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Highlights  Abstract  

▪ This study proposes a real-time fault 

monitoring method for logistics vehicles. 

▪ The fault signal was identified on the basis of 

building logistics vehicle fault tree. 

▪ The theory of support vector machines was 

employed to derive low-dimensional features. 

 To improve the safety of logistics vehicle transportation, this study 

proposes a real-time fault monitoring method for logistics vehicles 

based on chaotic ant colony algorithm. Firstly, take a typical engine 

malfunction as an example. Identify fault signals based on logistics 

vehicle fault tree. Then, use support vector machine theory to extract 

time-domain low dimensional features from vehicle fault information. 

Finally, real-time fault monitoring of logistics vehicles is achieved 

based on chaotic ant colony optimization algorithm. The experiment 

shows that the monitoring accuracy of this method is always above 

94.0%, and the monitoring signal transmission delay varies between 

444ms-627ms, indicating that this method has high monitoring 

accuracy and efficiency, and has high application value. 
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1. Introduction 

Logistics distribution is the process of achieving effective 

flow of raw materials and final products between the starting 

and ending points, as well as between various links, through 

planning and control measures [1-2]. Once the vehicle 

malfunctions during the delivery process, causing it to be 

disconnected from the enterprise, it will be difficult for the 

enterprise to understand the vehicle status data and driving 

data [3]. Therefore, the fault detection of logistics vehicles is 

one of the important contents of logistics. Moreover, vehicle 

malfunctions are intricate and complex, with each type of 

malfunction potentially caused by multiple factors. Therefore, 

real-time monitoring of logistics vehicle malfunctions plays 

an important role in improving vehicle maintenance efficiency 

and ensuring logistics transportation safety [4]. 

Reference [5] first collected vehicle diagnostic signals, and 

then used support vector machine theory to extract low 

dimensional time-domain features of vehicle fault information, 

and identified effective samples in the feature space. Finally,  

a combination of support vector machine and genetic 

algorithm is used for vehicle fault detection. However, this 

method has the problem of low detection accuracy in practical 

applications, and the application effect has not reached the 

expected goal.Reference [6] introduces momentum term to 

improve the convergence speed of the algorithm. Then, after 

learning and training the test data, perform fault diagnosis on 

the test data. However, this method can effectively monitor 
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vehicle faults, but its monitoring signal transmission delay is 

relatively high. Reference [7] collected temperature and 

vibration data of vehicle bearings and transmitted them to the 

processing board for diagnosis. Then, spectral kurtosis is used 

to extract the resonance frequency from the vibration signal, 

in order to determine the center frequency and scale of the 

complex Morlet wavelet. Finally, using wavelet transform to 

process signals can improve the accuracy of bearing fault 

diagnosis. However, in practical applications, it has been 

found that the monitoring signal transmission delay is 

relatively large, and the performance in terms of monitoring 

accuracy is not ideal. 

In response to the problems existing in the above methods, 

this study designs a new real-time fault monitoring method for 

logistics vehicles based on chaotic ant colony algorithm. The 

chaotic ant colony algorithm effectively improves the path 

selection process of ants by introducing chaotic motion 

characteristics and utilizing the ergodicity and randomness of 

chaos, avoiding the dependence on complete randomness and 

thus improving the convergence efficiency of the algorithm. 

The experiment shows that the monitoring accuracy of the 

method proposed in this paper always remains above 94.0%, 

and the monitoring signal transmission delay varies between 

444ms-627ms, indicating that this method has high 

monitoring performance and can provide effective assistance 

for the logistics and distribution industry. 

2. Fault identification and feature extraction of logistics 

vehicles 

In order to effectively monitor the real-time fault of logistics 

vehicles, it is first necessary to identify the fault signal of 

logistics vehicles. 

2.1. Logistics vehicle fault tree 

The fault unit shall be determined and the fault shall be 

represented by defining the fault feature structure to analyze 

and identify the logistics vehicle fault [8]. 
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Figure 1. Fault tree structure diagram of logistics vehicles. 
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The fault unit is represented as a structural array, and then a 

complete one-way tree diagram is constructed. The top-level 

event of this tree is the target of the article's analysis. The 

intermediate event is all the factors that cause the top event 

failure. The bottom event is generally at the bottom of the 

fault tree. It is all the factors that cause the intermediate event, 

that is, the cause of the vehicle failure. All events in the 

analysis results are connected in this way, and there are some 

subtle differences in the logical relationship between them. 

