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Highlights  Abstract  

▪ The Chirp-Z algorithm provided high-

resolution spectral analysis of fault signals 

▪ The integration of ML and signal processing 

ensured fast, reliable fault detection 

▪ Transient events were seamlessly integrated 

with modal transformation and Chirp-Z 

▪ Fault detection integrated with machine 

learning significantly reduced error rates 

▪ The GBE model stood out with the lowest error 

rate and the highest accuracy. 

 Fast and accurate detection of faults in power transmission lines is of 

great importance for the safety and continuity of power systems. This 

study develops a predictive model using chirp-z transform and machine 

learning algorithms to locate single-phase-ground faults. During the 

study, 39 different fault locations were modelled, current and voltage 

signals of these locations were analysed and frequency spectra were 

obtained. The fault signals were decomposed into their components 

using the modal transformation matrix and then spectral analysis was 

performed using the Chirp-Z algorithm. The resulting spectra were used 

as input data for the prediction algorithms. Gradient Boosting Ensemble, 

Support Vector Regression and Random Forests algorithms were used 

for fault prediction and the performance of the models was compared. 

The accuracy of the models was evaluated using various metrics. The 

results show that the Gradient Boosting Ensemble model has the lowest 

error rates and the highest accuracy, which is important for early fault 

detection, maintenance and repair processes. 
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1. Introduction 

The detection and location of faults on power transmission lines 

are critical to the reliability of power systems. Single-phase-

ground faults are among the most common types of faults on 

transmission lines and significantly impact system instability 

and power quality. Traditional fault detection methods cannot 

fully meet the needs of modern power systems due to limitations 

such as insufficient measurement data, high error rates, and low 

sensitivity [1]. Therefore, it is necessary to develop more 

accurate, faster and more reliable fault detection methods. [2]. 

In recent years, techniques based on artificial intelligence 

and machine learning have been increasingly used for fault 

detection in power systems [3,4]. These techniques offer higher 

accuracy rates than traditional methods, thanks to their ability 

to analyse large amounts of data and their ability to learn 

automatically [5–7]. However, the use of appropriate signal 

processing techniques is of great importance for the accurate 

analysis of fault signals. In this context, the Chirp-Z algorithm 

stands out as an important alternative for the spectral analysis 

of transmission line signals due to its high resolution and 

flexibility [8,9]. 
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The performance of the Chirp-Z algorithm on narrowband 

signals provides higher resolution compared to Fourier 

transform based techniques. This method allows a more detailed 

analysis of low frequency components and enables more 

sensitive detection of weak fault signals [10]. In addition, the 

Chirp-Z algorithm can be easily adapted to different operating 

conditions by adjusting the parameters. This minimises 

uncertainties caused by varying load conditions or differences 

in line impedance and provides more reliable fault detection 

[11]. 

The integration of artificial intelligence-based methods with 

the Chirp-Z algorithm can make fault detection processes faster 

and more efficient. In particular, hybrid systems supported by 

deep learning models and optimisation algorithms can 

contribute to the development of both signal processing and 

decision mechanisms. These approaches can improve the safety 

of modern energy systems by helping to build fault detection 

and classification models with high accuracy rates. 

In this study, the Chirp-Z algorithm and machine learning 

models are used to detect and locate single-phase-ground faults. 

The Chirp-Z algorithm offers a more flexible frequency 

resolution compared to other signal processing methods, 

enabling a more precise analysis of signal spectra. This allows 

for more accurate predictions in the fault localization process. 

Gradient Boosting Ensemble (GBE), Support Vector Regression 

(SVR), and Random Forests (RF) algorithms were used for fault 

prediction. Each of these algorithms has different data 

distributions and modelling approaches, providing various 

advantages in terms of fault detection and distance prediction. 

However, limitations include the focus on single-phase ground 

faults only and a fixed fault resistance scenario. 

2. Literature Review  

The effectiveness of the methods developed for fault detection 

in transmission lines has been widely discussed in the literature. 

These studies focus on enhancing the accuracy and speed of 

fault detection processes by employing various signal 

processing techniques, artificial intelligence-based algorithms, 

and hybrid approaches. Reviewing these studies not only helps 

identify the advantages and limitations of existing methods but 

also provides a crucial foundation for developing new 

approaches. Some significant studies in this area are discussed 

below. 

