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Highlights  Abstract  

▪ A coupling dual random effects are considered 

in the nonlinear WP degradation process. 

▪ An extended EM algorithm is presented to 

estimate the hidden parameters of the model. 

▪ The method is validated by using the rolling 

bearings and areo-engines dataset. 

▪ The proposed model and method can 

effectively estimate RUL of different 

equipment. 

 The influencing factors of performance degradation play a crucial role 

in accurately estimating the Remaining Useful Life (RUL) of equipment. 

Based on a nonlinear Wiener degradation process, a stochastic 

degradation model with coupled dual random effects is proposed to 

capture the degradation process of equipment under complex working 

conditions. The analytical expression of the Probability Density 

Function (PDF) for the RUL of the model, considering asymmetric 

distribution of drift and diffusion coefficients, is obtained by applying 

total probability formula. Based on Bayesian theory and its posterior 

distribution, an extended Expectation Maximization (EM) algorithm is 

employed to estimate the hidden and other parameters of the degradation 

model. Experimental investigations are carried out using the rolling 

bearing dataset from XJTU-SY and the turbofan aero-engine dataset 

from NASA. The effectiveness of the proposed model and approach is 

compared with that of the existing models in previous studies. The 

results show that the proposed model exhibits high RUL estimation 

accuracy. 
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1. Introduction 

Efficient and accurate Prognostics and Health Management 

(PHM) are essential for enhancing equipment safety, integrity, 

and reducing maintenance costs[1]. This is particularly crutial 

for long-life, highly reliable aero-engines and similar products. 

The Remaining Useful Life (RUL) estimation within PHM 

holds significant importance[2]. However, estimating RUL for 

long-life, high-reliability products is challenging due to the 

scarcity and high cost of historical degradation information. 

Typically, the performance tends to degrade during operation[3]. 

Many factors affect performance degradation, including 

external environmental conditions, internal materials, 

manufacturing processes, etc. Identifying the specific causes 

and factors responsible for performance degradation is often 

difficult. The use of data-driven approaches has become  
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a promising route for RUL estimation[4-6]. These approaches 

permit the direct utilization of equipment condition monitoring 

data or historical data, without relying on physical models of 

equipment performance degradation. However, achieving 

higher estimation accuracy demands a substantial amount of 

data, which may introduce errors when extrapolated over 

extended intervals.  

Currently, RUL is usually estimated based on regression[7, 

8], similarity[9], and degradation models[10, 11]. The random 

coefficient regression model has limitations in accurately 

capturing the dynamic and time-varying nature of equipment 

degradation, making it unsuitable for online RUL 

estimation[12]. Additionally, RUL estimation based on 

similarity requires multiple historical degradation records of the 

same equipment type as samples. By integrating multiple 

factors affecting performance degradation into a comprehensive 

model, accurate and reliable RUL estimation can be 

achieved[13]. Degradation models[13-15] considering 

trajectory, quantity distribution, cumulative damage, and 

stochastic process have been established. The Wiener Process 

(WP) model is a commonly used fundamental stochastic 

process model among the existing performance degradation 

models[16]. The degradation model of WP can describe both 

monotonic degradation processes and continuous non-

monotonic nonlinear degradation processes with varying 

tendencies[17]. Recently, many researches have been conducted 

on understanding nonlinear WP models. For instance, the 

degradation of the equipment was modeled using a nonlinear 

drift WP model[18]. Additionally, a novel distributed model 

fusion method was presented to estimate the RUL with  

a nonlinear WP[19, 20]. Similarly, an online RUL estimation 

method based on a generalized nonlinear degradation model 

with deterministic and stochastic parameters was proposed[21]. 

To account for the dynamic environmental impacts and loading 

conditions, a nonlinear WP model with a stochastic time-

varying covariate was proposed[22]. These studies have 

focused on the specific nonlinear degradation models or 

methods centered around nonlinear WP to address relevant 

issues. However, in terms of constructing multi-parameter 

coupling models and handling complex parameter interactions, 

they lack model adaptability, accuracy and reliability in real 

applications. 

