-variant reliability analysis method based on the adaptive 

single-loop surrogate has attracted much attention due to its excellent 

computing performance. However, the existing methods do not 

sufficiently focus surrogate learning on the reliability-sensitive space-

time region with high efficacy in improving the reliability surrogate, 

resulting in calculating waste. In this paper, a reliability-sensitive space-

time Kriging (RSTK) modeling approach is proposed. In the RSTK, to 

screen out reliability-sensitive trajectory segments, a reliability-sensitive 

space-time determination method is first proposed; further, to capture 

high-quality training samples, a reliability-sensitive space-time learning 

approach is designed correspondingly; finally, a matching iteration 

termination criterion is constructed. Four case studies demonstrate the 

superiority of the proposed RSTK in reducing calculational costs. RSTK 

shortens the iteration time by one to two orders of magnitude and reduces 

the surrogate cost by up to 22.3% while maintaining accuracy. 
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1. Introduction 

For decades, time-invariant reliability analysis methods have 

been developed rapidly 1,. Neural network methods with strong 

data processing ability were employed to handle complex 

engineering problems 3,, and high-performance reliability 

modeling strategies and surrogate methods were designed 5,, 

which effectively improve the computing efficacy of time-

invariant reliability analysis 7. Furthermore, the active learning 

surrogate modeling methods with high computing performance 

and the reliability design methods incorporating active learning 

were proposed 8-. However, they ignore more general time-

variant uncertainties (such as dynamic loads, material 

degradation, and aging) in practical engineering problems, 

which results in the distortion of analysis results 11,. In recent 

years, time-variant reliability analysis (TRA) has gained much 

attention, and it can assess the reliability of the research object 

over a period 13,. Due to random processes and time-variant 
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inputs, the computational load of each interest space point 

changes from time-invariant one-time calculation to multiple 

calculations of the time-variant trajectory, which considerably 

increases the calculating burden 15,. To alleviate the computing 

burden, numerous TRA approaches have been proposed, which 

can be divided into three categories: the outcrossing rate-based 

method, the composite limit state method, and the extremum 

surrogate-based method.   

The outcrossing rate-based method estimates the failure 

probability by calculating the probability that the response 

trajectory crosses the allowable boundary, where different 

outcross events are assumed to be independent of each other 17. 

The efficient PHI2 method was proposed by integrating the 

first-order reliability method and the parallel static reliability 

model 18. To ensure the calculating stability of the PHI2 method, 

the PHI2+ approach was further developed 19. To expand the 

outcrossing rate-based method into scenarios with strongly 

correlated outcrossing events, the joint outcrossing rate method 

was designed 20. Despite the noticeable progress made 21,, the 

heavy response computing burden and assessment assumption 

still hinder their application in sophisticated engineering issues.  

The composite limit state method discretizes the 

comprehensive failure problem in the full-time domain into  

a series of failure subproblems in sub-time domains. The TRPD 

method discretizes stochastic processes into random variables 

and then employs the first-order reliability method (FORM) to 

calculate the failure probability 23. Furthermore, to simplify the 

discretization analysis process and improve the efficiency of 

TRPD, the improved TRPD method was developed by 

designing a more efficient time-invariant transformation 

approach 24. To improve the calculating precision, the 

NEWREL method formulates the time-variant estimation as the 

large-scale series time-invariant evaluation 25. To elevate 

computing efficiency, the semi-analytical extreme value method 

was proposed by integrating the calculating advantages of the 

discrete method, the extremum method, and the Taylor series 

expansion approximation 26. Although appreciable 

advancements have been achieved 27,, these methods require 

vast actual response assessments, and the FORM or second-

order reliability methods they employ struggle to achieve 

satisfactory accuracy in highly nonlinear problems.  

To better balance accuracy and efficiency, the extremum 

surrogate-based approach uses a low-cost surrogate model to 

characterize response trajectories and then performs the time-

variant failure evaluation according to failure situations of the 

trajectory extremum. Building upon classical surrogate models 

(such as Kriging 29, artificial neural network 30, and support 

vector machine 31), the extremum surrogate methods have been 

proposed, such as the extremum response surface 32, extremum 

support vector machine 33, and extremum Kriging 34. This 

study focuses on the Kriging surrogate model due to its superior 

approximation performance, particularly its unique capability to 

evaluate prediction errors 35,, which can effectively guide the 

design of adaptive learning processes. Furthermore, a series of 

high-performance adaptive Kriging extremum methods have 

been developed by organically integrating the extremum 

Kriging method with the adaptive surrogate modeling approach. 

Wang et al. proposed a double-loop Kriging-based nested 

extreme response surface approach for TRA, in which the inner 

and outer loops are employed to identify extremum locations 

and calculate extremum responses, respectively 37. To improve 

the double-loop calculating efficiency, Hu et al. proposed a 

mixed efficient global optimization method 38. Furthermore, to 

avoid the time-consuming inner loop optimization, Wang et al. 

designed an equivalent stochastic process transformation (eSPT) 

approach 39; then, Hu et al. proposed a more general adaptive 

Kriging Monte Carlo-based single-loop Kriging (SILK) 

surrogate method 40,. Based on the SILK, to further improve 

TRA computing efficacy, Jiang et al. designed a real-time 

estimation error-guided active learning method (REAL), in 

which the derived real-time errors are used to acquire high-

quality surrogate samples 42. Gao et al. proposed a SILK based 

on the candidate sample pool reduction strategy (SLK-CSPR), 

which improves computational efficiency by controlling the 

iterative computation burden 43. Tian et al. proposed a stratified 

sampling-based time-variant Kriging modeling approach 

(SSTK), which guarantees computational efficacy by using the 

designed learning function to capture training data in different 

spatial layers 44. Several other works are also noteworthy 45-. 

These single-loop adaptive learning surrogate methods 

effectively ensure the reliability analysis efficacy for time-

variant problems. However, most existing methods determine 

the high-quality surrogate samples by comprehensively 

considering the full-time-domain sample information of 
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candidate trajectories; this adaptive learning design, which does 

not exclude the regions that have already been accurately 

identified, fails to adequately focus the surrogate description on 

reliability-sensitive regions, resulting in a waste of surrogate 

modeling cost and iterative computing time. A large prediction 

error of the response trajectory far away from the limit state may 

not affect the correctness of trajectory failure classification, thus, 

the surrogate modeling for TRA should sufficiently focus on the 

reliability-sensitive space-time regions near the limit state.  