Rajesh et al. proposed a hybrid Truncated Singular Value 

Decomposition (TSVD) and Human Urbanisation Algorithm 

(HUA) based Recurrent Perceptron Neural Network (RPNN) 

model for prediction and classification of transmission line 

faults in power systems. The model was tested in 

MATLAB/Simulink environment by optimising the fault 

detection and classification and showed an accuracy of 99.77% 

at 20 dB noise level. The study presented an effective approach 

to provide fast and accurate fault analysis in power systems with 

low complexity [12]. Shadi et al. developed a model for real-

time fault detection, classification and localisation using Phasor 

Measurement Unit (PMU) data and deep learning. The model, 

which includes Recurrent Neural Network (RNN) and Long 

Short Term Memory (LSTM) algorithms, was tested on IEEE 

14, New England 39-bus and IEEE 118-bus systems and 

showed high accuracy rates. The study provided fast and 

reliable fault analysis with low computational cost [13]. Dashti 

et al. extensively investigated fault prediction and location 

methods in electricity distribution networks. The study 

evaluates different fault detection techniques in traditional and 

smart grids and considers factors such as distributed generation, 

AC/DC systems and automation standards. Unlike other studies 

in the literature, it also focuses on fault prediction. [14]. Chavez 

et al. developed a fault detection method based on phasor 

measurement unit (PMU) voltage drop for backup protection of 

transmission lines. The proposed method identifies the faulted 

line, fault type and distance using delta algorithm and least 

squares technique. The model categorises the network into 

specific sub-areas using PMU data and increases the accuracy 

rate. Tested with simulations on the IEEE 39 bus system, the 

method provided fast and reliable fault detection. The study 

provides an effective protection method with low computational 

cost for real-time applications [15]. Rezaee Ravesh et al. 

developed an artificial neural network and wavelet packet 

transform based method for fault detection in hybrid 

transmission lines. Support vector machines and particle swarm 

optimisation were used to determine the most appropriate 

features, and a three-layer neural network was used to detect the 

faulty section and half. The fault location was determined using 

the Bewley diagram, and tests on the IEEE 230 kV system 

showed high accuracy. The study provided fast and reliable fault 
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detection in hybrid lines [16]. Azeroual et al. developed a multi-

agent system-based method for fault detection and localisation 

in power distribution systems with distributed generation. The 

proposed approach is tested on the distribution network of the 

city of Kenitra (Morocco) and aims to provide fast fault 

detection and automatic power restoration through agent 

coordination. The method estimates the fault distance using an 

impedance-based fault location algorithm and provides high 

accuracy protection in the distribution system. The simulations 

show that the method provides fast and reliable fault detection 

[17]. Tavoosi et al. developed a hybrid method that combines 

impedance-based methods and deep learning for fault location 

in distribution networks. The proposed model determines the 

fault distance using impedance-based calculations and 

accurately locates the fault line using a deep neural network. 

According to the simulation results, the method achieved 99% 

accuracy and determined the fault location in less than  

6 seconds. The study was developed to provide more accurate 

fault detection, especially in systems with more than one line 

[18]. Jin et al. developed a travelling wave-based method for 

fault detection in high-voltage AC cable transmission lines. The 

model calculates the travelling wave propagation speed more 

accurately by considering frequency-dependent electrical 

parameters. The fault location is determined using the arrival 

time and instantaneous frequency of the first wave front. 

Simulations in PSCAD/EMTDC software showed that the 

method provides high accuracy for different fault types, 

distances, ground resistances and noise levels. The study 

provides a more accurate and reliable approach to fault location 

compared to existing methods [19]. Shi et al. developed a one-

dimensional convolutional neural network (1D-CNN) based 

method for fault location in distribution systems. The model 

automatically learns fault location using three-phase voltage 

and current data. The model, trained with fault data generated 

in the PSCAD environment, was tested with 5-fold cross-

validation and showed high accuracy. The study provided fast 

and reliable fault detection in distribution networks [20]. Kalita 

et al. developed a non-iterative fault detection algorithm for 

transmission lines with non-synchronised terminals. The two-

terminal impedance-based model works on transposed and non-

transposed lines without requiring signal alignment. Tests with 

data from the Power Grid Corporation of India Limited (PGCIL) 

showed that the method provides high accuracy. The study 

presented a sensitive fault detection method that does not 

require time synchronisation [21]. Zhao et al. developed  

a method based on deep convolutional neural networks for fault 

detection and fire risk assessment in power distribution 

networks. The model classifies fault types using measurement 

data and identifies potential fire sources. Tested on various fault 

types and levels of system observability, the model achieved 85% 

accuracy in detecting fire sources, with some cases reaching 

close to 100% accuracy. The study presents an economical and 

effective approach to fault detection with limited measurement 

locations [22]. Jiang et al. developed a Block Quarter Bayesian 

Learning (BSBL) based method for fault detection in active 

distribution networks. The model estimates the fault current and 

identifies the faulty line using a limited number of synchronised 

measurement data. The Kron reduction model is applicable to 

both balanced and unbalanced networks and is able to ignore the 

effect of distributed generation units. Tests on the IEEE 123-

node distribution system have shown that the method provides 

high accuracy and fast computation time [23]. Thomas et al. 

developed a convolutional neural network (CNN) and 

transformer-based model for fault detection in power systems. 