Finally, these events are organized together through the 

corresponding logic gates to form a fault tree. Based on this 

tree, the corresponding relationship between faults and causes 

can be obtained. The fault tree of logistics vehicles is shown 

in Figure 1. 

2.2. Fault identification of logistics vehicles 

Taking the common engine fault in logistics vehicle fault as 

an example [9], on the basis of identifying the fault signal, 

excavate its fault characteristics [10-11]. 

The relationship between vehicle exhaust elements and 

engine faults under variable speed conditions is first analyzed 

in the process of identifying engine faults of logistics vehicles. 

Set the characteristic sample parameters of the vehicle engine 

under the typical state, and the decision surface corresponding 

is used to the nonlinear mapping function to classify the 

vehicle engine fault. Introduce the inter-class interval limit 

condition and penalty factor in the process of classifying the 

vehicle engine fault. Establish the vehicle engine fault 

classifier under the condition of variable speed of SVM 

(support vector machine) on this basis, and distinguish the 

different vehicle engine fault mode categories according to the 

fault classifier, and then complete the recognition of the 

vehicle engine fault. 

The characteristic sample of the logistics vehicle engine 

under the typical state is expressed as {𝑋𝐼 , 𝑌𝐼} , where 𝐼 =

1,2, ⋯ , 𝑁, 𝑋𝐼  represents the normalized value of the exhaust 

gas content of the 𝐼-th sample vehicle, and 𝑌𝐼  represents the 

fault category of the 𝐼-th sample vehicle engine. According to 

the nonlinear mapping function 𝜑(𝑋) , search the decision 

surface shown in equation (1) to achieve the classification of 

vehicle engine fault: 

𝑓(𝑋) = 𝜔𝜑(𝑋) + 𝑏 = 0   (1) 

In order to make the established optimal decision surface 

realize the accurate classification of vehicle engine faults and 

maximize the distance between vehicle engine fault classes, it 

is necessary to introduce the condition (2): 

𝑌𝐼(𝜔𝜑(𝑋𝐼) + 𝑏) ≥ 1    (2) 

Where, 𝜔  is the weight vector and 𝑏  is the threshold. The 

linear decision surface cannot classify the engine faults of 

logistics vehicles. It is necessary to introduce a penalty 

mechanism to ensure the classification accuracy of the engine 

faults of vehicles. Let 𝐶 represent the penalty factor, and the 

following formula is used to represent the constraint 

conditions: 

𝑌𝐼(𝜔𝜑(𝑋𝐼) + 𝑏) ≥ 1 − 𝜀𝐼 , 𝜀𝐼 ≥ 0  (3) 

The minimum misclassification samples and the maximum 

vehicle engine fault classification interval are selected in a 

compromise. 𝜀𝐼  represents the relaxation variable. In case of 

misclassification, ∑ 𝜀𝐼
𝑁
𝐼=1  represents the upper limit of 

misclassification in the training set. 

When the engine fault of logistics vehicles is non-linear 

differentiated under the condition of variable speed, the kernel 

function 𝑘(𝑋𝐼 , 𝑋𝐽) = (𝜑(𝑋𝐼), 𝜑(𝑋𝐽)) is used to optimize the 

differentiation process, and the optimization is converted to 

𝑚𝑖𝑛
1

2
∑ 𝛼𝐼

𝑁
𝐼,𝐽=1 , Using kernel functions for nonlinear 

classification optimization: 

∑ 𝛼𝐼
𝑁
𝐼=1 𝑌𝐼 = |0(𝐶 ≥ 𝛼𝐼 ≥ 0)   (4) 

Where, the point that satisfies 𝛼𝐼 > 0 is called support vector. 

