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Highlights  Abstract  

▪ A heuristic predicitive maintenance policy for 

a nonstationary gamma process. 

▪ A preventive repair model considering the 

change of degradation rates. 

▪ Decisions based on information of age, 

degradation, and the number of performed 

repairs. 

▪ Formulation of the problem in the semi-

Markov decision process framework. 

 Nonstationary gamma processes have extensive applications in 

depicting the degradation of many practical systems. This paper 

proposes a predictive maintenance policy that involves various types of 

maintenance actions for a nonstationary gamma process. Periodic 

inspections fully reveal the degradation levels of the system. The 

information on age, degradation, and the number of conducted 

preventive maintenance actions is synthesized for decision-making, 

which distinguishes our model from most existing models considering 

only degradation states. The objective is to find the maximum number 

of repairs and the best threshold for preventive maintenance by 

minimizing the expected average cost in an infinite time horizon. The 

maintenance problem is addressed as a semi-Markov decision problem. 

An optimization algorithm is developed to find the optimal values of the 

decision variables. The effectiveness of the proposed method is verified 

by a coating system. 
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1. Introduction 

In modern manufacturing industries, complex systems play  

a vital role in day-to-day operations. However, these systems 

are prone to degrade over time due to usage and age. When 

degradation surpasses a critical threshold, the performance of 

the system becomes unsatisfactory, leading to a system failure. 

The substantial costs linked with unplanned failures have 

sparked significant research efforts in maintenance optimization. 

The primary objective is to identify the optimal timing for 

preventive repairs or replacements to avert system failures from 

transpiring. Various preventive maintenance (PM) policies have 

been proposed in the literature. Gan et al. [1] investigated a PM 

optimization problem for a production-inventory system 

exposed to shock environments; Zheng et al. [2] developed  

a framework to optimize group maintenance for numerical-

control machine tools based on real failure data. 

Predictive maintenance, also known as condition-based 

maintenance (CBM), has been widely implemented in practice 

[3]. Unlike traditional time-based maintenance or age-based 
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maintenance, which uses the expertise and knowledge of 

decision-makers and the distribution of system lifetimes, 

predictive maintenance makes decisions based on information 

gathered from condition monitoring. In predictive maintenance 

decision-making processes, maintenance actions are triggered 

when there is substantial evidence of significant degradation. 

Due to the rapid development of condition monitoring, 

predictive maintenance can recommend a PM action just before 

unexpected failure [4–6]. For a comprehensive review of 

predictive maintenance methods, we refer readers to [7–10] and 

the references therein.  

Selecting an appropriate degradation process is essential for 

predictive maintenance decision-making. Mathematically, the 

degradation model of a system can be characterized either as 

discrete states or as continuous states. Typical discrete-state 

stochastic processes include discrete-time Markov chains [11], 

semi-Markov models [12], continuous-time Markov chains 

[13,14], and hidden Markov models [15]. However, these 

processes often suffer from the drawback of arbitrary 

classification when fitting real-world degradation processes 

[16]. A more practical approach utilizes continuous-state 

models, such as inverse Gaussian processes [17], Wiener 

processes [18], or gamma processes [19], to describe 

degradation processes. The gamma process, among these 

models, is particularly appropriate for gradual degradation, such 

as steel corrosion and concrete creep [20].  

A common assumption in predictive maintenance 

optimization models is that the degradation process is stationary. 

It indicates that the increments over a given interval depend 

only on the length of the interval, but are independent of the 

starting age of the interval. Although this assumption can suit 

the degradation properties of some systems, there exist some 

cases where the degradation rate varies as a system gets old [21] 

or operational environments change [22,23]. For example, 

structural components such as concrete, steel, or wood degrade 

faster due to factors like moisture, corrosion, or natural wear 

and tear. When the degradation rate of a system changes, its 

conditional reliability over the next interval is not only 

dependent on the current degradation level and the length of the 

interval but also influenced by the current age [24]. The 

predictive maintenance decisions of stationary degradation 

processes are made mainly based on the degradation levels at 

decision epochs, while the system age is not considered when 

making decisions. Such a decision-making framework is not 

cost-effective for nonstationary degradation processes because 

of the negligence of system age.  

PM for nonstationary degradation processes has received 

increasing research attention in recent years. Nicolai et al. [25] 

noticed that the coating systems of steel structures degrade 

faster as their ages grow and depicted the degradation process 

as a nonstationary gamma process. An imperfect maintenance 

policy was proposed and the optimal maintenance decisions 

were derived by dynamic programming. Zhao et al. [26] 

considered the effect of shocks on an accelerated damage 

process and investigated the optimization problem of an 

opportunistic maintenance policy. Liang et al. [27] investigated 

the replacement decision of a complex system with failure 

interaction. Zheng and Zhou [28] proposed a CBM policy for  

a two-component system with interacted degradation/failure 

processes. Inspection intervals and replacement policy were 

jointly optimized. Some other models can be found in [29] for 

road pavements; in [30] for railway tracks, and in [31] for 

energy pipelines. 