To address the above issues, a reliability-sensitive space-

time Kriging (RSTK) approach is proposed in this study. By 

determining whether the distribution range of the predicted 

response crosses the limit state, a reliability-sensitive 

recognition formula is proposed; further, by comprehensively 

considering the surrogate credibility level and series failure 

traits of the reliability-sensitive trajectory segments, the 

reliability-sensitive learning method is designed; finally, the 

corresponding stopping criterion is established. Unlike existing 

adaptive learning designs based on full-time-domain trajectory 

information, the proposed RSTK can effectively focus the 

surrogate representation on reliability-sensitive regions by 

excluding non-reliability-sensitive information during surrogate 

sample selection and performing the corresponding adaptive 

learning; this facilitates the acquisition of high-quality training 

data and avoids the iterative computation of numerous 

candidate samples. The proposed method is verified using four 

cases. The main contribution of this study is the proposal of the 

adaptive TRA concept that adequately focuses on the reliability-

sensitive space-time and to clarify its importance for time-

variant reliability surrogate representation.  

The rest of this paper: Section 2 briefly describes the Kriging 

extremum surrogate-based TRA background; Section 3 

introduces the proposed method; Section 4 validates the 

superiority of the proposed method; Section 5 presents the 

conclusions and outlooks.  

2. Fundamental background  

2.1. Time-variant reliability analysis  

In the time-variant reliability analysis, a stochastic response 

process is judged to fail when a failure moment exists, and the 

time-variant failure probability is calculated as follows:  

𝑃f(𝑡0, 𝑡𝑒) = 𝑃r{𝑔(𝐗, 𝐘(𝑡), 𝑡) ≤ 0, ∃𝑡 ∈ [𝑡0, 𝑡e]} (1) 

where, Pr{·} represents the probability operator; g(X, Y(t), t) is 

the limit state response at the time node t; [t0, te] is the time 

interval; X = [X1, X2, …, Xnx] is the random vector with nx 

variables; Y(t) = [Y1(t), Y2(t), …, Yny(t)] is the stochastic process 

vector with ny stochastic processes.  

In the stochastic process expression, Y(t) can be represented 

using a series of standard normal variables ξ = (ξ1, ξ2, …, ξD) 

after performing EOLE (i.e., expansion optimal linear 

estimation) 49, as follows:   

𝑌(𝑡) = 𝜇Y(𝑡) + 𝜎Y(𝑡)∑
𝜉𝑖

√𝜆𝑖
Φ𝑖𝑪(𝑡)

𝐷
𝑖=1   (2) 

where, μY(t) and σY(t) are the mean function and the standard 

deviation function of Y(t), respectively; D is the number of 

dominated eigenvalues; λi and Φi are the eigenvalue and 

eigenvector of the correlation matrix C (Cij = ρ(tti, ttj), ti, tj = 

1,2, …, Nt), respectively; ρ(tti, ttj) is the autocorrelation function 

of Y(t); Nt is the number of time nodes.  

Based on the Monte Carlo (MC) method and the extreme 

value failure principle 50, the time-variant failure probability is 

further expressed as Eq. (3) and its schematic diagram is 

depicted in Figure 1.  

𝑃f(𝑡0, 𝑡e) =
∑ 𝐼min(𝑿

𝑗,(𝝃1,𝝃2,...,𝝃𝑛𝑦),𝑡)
𝑁𝑚
𝑗=1

𝑁𝑚
        (3) 

where, Nm is the MC samples number; Imin(X j, (ξ1, ξ2, …, ξny)) 

is the time-variant failure indictor function and its expression is:  

𝐼min(𝑿
𝑗 , (𝝃1, 𝝃2, . . . , 𝝃𝑛𝑦), 𝑡) = {

1   min
𝑡𝑖=1,2,...,𝑁𝑡

𝑔(𝑿𝑗 , (𝝃1, 𝝃2, . . . , 𝝃𝑛𝑦), 𝑡𝑡𝑖) ≤ 0

0   min
𝑡𝑖=1,2,...,𝑁𝑡

𝑔(𝑿𝑗 , (𝝃1, 𝝃2, . . . , 𝝃𝑛𝑦), 𝑡𝑡𝑖) > 0
    (4) 
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Figure 1. Schematic diagram of the time-variant reliability 

calculation  

2.2. Kriging-based extremum method  

Kriging model can be described as 51:  

𝑦(𝒙) = 𝒇(𝒙)T𝜷 + 𝑧(𝒙)   (5) 
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where, f(x) = [f1(x), f2(x), … , fp(x)]T is the regression basis 

function; β = [β1, β2, … , βp]T is the regression coefficient vector; 

stochastic process z(x) obeys the Gaussian distribution N(0, σ2), 

and its covariance is:  

𝐶𝑜𝑣[𝑧(𝒙𝑢), 𝑧(𝒙𝑣)] = 𝜎2𝑅(𝒙𝑢 , 𝒙𝑣; 𝜽)  

𝑠. 𝑡. 𝑅(𝒙𝑢 , 𝒙𝑣; 𝜽) = ∏ exp[−𝜃𝑖(𝑥𝑢𝑖 − 𝑥𝑣𝑖)
2]𝑚

𝑖=1  (6) 

where, xu and xv represent two random inputs; σ2 is the process 

variance; θ is the Kriging parameter vector; R(·) is the Gaussian 

correlation function; m is the input dimension; θi is the i-th 

member of θ.   

Further, the optimal Kriging parameter θ' can be solved 

using the maximum likelihood estimation, as follows:  

𝜽′ = argmin{𝜑(𝜽)} = argmin{ 𝜎2|𝑹|1/𝑛}  (7) 

where, R is the correlation matrix; n is the training samples 

number.  

Upon acquisition of the optimal parameter θ', the 

corresponding regression coefficient β' and process variance σ'2 

are correspondingly determined as follows:  

{
𝜷′ = (𝒇(𝒙)T𝑹′−𝟏𝒇(𝒙))−1𝒇(𝒙)T𝑹′𝒚

𝜎′2 =
1

𝑛
(𝒚 − 𝒇(𝒙)𝜷′)T𝑹′−1(𝒚 − 𝒇(𝒙)𝜷′)

          (8) 

where R' is the correlation matrix corresponding to θ'; y is the 

outputs corresponding to n training inputs x = [x1, x2, …, xn]. 

Further, the mean value μĝ(xa) and variance σĝ
2(xa) of the 

Kriging prediction to an interested point xa can be computed as:  

𝜇ĝ(𝒙𝑎) = 𝒇
T(𝒙𝑎)𝜷

′+𝒓T(𝒙𝑎)𝑹
′−1(𝒚 − 𝒇(𝒙)T𝜷′) 

𝜎ĝ
2(𝒙𝑎) = 𝜎

′2{1 + 𝒖T(𝒙𝑎)[(𝒇(𝒙)
T𝑹′−𝟏𝒇(𝒙))−1𝒖(𝒙)

− 𝒓(𝒙𝑎)
T𝑹′

−1
𝒓(𝒙)]} 

𝑠. 𝑡.  𝒖(𝒙𝑎) = 𝒇(𝒙)T𝑹′−𝟏𝒓(𝒙𝑎) − 𝒇(𝒙𝑎)            (9) 

where, r(xa) = [R(xa, x1; θ'), R(xa, x2; θ'), …, R(xa, xm; θ')]T is 

the correlation vector.  