The classification process of engine failure of logistics 

vehicles on this basisis established as follows: 

𝑧 = 𝑠𝑖𝑔𝑛(∑ 𝛼𝐼𝑌𝐼𝑘(𝑋𝐼 , 𝑋𝐽) + 𝑏𝑁
𝐼,𝐽=1 )  (5) 

2.3. Low-dimensional time-domain feature extraction of 

logistics vehicle fault information 

Drawing upon the previously identified fault information of 

logistics vehicles, this research employs support vector 

machine theory to derive low-dimensional time-domain 

characteristics of vehicle fault data [12]. SVM is rooted in the 

principle of structured risk minimization, where the chosen 

plane is designated as a hyperplane and serves as a decision 

boundary to achieve linear separability. This decision surface 

not only categorizes the training samples but also maximizes 

the margin between the closest data points and the 
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classification surface. The configuration of the SVM-based sample classifier is illustrated in Figure 2.
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Figure 2. Structure diagram of SVM sample classifier. 

Based on the above theory, the sample obtained above is 

defined as {(𝑋𝐼 , 𝑋𝐼)}𝐼=1
𝑁 , and the hyperplane equation is 

recorded as: 

𝜔′𝑇𝑋𝐼 + 𝐵 = 0    (6) 

Where, 𝜔′ represents variable weight vector, and 𝐵 represents 

offset. Under certain constraint conditions, the minimum 

value of 𝜔′  is obtained, and the constraint conditions are 

recorded as: 

𝑌𝐼(𝜔′𝑇𝑋𝐼 + 𝐵) ≥ 1    (7) 

The optimization constraint problem is transformed into 

the original problem on this basis, and the constraint 

conditions are expressed as: 

∑ 𝛼𝐼𝑌𝐼 = 0𝑁
𝐼=1 , 𝛼𝐼 ≥ 0    (8) 

Subsequently, the optimal classification based on the 

aforementioned sample classifier structure is formulated in 

terms of feature classification as follows: 

𝑍 = 𝑠𝑔𝑛(𝜔′𝑇𝑋 + �̇�) = 𝑠𝑔𝑛(∑ �̇�𝐼𝑌𝐼𝑋𝐼
𝑇𝑋 + �̇�𝑁

𝐼==1 )(9) 

Where, �̇� , 𝑌 , 𝑋 and �̇� respectively represent the optimal 

solution corresponding to each coefficient. Based on the 

above process, the low-dimensional time-domain features of 

logistics vehicle fault information are extracted. 

3. Real-time fault monitoring of logistics vehicles 

Identifying the logistics vehicle fault and extracting the low-

dimensional time-domain characteristics of the fault 

information based on the above engine fault as an example 

[13], this study uses chaotic ant colony algorithm to realize 

the real-time fault monitoring of logistics vehicles. 

3.1. Analysis of basic ant colony algorithm 

To achieve efficient and real-time monitoring of logistics 

vehicle faults, the ant colony algorithm is incorporated [14-

17]. Set the number of positions that can be moved by an 

individual ant as 𝑛 and the number of ants as 𝑚. First, make 

the following settings for the behavior of each ant: 

(1) The main basis for ants to select the next position 𝑗 is 

𝜏𝑖𝑗(𝑡) , and this probability function is associated with the 

distance between the known position 𝑖  and the pheromone 

𝜂𝑖𝑗(𝑡) on the path. 

(2) Ants choose paths through established rules, which are 

mainly controlled by tabu tables. Ants cannot start to other 



EksploatacjaiNiezawodność – Maintenance and Reliability Vol. 27, No. 4, 2025 

 

places unless they have experienced a cycle. 

(3) In the process of movement, ants will leave a certain 

number of pheromones on the path they pass. The probability 

function is set as: 

𝑓𝑘
𝑖𝑗

=
𝜏𝑖𝑗(𝑡)⋅𝜂𝑖𝑗(𝑡)

𝑘
    (10) 

Where, 𝑘  represents the ant's moving path, 𝜏𝑖𝑗(𝑡)  represents 

the pheromone amount of the path from location 𝑖 to location 

𝑖 at time 𝑡, and 𝜂𝑖𝑗(𝑡) represents the initial information of the 

path from location 𝑖 to location 𝑖. When all ants complete the 

cycle, update all pheromones on the path through the 

following formula: 

𝜏𝑖𝑗(𝑡 + 𝑛) = (1 − 𝑝) ⋅ 𝜏𝑖𝑗(𝑡) ⋅ 𝑓𝑘
𝑖𝑗

  (11) 

Where, 𝑡 represents the time of ant movement. 