The model learns long-term dependencies in time-series data to 

determine fault type, phase and location. Tests on the IEEE 14 

bus system have shown that it provides higher accuracy than 

traditional methods, especially for high impedance faults. The 

study presents an effective deep learning approach for fast and 

accurate fault detection in power distribution systems [24]. 

Akdag et al. developed a method based on transient frequency 

spectrum analysis (TFSA) for fault detection in transmission 

lines. The model determines the fault location by analysing the 

current and voltage spectra at the time of the fault. The accuracy 

is improved by evaluating the effects of welding inductance, 

series compensation, fault arc and current transformer. The 

study presents an effective fault location method that provides 

high accuracy with low sampling frequency and single-ended 

measurements [25]. Yu et al. developed a signal-to-image 

transform (SIG) and convolutional neural network (CNN) based 

method for fault detection in distribution systems. The model 

converts time series data into images, analyses them with CNN, 

and classifies and locates the fault zone. The method, which 

does not require synchronised devices and has a low memory 
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footprint, can be easily integrated into hardware. Tests on the 

IEEE 10 kV distribution system have shown that the method 

provides high accuracy under different fault conditions [26]. 

Mirshekali et al. developed a time domain-based method for 

fault location under line parameter uncertainties in intelligent 

distribution networks. The model combines gradient descent 

and particle swarm optimization to identify the faulty section. 

Tests conducted on the IEEE 123-node test network and in the 

laboratory have demonstrated that the method provides high 

accuracy. This study presents a reliable fault detection method 

that is compatible with various operating conditions [27]. Khoa 

et al. compared impedance-based methods for fault detection in 

transmission lines. A 220 kV line was modelled in the 

MATLAB/Simulink environment and different short-circuit 

scenarios were tested. The results evaluated the accuracy rates 

of the methods as a function of fault resistance and location. The 

study analysed the effectiveness of impedance-based methods 

for fast and accurate fault detection [28]. Akmaz and Mamiş 

developed a method for fault detection in two-ended 

transmission lines using synchronised time information. The 

model determines the fault location by calculating the time 

difference of travelling waves using the Clarke transform and 

approximate derivative (AD) signal processing. Simulations 

show that the method achieves higher performance compared to 

the Discrete Wavelet Transform (DWT) with low sampling 

frequency and robustness to noise [29]. El Mrabet et al. 

proposed a Random Forest Regression (RFR) based method to 

determine fault location and duration in power systems. The 

model simultaneously detects fault location and duration using 

high-resolution phasor measurement units (PMUs). Simulation 

results show that RFR provides higher accuracy, low error rate 

and faster processing time compared to other state-of-the-art 

machine learning models [30]. Wang et al. developed  

a Traveling Wave (TW) based fault location method utilizing  

a Frequency Modification (FM) algorithm for overhead 

transmission lines (OTLs) with structural variations. The 

proposed method corrects frequency distortions caused by 

reflections, refractions, and distributed line resistance. 

Simulations performed on a 500 kV system demonstrated 

superior fault location accuracy compared to traditional 

traveling wave methods [31]. Rahman et al. presented an 

ensemble-learning approach including decision tree, random 

forest, XGBoost, CatBoost, LightGBM, and multilayer 

perceptron neural networks (MLPNN) for classifying 

transmission line faults under noisy and imbalanced data 

conditions. Results indicated XGBoost achieved the highest 

classification accuracy , proving robust against imbalanced and 

noisy scenarios. The study emphasizes the effectiveness of 

ensemble learning algorithms for reliable fault classification in 

transmission systems [31]. 

3. Material and Method 

This section presents the ATP model, the modal-phase 

transformation matrix, the chirp-z signal processing algorithm 

and the structures of the single-phase fault estimation 

algorithms.  