This paper develops a novel predictive maintenance model 

for a nonstationary gamma process, where the shape parameter 

is nonlinear of age. The degradation is monitored at equidistant 

time points. If it is detected to be higher than a predetermined 

failure threshold, a failure occurs, triggering corrective 

replacement to return the system as good as new. Otherwise,  

a decision is made on whether to perform PM actions, which 

can be either preventive replacement or preventive repair. The 

former returns the system to a brand-new state. The latter 

reduces the degradation level to zero, but has no effects on the 

system age. Moreover, we allow the degradation rate to be 

changeable after repairs. Such a repair model is quite reasonable. 

For example, the coating system after a repainting without 

removing the corrosion completely (repair) has zero 

degradation from the perspective of condition monitoring, but 

the degradation rate is higher than that of the brand-new state. 

Under this policy, the degradation of the system follows a multi-

stage nonstationary gamma process, which has been rarely 

investigated. The information on age, degradation, and the 

number of conducted repairs is used to make a maintenance 

decision, which distinguishes our paper from most previous 
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ones where only degradation is considered. The policy utilizes 

a maximum number of PM actions and a PM threshold to guide 

the action selection at each inspection epoch. Such a policy can 

be easily understood by maintenance engineers and thus can be 

well applied in engineering practice. We aim to find the optimal 

decision variables so that the expected average cost in an 

infinite time horizon is minimized. 

Our problem constitutes a typical sequential decision 

problem. One tool to address this problem is the Markov 

decision process (MDP), which is used for situations where 

decisions are made at equidistant time points [32]. However, the 

decision intervals are not equidistant in our problem. Therefore, 

we choose another tool, the semi-Markov decision process 

(SMDP), which is particularly applicable for continuous 

decision making. To formulate the optimization problem as  

a SMDP, we discretize the nonstationary process into a Markov 

model. Based on the discretization method, the SMDP 

quantities are derived and an optimization algorithm is 

developed.  

Our policy has some similarities with the CBM policies 

proposed in [33,34], which considered a limited number of 

imperfect maintenance actions. Although the policy is designed 

in a similar manner, our model has some considerable 

differences. First, our nonstationary degradation process allows 

its parameters to be changed after repairs, while the other two 

references consider stationary degradation processes with 

changeable parameters or transition probabilities. Second, we 

formulate our problem as an SMDP and propose an algorithm 

combining the policy iteration algorithm and numerical analysis 

methods for solving the problem. 

The remainder of this paper is organized as follows. Section 

2 provides a description of the system degradation and the 

maintenance policy. In Section 3, the optimization problem is 

formulated and optimized as an SMDP. Section 4 demonstrates 

the effectiveness using the example of a coating system. Finally, 

conclusions are presented in Section 5. 

2. Problem description 

Consider a repairable system with its degradation dependent not 

only on age but also on the repair number. Let 𝑋 = {𝑋𝑡 , 𝑡 ≥ 0} 

be the degradation process of the system. Assuming that repairs 

are performed at time points 𝑠1, 𝑠2, ⋯ , the degradation 

increments over the time interval (𝑠, 𝑠 + 𝑡) , where 𝑠𝑘 < 𝑠 <

𝑠 + 𝑡 < 𝑠𝑘+1, are independent and follow a gamma distribution. 

The probability density of 𝑋𝑠+𝑡 − 𝑋𝑠 = 𝑥 is 

𝛾(𝑥|𝜔(𝑘, 𝑠, 𝑡), 𝜃) =
𝜃𝜔(𝑘,𝑠,𝑡)𝑥𝜔(𝑘,𝑠,𝑡)−1𝑒−𝜃𝑥

Γ(𝜔(𝑘, 𝑠, 𝑡))
(1) 

where 𝜔(𝑘, 𝑠, 𝑡) is the shape parameter dependent on the age at 

the beginning of the interval 𝑠, the length of the interval 𝑡, and 

the repair number 𝑘 ; 𝜃  > 0 is the scale parameter; Γ(𝑎) =

∫ 𝑥𝑎−1𝑒−𝑥d𝑥
∞

0
  is the gamma function [35]. The degradation 

process is nonstationary because 𝜔(𝑘, 𝑠, 𝑡)  is not only 

dependent on 𝑡.  