3.2. Optimization of basic ant colony algorithm 

In practical application, the above basic ant colony algorithm 

has the following defects: 

(a) The convergence efficiency is low. In the early search 

stage, because the initial pheromone is the same, it takes a 

long time to play a positive feedback effect. 

(b) It is easy to fall into local optimum. Although the 

positive feedback makes the algorithm have a good 

convergence rate, if the suboptimal solution is obtained for the 

first time, the suboptimal solution will occupy the advantage 

and the algorithm will fall into local optimization.  

(c) There is a contradiction between population diversity 

and convergence rate. The density of solution in space 

determines the diversity of population. When individuals are 

more evenly distributed, the diversity is better, and the global 

optimization ability is improved, but the search time is longer, 

and the convergence speed is also reduced [18]. 

This study uses chaos theory to optimize the basic ant 

colony algorithm in view of the above problems. The chaos 

discussed in this paper mainly refers to a time evolution 

behavior that is very sensitive to the initial conditions. The 

search performance can be optimized through the 

characteristics of chaotic motion. 

Chaos is a typical nonlinear phenomenon, which can 

traverse all states in a certain range without repetition and be 

limited to a bounded range according to its own laws. In this 

paper, we formally use the ergodicity and boundedness of 

chaotic motion to improve the dependence on complete 

randomness in the path selection of ant colony algorithm. 

3.2.1. Logistic mapping 

Chaos usually refers to the random motion state obtained from 

deterministic equations, and common chaotic systems include 

Logistic systems, Chen systems, Lorenz systems, etc. Logistic 

mapping is highly sensitive to initial conditions, and even 

with small differences in initial values, the resulting sequence 

can vary greatly after multiple iterations. This feature enables 

it to capture small changes in the system, which is very useful 

for detecting and identifying small anomalies in the operating 

status of logistics vehicles. Minor faults in a certain 

component of a vehicle may not be apparent in the initial 

stage, but through the sensitivity of logistic mapping, these 

potential fault hazards can be detected in a timely 

manner.Therefore, The research in this paper is based on 

Logistic mapping, and its iterative formula is: 

𝑥𝑖+1 = 𝜇𝑥𝑖(1 − 𝑥𝑖)   (12) 

Where, 𝑥𝑖  represents chaos vector, 𝜇  represents control 

parameter, and 0 < 𝜇 ≤ 5, 𝑥𝑖+1 ∈ (0,1), 𝑖 == 1,2,3, ⋯. When 

3.5 < 𝜇 ≤ 5, the Logistic map shows chaotic state; When 𝜇 =

5 , it exhibits quintessential chaotic traits, including 

unpredictability, periodicity, ergodicity, and a high sensitivity 

to initial conditions. Therefore, this paper will take 𝜇 = 5 and 

use Logistic map as chaotic signal generator. 

3.2.2. Improvement of ant colony algorithm based on 

chaos theory 

In the initial stage of the standard ant colony algorithm, ants 

have the same probability of selecting a large number of paths, 

which makes it difficult for the algorithm to find the optimal 

path in a short period of time [19]. Chaos has traversal, which 

means it can explore all possible states within a certain range. 

By using logistic mapping to generate the same number of 

chaotic variables as the initial path, and introducing chaos into 

the path, the initial path exhibits a chaotic state, thereby 

breaking this uniformity and giving ants the opportunity to 

explore more different paths in the initial stage, increasing the 

possibility of finding the optimal path. Moreover, chaotic 

variables have randomness and unpredictability. Introducing 

chaotic variables during the search process can make ants' 

search behavior more flexible, enabling them to escape from 

the trap of local optimal solutions and explore a wider search 
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space [20]. 

The core of chaos initialization is to make the generated 

chaotic quantity correspond to each path one by one.Here, the 

permutation construction theory is adopted. Suppose (1,2,3) 

represents 3 locations, and its full array represents all paths, 

with a total of 3!= 6 kinds. The first bit of structure C is the 

smallest label, and the second bit is incremented after it. The 

first structure is set to "123", and the prime quantity V is set to 

"11". Combined with the serial number D of each structure,  

a DVC (Serial number vector structure) table can be formed. 

As long as D/C conversion can be realized, chaotic signals 

can be mapped to all paths one by one. Take three places for 

example, the DVC table is shown in Table 1. 

Table 1. DVC table. 