3.1. Single-phase-ground ATP model 

Single-phase-ground faults are a common type of fault in power 

transmission lines and cause system imbalances. ATP 

(Alternative Transients Program), which is used to model this 

fault, allows the dynamic behaviour of the system to be studied 

by performing transient analysis. The modelling process 

involves determining the transmission line parameters and 

analysing the effects of the fault. In this study, the pole and line 

parameters are determined based on the methods presented in 

[33]. The ATP model is used to study current and voltage 

variations, phase imbalances and transient behaviour during the 

fault. The ATP model is used to study current and voltage 

variations, phase imbalances and transient behaviour during the 

fault. This modelling approach, supported by signal processing 

techniques, contributes to the development of fault detection 

algorithms. The ATP model for a single-phase-ground fault, 

including line modeling parameters and conductor geometric 

and electrical characteristics, is shown in Figure 1. 
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Figure 1. Transmission line. a) Single-phase-ground fault, b) 

Line Modelling Parameters, c) Conductor Geometric and 

Electrical Parameters. 

3.2. Modal Transformation matrix 

In three-phase transmission lines, the travelling waves are 

interconnected, so to apply the travelling wave method, the 

phase field signals are first decomposed into their modal 

components using modal transformation matrices [34].  

The steady state of a multi-conductor line at a discrete 

frequency can be described by the following equations; 

 −
𝑑2𝑉𝑝ℎ𝑎𝑠𝑒

𝑑𝑥2
= 𝑧𝑦𝑉𝑝ℎ𝑎𝑠𝑒  (1) 

 −
𝑑2𝐼𝑝ℎ𝑎𝑠𝑒

𝑑𝑥2
= 𝑦𝑧𝐼𝑝ℎ𝑎𝑠𝑒  (2) 

Where z and y are the series impedance and parallel admittance 

matrix at each unit length, Vphase and Iphase are the vectors of the 

voltage and current phasors in the variable conductors.  

 𝑉𝑝ℎ𝑎𝑠𝑒 = 𝑀𝑣𝑉𝑚𝑜𝑑  𝑎𝑛𝑑 𝑉𝑚𝑜𝑑 = 𝑀𝑣
−1𝑉𝑝ℎ𝑎𝑠𝑒  (3) 

For three-phase transmission lines with crossover, a suitable 

transmission line matrix consisting of three column vectors 

proportional to the eigenvectors of zy = yz can be found in the 

form M. The above transformation matrix M is used in the 

application of modal transformation in this study. 

 𝑀 = [
1 1 0
1 0 1
1 −1 −1

] (4) 

3.3. Chipr Z algorithm 

The Chirp-Z algorithm is a signal processing algorithm that 

computes the Fourier transform of a signal in the Z-plane along 

a given axis. It provides a similar fast computational technique 

to the Fast Fourier Transform (FFT), but offers customisable 

flexibility over resolution and frequency bands instead of the 

fixed resolution of the FFT [35]. The main differences between 

the Chirp-Z algorithm and the FFT are in the flexibility of the 

analysis methods and the different application areas. The FFT is 

limited to a fixed frequency resolution and its transformation is 

performed on the unit circle. In contrast, the Chirp-Z algorithm 

is characterised by its ability to transform along any user-

defined path in the Z-plane. In addition, the Chirp-Z algorithm 

provides the ability to adjust the frequency resolution, allowing 

for more precise and targeted analysis [36]. These features make 

the Chirp-Z algorithm a preferred choice, especially when the 

FFT is limited [35]. 

The Chirp-Z algorithm allows the input signal x[n] to be 

evaluated along a specific path in the Z-plane: 

 𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

. 𝑧𝑘
−𝑛 (5) 

In this equation, 𝑋[𝑘] ] is the 𝑘  th component of the 

transform and is calculated at a given point in the Z-plane. 

𝑥[𝑛],is the n-th sample of the input signal, 𝑧𝑘 is the k th point 

on the transform path, and N is the total number of samples of 

the input signal. n is the index on the time axis and k is the index 

on the transform axis. 

In frequency-based fault detection for transformers [37] and 

lines [38,39], it is found that the closer the fault location is to 

the measurement location, the higher frequency harmonics are 

generated. As the fault location moves away from the 

measurement location, the frequency value of the fault 

harmonics decreases and changes very little towards the end. 

For this reason, 3 different fault boundary ranges were 

determined and threshold limits were created for the Chip-Z 

algorithm and are given in Table 1. These frequency band 

threshold values provide more accurate frequency spectra on a 

narrower scale. 
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Table 1. Chirp-Z conversion frequency threshold ranges 

according to distance. 