When estimating the RUL of equipment in a nonlinear 

stochastic degradation process, it's necessary to obtain and solve 

the analytical expressions of the RUL distribution function 

corresponding to the failure threshold. Despite the complexity, 

this approach is effective[23, 24]. Theoretical derivations can 

yield a general procedure for acquiring these expressions. 

Usually, the moment when the equipment firstly reaches the 

failure threshold is referred to as the First Hitting Time (FHT), 

representing the life of the equipment[25]. The preset failure 

threshold is generally determined based on engineering 

experience and technical standards. The degradation process 

crossing a fixed threshold resembles the standard Brownian 

Motion (BM) process crossing a time-varying threshold[26]. 

Corresponding degradation models with failure thresholds are 

proposed for different equipment clusters[27].To cut calculation 

costs, fixed thresholds are commonly used for RUL estimation 

and reliability analysis. It's generally assumed that if the 

degradation process reaches the threshold at a certain time, the 

probability of crossing it earlier is negligible. For instance, one 

RUL estimation method checks if the degradation amount of the 

equipment exceeds a given threshold limit[28]. 

The estimation of the parameters in the probability density 

function (PDF) is essential for RUL estimation. The commonly 

used parameter estimation methods include moment 

estimation[29], maximum likelihood estimation[30], least 

squares estimation[31] and Bayesian estimation[32, 33]. Many 

scholars have studied alternative parameter estimation methods 

beyond these established methods[18, 34-36]. The Expectation 

Maximization (EM) algorithm is commonly used for parameter 

estimation in probabilistic models with hidden variables, where 

it iteratively optimizes the model parameters to maximize the 

likelihood function of the observed data[37, 38]. Although the 

EM algorithm is sensitive to the initial value, the unknown 

parameters in the stochastic process model have hidden 

variables, making the EM algorithm a more suitable choice for 

parameter estimation. 

In summary, through precise parameter settings, this paper 

considers the coupling relationship between individual and 

external factors of the nonlinear WP model to capture the 

degradation process of equipment under complex working 

conditions. Next, by applying the concept of FHT, through 

theoretical derivations and mathematical transformations, the 
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derivation process of the analytical expression of the PDF for 

the RUL is introduced. Based on Bayesian theory and posterior 

distribution, an extended EM algorithm is employed to estimate 

hidden parameters and other key parameters in the model. To 

validate the accuracy and reliability of the proposed RUL 

estimation approach, experimental investigations are provided 

under different working conditions and equipment types. 

Finally, the conclusions are drawn. 

2. Degradation Model with Dual Random Effects 

During the manufacturing process, batches of equipment of 

the same type may show variability due to various factors, 

including raw material, production processes, etc. These 

individual differences is typically reflected as drift coefficient 

in the degradation model. The external random factors can also 

affect the degradation performance, which can be reflected in 

the diffusion coefficient. Therefore, individual differences and 

external factors can be taken into account in performance 

degradation model is specifically manifested as drift and 

diffusion coefficients. A nonlinear WP degradation model 

simultaneously considers the coupling relationship between 

individual differences and external factors is presented. The 

initial degradation level is defined as 𝑋(0) = 0 , and the 

degradation value at time 𝑡𝑘 can be denoted by 

𝑋(𝑡𝑘) = 𝑋(0) + 𝜈 ∫ Λ(𝑧, 𝑏)
𝑡𝑘
0

dz + 𝜎𝐵(𝑡𝑘) (1) 

Where 𝜈  is the drift coefficient, 𝜎  is the diffusion coefficient, 

𝐵(𝑡𝑘)  is the standard Brownian motion (BM), and 

∫ 𝛬(𝑧, 𝑏)
𝑡𝑘
0

𝑑𝑧 = 𝜇(𝑡𝑘; 𝑏)  is the nonlinear function, 

representing the trend term of the degradation process. 

Nonlinear functions can take various forms, including 

polynomials, exponential functions, and power functions[21]. 