D (Serial number) V (Vector) C (Structure) 

1 11 123 

2 12 132 

3 21 213 

4 22 231 

5 31 312 

6 32 321 

To realize the conversion from D to C in Table 1, first 

complete the conversion from D to V, and the conversion 

formula is as follows: 

{

𝐷0 = 𝐷

𝐷𝑖 = 𝐷𝑖−1 − (𝑣𝑖 − 1)(𝑛 − 𝑖)!

𝑣𝑖 = [
𝐷𝑖−1

(𝑛−𝑖)!
]

   (13) 

Secondly, V is converted to C through the pointer function 

of V. In this example, 123 is taken as the first structure, and 

"1", "2" and "3" correspond to label 1, label 2 and label 3 

respectively. As shown in Table 1, the vector 𝑉 = 𝑣1𝑣2 = 31 

corresponding to No. 5, and the process of determining the 

corresponding structure C is: First, take the value of "3" 

corresponding to 𝑣1 = 3  from the first structure "123", that 

is"3" in "123", leaving "12"; Then take the value of "1" in the 

remaining "12" corresponding to 𝑣2 = 1; Finally, only "2" is 

left. So C obtained from vector 𝑉 = 31  is constructed as 

"312". 

Then the chaotic quantity 𝑥𝑖  is generated according to 

formula (12), then 𝐷0 = 𝑛! 𝑥1 , and then substituted into 

formula (13), and 𝑑1 = 𝑛𝑥1, we can get: 

{

𝑣1 = [𝑑1]

𝑣𝑖 = [𝑑𝑖]

𝑑𝑖 = (𝑛 − 𝑖 + 1)(𝑑𝑖−1 − 𝑣𝑖−1 + 1)
  (14) 

Then construct C through V, and finally realize the one-to-

one correspondence between the chaotic quantity 𝑥𝑖  and the 

construction C. 

Chaotic disturbance was added to the pheromone 

concentration updating strategy after the chaotic initialization 

of the ant colony to avoid stagnation due to the local optimal 

solution in order to further improve the performance of the ant 

colony algorithm.The update strategy is as follows:  

𝜏𝑖𝑗(𝑡 + 𝑛) = 𝜌𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗 + 𝑞𝑥𝑖𝑗   (15) 

Where, 𝑥𝑖𝑗  is the chaotic quantity generated according to 

formula (12), and 𝑞 is the coefficient. 

3.3. Real-time fault monitoring using chaotic ant colony 

algorithm 

3.3.1. Chaotic feature search in fault feature 

Chaotic features are searched based on the low-dimensional 

time-domain features of logistics vehicle fault information 

extracted in Section 2.3. 

The chaotic algorithm is composed of feature information 

mapping, chaotic variables and chaotic vectors, and its 

composition is shown in Figure 3. 

Feature subset Signature 

sequence

Chaotic 

variable

Decimal 

number

Binary 

code

Candidate feature set

 

Figure 3. Chaos algorithm composition. 

Low-dimensional time-domain characteristics of logistics 

vehicle fault information-chaotic variable mapping is 

essentially to provide effective chaotic variables for the 

follow-up monitoring process. The task of chaos variable is 

quantified as the mapping process of low dimensional time 

domain feature using fault information. The feature selection 

is realized by the transformation relationship between low 

dimensional time domain feature and chaos variable of 

candidate fault information.The purpose of setting chaos 
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variables is to estimate the performance of low-dimensional 

time-domain features of logistics vehicle fault information 

used in the subsequent classification process, so as to facilitate 

the timely determination of intrusion data. At the same time, 

the transformation process between logistics vehicle fault 

information and chaotic variables is repeated until the 

required number of iterations is reached. 

Candidate features need to be converted into chaotic 

variables before using chaos algorithm to search chaotic 

features in fault features, and the conversion process between 

them is called feature mapping. The feature mapping process 

is extremely important and can directly affect the accuracy of 

subsequent feature selection. 

In order to improve the timeliness and effectiveness of the 

search [21], the grouping sorting method is used to sort the 

candidate feature information set, and to sort multiple feature 

information into a candidate feature information sequence. 