Fault distance 

(km) 

Lower limit 

frequency (Hz) 

Upper limit 

frequency (Hz) 

0-10 km 10000 20000 

10-20 km 5 000 10 000 

20 ve üzeri 500 5 000 

3.4. Prediction algorithms 

3.4.1. Gradient Boosting Ensemble Model 

Gradient Boosting is an ensemble learning method that aims to 

iteratively minimise prediction errors based on the gradient of a 

loss function [40]. In this method, each model is trained to 

correct the errors of the previous model and a robust prediction 

function is obtained at the end of the process. Gradient Boosting 

is highly effective in various application areas such as 

regression and classification problems [41]. 

Gradient Boosting method is expressed mathematically as 

follows: 

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) +  𝛾ℎ𝑚(𝑥) (6) 

Where 𝐹𝑚(𝑥)  is the prediction of the full model at the m th 

iteration, 𝐹𝑚−1(𝑥) is the prediction of the model at the previous 

iteration, 𝛾 is the learning rate, a coefficient used to stabilise the 

predictions of the model, and ℎ𝑚(𝑥) is the weak model trained 

based on the negative loss gradient. 

This method corrects errors in an iterative manner, while at 

the same time increasing the generalisation ability of the model 

and reducing the risk of overfitting. 

3.4.2. Support vector machines 

Support Vector Regression (SVR) is a version of the Support 

Vector Machine (SVM) algorithm adapted for regression 

problems [42]. SVR aims to model the relationship between 

dependent and independent variables in a data set and generate 

a prediction function [43]. By only considering errors within  

a certain tolerance (epsilon), this method increases the 

generalisability of the model and reduces the risk of overfitting 

[44]. 

SVM is mathematically expressed as follows: 

 𝑓(𝑥) = 𝑤𝑡  𝛳(𝑥) + 𝑏 (7) 

Where: 𝑤  is the weight vector, 𝛳(𝑥)  is the function that 

transforms the input into the feature space (in particular, the 

kernel function for nonlinear SVR), and b is the bias term [45]. 

3.4.3. Random forests algorithm 

Random Forests is an ensemble method of decision trees and 

is an algorithm that offers high accuracy in classification and 

regression problems. This method aims to construct a prediction 

function by modelling the relationship between dependent and 

independent variables. Random Forests reduce the risk of 

overfitting and increase the generalisation ability of the model 

by making use of several variations of decision trees [46]. 

RF is expressed mathematically as follows: 

 𝑦̂ =
1

𝐾
∑ ℎ𝑘(𝑥)

𝐾

𝑘=1

 (8) 

Here, 𝑦̂ is the final algorithm result, K is the total number of 

decision trees in the forest, 𝑘 is the prediction function of the k 

th decision tree and x is the vector of input variables. 

RF increase diversity in the training process by training 

decision trees on different data subsets and with randomly 

selected features. The final prediction is obtained by voting or 

averaging the results of these trees. This approach offers high 

accuracy while minimising the risk of overlearning 

3.5. Models and obtaining comparisons 

In this study, the flow chart of the model developed for the 

detection and prediction of single-phase-ground faults is shown 

in Figure 2. The process consists of three main stages: data 

acquisition, data processing and prediction and comparison. In 

the first stage, a single-phase-ground fault occurring on the 

power transmission line is modelled and voltage and current 

waveforms are collected to analyse the system response during 

the fault. The fault was modelled using circuit elements and the 

electrical changes during the fault were observed. In the second 

stage of the data processing process, fault scenarios were 

created at 39 different locations along the transmission line and 

the current-voltage signals from each location were obtained. 

The data was processed using the modal transformation matrix 

and the spectral components of the signals were analysed using 

the Chirp-Z transform. The frequency components obtained 

allowed the fault to be detected more accurately. In the third step, 

a machine learning based prediction and comparison process 

was performed. The data was split into 75% training and 25% 

testing, and the generalisation performance of the model was 

increased by applying a 10-fold cross-validation method. RF, 

GBE model and SVM algorithms were used to predict the 
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distance  and duration of defects. The accuracy and performance 

of the models were evaluated using error metrics such as Mean 

Squared Error (MSE), R², Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), Explained Variance Score (EVS) 

and Mean Bias Error (MBE). As a result, it is observed that the 

developed model is able to analyse fault signals in more detail 

by spectral analysis with Chirp-Z transformation and provide 

high accuracy fault prediction with machine learning algorithms. 

This flow structure provides a holistic approach for fast, 

accurate and reliable fault detection in transmission lines.

 

Figure 2. Flowchart of the models used. 