Let 𝜎 = 1/√𝛿 , and the parameter 𝛿  follows a Gamma 

distribution with shape parameter 𝛼  and scale parameter 𝛽 , 

denoted as 𝛿~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽). Under the given parameter 𝛿, the 

drift coefficient 𝜈  follows a normal distribution with mean 

𝜇𝜈and variance 𝜎𝜈
2, denoted as 𝜈|𝛿~𝑁(𝜇𝜈, 𝜎𝜈

2). Let 𝜎𝜈
2 = 𝜙/𝛿, 

where 𝜙 is the unknown parameter. Because of 𝛿, there is  

a coupling relationship between drift and diffusion. The precise 

parameter settings are established through the stochastic 

distributions and coupling relationships of different parameters. 

The reason for choosing the random distribution of 𝛿, 𝜈 is from 

Bayesian linear regression for computational convenience[39]. 

This model is denoted as M1. 

To establish the relationship between the performance 

degradation model and its life expectancy, it is conventionally 

postulated that the performance degradation process of the 

equipment adheres to a monotonically increasing tendency. 

Once the degradation trajectory of the equipment surpasses the 

preset failure threshold W, the equipment is regarded as being 

in a failure state. Supposing that the degradation process exactly 

reaches the threshold at a particular moment 𝑡𝑘, the probability 

of exceeding the threshold prior to time 𝑡𝑘 can be neglected. In 

this context, the concept of FHT is employed to define the 

lifespan of the equipment, which can be defined as 

𝑇 = 𝑖𝑛𝑓{ 𝑡𝑘 > 0: 𝑋(𝑡𝑘) ≥ 𝑊}   (2) 

Let the RUL of the equipment at time 𝑡𝑘 be 𝐿𝑘, which can 

be expressed as 𝐿𝑘 = 𝑇 − 𝑡𝑘. Then the RUL of the equipment at 

time 𝑡𝑘 can be defined as 

𝐿𝑘 = 𝑖𝑛𝑓{ 𝑙𝑘 > 0:𝑋(𝑡𝑘 + 𝑙𝑘) ≥ 𝑊|𝑋(𝑡𝑘) < 𝑊} (3) 

Where 𝑙𝑘denotes the time when the RUL is 𝐿𝑘 . 

3. Distribution Function of RUL  

To estimate the RUL, the analytical expression of the PDF 

for the degradation model needs to be obtained. In order to 

obtain the RUL distribution function, three lemmas are 

introduced. 

Lemma 1[40]. For a stochastic degradation process 

{𝑋(𝑡), 𝑡 ≥ 0}, if 𝜇(𝑡; 𝜃) is a continuous function of time t. The 

PDF of the FHT of the degradation process {𝑋(𝑡), 𝑡 ≥ 0} to a 

fixed failure threshold W can be written as 

𝑓𝑇(𝑡|Θ) ≈
1

√2𝜋𝑡
(
𝑆𝐵(𝑡)

𝑡
+

𝜇(𝑡;𝜃)

𝜎𝐵
) 𝑒𝑥𝑝 (−

𝑆𝐵
2(𝑡)

2𝑡
) 

 (4) 

Where 𝑆𝐵(𝑡) =
(𝑊−∫ 𝜇(𝜏;𝜃)𝑑 𝜏

𝑡
0 )

𝜎𝐵
, and 𝛩 is the vector of unknown 

parameters of the model. 

Lemma 2[40]. If 𝜌 follows a normal distribution with mean 

𝜇and variance 𝜎2 , denoted as 𝜌~𝑁(𝜇, 𝜎2), 𝜔,𝐾1, 𝐾2 ∈ 𝑅, and 

𝐾3 ∈ 𝑅
+, then the following formula is true. 