The specific process is as follows: 

Let the feature set composed of chaotic features of 𝑛 

candidate logistics vehicle fault features be described as: 

𝐸 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑖 , ⋯ , 𝑒𝑛}   (16) 

Where, 𝑒𝑖  is the fault characteristic information of logistics 

vehicles. 𝑟(𝑒𝑖), 𝑖 = 1, ⋯ , 𝑛 represents the sequence coding of 

feature information corresponding to feature information 𝑒𝑖 . 

The value of 𝑟(𝑒𝑖) is: 

𝑟(𝑒𝑖) = {
1, 𝑒𝑖  is selected
0, 𝑒𝑖  is not selected

   (17) 

According to formula (17), the feature information 

sequence code corresponding to the candidate feature 

information sequence can be expressed as 

𝑟(𝑒1), 𝑟(𝑒2), ⋯ , 𝑟(𝑒𝑛), then the following feature information 

subset can be obtained by selection: 

𝑆 = {𝑒𝑖|𝑒𝑖 ∈ 𝐸, 𝑟(𝑒𝑖) = 1, 𝑖 ∈ (0, 𝑛)}  (18) 

The binary number is regarded as a binary number 𝑓 after 

the coding of the feature information sequence is completed, 

and the mutual transformation of the feature information 

sequence and the chaotic variable is completed by using the 

feature information and mapping information number system: 

𝐸′ =
𝑑𝑒𝑐𝑖𝑚𝑎𝑙(𝑓)

2𝑛     (19) 

Where, 𝑑𝑒𝑐𝑖𝑚𝑎𝑙(𝑓)  means that 𝑓  will be converted to 

decimal number. 

The logistic regression analysis shows that the chaotic map 

is not in a complete chaotic state at all stages due to the 

regularity of chaotic variables, but only in the initial stage. At 

this time, it is uniformly distributed in the interval [0,1]. The 

distribution of the interval is not affected by the initial 

variables. Therefore, the Logistic chaotic map is used to 

complete the search of chaotic features in the fault features. 

The chaotic variable is generated by Logistic mapping, 

namely: 

𝜒𝑗 +1
= 𝜇𝜒𝑗(1 − 𝜒𝑗), 𝑗 = 1,2, ⋯ , 𝑞  (20) 

Where, 𝜇  represents constant, 𝜒𝑗  represents chaotic variable, 

and 𝑞 represents chaotic iteration number. Let 𝜒0 =
𝜇−1

𝜇
, and 

use formula (20) to get chaos variable 𝜒𝑗+1(𝑗 = 1, ⋯ , 2𝑞 − 1). 

Map the chaotic variable 𝜒𝑗  from interval [0,1]  to interval 

[0, 2𝑞], and describe the feature subset obtained by chaotic 

search through the binary code transformation result, then the 

chaotic feature set of logistics vehicle real-time fault is 

obtained as 𝜒 = {𝜒1 , 𝜒2, ⋯ , 𝜒𝑖 , ⋯ , 𝜒𝑞}. 

3.3.2. Realize real-time fault monitoring of logistics 

vehicles 

The optimization results of the basic ant colony algorithm in 

Section 3.2 are used to realize the real-time fault monitoring 

of logistics vehicles. The specific steps are as follows: 

Step 1: Place the elements in the real-time fault chaotic 

feature set 𝜒 = {𝜒1, 𝜒2, ⋯ , 𝜒𝑖 , ⋯ , 𝜒𝑞}  of logistics vehicles 

obtained by using formula (20) on each position that the ant 

colony can pass through, a total of 𝑞 positions; 

Step 2: Initialize chaos by using the chaotic quantity 

generated by equation (12), and adjust the pheromone 

concentration on the path in the initial state, and place 𝑚 ants 

at 𝑞 positions; 

Step 3: The ant moves to the next position according to the 

probability of movement. Ants choose their path through 

established rules, in which the tabu table controls the rules. 

Ants cannot start to other destinations unless they have 

experienced a cycle; 

Step 4: Calculate the length 𝐿 of each path of 𝑚 ants and 

record the current optimal solution. When the ant chooses its 

moving path, if all the transferable location nodes do not meet 

the constraint conditions, the location nodes in the path will 

be discarded; 
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Step 5: Repeat steps 3 and 4. If the ant successfully 

transfers the path to the target node, the path is feasible; 

Step 6: When the 𝐿 length is less than the initial set length 

value, update the pheromone concentration of the current path 

according to formula (15); 

Step 7: Determine whether the ant has completed a fault 

feature retrieval. If the task assignment is completed, skip to 

step 8; Otherwise, skip to step 3; 

Step 8: After all pheromone concentrations are updated, 

the retrieval of real-time fault chaotic characteristics of 

logistics vehicles can be completed. If the output information 

can be obtained, it indicates that the logistics vehicle fault 

continues to exist; If there is no output information, it 

indicates that the logistics vehicle has no fault. 