4. Experimental Results 

The analysis of power transmission lines begins with accurate 

calculation and modelling of the line parameters. These 

analyses are critical to understanding the energy losses, voltage 

drops and transient behaviour of the lines. The single-phase 

ground fault occurring in the line model, starting from the 5th 

km of the line to the 155th km, fault data were collected at  

a total of 39 points. Fault data were collected at 1 km intervals 

between 5 and 11 km, 2 km intervals between 11 and 19 km and 

5 km intervals between 20 and 155 km. In addition, an 

intermediate data set was collected at 21 km. The line 

parameters and their role in power line analysis are explained in 

detail below. The analysis parameters required to perform the 

analyses are listed in Table 2. 

Table 2. Analysis parameters. 

Parameter Value 

Line Input Impedance L=10 mH 

Fault Earth Resistance R=1Ω 

Total Line Length L=160 km 

Voltage Sources (U1 and U2) U=400 kV 

Switching Time for Faults, t=0.02 s 

Total Analysis Time t=0.1 s 
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b) 

Figure 3. Breakdown voltages of the line at km 21 a) 

beginning of the line, b) end of the line. 

The line head (Source 1) and line end (Source 2) voltage 

information of the single-phase-ground fault in phase C 

occurring during 0.02 seconds of the fault on the transmission 

line are shown in Figure 3. During the single-phase-ground fault 

that occurred at km 21 of the line, a significant unbalance in 

phase voltages and transient were observed for approximately 

0.02 seconds. At the beginning of the line (a), the effect of the 

fault on the phases was more pronounced, while at the end of 

the line (b), these effects were different depending on the 

physical characteristics of the line. These graphs clearly show 

the transient dynamic response of the system during the fault 

and the instability of the voltages. 

The variation of currents during the single-phase-ground 

fault (C phase) occurring at km 21 of the transmission line is 

shown in Figure 4. At the time of the fault, a sudden increase in 

current is observed in the faulted C phase, while the other 

phases exhibit milder amplitude changes. This reflects the 

transient regime effect caused by the fault and the subsequent 

transition to equilibrium. The graph clearly illustrates the 

current behaviour during the fault. 

 

Figure 4. Fault current at 21 km of the line. 

When the current value of the faulted C phase of Figure 5 is 

removed from the figure, the change in the currents of the A and 

B phases is shown in Figure 4. The transient effects in the fault 

phase increase due to mutual coupling.  

 

Figure 5. Variation of currents in other phases other than the 

fault phase.  

The frequency spectra of the fault signals processed with the 

Chirp-Z algorithm show significant differences at different 

distances (25 km, 70 km, 120 km) and these differences are 

shown in detail in Figure 6. At 25 km, a dense peak and high 

amplitude values around 3000 Hz are observed and the 

frequency spectrum shows a very dense structure. At 70 km the 

dominant peak around 1000 Hz appears with lower amplitude 

values and the intensity of the frequency components decreases. 

At 120 km, the amplitude values decrease significantly and the 

spectrum becomes more sparse. This analysis shows that as the 

distance increases, the energy of the fault signals decreases and 

the effect of the frequency components diminishes. This shows 

that the Chirp-Z algorithm is an effective way of understanding 

the behaviour of fault signals at different distances. 
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c) 

Figure 6. Frequency spectrum of faults processed with Chip-Z 

algorithm. a)25th km, b)70th km, c)120th km. 

Figure 7 compares the prediction performance of different 

algorithms between defect frequency and distance. The black 

dots show the actual values and the red lines show the predicted 

values. GBE is the most successful algorithm in terms of 

accurately predicting the fault distance with almost perfect 

agreement at low and high frequencies. The overlap of the 

predicted values with the actual values proves that the accuracy 

of GBE is quite high and provides an effective method for fault 

detection. The RF algorithm performed close to the actual 

values at low frequencies, but deviations were observed at high 

frequencies. This shows that RF has a more limited accuracy 

compared to GBE and SVR. SVR stood out with high accuracy 

at both low and high frequencies, and in its optimised form it 

provided high agreement between actual and predicted values. 

GBE and SVR were found to be the most successful algorithms 

for accurate fault distance, while RF showed a more limited 

performance compared to the other two algorithms. 

 
a) 

 
b) 

 
c) 

Figure 7. Representation of actual and predicted values of the 

prediction algorithms. a)25th km, b)70th km, c)120th km. 

Mean Squared Error (MSE), R-Squared (R²), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), 

Mean Absolute Percentage Error (MAPE) and Explained 

Variance Score (EVS). 

Table 3 shows the results of various error metrics and 

statistical measures used to evaluate the performance of the 

different algorithms GBE, RF and SVR. These metrics provide 

critical data to compare the prediction accuracy and error rates 

of each algorithm. 