Suppose that preventive repair reduces the degradation level 

to 0, but does not influence the age of the system. Moreover, we 

allow the degradation rate to be influenced by repairs. In 

particular, the shape parameter after the 𝑘th (𝑘 = 0,1,⋯) repair 

is  

𝜔(𝑘, 𝑠, 𝑡) = 𝑎𝑘[(𝑠 + 𝑡)
𝑏𝑘 − 𝑠𝑏𝑘] (2) 

where 𝑎𝑘 > 0  and 𝑏𝑘 ≥ 1  are parameters that depends on the 

repair number 𝑘  (𝑘 = 0,1,⋯ ). From the perspective of the 

system’s lifetime, the degradation process follows a multi-phase 

gamma process and the phases are separated by preventive 

repairs. 

Let 𝑦 denote a degradation increment. The probability that 

the degradation increments over a time interval (𝑠, 𝑠 + 𝑡) , 

where 𝑠𝑘 < 𝑠 < 𝑠 + 𝑡 < 𝑠𝑘+1, are greater than 𝑦 is given by 

ℙ(𝑋𝑡 ≥ 𝑦) = ∫ 𝛾(𝑥|𝜔(𝑘, 𝑠, 𝑡), 𝜃)d𝑥 =
∞

𝑦

Γ(𝜔(𝑘, 𝑠, 𝑡), 𝑦𝜃)

Γ(𝜔(𝑘, 𝑠, 𝑡))
(3) 

where Γ(𝑎, 𝑥) = ∫ 𝑧𝑎−1𝑒−𝑧d𝑧
∞

𝑥
  is the incomplete gamma 

function for 𝑥 ≥ 0 and 𝑎 ≥ 0. 

The degradation level can be fully revealed by inspections 

carried out periodically at Δ, 2Δ,⋯. The inspection cost is 𝐶𝐼. 

The time of each inspection is negligible, which is a quite 

reasonable assumption because condition monitoring can 

usually be carried out without stopping the system.  

When the degradation level is available, the decision maker 

can determine whether a maintenance action is required. This 

paper considers a predictive maintenance policy that involves 

multiple maintenance actions such as preventive replacement, 

corrective replacement, and preventive repair. Either preventive 

or corrective replacement will return the age and the 

degradation level to 0. Normally, the preventive replacement 

cost, 𝐶𝑃 , is less than the corrective replacement 𝐶𝐶 . The 
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preventive repair cost is 𝐶𝑅. Different from the widely adopted 

assumption of negligible durations of PM actions, we assume 

that preventive repair takes an expected time 𝑇𝑅 , preventive 

replacement takes an expected time 𝑇𝑃 , and corrective 

replacement takes an expected time 𝑇𝐶  . Such a setting is 

realistic. First, although most existing policies consider 

negligible maintenance durations for modelling simplicity, real 

maintenance actions take time. Second, the durations have 

effects on the average cost rate and the optimal policy. 

In case the degradation of the system exceeds a critical level 

𝐷, it cannot meet the normal demand and thus a failure occurs. 

The failure is only known at inspection epochs. If the system 

keeps operating in a failure state, a cost 𝐶𝐷 is incurred per unit 

time.  

We define a policy by 𝜉 = (𝐾, 𝐿),  where 𝐾  is an integer 

representing the maximum times of preventive repairs over  

a lifecycle, and 𝐿 > 0  indicates the PM threshold, including 

preventive repair and preventive replacement. In particular, at 

the 𝑛th decision epoch, the maintenance actions are determined 

by the degradation level 𝑋𝑛Δ and the current times of preventive 

repairs 𝐾𝑛Δ as follows: 

 If 𝑋𝑛Δ < 𝐿, no maintenance action is taken.  

 If 𝐿 ≤ 𝑋𝑛Δ < 𝐷  and 𝐾𝑛Δ < 𝐾 , preventive repair is 

performed. 

 If 𝐿 ≤ 𝑋𝑛Δ < 𝐷  and 𝐾𝑛Δ = 𝐾 , preventive 

replacement is conducted. 

 If 𝑋𝑛Δ ≥ 𝐷, corrective replacement is taken. 

In our problem, 𝐾 and 𝐿 are two decision variables that can 

be optimized by minimizing the expected average cost in the 

long run. 

3. Mathematical formulation 

3.1. Discretization method 

Generating a finite discrete state space is necessary for SMDP 

formulation. We set a large enough integer 𝑁 and define 𝑁Δ as 

the maximum useful lifetime. It means that, at 𝑁Δ if the system 

is not in the failure state, preventive replacement is mandatory. 