𝐸𝜌 [(𝜔 − 𝐾1𝜌) 𝑒𝑥𝑝 (−
(𝜔−𝐾2𝜌)

2

2𝐾3
)] = √

𝐾3

𝐾2
2𝜎2+𝐾3

(𝜔 −

                    𝐾1
𝐾2𝜎

2𝜔+𝜇𝐾3

𝐾2
2𝜎2+𝐾3

) × 𝑒𝑥𝑝 (−
(𝜔−𝐾2𝜇)

2

2(𝐾2
2𝜎2+𝐾3)

)                    (5) 

According to Lemma 1, the PDF of the FHT for Model M1 
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is obtained as 

𝑓𝑇|𝜈,𝜎(𝑡|𝜈, 𝜎) =
𝑊−𝜈𝜒(𝑡)

𝜎√2𝜋𝑡3
𝑒𝑥𝑝 [−

(𝑊−𝜈𝛾(𝑡))2

2𝜎 𝑡2
] (6) 

Where 𝜒(𝑡) = ∫ 𝛬(𝜏, 𝑏) 𝑑 𝜏
𝑡

0
− 𝑡𝛬(𝑡, 𝑏) , 𝛾(𝑡) = ∫ 𝛬(𝜏, 𝑏) 𝑑 𝜏

𝑡

0
 . 

The degradation value 𝑥𝑘 of the PDF of the RUL for model M1 

can be given by 

𝑓𝐿𝑘|𝜈,𝜎(𝑙𝑘|𝜈, 𝜎) =
1

√2𝜋𝑙𝑘
3
(𝑊 − 𝑥𝑘 − 𝜈𝜒𝐿(𝑙𝑘)) 𝑒𝑥𝑝 [−

(𝑊−𝑥𝑘−𝜈𝛾𝐿(𝑙𝑘))
2

2𝜎 𝑙2 𝑘
]

 (7) 

Where 𝜒𝐿(𝑙𝑘) = ∫ 𝛬(𝜏, 𝑏) 𝑑 𝜏
𝑙𝑘+𝑡𝑘
𝑡𝑘

− 𝑙𝑘𝛬(𝑙𝑘 + 𝑡𝑘, 𝑏) , 𝛾𝐿(𝑙𝑘) =

∫ 𝛬(𝜏, 𝑏) 𝑑 𝜏
𝑙𝑘+𝑡𝑘
𝑡𝑘

. 

By considering the individual variability in the degradation 

process, i.e. assuming the drift coefficient follows a normal 

distribution, the general formula for the total probability 

regarding the parameter 𝜈 is given by 

𝑓𝐿𝑘|𝜎(𝑙𝑘|𝜎) = ∫ 𝑓𝐿𝑘|𝜈,𝜎(𝑙𝑘|𝜈, 𝜎) 𝑑 𝑡𝜈
= 𝐸𝜈[𝑓𝐿𝑘|𝜈,𝜎(𝑙𝑘|𝜈, 𝜎)]    (8) 

According to the assumptions 𝛿 = 1/𝜎2  , 𝜎𝜈
2 = 𝜙/𝛿 , 

𝜈|𝛿~𝑁(𝜇𝜈 , 𝜎𝜈
2), Lemma 2, Eqs. (6) and (7), when the parameter 

𝛿 is given, the PDF of the FHT can be expressed as

𝑓𝐿𝑘|𝛿(𝑙𝑘|𝛿) = 𝐸𝜈|𝛿[𝑓𝐿𝑘|𝜈,𝛿(𝑙𝑘|𝜈, 𝛿)] =
1

√2𝜋𝑙𝑘
2(𝜙𝛾𝐿

2(𝑙𝑘)+𝑙𝑘)

𝛿
1

2 (𝑊 − 𝑥𝑘 − 𝜒(𝑙𝑘)
(𝑊−𝑥𝑘)𝜙𝛾𝐿(𝑙𝑘)+𝜇𝜈𝑙𝑘

𝜙𝛾𝐿
2(𝑙𝑘)+𝑙𝑘

) 𝑒𝑥𝑝 (−
(𝑊−𝑥𝑘−𝜇𝜈𝛾𝐿(𝑙𝑘))

2

2(𝜙𝛾𝐿
2(𝑙𝑘)+𝑙𝑘)

𝛿)       (9) 

 