GBE stands out as the most successful model as it has the 

lowest error rates and performs well in terms of R² and EVS 

values. In particular, the MSE (0.0682), MAE (0.1542) and 

RMSE (0.2582) values show that the model works with low 

error rates. In addition, the R² and EVS values of 0.9972 

indicate that the model explains the data very well and has a 
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high prediction accuracy. The MAPE value (0.2927) is at a very 

low level in terms of proportional error, proving that GBE is a 

powerful model on the dataset. Although RF has an acceptable 

performance, it lags behind GBE in terms of prediction 

accuracy and error rates. In particular, the MSE (0.2071) and 

RMSE (0.4522) values show that RF produces more prediction 

errors. Although the R² (0.9901) and EVS (0.9961) values are 

high, the MAE (0.3072) and MAPE (0.8172) values show that 

the model is more limited in terms of accuracy compared to 

GBE.

Table 3. Metric data performance. 

Algorithms MSE R2 MAE RMSE MAPE (%) EVS MBE 

GBE 0.0682 0.9972 0.1542 0.2582 0.2927 0.9972 -0.0002 

RF 0.2071 0.9901 0.3072 0.4522 0.8172 0.9961 0.2100 

SVR 0.2231 0.9924 0.3324 0.4720 0.1983 0.9959 -1.1000 

 

SVR shows the best performance in terms of proportional 

error with a MAPE value of (0.1983). This shows that SVR is a 

low percentage error model. However, it lags behind GBE in 

terms of metrics such as MSE (0.2231), MAE (0.3324) and 

RMSE (0.4720). Furthermore, although the R² (0.9924) and 

EVS (0.9959) values explain the data quite well, the negative 

MBE (-1.1000) value indicates that there is some systematic 

deficiency in the predictions. 

The GBE model stands out as the most successful model, 

with a balanced performance across all metrics. It is the most 

appropriate model on the dataset analysed, especially with its 

low error rates and high data explanatory capacity. SVR can be 

recommended for situations where it is important to minimise 

proportional errors, while RF may be an acceptable option for 

more general applications. GBE efficiently integrates multiple 

spectral features from the Chirp-Z transform, enabling higher 

predictive accuracy. These specific conditions are clearly 

demonstrated in the experimental results, where GBE showed 

consistently lower error rates and higher predictive accuracy, 

particularly at longer fault distances and varying fault 

frequencies. These results demonstrate the complexity of the 

data set and the critical importance of the correct model 

selection on the analysis results.

Table 4. Fault distance prediction and fault rates. 

Algorithm 
Fault Frequency 

(Hz) 

Fault distances 

(km) 

Predicted fault distences 

(km) 
Error (%) 

GBE 

7535 10 10.0023 0.0230 

3175 25 24.9762 0.0952 

1710 50 50.1061 0.2122 

1210 75 75.0069 0.0092 

950 100 100.0004 0.0004 

785 125 124.9981 0.0015 

675 150 144.9878 3.3415 

RF 

7535 10 10.1939 1.9390 

3175 25 25.7214 2.8856 

1710 50 50.1249 0.2498 

1210 75 78.7949 5.0599 

950 100 97.9391 2.0609 

785 125 127.9434 2.3547 

675 150 144.5936 3.6043 

SVR 

7535 10 9.9240 0.7600 

3175 25 24.9852 0.0592 

1710 50 49.9984 0.0032 

1210 75 75.0022 0.0029 

950 100 103.7247 3.7247 

785 125 124.9865 0.0108 

675 150 144.9594 3.3604 
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Table 4 compares the fault prediction performance of 

different algorithms. The predicted fault distances and error 

rates of the GBE, RF and SVR algorithms are analysed. GBE 

showed the best prediction performance compared to the other 

algorithms with low error rates; for example, at a distance of 75 

km, the error rate is very low, 0.0092%. The SVR algorithm 

performed close to GBE, especially at distances of 125 km 

(0.0108%) and 75 km (0.0029%), but was slightly behind at 150 

km, where the error rate increased by 3.3604%. The RF 

algorithm showed lower performance with higher error rates 

compared to the other algorithms, especially at short distances 

(10 km, 1.9390%) and long distances (150 km, 3.6043%). GBE 

showed the best performance with low error rates and high 

accuracy, while SVR provided successful and consistent results, 

especially at long distances. RF performed relatively poorly 

with higher error rates compared to the other algorithms.

Table 5. Comparison of metric data with the literature. 