From the preceding discussion, it can be observed that the 

Kriging prediction for any sample of interest (X, Y(t), t) follows 

a normal distribution N(μĝ(·), σĝ
2(·)), in which μĝ(·) is utilized 

for response prediction and σĝ
2(·) is employed to guide adaptive 

learning 52. Notably, for a time-variant problem with nx random 

variables, ny random processes, and a time variable, the Kriging 

inputs dimension 

 

 (i.e., 

[𝑿, ((𝜉1, 𝜉2, . . . , 𝜉𝐷1)1, (𝜉1, 𝜉2, . . . , 𝜉𝐷2)2, . . . , (𝜉1, 𝜉2, . . . , 𝜉𝐷𝑛𝑦)𝑛𝑦), 𝑡]

) is 𝑛𝑥 + ∑ 𝐷𝑖
𝑛𝑦
𝑖=1 + 1 , where Di represents the number of 

standard normal random variables used for characterizing 

stochastic processes, as showed in Eq. (2); furthermore, the D 

of some random processes is relatively high, while Kriging 

struggles to effectively characterize high-dimensional problems. 

To handle this problem, the random processes rather than 

expanded random variables are used as Kriging inputs in this 

study, which sharply decreases the Kriging surrogate dimension 

from 𝑛𝑥 + ∑ 𝐷𝑖
𝑛𝑦
𝑖=1 + 1 to nx + ny + 1, as follows:  

[
 
 
 
 𝑿

(1)  (𝝃1
(1)
, 𝝃2
(1)
, . . . , 𝝃𝑖

(1)
, . . . ,  𝝃𝑛𝑦

(1)
)    𝑡𝑡1

𝑿(2) (𝝃1
(2)
, 𝝃2
(2)
, . . . , 𝝃𝑖

(2)
, . . . , 𝝃𝑛𝑦

(2)
)   𝑡𝑡2

 ⋮               ⋮                   ⋮

𝑿(𝑛) (𝝃1
(𝑛)
, 𝝃2
(𝑛)
, . . . , 𝝃𝑖

(𝑛)
, . . . , 𝝃𝑛𝑦

(𝑛)
)   𝑡𝑡𝑛 ]

 
 
 
 

→

[
 
 
 
 
𝑿(1)   𝒀(1)    𝑡𝑡1
𝑿(2)   𝒀(2)   𝑡𝑡2
 ⋮        ⋮         ⋮
𝑿(𝑛)   𝒀(𝑛)   𝑡𝑡𝑛]

 
 
 
 

   (10) 

where, 𝝃𝑖 = (𝜉1, 𝜉2, . . . , 𝜉𝐷𝑖)𝑖.  

After Kriging modeling, the trained Kriging is employed to 

predict the responses μĝ(X, Y(t), t) of MC samples, then the 

Kriging prediction-based time-variant failure probability is 

finally acquired by evaluating the trajectories extremum, as 

follows:  

�̂�f(𝑡0, 𝑡𝑒) =
∑ 𝐼min(𝐗

𝑗,(𝑌1
𝑗
(𝑡),𝑌2

𝑗
(𝑡),...,𝑌𝑛𝑦

𝑗
(𝑡)),𝑡)𝑁𝑚

𝑗=1

𝑁𝑚
          (11) 

where, the failure indictor function Imin(·) is expressed as 

follows:  

𝐼min (𝑿
𝑗 , (𝑌1

𝑗(𝑡), 𝑌2
𝑗(𝑡),… , 𝑌𝑛𝑦

𝑗 (𝑡)) , 𝑡) =

{
1   min

𝑡𝑖=1,2,...,𝑁𝑡
𝜇ĝ(𝑿

𝑗 , (𝑌1
𝑗
(𝑡𝑡𝑖), 𝑌2

𝑗
(𝑡𝑡𝑖), . . . , 𝑌𝑛𝑦

𝑗
(𝑡𝑡𝑖)), 𝑡𝑡𝑖) ≤ 0

0   min
𝑡𝑖=1,2,...,𝑁𝑡

𝜇ĝ(𝑿
𝑗 , (𝑌1

𝑗
(𝑡𝑡𝑖), 𝑌2

𝑗
(𝑡𝑡𝑖), . . . , 𝑌𝑛𝑦

𝑗
(𝑡𝑡𝑖)), 𝑡𝑡𝑖) > 0

    (12) 

3. Proposed method  

3.1. Adaptive learning analysis for time-variant reliability  

In time-variant reliability analysis, a large calculation error of  

a point in a non-sensitive segment (as shown in Figure 2 (a)) 

and a non-sensitive space sample in a time point (as shown in 

Figure 2 (b)) may not affect the reliability judgment, because 

their responses are far from the allowable limit. Indiscriminate 

full-space-time adaptive learning is prone to capturing 

excessive unimportant non-sensitive space-time information, 

which poorly contributes to reliability surrogate enhancement, 

leading to significant computational waste.  

Essentially, adaptive learning of TRA involves information 

screening across the space and time dimensions and 

encompasses three adaptive learning strategies; strategy 1: 

determining the space point first, then the time point; strategy 2: 

determining the time point first, then the space point; strategy 3: 

simultaneously determining the space point and time point. It 
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should be noted that in the full-time and full-space domains of 

adaptive reliability analysis, there are numerous space points 

and moments/periods whose failure conditions have been 

accurately evaluated, especially in the later stages of adaptive 

iterations. These space-time locations contribute minimally, or 

even ineffectively, to improving reliability surrogates, and 

adaptive learning that comprehensively considers such 

redundant information significantly hinders the efficient 

acquisition of high-quality time-variant samples. Specifically, 

strategy 1 needs to comprehensively consider the surrogate 

information of space points in the full-time domain. It may 

focus on the space points that have accurately performed the 

reliability classification, as the candidate trajectories with large 

full-time surrogate errors might already have been accurately 

judged as failure at certain moments. Figure 3 (a) illustrates the 

trajectory prediction for the time-variant problem 𝑔(𝑥1, 𝑥2, 𝑡) =

𝑥1
2 − 2𝑡𝑥2

2 − 𝑡2 + 28 at the location (1.8, 2.3), which may raise 

concern in the iterations due to its large prediction error, but 

which has accurately judged reliability since it is accurately 

determined to be a failure at time t0. Similarly, strategy 2 

requires a comprehensive consideration of the surrogate 

information of all space points at the time point of interest. It 

unavoidably focuses on the sub-time domains with high 

analysis accuracy, as some sub-time domains may exhibit 

satisfactory reliability analysis accuracy despite having large 

full-space surrogate errors. Figure 3 (b) shows the space 

prediction of 𝑔(𝑥1, 𝑥2, 𝑡) = 𝑥1
2 − 2𝑡𝑥2

2 − 𝑡2 + 28  at t = 2.5, 

which may raise concern due to its large total prediction error, 

but accurate reliability classification has been achieved, as the 

large errors of these space points do not affect their reliability 

judgment. Strategy 3 needs to comprehensively consider all 

space-time surrogate information, and it may encounter similar 

issues faced by strategies 1 and 2. Therefore, in adaptive 

learning for TRA, the comprehensive consideration of space-

time information, without excluding redundant data, will 

inevitably focus on the space-time data that have limited or even 

negligible impact on reliability surrogate, which significantly 

hinders the capture of high-quality time-variant data in adaptive 

surrogate modeling. Implementing surrogate modeling that can 

fully focus on reliability-sensitive space-time is of great 

significance in improving TRA calculating efficacy. 
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(b) reliability-sensitive space  

Figure 2. Schematic diagram of the proposed reliability-sensitive space-time. 
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(a) trajectory prediction  
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(b) prediction of space points  

Figure 3. Diagram of trajectory and space position prediction.  