As mentioned in [36], the results will not be affected as long as 

𝑁 is large enough. In practice, 𝑁 can be determined according 

to the experience of maintenance engineers or the manual of the 

system. 

Then, the degradation process 𝑋 is partitioned into a Markov 

model with state space Ω = {0,1,⋯ ,𝑀} . Let 𝜀 = 𝐷/𝑀  be the 

discretization interval. We consider the degradation to be in 

state 0 if the degradation level is 0, in state 𝑖 ∈ {1, … ,𝑀 − 1} if 

the degradation level lies in the interval((𝑖 − 1)𝜀, 𝑖𝜀] , and in 

state 𝑀 if the degradation level meets ((𝑀 − 1)𝜀, +∞). For any 

state 𝑖 ∈ {1, … ,𝑀}, its degradation level is approximated by the 

mid-point (𝑖 − 0.5)𝜀. Given that the current repair number is 𝑘, 

the transition probability from 𝑋𝑠 = 𝑖  to 𝑋𝑠+𝑡 = 𝑖′  is given as 

follows: 

(1) When 0 = 𝑖 < 𝑖′ < 𝑀 , the increments are within the 

interval ((𝑖′ − 1)𝜀, 𝑗𝜀). Thus, 

𝑃0,𝑖′(𝑠, 𝑠 + 𝑡) = ∫ 𝛾(𝑥|𝜔(𝑘, 𝑠, 𝑡), 𝜃)d𝑥
𝑖′𝜀

(𝑖′−1)𝜀

=
Γ(𝜔(𝑘, 𝑠, 𝑡), (𝑖′ − 1)𝜀𝜃) − Γ(𝜔(𝑘, 𝑠, 𝑡), 𝑖′𝜀𝜃)

Γ(𝜔(𝑘, 𝑠, 𝑡))

(4) 

(2) When 𝑖 = 0 and 𝑖′ = 𝑀, the increments are greater than 

(𝑀 − 1)𝜀. Thus, 

𝑃0,𝑀(𝑠, 𝑠 + 𝑡) = ∫ 𝛾(𝑥|𝜔(𝑘, 𝑠, 𝑡), 𝜃)d𝑥
+∞

(𝑀−1)𝜀

=
Γ(𝜔(𝑘, 𝑠, 𝑡), (𝑀 − 1)𝜀𝜃)

Γ(𝜔(𝑘, 𝑠, 𝑡))

(5) 

(3) When 0 < 𝑖 < 𝑖′ < 𝑀, the increments are between (𝑖′ −

𝑖 − 0.5)𝜀 and (𝑖′ − 𝑖 + 0.5)𝜀. Thus, 

𝑃𝑖,𝑖′(𝑡, 𝑡 + Δ𝑡) = ∫ 𝛾(𝑥|𝜔(𝑘, 𝑠, 𝑡), 𝜃)d𝑥
(𝑖′−𝑖+0.5)𝜀

(𝑖′−𝑖−0.5)𝜀

=
Γ(𝜔(𝑘, 𝑠, 𝑡), (𝑖′ − 𝑖 − 0.5)𝜀𝜃) − Γ(𝜔(𝑘, 𝑠, 𝑡), (𝑖′ − 𝑖 + 0.5)𝜀𝜃)

Γ(𝜔(𝑘, 𝑠, 𝑡))

(6) 

(5) When 0 ≤ 𝑖 = 𝑖′ ≤ 𝑀, the transition probability can be 

calculated by 

𝑃𝑖,𝑖(𝑠, 𝑠 + 𝑡) = 1 −∑𝑃𝑖,𝑖′(𝑠, 𝑠 + 𝑡)

𝑖′≠𝑖

(7) 

Such discretization methods have been widely used in 

[19,37,38]. When the discretization level is sufficiently small, 

the obtained results of these methods are quite close. 

Let 𝑆 = {(𝑛, 𝑖, 𝑘)|𝑛 = 0,⋯ ,𝑁; 𝑖 ∈ Ω; 𝑘 = 0,⋯ , 𝐾}  be the 

system state space. The state (𝑛, 𝑖, 𝑘) indicates the system has 

an age 𝑛Δ, a degradation state 𝑖, and has experienced 𝑘 times of 

preventive repairs. As described in Section 2, the set of actions 

is given by 𝐴 = {0,1,2,3} . Action 0 denotes no maintenance, 

action 1 is preventive repair, action 2 means preventive 

replacement, and action 3 indicates corrective replacement. Let 

𝑎(𝑛,𝑖,𝑘) ∈ 𝐴  be the action of state (𝑛, 𝑖, 𝑘) ∈ 𝑆 . For a policy 

defined by 𝐾  and 𝐿 , i.e., 𝜉 = (𝐾, 𝐿) , 𝑎(𝑛,𝑖,𝑘)  can be given as 
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follows 