Study Algorithm R² Score MAE MSE 

Algorithms in the study GBE 0.9972 0.0682 0.1542 

 RF 0.9901 0.2071 0.3072 

 SVR 0.9924 0.2231 0.3324 

[47] LTSM - 0.183 0.072 

[43] SVR 0.7613 0.388 - 

[48] GPR 0.99 2.80 0.92 

[49] DT 0.8395 - - 

 

GPR: Gaussian Process Regression, LTSM: Long Short-

Term Memory 

When evaluating the metrics presented in Table 5, the 

proposed model shows a significant superiority in terms of 

performance compared to other studies in the literature. The 

SVR model used in [43] lags behind the proposed model due to 

its low R² score and high error rates. 

Although the LSTM model used in [47] shows a remarkable 

performance with low MAE and MSE values, it is difficult to 

make a precise comparison in terms of overall accuracy since 

the R² score is not specified. 

Although the GPR model used in [48] has a high R² value, 

the MAE and MSE values are significantly higher than the 

proposed model, which reduces the reliability of the prediction 

performance. The DT model used in the study in [49] shows a 

weaker performance than the proposed model with a low R² 

value. It is found that the prediction models used in this study 

provide a more reliable and effective prediction method 

compared to other approaches in the literature, especially with 

low error rates and high accuracy levels.

Table 6. Comparison of fault points and faults rates with the literature. 

Study 
Algorithm used Error (%) 

Algorithms in 

the study 
Error (%) 

50.km [50] DT 0.80 GBE 0.21 

10.km [51] ANN 0.50 GBE 0.02 

25. km [38] ANN 0.92 SVR 0.05 

75.km [52] SVR 0.15 SVR 0.00 

 

DT: Decision Trees, ANN: Artificial Neural Networks. 

An analysis of Table 6 shows that the models used in this 

study have lower error rates compared to other methods in the 

literature. DT is used in [50]’, ANN is used in [51] and [38] and 

SVR algorithm is used in [47] and these studies have higher 

error rates compared to the GBE and SVR algorithms used in 

the proposed model. In particular, although the SVR algorithm 

was used in [52], the fact that the error rate is reduced to zero in 

the SVR model in this study shows that the model uses this 

algorithm more effectively. In general, it is concluded that the 

proposed model provides a more reliable and effective approach 

to error detection than the methods used in the compared studies. 

Tables 4 and 5 are now explained with greater detail, clearly 

highlighting the superior predictive performance of the 

proposed GBE model in comparison with other algorithms and 

previous studies from the literature. The advantages of the 

Chirp-Z algorithm in terms of high-resolution spectral analysis, 

flexible frequency range adaptability, and improved fault 
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detection sensitivity are explicitly discussed. 

5. Conclusion 

In this study, a comprehensive analysis is carried out using the 

Chirp-Z algorithm and machine learning based prediction 

models for the detection of single-phase-ground faults in power 

transmission lines. The high-resolution spectral analysis 

capability of the Chirp-Z algorithm provides a significant 

advantage in the fault detection process and improves the 

accuracy of the prediction models. Among the prediction 

algorithms tested in the study, the GBE model stood out as the 

most successful method, offering the lowest error rates and the 

highest accuracy levels. The SVR algorithm showed strong 

prediction performance, especially at long distances, while the 

RF algorithm produced acceptable results at shorter distances, 

but error rates increased at longer distances. 

The results show that the use of machine learning and 

advanced signal processing techniques is critical in power line 

fault detection. The high accuracy rates of the GBE and SVR 

algorithms prove that these methods can provide faster and 

more reliable fault detection in power transmission systems. 

The Chirp-Z algorithm provides flexible and highly accurate 

spectral analysis, allowing more detailed analysis of fault 

harmonics and more accurate predictions. 

This study presents a framework that will contribute to faster 

and more accurate fault detection in power transmission lines. 

Investigating how the developed methods can be integrated into 

practical applications and examining their adaptation to 

different system conditions will be an important direction for 

future studies. In particular, the integration of factors such as 

different fault types, variable load conditions and line 

impedance into the model can enable the method to have a wider 

range of application in real systems. In future work, it is 

suggested to more thoroughly investigate the applicability of the 

Chirp-Z algorithm in various fields, such as not only single 

phase-ground fault, but also transformer winding faults, motor 

winding faults, and vibration-based fault detection. Given its 

ability to provide fast and reliable results, the study of these 

additional applications could significantly expand the utility 

and effectiveness of the Chirp-Z algorithm. The results obtained 

provide an important scientific contribution to increasing safety, 

optimising maintenance processes and improving fault 

management processes in energy systems.
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