3.2. Determination of reliability-sensitive space-time  

Reliability-sensitive space-time refers to the region near the 

limit state where the time-variant reliability indicator is easily 

misjudged. It is challenging to determine appropriate reliability-
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sensitive space-time segments due to frequent obstacles in 

obtaining required relevant information, such as response 

gradients and response magnitudes. To address this challenge,  

a prediction distribution information-based reliability-sensitive 

space-time recognition thought is proposed: the region where 

the upper and lower bounds of the Kriging prediction-based 

normal distribution can cross over the limit state is regarded as 

the reliability-sensitive space-time and the designing thought is 

schematically illustrated in Figure 4. Furthermore, the 

corresponding sensitive sample capture formula is proposed as 

Eq. (13). Eq. (13) is utilized to exclude non-reliability-sensitive 

samples in active learning; this design, which avoids focusing 

on low-quality samples, holds the potential to improve the 

reliability analysis efficacy. This approach can effectively 

identify the reliability-sensitive region because the upper and 

lower limits of the prediction distribution intersect with the limit 

state, indicating that the predicted sample has a prediction 

response close to the allowable limit and a large prediction 

fluctuation. These are precisely the reliability-sensitive samples 

requiring attention in reliability surrogate modeling. The Eq. 

(13)-based reliability-sensitive screening operation is capable of 

considering both the prediction error and the difference between 

the predicted value and the allowable limit, and adaptively 

adjusting the reliability-sensitive samples of concern as 

surrogate accuracy iteratively improves. This dynamic multi-

consideration-based reliability-sensitive recognition has the 

potential to constrain the adaptive learning to reliability 

surrogate samples with low boosting.  

𝑺s = {(𝑿, 𝒀(𝑡), 𝑡) ∈

𝑺mc|𝐹
−1 (

1−𝑝

2
, 𝜇ĝ(𝑿, 𝒀(𝑡), 𝑡), 𝜎ĝ(𝑿, 𝒀(𝑡), 𝑡)) ⋅

𝐹−1 (
1+𝑝

2
, 𝜇ĝ(𝑿, 𝒀(𝑡), 𝑡), 𝜎ĝ(𝑿, 𝒀(𝑡), 𝑡)) ≤ 0}        (13) 

where, Ss is the reliability-sensitive samples; Smc is the 

candidate samples; F-1(·) is the inverse function of the normal 

cumulative distribution function; F-1((1-p)/2, μĝ(·), σĝ(·)) is the 

input corresponding to the normal distribution with the Kriging 

mean μĝ(·) and Kriging standard deviation σĝ(·) at the 

cumulative probability (1-p)/2. p is the information coverage 

percentage of prediction distribution, as illustrated in Figure 5. 

Given that a larger p-value indicates more samples identified as 

reliability-sensitive during the iteration and higher calculating 

accuracy, this study sets p = 99.5% to ensure computing 

accuracy. 
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Figure 4. Thought of the reliability-sensitive space-time identification based on the prediction distribution information.  
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2
 (·))

p = Aera of       /Aera of

 

Figure 5. Schematic diagram of the value of parameter p.  

3.3. Reliability-sensitive space-time learning  

Adaptive learning based on the non-reliability-sensitive space-

time with a high correct classification probability is inefficient 

or even ineffective in improving the reliability surrogate 

efficacy. Therefore, to efficiently acquire high-quality reliability 

surrogate data, a reliability-sensitive space-time learning 

approach is proposed by organically integrating the time-variant 

failure traits and credibility of reliability-sensitive trajectory 

segments.  
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The Kriging prediction follows a normal distribution N(μĝ(·), 

σĝ
2(·)). For any sample of interest (X, Y(t), t), if the predicted 

response μĝ(X, Y(t), t) > 0, then the correct classification 

probability of reliability sign is the probability of obtaining  

a variable exceeding 0 in a normal distribution, as shown in Eq. 

(14). Conversely, if μĝ(X, Y(t), t) < 0, it is the probability of 

capturing a variable being below 0 in a normal distribution, as 

shown in Eq. (15). Figure 6 illustrates these two situations.  

 𝑃p = 1 − 𝛷 (
(0−𝜇ĝ(𝑿,𝒀(𝑡),𝑡))

𝜎ĝ(𝑿,𝒀(𝑡),𝑡)
)  (14) 

 𝑃n = 𝛷 (
(0−𝜇�̂�(𝑿,𝒀(𝑡),𝑡))

𝜎ĝ(𝑿,𝒀(𝑡),𝑡)
)   (15) 

where, Φ(·) is the cumulative distribution function of the 

standard normal. Thus, whether μĝ(X, Y(t), t) > 0 or μĝ(X, Y(t), 

t) < 0, the correct classification probability of the μĝ(X, Y(t), t) 

sign can be formulated as:  

 𝑃e = 𝛷(𝑈)    (16) 

where, U = |μĝ(X, Y(t), t)| / σĝ(X, Y(t), t). 

μĝ(X, Y(t), t)0

Pp = 1-Φ((0-μĝ(X, Y(t), 

t))/σĝ(X, Y(t), t))

PDF

 
(a) μĝ(X, Y(t), t) > 0 

μĝ(X, Y(t), t) 0

Pn = Φ((0-μĝ(X, Y(t), 

t))/σĝ(X, Y(t), t))

PDF

 
(b) μĝ(X, Y(t), t) < 0 

Figure 6. The correct classification probability of Kriging prediction.  

Considering the series failure characteristics (failure at any 

moment causes the trajectory to fail) in the reliability judgment 

of response trajectory, the trajectories with μĝ(·) ≤ 0 and U(·) ≥ 

2 are considered as the non-reliability-sensitive trajectories (U(·) 

≥ 2 means at least Φ(2) = 99.73% correct probability of 

reliability judgment 41). Similarly, the trajectories with μĝ(·) ≤ 

0 in the non-sensitive space-time, as well as the trajectories 

entirely within the non-sensitive region are also regarded as 

non-reliability-sensitive trajectories. All other trajectories are 

considered reliability-sensitive trajectories. To effectively 

eliminate the influence of redundant non-sensitive information, 

the adaptive learning of RSTK focuses exclusively on the 

sensitive segments of reliability-sensitive trajectories. 