𝑎(𝑛,𝑖,𝑘)(𝜉) = {

0 𝑖 < 𝐿, 𝑛 < 𝑁
1  𝐿 ≤  𝑖 < 𝑀, 𝑘 < 𝐾, 𝑛 < 𝑁
2 𝑖 < 𝑀, 𝑛 = 𝑁 or 𝐿 ≤ 𝑖 < 𝑀, 𝑘 = 𝐾, 𝑛 < 𝑁
3 𝑖 = 𝑀

(8) 

The average cost of policy 𝜉  can be derived from the 

renewal theory. In this policy, a renewal cycle completes at  

a preventive or corrective replacement. The average cost is 

given by the expected cost over a renewable cycle divided by 

its expected length. In particular, the average cost of policy 𝜉 is 

𝑔(𝜉) =
∑ Π(𝑛,𝑖,𝑘)(𝜉) ⋅ 𝑐(𝑛,𝑖,𝑘)(𝜉)(𝑛,𝑖,𝑘)∈𝑆

∑ Π(𝑛,𝑖,𝑘)(𝜉) ⋅ 𝜏(𝑛,𝑖,𝑘)(𝜉)(𝑛,𝑖,𝑘)∈𝑆

(9) 

where Π(𝑛,𝑖,𝑘)(𝜉)  denotes the balanced probability of state 

(𝑛, 𝑖, 𝑘) under policy 𝜉, 𝑐(𝑛,𝑖,𝑘)(𝜉) represents the expected cost 

of state (𝑛, 𝑖, 𝑘)  until the next decision epoch under policy 𝜉 , 

and 𝜏(𝑛,𝑖,𝑘)(𝜉) is the expected sojourn time of state (𝑛, 𝑖, 𝑘) until 

the next decision epoch under policy 𝜉. It is worth mentioning 

that Π(𝑛,𝑖,𝑘)(𝜉)  are always determined by 𝑝(𝑛,𝑖,𝑘),(𝑛’,𝑖’,𝑘’)(𝜉) , 

which is the probability of transiting from state (𝑛, 𝑖, 𝑘) ∈ 𝑆 to 

(𝑛’, 𝑖’, 𝑘’) ∈ 𝑆 under policy 𝜉. These quantities are also referred 

to as SMDP quantities [39]. 

Among all possible policies, the optimal policy 𝜉∗ generates 

the lowest average cost. It means for any possible policy 𝜉, 

𝑔(𝜉∗) ≤ 𝑔(𝜉) (10) 

3.2. SMDP quantities 

In what follows, we will derive the SMDP quantities of state 

(𝑛, 𝑖, 𝑘) ∈  𝑆 under policy 𝜉. 

(1) If 𝑎(𝑛,𝑖,𝑘)(𝜉) = 0 , i.e., the decision is not to take any 

maintenance, the system will move to state (𝑛 + 1, 𝑗, 𝑘) ∈ 𝑆 , 

with transition probability  

𝑝(𝑛,𝑖,𝑘),(𝑛+1,𝑗,𝑘)(0) = 𝑃𝑖,𝑗(𝑛Δ, (𝑛 + 1)Δ) (11) 

In this transition situation, no matter what the next system 

state is, the sojourn time is equal to the inspection interval Δ. 

That is, 

𝜏(𝑛,𝑖,𝑘)(0) = Δ (12) 

At the next decision epoch, an inspection of cost 𝐶𝐼  is 

carried out. Moreover, the system may fail by the next 

inspection epoch, incurring a cost 𝐶𝐷 per unit time. In sum, the 

expected cost is 

𝑐(𝑛,𝑖,𝑘)(0) = 𝐶𝐼 + 𝐶𝐷∫ 𝑃𝑖,𝑀(𝑛Δ, 𝑡)
Δ

0

d𝑡

                     ≈ 𝐶𝐼 + 𝐶𝐷𝛿∑𝑃𝑖,𝑀(𝑛Δ, 𝑖𝛿)

𝐼

𝑖=1

(13) 

where 𝛿 = Δ/𝐼 with 𝐼 a sufficiently large integer. 