4. Experiment and result analysis 

To verify the feasibility of the real-time fault monitoring 

method for logistics vehicles based on chaos ant colony 

algorithm, the following experiments are designed. 

4.1. Experiment preparation 

Namely the logistics vehicle before starting the experiment, 

first determine the experimental object. The logistics vehicle 

used for the experiment is shown in Figure 4. 

 

Figure 4. Logistics vehicle for experiment. 

In the experiment, the engine failure of logistics vehicles 

is also analyzed as an example. It is difficult to simulate 

various faults with real engine to obtain samples, which is 

harmful to the engine itself and costly. AMESim software 

provides a modeling solution for automobile engines, which 

can build engine models instead of actual engines, effectively 

carry out data analysis and optimization design, and reduce 

experimental costs. 

Table 2. Simulated data parameters. 

device  parameter  set up 

engine 

Engine type Four cylinder type 

piston stroke 90mm 

reduction ratio 10.5 

Sensor data Mean measurement data 

throttle position sensor  40% 

Air quality flow sensor 120kg/h 

Angular velocity sensor 150rad/s 

Oxygen sensor 9.5% 

Cylinder pressure sensor 1.2MPa 

Camshaft position sensor 180° 

Temperature sensor 85℃ 
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Figure 5. Fault sample distribution diagram under low frequency condition. 

To this end, first establish a four-cylinder engine model, set 

piston stroke, compression ratio and other parameters, and add 

basic attribute element model, gas circuit model, oil circuit 

model, cylinder model, starting mechanism, crankshaft 
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connecting rod model, exhaust system, etc. Main sensors 

include throttle opening sensor, mass air flow sensor, angular 

speed sensor, oxygen sensor, cylinder pressure sensor, 

camshaft position sensor, temperature sensor, etc. The 

simulated data parameters are shown below. 

The distribution of fault samples under simulated low 

frequency condition is shown in Figure 5. 

Under the above fault sample distribution, set the 

experimental parameters. The parameter settings are shown in 

Table 3. 

Table 3.Experimental parameter setting. 

Name of parameter Specific value 

Ant colony iteration times 800 times 

Maximum number of chaotic 

iterations 
500 times 

Minimum number of chaotic 

iterations 
50 times 

Hardware environment  
400G hard disk, 8G 

memory 

Operating system Windows 10 

Memory 512G 

Logistic mapping control 

parameters 
5 

Chaotic mapping interval [0, 2500] 

4.2. Experimental performance index 

The application effect of method of this paper is compared 

with that of method of Zhu and Zhang [5] and method of Niu 

[6] based on the above experimental background. The 

comparative performance indicators are as follows: 

1) The calculation process of monitoring accuracy is as 

follows: 

𝜓 =
𝜎

1−𝜐
× 100%    (21) 

Where, 𝜎 represents the real-time fault recognition rate, and 𝜐 

represents the rejection recognition rate. The monitoring 

accuracy is between 0 and 100%. The higher the value, the 

better the monitoring effect. 

2) Monitor signal transmission delay. This indicator can 

reflect the monitoring efficiency of different monitoring 

methods. The smaller the transmission delay of the monitoring 

signal is, the higher the monitoring efficiency is. It is counted 

by the computer's own software. 

To verify the reliability of the results obtained, numerous 

experimental analyses were conducted, and the experimental 

data was subjected to statistical analysis using SPSS version 

13.0. 

4.3. Result display and analysis 

4.3.1. Monitoring accuracy analysis 

First, compare the monitoring accuracy of Zhu and Zhang [5] 

method, Niu [6] method and method of this paper. The results 

are shown in Table 4. 

Table 4.Statistical results of monitoring accuracy of different 

methods (%). 