Furthermore, given that the sensitive segments of various 

trajectories have different lengths, and the learning operation 

simultaneously considering predicted information of multiple 

sensitive moments facilitates improving the overall reliability-

sensitive surrogate effect, a reliability-sensitive confidence is 

designed to assure the enhancement efficacy of reliability-

sensitive description in each learning. The reliability-sensitive 

space-time learning function is finally designed as: 

 𝐿𝑋(𝐗
𝑖) =

{
 
 

 
 IC,  if  𝜇ĝ(𝑿

𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) ≤ 0 𝑎𝑛𝑑  𝑈(𝑿𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) ≥ 2, ∃𝑗 = 1,2, . . . , 𝑁𝑡

IC,  if  𝜇ĝ(𝑿
𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) ≤ 0 𝑎𝑛𝑑  (𝑿𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) ∉ 𝑺s, ∃𝑗 = 1,2, . . . , 𝑁𝑡

IC,  if  (𝑿𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) ∉ 𝑺s
𝐴𝐶𝐿𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (17) 

where, IC is an infinite constant; ACL i is the reliability-sensitive 

confidence level of space sample X i, as follows:  

𝐴𝐶𝐿𝑖 =
∑ 𝐼e(𝑿

𝑖,𝒀𝑖(𝑡𝑗),𝑡𝑗)𝑃e(𝑿
𝑖,𝒀𝑖(𝑡𝑗),𝑡𝑗)𝑁𝑡

𝑗=1

∑ 𝐼e(𝑿
𝑖,𝒀𝑖(𝑡𝑗),𝑡𝑗)𝑁𝑡

𝑗=1

  (18) 

where, Pe(·) is the correct classification probability calculated 

using Eq. (16); Ie(X i, Y i(t j), t j) is the reliability-sensitive 

indictor function and its expression is:  

𝐼e(𝑿
𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) = {

1    (𝑿𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) ∈ 𝑺s
0   (𝑿𝑖 , 𝒀𝑖(𝑡𝑗), 𝑡𝑗) ∉ 𝑺s

      (19) 

For the reliability-sensitive trajectories, the space position 

(X m, Y m) with the minimum LX(·) is first identified, as follows:  

(𝑿𝑚 , 𝒀𝑚) = argmin
𝑖=1,2,...,𝑁𝑛

{𝐿X(𝑿
𝑖)}   (20) 

where, Nn is the number of reliability-sensitive trajectories (Nn 

< Nm), i.e., the number of the samples that satisfy LX(X)≠IC.  
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Then, the new sample Sadd is determined as follows:  

𝑺add = (𝑿
𝑚, 𝒀𝑚(𝑡𝑛), 𝑡𝑛) 

(𝒀𝑚(𝑡𝑛), 𝑡𝑛) = argmin𝑈 (𝐗𝑚, 𝐘𝑚(𝑡𝑗), 𝑡𝑗), 𝑗 = 1,2, . . . , 𝑁𝑡𝑚(21) 

where, Ntm is the number of sensitive moments in the trajectory 

corresponding to the space sample X m (Ntm < Nt).  

In each adaptive iteration, Eq. (20) is used to identify the 

trajectory of interest (X m, Y m) corresponding to the new sample 

from the reliability-sensitive trajectories screened using Eq. 

(17); then, Eq. (21) is applied to extract the time point of interest 

in (X m, Y m) to determine the new modeling sample.  

Additionally, to avoid the issue of sample aggregation, the 

new sample is required to satisfy the space correlation constraint, 

as follows:  

max
𝑖=1,2,...,𝑁𝑒

{𝑐𝑜𝑟𝑟(𝑺add, 𝑺𝑖)} < 𝜀corr  (22) 

where, Ne is the number of existing training samples; εcorr is the 

Kriging space correlation threshold, and is set as 0.99 in this 

study 40. In detail, Eq. (22) is first employed to calculate the 

correlation metric cor between candidate samples and the 

current training set; then, by ignoring the candidate samples 

satisfying cor ≥ 0.99 during the modeling sample identification 

process, sample clustering is avoided.  

Notably, the designed reliability-sensitive space-time 

learning method only requires calculating the reliability-

sensitive space-time positions of the reliability-sensitive 

trajectories in each iteration, and can adaptively adjust the 

focused sensitive segments based on the evolution of surrogate 

precision. The candidate computing burden of each iteration 

gradually decreases as the iteration progresses, as demonstrated 

in Figure 7. This adaptive learning design, which focuses on 

reliability-sensitive space-time, suppresses the iterative 

calculations and surrogate learning for the non-reliability-

sensitive space-time regions with low reliability-elevating 

effects, which can productively reduce the surrogate modeling 

cost and iterative calculation time while ensuring computing 

precision. Moreover, the reliability-sensitive space-time 

credibility information is organically combined with the 

trajectory series failure characteristics in the designed adaptive 

learning, further ensuring the surrogate improvement efficacy 

of each sensitive learning iteration. 
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Figure 7. Schematic diagram of the iterative cost reduction effect of the proposed method. 

3.4. Stopping criterion  

As the iteration progresses, the failure probability evaluation 

error decreases progressively, and the number of non-reliability-

sensitive trajectories gradually diminishes. Based on these 

features, a convergence criterion that synergistically considers 

both iterative trends is designed. From the perspective of 

reliability-sensitive surrogate identification, the proportion of 

non-reliability-sensitive trajectories is employed to evaluate the 

reliability surrogate accuracy of the entire space-time, as 

follows:  

 𝐶 =
∑ 𝐼c(𝑿

𝑖)𝑁𝑚
𝑖=1

𝑁𝑚
    (23) 

where, Ic(X i) is the indictor function of reliability-sensitive 

trajectory, as shown in Eq. (24). The Kriging is considered well-

trained if C > 99.9%. Combining with Eq. (17), if all non-

reliability-sensitive trajectories are determined based on U(X i, 

Y i(t j), t j) > 2, then C > 99.9% implies that at least 99.9% × Φ(2) 

= 97.63% of the trajectories are accurately classified; similarly, 

combining with Eq. (13) and Figure 5, if all non-reliability-

sensitive trajectories are determined based on (X i, Y i(t j), t j) ∉ 

Ss, then C > 99.9% implies that at least 99.9% × [1-(1-p)/2] = 

99.65% of the trajectories are accurately classified.   