(2) If 𝑎(𝑛,𝑖,𝑘)(𝜉) = 1, i.e., the decision is to repair the system 

preventively, the system state will jump to (𝑛, 0, 𝑘 + 1) ∈ 𝑆. We 

note that state (𝑛, 0, 𝑘 + 1) is just an intermediate state because 

no maintenance should be taken just after a repair. Taking the 

intermediate state as a start, the next state can be (𝑛 + 1, 𝑗, 𝑘 +

1) ∈ 𝑆 with probability 

𝑝(𝑛,𝑖,𝑘),(𝑛+1,𝑗,𝑘+1)(1) = 𝑃0,𝑗(𝑛Δ, (𝑛 + 1)Δ) (14) 

In this transition situation, the sojourn time is the sum of the 

expected repair time 𝑇𝑅 and the inspection interval Δ. That is, 

𝜏(𝑛,𝑖,𝑘)(1) = 𝑇𝑅 + Δ (15) 

Calculating the expected cost should consider three parts: 

The inspection cost 𝐶𝐼 ; The repair cost 𝐶𝑅 ; and the possible 

failure cost by the next inspection epoch. As a result, 

𝑐(𝑛,𝑖,𝑘)(1) = 𝐶𝑅 + 𝐶𝐼 + 𝐶𝐷∫ 𝑃0,𝑀(𝑛Δ, 𝑡)
Δ

0

d𝑡 (16) 

(3) If 𝑎(𝑛,𝑖,𝑘)(𝜉) = 2, i.e., replacing the system preventively 

is the decision, the system will immediately switch to the 

intermediate state (0,0,0), and then at the next decision epoch 

the system state will be (1, 𝑗, 0) ∈ 𝑆 with probability 

𝑝(𝑛,𝑖,𝑘),(1,𝑗,0)(2) = 𝑃0,𝑗(0, Δ) (17) 

The calculation of the expected sojourn time is similar to 

that under action 1. That is, 

𝜏(𝑛,𝑖,𝑘)(2) = 𝑇𝑃 + Δ (18) 

Similar to the expected cost under action 1, the expected cost 

under action 2 is given by 

𝑐(𝑛,𝑖,𝑘)(2) = 𝐶𝑃 + 𝐶𝐼 + 𝐶𝐷∫ 𝑃0,𝑀(0, 𝑡)
Δ

0

d𝑡 (19) 

(4) If 𝑎(𝑛,𝑖,𝑘)(𝜉) = 3, i.e., corrective replacement is taken for 

the current state, the calculation of SMDP quantities is the same 

as that of 𝑎(𝑛,𝑖,𝑘)(𝜉) = 2. The transition probabilities are given 

by 

𝑝(𝑛,𝑖,𝑘),(1,𝑗,0)(3) = 𝑃0,𝑗(0, Δ) (20) 

The expected sojourn time is 

𝜏(𝑛,𝑖,𝑘)(3) = 𝑇𝐶 + Δ (21) 

The expected cost is  

𝑐(𝑛,𝑖,𝑘)(3) = 𝐶𝐶 + 𝐶𝐼 + 𝐶𝐷∫ 𝑃0,𝑀(0, 𝑡)
Δ

0

d𝑡 (22) 

So far, we have derived the SMDP quantities of the 

optimization problem. Solving the following set of equations 

generates balanced probabilities: 
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{
 
 

 
 Π(𝑛,𝑖,𝑘) = ∑ 𝑝(𝑛’,𝑖’,𝑘’),(𝑛,𝑖,𝑘)Π(𝑛’,𝑖’,𝑘’)

(𝑛’,𝑖’,𝑘’)∈𝑆

∑ Π(𝑛,𝑖,𝑘)
(𝑛,𝑖,𝑘)∈𝑆

= 1
(23) 

Using Eq. (9), the expected average cost for any policy can 

be calculated. Then the optimal policy can be obtained by 

enumerating the expected average costs for all possible policies. 

However, such an optimization procedure is time-consuming. In 

what follows, we will introduce an efficient optimization 

algorithm. 

3.3. Optimization algorithm 

Let 𝑉(𝑛, 𝑖, 𝑘) be the value function of state (𝑛, 𝑖, 𝑘) ∈ 𝑆. Then 

under a policy 𝜉 , the value functions of all states and the 

expected cost 𝑔(𝜉) can be obtained by solving a set of equations 

as follows:

{
𝑉(𝑛, 𝑖, 𝑘) = 𝑐(𝑛,𝑖,𝑘) − 𝑔(𝜉) ⋅ 𝜏(𝑛,𝑖,𝑘) + ∑ 𝑝(𝑛’,𝑖’,𝑘’),(𝑛,𝑖,𝑘) ∙ 𝑉(𝑛’, 𝑖’, 𝑘’)

(𝑛’,𝑖’,𝑘’)∈𝑆

𝑉(𝑛0, 𝑖0, 𝑘0) = 0

(24) 

 

where (𝑣0, 𝑖0, 𝑘0) ∈ 𝑆  is an arbitrarily selected state. Such an 

equation set can be solved conveniently by matrix. This method 

is usually integrated into an algorithm to address optimization 

problems with constant control limits; see for example [40,41]. 