Number of 

experiments 

Method of this 

paper 

Zhu and Zhang [5] 

method 
Niu [6] method 

100 94.6 82.5 72.7 

200 95.1 83.6 78.1 

300 95.4 83.7 77.2 

400 96.0 84.1 74.0 

500 96.2 83.0 78.3 

The analysis of results presented in Table 4 reveals that the 

monitoring accuracy of the proposed method consistently 

remains above 94.6%, with an upward trend, peaking at 

96.2%. In contrast, the reference method from [5] achieves a 

monitoring accuracy range of 82.5% to 84.1%, while the 

method from [6] ranges from 72.7% to 78.3%. Clearly, the 

proposed method exhibits the highest monitoring accuracy 

among the three, approaching the ideal limit of 100% more 

closely, surpassing the literature methods by 10.5% and 16.3%, 

respectively. This indicates that the method proposed in this 

article has a better monitoring effect on real-time faults of 

logistics vehicles. This is because the introduction of chaos 

theory optimizes the initial path selection of ant colony 

algorithm. Traditional ant colony algorithm has the same 

probability of path selection in the initial stage, which makes 

it easy to get stuck in local optima and difficult to quickly find 

the optimal path. The ergodicity of chaotic motion generates 

chaotic quantities through logistic mapping and introduces 

paths, making the initial path random and diverse, providing 

more possible starting points for ant search and increasing the 

opportunity to find or approach the global optimal solution. In 

logistics vehicle fault monitoring, this means that algorithms 

can explore the fault feature space more comprehensively, 

accurately identify the features corresponding to different 

fault modes, and thus improve the accuracy of fault 

monitoring. 
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4.3.2.Analysis of monitoring signal transmission delay 

After completing the accuracy analysis of real-time fault 

monitoring of logistics vehicles, compare and analyze the 

monitoring signal transmission delay of different methods. 

The monitoring signal transmission delay can reflect the 

monitoring efficiency to a certain extent in actual work. 

Therefore, take the monitoring signal transmission delay as 

the performance index to further verify the performance of the 

method of this paper. The statistical results are shown in Table 

5. 

Table 5.Monitoring signal transmission delay of different 

methods in the same time (ms). 

Number of 

experiments 

Method of 

this paper 

Zhu and Zhang 

[5] method 

Niu [6] 

method 

100 582 1310 1567 

200 444 1283 1872 

300 575 925 1394 

400 627 943 2003 

500 610 855 1872 

By examining the data presented in Table 5, it becomes 

evident that the method proposed in this paper exhibits a 

range of monitoring signal transmission delays between 

444ms and 627ms. In contrast, the reference method from [5] 

has a minimum delay of 855ms and a maximum of 1310ms, 

while the reference method from [6] shows a minimum delay 

of 1394ms and a maximum of 2003ms. Among these three 

approaches, the method outlined in this paper demonstrates 

the shortest monitoring signal transmission delay, 

outperforming the other two by margins of 228ms to 767ms. 

This signifies a relatively superior monitoring efficiency. This 

is because the time-domain low dimensional features 

extracted by support vector machines not only improve 

accuracy, but also reduce data volume. In the logistics vehicle 

fault monitoring system, the reduction of data volume means 

faster data transmission and processing speed. Compared to 

processing a large amount of raw fault data, low dimensional 

features can be transmitted more quickly between monitoring 

devices and control centers, reducing transmission latency. 

5. Conclusion 

A new real-time fault monitoring method for logistics vehicles 

is designed by using chaotic ant colony algorithm in order to 

solve the problem of low monitoring accuracy and efficiency 

of traditional methods. After identifying the fault signal in the 

logistics vehicle fault tree in this method, the support vector 

machine theory is used to extract the fault characteristics, the 

ant colony algorithm is introduced, the ant search process is 

optimized by the chaotic motion characteristics, and the 

chaotic disturbance is added to update the pheromone 

concentration increment, and the characteristics are used as 

the ant path position information to realize the real-time fault 

monitoring of logistics vehicles. According to the 

experimental results, the proposed method has made 

breakthroughs in monitoring accuracy and efficiency. The 

monitoring accuracy of logistics vehicles has been increased 

by more than 10.5% and 16.3%, and the monitoring signal 

transmission delay has been reduced by 228ms and 767ms. 

Therefore, the method can effectively monitor logistics 

vehicles and contribute to the development of logistics.
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