 𝐼c(𝑿
𝑖) = {1   𝐿X(𝑿

𝑖) = IC
0   otherwise

   (24) 

From the perspective of the failure probability estimation 

accuracy, the Pf(t0, te) evaluation error er based on the current 

Kriging surrogate can be described as:  
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 𝑒𝑟 =
|�̂�f(𝑡0,𝑡𝑒)−𝑃f

∗(𝑡0,𝑡𝑒)|

𝑃f
∗(𝑡0,𝑡𝑒)

=
|𝑁f2−𝑁f2

∗ |

𝑁f1+𝑁f2
∗   (25) 

where, �̂�𝑓(⋅) is the predicted failure probability; Pf
*(·) is the 

actual failure probability; Nf1 and Nf2 are the predicted number 

of failure trajectories in non-reliability-sensitive and reliability-

sensitive candidate trajectories, respectively, and are calculated 

using Eq. (26) and Eq. (27); N*
f2 is the actual trajectories 

number corresponding to Nf2. When Pf
*(t0, te) = 0, er is set as  

a constant greater than 1 to satisfy the condition for continuing 

the iterative calculations.  

𝑁f1 = ∑ 𝐼ic ; 𝐼ic =

{
1   𝐿X(𝑿) = IC and 𝜇ĝ(𝑿, 𝒀(𝑡

𝑗), 𝑡𝑗) ≤ 0  ∃𝑗 = 1,2, . . . , 𝑁𝑡

0   otherwise
          (26) 

𝑁f2 = ∑ 𝐼nic ; 𝐼nic= 

{
1   𝐿X(𝑿) ≠ IC and 𝜇ĝ(𝑿, 𝒀(𝑡

𝑗), 𝑡𝑗) ≤ 0  ∃𝑗 = 1,2, . . . , 𝑁𝑡

0   otherwise
          (27) 

Denote N2 as the total number of the reliability-sensitive 

candidate trajectories, then we have 0≤N*
f2≤N2. Furthermore, 

the maximum ermax of er, i.e., the maximum possible error of 

the estimated time-variant failure probability, can be derived as:  

 𝑒𝑟max = max
𝑁f2
∗ ∈[0,𝑁2]

|𝑁f2−𝑁f2
∗ |

𝑁f1+𝑁f2
∗    (28) 

The Kriging is considered well-trained if ermax<5% 40.  

The adaptive learning process is terminated when C >99.9% 

or ermax<5% is satisfied. This iterative termination design, 

which synergistically considers failure evaluation accuracy and 

reliability-sensitive traits, helps to avoid redundant learning.  

3.5. Implementation procedure of proposed approach  

According to the contents in subsections 0-0, the core 

implementation process of RSTK is summarized as: the current 

Kriging is used to identify the non-reliability-sensitive 

trajectories and the non-reliability-sensitive space-time 

trajectory segments, and then high-quality modeling data is 

recognized in reliability-sensitive space-time segments to refine 

Kriging. These steps are repeated until the termination condition 

is triggered, and the reliability analysis is finally performed, as 

shown in Figure 8. The corresponding detailed steps are given 

in Figure 9. 

Non-reliability-sensitive 
trajectory exclusion

Non-reliability-sensitive 

segment exclusion
Kriging modeling update

Time-variant reliability 
calculation

Current Kriging-based 

reliability-sensitive identification

Candidate trajectory 

generation

Actual trajectory

Predicted trajectory

Predicted fluctuation 
Failure trajectory

Safe trajectory

Sensitive segment

Non-sensitive segment

Candidate trajectory

Allowable limit

Sensitive trajectory

Non-sensitive trajectory

Sensitive segment

Non-sensitive segment

 

Figure 8. Schematic of the proposed approach-based adaptive surrogate.  
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Exclude high-correlation samples from candidate space-time samples using Eq. (22) 

Identify the reliability-sensitive space-time samples Ss  using Eq. (13) 

Exclude LX(·)=IC trajectories from candidate trajectories according to Eq. (17), and screen the 

non-reliability-sensitive trajectory segments in trajectories with LX(·) IC using Eq. (13)

Determine the added sample Sadd using Eq. (20) and  Eq. (21)   

 

Figure 9. Flow of reliability analysis based on the proposed method. 

4. Case studies  

In this section, three numerical cases and one engineering case are employed to demonstrate the superior efficiency and accuracy of 

the proposed RSTK, in which the representative methods are used as comparison methods, including eSPT 39, SILK 40, REAL 42, 

SLK-CSPR 43, and SSTK 44. Their convergence criteria are set as cumulative conformance level CCL > 99.999%, maximum 

percentage error MPE < 5%, maximum real-time estimation error MREE < 5%, minimum learning function Ux > 2, and minimum 

learning function IAU > 1, respectively. The MC result is seen as the “true” value. The call times Ncall of actual response and CPU 

computing time of adaptive iteration are utilized as the efficiency metric, and the relative error (as formulated in Eq. (29)) is employed 

as the precision metric. In each case, Ncall is determined based on the adaptive learning method and stopping criteria of each approach; 

in each call, new samples are processed using the actual response model to obtain outputs for updating the modeling data. All 

computations are performed using a Laptop Computer (AMD Ryzen 7 5800H CPU, 3.20 GHz, and 16 GB RAM). To ensure the 

comparability of results from different methods, Latin hypercube sampling is employed to generate uniformly distributed initial 

samples, and the Kriging regression function and correlation function are set to the zero-order polynomial and Gaussian function, 

respectively. Moreover, the hyperparameter optimization range for Kriging modeling in all methods is set to  

[0, 9].  

 𝑒𝑟𝑟𝑜𝑟 =
|𝑃f−𝑃Fmc|

𝑃Fmc
× 100%  (29) 

where, PFmc is the failure probability estimated using the MC method; PF is the failure probability predicted using compared approaches. 

The error formula used cannot handle the issue of PFmc = 0.  

4.1. Case I: a mathematical example 

The first example is a mathematical model 53, its time-variant limit state function (TLSF) is described as:  
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𝑔(𝑋1, 𝑋2, 𝑌(𝑡), 𝑡) = 𝑋1
2𝑋2 − 5𝑋1(1 + 𝑌(𝑡))𝑡 + (𝑋2 + 1)𝑡

2 − 20(30) 

where, t is the time parameter varying from 0 to 1; X1 and X2 are two independent random variables; Y(t) is a Gaussian stochastic 

process. Their distribution features are showed in 

.  

 

Table 1. Random parameters for case I. 

Variable Distribution Mean Standard deviation Autocorrelation function 

X1 Normal 3.5 0.25 / 

X2 Normal 3.5 0.25 / 

Y(t) Gaussian process 0 1 ρYt(t1, t2) = exp(-(t2-t1)2) 

 

Given the eigenvalue situation, the stochastic process is expanded into three random variables using the EOLE method, and the 

time interval is discretized into 50 time nodes. 

 presents the calculation results of different methods, it can 

be observed that the proposed RSTK can acquire satisfactory 

computing precision. Figure 10 illustrates the iterative process 

of reliability-sensitive segments of 200 candidate trajectories; 

the number of reliability-sensitive segments requiring iterative 

computation decreases significantly as the iteration progresses. 