An optimization algorithm developed by integrating Eq. (24) 

and golden section method for our problem is presented as 

follows: 

Step 1: Initiate maximum repair number 𝐾 = 0; 

Step 2: Find the optimal threshold 𝐿∗(𝐾) for a fixed 𝐾 by 

Eq. (24) and the golden section method [42]. Denote 𝜉∗(𝐾) =

(𝐾, 𝐿∗(𝐾)) be the optimal policy under fixed 𝐾. 

Step 3: If 𝑔(𝜉∗(𝐾)) > 𝑔(𝜉∗(𝐾 − 1)) , the algorithm stops 

with 𝐿∗ = 𝐿∗(𝐾 − 1)  and 𝐾∗ = 𝐾–1 ; Otherwise, go to Step 2 

with 𝐾 = 𝐾 + 1. 

4. Numerical applications 

This section uses the proposed method for the maintenance 

decision-making of the coating system in steel structures. The 

coating of the system loses with time. The degradation level can 

be measured by the corrosion areas in the graph taken at regular 

intervals ( Δ = 1 ). The degradation is modelled as  

a nonstationary gamma process. Typical maintenance actions 

include repainting (repair) and replacement. The difference 

between the two actions is whether to remove corrosion 

completely before repainting the entire surface. The degradation 

level after repainting is reduced to 0, but the degradation rate is 

still high because of the corrosion under the repainted coating. 

The parameters of the gamma process are 𝑎𝑘 = 0.25 and 𝑏𝑘 =

2 for 𝑘 = 0,1,⋯, and 𝜃 = 1 [43]. The failure level is 𝐷 = 25. 

Once the level is exceeded, corrective replacement is carried out. 

The other parameters are as follows: 𝑇𝑅 = 0.2, 𝑇𝑃 = 𝑇𝐶 = 0.5; 

𝐶𝐼 = 1 , 𝐶𝑅 = 2 , 𝐶𝑃 = 8 , 𝐶𝐶 = 10 . The parameters of the 

optimization algorithm are set as follows: 𝑀 = 10  (i.e., 𝜀 =

𝐷/𝑀 = 2.5), 𝑁 = 50. 

4.1. Optimization results 

The preventive policy is optimized by the proposed algorithm. 

Fig. 1 illustrates the expected average costs for various 

combinations of the maximum number of preventive repairs 𝐾 

and the PM threshold 𝐿. As observed, for each value of 𝐾, the 

average cost initially decreases and then increases as 𝐿 

increases from 3 to 10. When the threshold 𝐿 is very low, PM is 

frequently conducted, incurring excessive cost. If the threshold 

𝐿  is very large, PM is only carried out when degradation 

approaches the failure threshold. Such a maintenance plan 

increases the failure probability, thereby also resulting in higher 

maintenance cost. Consequently, for each value of 𝐾 , the 

optimal threshold 𝐿∗(𝐾) is neither too low nor to high. For any 

fixed threshold 𝐿 given in the figure, the average cost decreases 

first and then increases when 𝐾 varies from 0 to 4. It means that 

the effect of preventive repair is positive when 𝐾 is low, but it 

becomes negative for excessive repair cost when 𝐾 is large. The 

contour plot containing the isolines of average costs is also 

given in Fig. 1, where the minimal average cost is reached when 

𝐾 = 2  and 𝐿 = 8 . Therefore, the optimal policy is (𝐾∗, 𝐿∗) =

(2,8), and the corresponding average cost is 𝑔(𝐾∗, 𝐿∗) = 1.70. 

It is also interesting to notice that, as 𝐿  (or 𝐾 ) increases, the 

average cost tends to be less sensitive to the value of 𝐾 (or 𝐿). 

Thus, if the optimal policy cannot be implemented due to some 

practical reasons, the decision-maker can consider a policy with 

one variable a little larger than the optimal value. For example, 

the policy (3,8) can also be regarded as an alternative if the 
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policy (2,8) cannot be implemented. 

 

Fig. 1. Average costs for different combinations of 𝐿 and 𝐾. 

Fig. 2 shows how to apply the obtained policy to a simulated 

degradation path from the coating system. The optimization 

results show that PM is conducted when the deterioration state 

is 8, 9, or 10. Thus, the PM threshold is the lower bound of state 

8, which can be calculated by (8 − 1)𝜀 = 17.5 . The PM 

threshold is found to be exceeded at the 9th and the 13th 

inspection epochs. At these two inspection epochs, the failure 

threshold is not crossed, and thus preventive repair is conducted 

to reduce the degradation level to 0. When the threshold is hit at 

the third time, the maximum number of preventive repairs is 

reached. Thus, the lifecycle ends with a preventive replacement. 

 

Fig. 2. The application of the obtained policy. 

4.2. Sensitivity analysis 

This section investigates the effects of key parameters on the 

optimality of our problem. First, we consider the scale 

parameter of the gamma process 𝜃. Table 1 shows the optimal 

policies under different values of 𝜃  and their average costs. 

According to the property of the gamma process, the 

expectation of 𝑋𝑡 is 𝜔(𝑘, 𝑡)/𝜃. Thus, increasing the value of 𝜃 

indicates a slower degradation rate. As can be seen from Table 

1, when 𝜃 varies from 4 to 8, the average cost decreases. Table 

1 also shows that 𝐿∗ (or 𝐾∗) increases in 𝜃 if 𝐾∗ (or 𝐿∗) is fixed. 

Table 1. Optimization results for scale parameter 𝜃. 

𝜃 𝐾∗ 𝐿∗ Average cost 

4 2 8 1.33 

5 2 8 1.30 

6 1 9 1.27 

7 2 9 1.25 

8 3 9 1.21 

It is also interesting to investigate the effect of the inspection 

interval Δ . Table 2 shows the optimal policies for different 

values of Δ. When Δ increases from 1.5 to 3.5, the average cost 

decreases first and then increases, reaching the minimum when 

Δ = 3.0 . Therefore, it provides an effective method to 

determine the optimal inspection interval. 

Table 2. Optimization results for inspection interval Δ. 

Δ 𝐾∗ 𝐿∗ Average cost 

1.5 2 7 1.41 

2.0 1 7 1.27 

2.5 2 7 1.18 

3.0 2 7 0.99 

3.5 2 6 1.09 

The cost of preventive repair has a great effect on the 

optimality of our problem. Table 3 lists the optimal policies for 

different values of 𝐶𝑅 . When 𝐶𝑅  varies from 1 to 5, the cost 

effectiveness of preventive repair reduces, leading to obvious 

changes to the optimal policies. First, the maximum number of 

preventive repairs reduces from 5 to 0, which means no 

preventive repair will be carried out. Second, the PM threshold 

is increasing due to the low PM effect. Last, the expected 

average cost increases, which highlights the significance of 

preventive repair. 

Table 3. Optimization results for preventive repair cost 𝐶𝑅. 

𝐶𝑅 𝐾∗ 𝐿∗ Average cost 

1 5 7 1.54 

2 2 8 1.70 

3 1 9 1.78 

4 0 9 1.79 

5 0 9 1.79 

The optimal policies for different values of preventive 

replacement cost 𝐶𝑃 are given in Table 4. If 𝐶𝑃 is very low, it 
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becomes very cost effective to preventively replace the system 

when the degradation level is not high. The increase of 𝐶𝑃 

increases the expected length of lifecycle, highlighting the 

significance of preventive repair. 

Table 4. Optimization results for preventive replacement cost 

𝐶𝑃. 

𝐶𝑃 𝐾∗ 𝐿∗ Average cost 

2 0 7 1.18 

4 0 8 1.39 

6 1 8 1.58 

8 2 8 1.70 

10 5 9 1.75 

5. Conclusions 

This paper develops a predictive maintenance model for  

a nonstationary gamma process under periodic inspection. An 

action is selected among no maintenance, preventive repair, 

preventive replacement, and corrective replacement at each 

inspection (decision) epoch. To specify which action to select, 

we set two decision variables in the policy: the maximum 

number of preventive repairs and the PM threshold. The optimal 

decision variables are determined with the objective of 

minimizing the expected average cost in an infinite time horizon. 

We treat our optimization problem as an SMDP and develop an 

efficient optimization algorithm. The coating system is applied 

to validate the proposed approach and the effects of some key 

parameters are examined.  

Some related topics can be investigated in the future. We 

note that our policy which follows the most widely used control 

limit form is suboptimal from an economic perspective. Thus, 

the first interesting extension is to investigate the optimal 

structural properties, which may be a control-limit policy. 

Second, in sensitivity analysis we provide a method to optimize 

the inspection interval. It is interesting to determine what action 

to select and when to perform the next inspection at each 

decision epoch. Lastly, we can consider another situation where 

corrective repair is performed when a failure occurs. Although 

this extension will not bring too much technical challenge, it 

will produce a practical policy that can be applied in asset 

management. 
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