Notably, the proposed RSTK holds the lowest CPU computing 

time, and it is one order of magnitude less than that of eSPT, 

SILK, REAL, and SSTK, which displays the significant 

superiority of the RSTK method in reducing iterative computing 

time. This is because non-reliability-sensitive space-time data 

are adaptively excluded during RSTK-based iterations, 

effectively avoiding a large number of redundant and ineffective 

calculations in the candidate pool. Moreover, the Ncall required 

by RSTK is the least, demonstrating the superiority of the RSTK 

method in reducing surrogate modeling cost. The convergence 

metrics for different methods are as follows: CCL = 99.9993%, 

MPE = 1.35%, MREE = 3.95%, Ux = 2.72, IAU = 3.71, and (C 

= 98.48% and ermax = 3.61%). 

Table 2. Average result of 20 runs for case I. 

Method Ncall Pf Relative error (%) Computing time, s 

MC 106×50 0.3081 / 0.43 

eSPT 56.3 0.3081 0 4114.5 

SILK 22.1 0.3064 0.55 1412.2 

REAL 22.0 0.3006 2.43 1375.1 

SLK-CSPR 48.5 0.3087 0.19 224.5 

SSTK 41.2 0.3091 0.32 4939.1 

RSTK 20.6 0.3037 1.43 169.1 

 

Figure 10. Variation process of the reliability-sensitive segment (i.e., the blue segment) for Case I.  

4.2. Case II: a corroded simply supported beam 

A simply supported beam commonly used in civil engineering is adopted as the second case 54, as depicted in Figure 11. The 
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random input vector X = [fy, b0, h0, F(t)], where fy is the ultimate stress, b0 is the initial width, h0 is the initial height, and F(t) is the 

dynamic load. Their distribution characteristics are shown in 

. The structure is subjected to a static force p = 78500 h0b0 (N/m) 

and its length L = 5 m. Moreover, b0 and h0 decrease over time 

due to corrosion, as described below:  

𝑏(𝑡) = 𝑏0 − 2𝑘𝑡; ℎ(𝑡) = ℎ0 − 2𝑘𝑡   (31) 

where, k = 0.05 mm/year is the corrosion coefficient, and t ∈ [0, 

10]. The structure fails when the maximum bending moment 

exceeds the ultimate bending moment. The TLSF is then 

formulated as follows:  

𝑔(𝑓𝑦, 𝑏0, ℎ0, 𝐹(𝑡), 𝑡) =
𝑏(𝑡)ℎ(𝑡)2𝑓𝑦

4
−

𝐹(𝑡)𝐿

4
−

78500𝑏0ℎ0𝐿
2

8
       (32) 

Table 3. Random parameters for case II. 

Variable Distribution Mean Standard deviation Autocorrelation function 

b0 Lognormal 0.2 m 0.01 m / 

h0 Lognormal 0.04 m 0.004 m / 

fy Lognormal 240 MPa 24 MPa / 

F(t) Gaussian process 6500 N 650 N ρFt(t1, t2) = exp(-144(t1-t2)2) 

 

The stochastic process is expanded into 30 random variables using the EOLE method, and the time interval is discretized into 300 

time nodes. Figure 12 shows the iterative process of reliability-sensitive segments. 

 lists the computing results of different methods. The results 

indicate that the RSTK can obtain satisfactory calculation 

accuracy, with its failure probability (0.0135) closely matching 

the reference value (0.0137) obtained by MC. In addition, the 

Ncall required by the proposed RSTK is close to that of REAL 

and lower than those of all other comparison methods. The CPU 

computing time required by RSTK is only 5% of that of REAL, 

while RSTK achieves similar computational accuracy and 

surrogate cost as REAL. Furthermore, the CPU computing time 

required by RSTK is the shortest, being two orders of magnitude 

lower than that of eSPT, SILK, REAL, and SSTK, which 

illustrates the significant superiority of the proposed method in 

iterative computation efficiency. The convergence metrics for 

different methods are as follows: CCL = 99.9991%, MPE = 

4.03%, MREE = 2.98%, Ux = 2.21, IAU = 3.22, and (C = 99.92% 

and ermax = 4.71%). 

Table 4. Average result of 20 runs for case II. 

Method Ncall Pf Relative error (%) Computing time, s 

MC 106×300 0.0137 / 3.82 

eSPT 44.3 0.0137 0 17217.7 

SILK 25.2 0.0138 0.73 11894.7 

REAL 23.5 0.0139 1.46 10204.9 

SLK-CSPR 35.7 0.0138 0.73 767.8 

SSTK 31.4 0.0138 0.73 17381.5 

RSTK 23.7 0.0135 1.46 535.1 

F(t)p

b0

h0

dc(t)=kt

Corroded area

 

Figure 11. Corroded simple supported beam. 
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Figure 12. Variation process of the reliability-sensitive segment for Case II  

4.3. Case III: a roof truss structure 

A roof truss is studied 55, as shown in Figure 13, in which the 

nodal load P = q(t)l/4 and q(t) represents a dynamic uniform 

load. The truss will fail when the perpendicular deflection of the 

node C exceeds the allowable value 0.03, and the TLSF is 

formulated as follows:  

𝑔(𝑙, 𝐴c, 𝐸c, 𝐴s, 𝐸s, 𝑞(𝑡), 𝑡) = 0.03 −
𝑞(𝑡)𝑙2

2
(
3.81

𝐴c𝐸c
+

1.13

𝐴s𝐸s
) (33) 

where, t is the time parameter varying from 0 to 1; l is the 

structure length; Ac and As are the cross-sectional areas of 

reinforced concrete and steel bars, respectively, and Ec and Es 

are their corresponding elastic modulus. The distributed 

characteristics of random inputs are shown in Table 5.   

The stochastic process is expanded into 10 random variables 

using the EOLE method, and the time interval is discretized into 

50 time nodes. Figure 14 displays the iterative process of 

reliability-sensitive segments. It can be seen from Table 6 that 

the proposed method can obtain satisfactory accuracy. The Ncall 

required by RSTK is significantly lower than that of the 

comparison methods. Specifically, RSTK requires 50.6 Ncall, 

which is 22.3% less than the 65.1 Ncall required by REAL, the 

best-performing method among the comparisons. This 

demonstrates the significant advantage of the proposed method 

in reducing the cost of actual response evaluation. Moreover, in 

terms of CPU computing time, the proposed method is two 

orders of magnitude faster than SILK and SSTK, and one order 

of magnitude faster than eSPT and REAL, which reflects its 

remarkable superiority in decreasing iterative computation time. 

The convergence metrics for different methods are as follows: 

CCL = 99.9991%, MPE = 4.76%, MREE = 4.34%, Ux = 2.01, 

IAU = 4.24, and (C = 99.76% and ermax = 4.41%). 
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Figure 13. Roof truss structure . 

Table 5. Random parameters for case III. 

Variable Distribution Mean Standard deviation Autocorrelation function 

l Normal 12 0.12 / 

Ac Normal 0.04 0.0048 / 

Ec Normal 2×1010 1.2×109 / 

As Normal 9.82×10-4 5.982×10-5 / 

Es Normal 1×1011 6×109 / 

q(t) Gaussian process 2×104 1.4×103 N ρqt(t1, t2) = exp(-9(t1-t2)2) 

Table 6. Average result of 20 runs for case III. 

Method Ncall Pf Relative error (%) Computing time, s 

MC 106×50 0.0336 / 0.49 

eSPT 128.3 0.0336 0 9181.8 

SILK 84.2 0.0335 0.3 10105.9 

REAL 65.1 0.0331 1.49 6209.2 
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SLK-CSPR 117.3 0.0325 3.27 201.3 

SSTK 101.6 0.0330 1.79 12009.9 

RSTK 50.6 0.0331 1.49 153.9 

 

Figure 14. Variation process of the reliability-sensitive segment for Case III . 

4.4. Case IV: a self-balancing vehicle  

The self-balancing vehicle 42, widely used in daily life is 

employed as the engineering case. It consists of a lighting 

module, driving wheel, control unit, and chassis, as shown in 

Figure 15. The chassis must withstand dynamic loads under 

various working conditions, such as cornering, deceleration, 

and acceleration. In this study, the most common loading 

condition is considered, in which the chassis is subjected to two 

equal time-variant random loads Y(t) at symmetrical locations, 

as shown in Figure 16. To guarantee driving stability, the 

deformation of the chassis should be less than the allowable 

threshold 42,, and the TLSF is described as follows:  

𝑔(𝐷allow(𝑡0), 𝑋1, 𝑋2, 𝐸, 𝑌(𝑡), 𝑡) = [𝐷allow] −

                             𝐷(𝑋1, 𝑋2, 𝐸, 𝑌(𝑡), 𝑡)          (34) 

where, X1 and X2 are the chassis length and chassis width, 

respectively; E is the material elastic modulus; [Dallow] = 

Dallow(t0)·exp(-0.002t) is the allowable deformation, and it will 

decrease within time t ∈ [0, 48] months; Dallow(t0) is the initial 

allowable deformation. The statistical characteristics of 

variables are listed in Table 7.  

The stochastic process is expanded into 100 random 

variables using the EOLE method, and the time interval is 

discretized into 200 time nodes. Figure 17 illustrates the 

iterative process of reliability-sensitive segments. Table 8 

presents the calculating results of various approaches. It can be 

seen that the failure assessment results obtained using the RSTK 

are similar to the results of other comparison methods, which 

demonstrates the effectiveness of the proposed method in the 

engineering case. Moreover, the Ncall required by RSTK is lower 

than all methods except REAL, and the CPU computing time 

required using RSTK is the lowest, being one order of 

magnitude less than that of eSPT, SILK, REAL, and SSTK. This 

reflects the superiority of the proposed approach in reducing 

computing cost. The convergence metrics for different methods 

are as follows: CCL = 99.9992%, MPE = 4.84%, MREE = 

2.45%, Ux = 2.21, IAU = 3.16, and (C = 99.64% and ermax = 

3.84%). 

 
(a) Outline drawing 

X1

X2

Control unit

Chassis

Lighting module

Driving wheel

 
(b) Exploded drawing 

Figure 15. Self-balancing vehicle.  
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Figure 16. Finite element simulation of chassis.  

Table 7. Random parameters for case IV. 

Variable Distribution Mean Standard deviation Autocorrelation function 

X1 (mm) Lognormal 480 4.8 / 

X2 (mm) Lognormal 220 2.2 / 

E (MPa) Lognormal 72000 2000 / 

Dallow(t0) (mm) Normal 5 0.1 / 

Y(t) (MPa) Gaussian process 1.5 0.1 ρYt(t1, t2) = exp(-10(t1-t2)2) 

Table 8. Average result of 10 runs for case IV. 

Method Ncall Pf Computing time, s 

eSPT 95.7 0.0422 36019.9 

SILK 82.3 0.0422 49021.3 

REAL 56.3 0.0412 25977.4 

SLK-CSPR 109.5 0.0419 1379.1 

SSTK 96.7 0.0421 87502.4 

RSTK 65.5 0.0419 1102.4 

 

Figure 17. Variation process of the reliability-sensitive segment for Case IV.  

It can be observed from the above case analysis that the 

proposed method not only reduces the surrogate cost but also 

minimizes the CPU calculation time, all while maintaining 

calculation accuracy. This can be attributed to the fact that 

RSTK fully focuses on reliability-sensitive space-time regions 

during adaptive sample screening and iterative calculations. 

This verifies the positive impact of the adaptive learning design, 

which excludes low-quality candidate data, on ensuring the 

efficacy of TRA.  

5. Conclusions and outlooks  

This study firstly proposes the concept of fully focusing on 

reliability-sensitive space-time and designs the corresponding 

adaptive surrogate modeling method. The main contribution of 

this study is that it first proposes the concept of adaptive time-

variant surrogate modeling that fully focuses on reliability-

sensitive space-time, and elucidates its importance in ensuring 

the efficacy of time-variant reliability analysis. The 

computational superiority demonstrated by the proposed RSTK 

reveals the importance of sufficiently concentrating surrogate 

learning on the reliability-sensitive space-time region to elevate 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

the efficacy of time-variant reliability analysis. Two aims are 

achieved using the proposed RSTK. First, the surrogate 

modeling cost is reduced by selectively capturing high-quality 

reliability-sensitive data. Second, the iterative calculation time 

is reduced by removing enormous non-reliability-sensitive 

trajectory segments during the iterative estimation process. Four 

case studies are analyzed, and the conclusions are drawn based 

on the results, as follows:  

(1) The adaptive operation, which concentrates surrogate 

learning on the reliability-sensitive space-time region, 

facilitates capturing high-quality reliability-promoting 

surrogate samples, as it effectively avoids focusing on the low-

return sub-regions where accurate reliability judgments have 

been achieved.   

(2) There are considerable non-reliability-sensitive 

trajectory segments in the time-variant candidate pool that 

perform poorly in promoting adaptive surrogate modeling. 

Removing these trajectory segments during the iterative 

calculation can reduce the TRA iteration time by orders of 

magnitude.   

(3) The case study reveals that the proposed RSTK can 

obtain satisfactory computational accuracy by using lower 

surrogate cost and calculating time.  

Although this study provides a feasible and efficient time-

variant reliability analysis approach, the limitation does exist. 

In small failure issues, it is challenging for the proposed method 

to capture high-quality training data since the candidate data 

near the limit state are scarce. Moreover, based on the surrogate 

modeling concept of adequately focusing on the reliability-

sensitive region, designing other, more effective learning 

mechanisms is a work worth exploring. Extending the proposed 

reliability-sensitive focusing concept to time-variant system 

reliability problems is a direction worth investigating. Future 

work will further explore these issues. 
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