Considering the influence of external random factors on the 

degradation process, assuming that the diffusion coefficient 

follows a gamma distribution, the full probability formula with 

respect to parameter 𝛿 can be obtained as 

𝑓𝐿𝑘(𝑙𝑘) = ∫ 𝑓𝐿𝑘|𝛿(𝑙𝑘|𝛿)𝑑𝑡𝛿
= 𝐸𝛿[𝑓𝐿𝑘|𝛿(𝑙𝑘|𝛿)] (10) 

Lemma 3. If 𝜌  follow a Gamma distribution with shape 

parameter m and scale parameter n, denoted as 

𝜌~𝐺𝑎𝑚𝑚𝑎(𝑛,𝑚) . Then, for 𝐾1, 𝐾2, 𝑎 ∈ 𝑅 , the following 

equation can be obtained. 

𝐸𝜌[𝐾1𝜌
𝑎 𝑒𝑥𝑝( − 𝐾2𝜌)] =

𝐾1𝑛
𝑚Γ(𝑎+𝑚)

Γ(𝑚)(𝐾2+𝑛)
𝑎+𝑚  (11) 

Proof of Lemma 3. 

𝐸𝜌[𝐾1𝜌
𝑎 𝑒𝑥𝑝( − 𝐾2𝜌)]

= ∫ 𝐾1𝜌
𝑎

+∞

0

𝑒𝑥𝑝( − 𝐾2𝜌)𝛺(𝜌|𝑚, 𝑛) 𝑑 𝜌 

= ∫ 𝐾1𝜌
𝑎

+∞

0

𝑒𝑥𝑝( − 𝐾2𝜌)
𝑛𝑚

𝛤(𝑚)
𝜌𝑚−1 𝑒𝑥𝑝( 𝑛𝜌) 𝑑 𝜌 

=
𝐾1𝑛

𝑚

𝛤(𝑚)
∫ 𝜌𝑎+𝑚−1
+∞

0

𝑒𝑥𝑝( − (𝐾2 − 𝑛)𝜌) 𝑑 𝜌 

=
𝐾1𝑛

𝑚𝛤(𝑎 + 𝑚)

𝛤(𝑚)(𝐾2 + 𝑛)
𝑎+𝑚

 

According to lemma 3 and Eq. (10), the PDF of the RUL for 

model M1 can be written as

𝑓𝐿𝑘(𝑙𝑘) = 𝐸𝛿[𝑓𝐿𝑘|𝛿(𝑙𝑘|𝛿)] =
1

√2𝜋𝑙𝑘
2(𝜙𝛾𝐿

2(𝑙𝑘)+𝑙𝑘)

(𝑊 − 𝑥𝑘 − 𝜒𝐿(𝑙𝑘)
(𝑊−𝑥𝑘)𝜙𝛾𝐿(𝑙𝑘)+𝜇𝜈𝑙𝑘

𝜙𝛾𝐿
2(𝑙𝑘)+𝑙𝑘

)
𝛽𝛼Γ(

1

2
+𝛼)

Γ(𝛼)(
(𝑊−𝑥𝑘−𝜇𝜈𝛾𝐿(𝑙𝑘))

2

2(𝜙𝛾𝐿
2(𝑙𝑘)+𝑙𝑘)

+𝛽)

1
2+𝛼

 (12) 

 

4. Parameter Estimation 

The maximum likelihood function of the parameters in the 

statistical model is derived from the distribution of degradation 

increments. The expectations in the E-step of the EM algorithm 

are obtained by updating the posterior distribution. The vector 

of unknown parameters 𝛩 = (𝜇𝜈, 𝜙, 𝑏, 𝛼, 𝛽) in the PDF of the 

RUL for model M1 are estimated through the iterations of the 

extended EM algorithm. 

4.1. Likelihood Function 

Let 𝑡𝑖𝑗  denote the time of the jth inspection for the ith 

equipment, and 𝑋(𝑡𝑖𝑗) = 𝑥𝑖𝑗  denote the measurement value for 

the jth inspection of the ith equipment. Here, 𝑖 = 1,2, . . . , 𝑁, 𝑗 =

0,1,2, . . . , 𝑀𝑖, and 𝑀𝑖 represents the number of monitoring times 

for the ith equipment, and N represents the total number of the 

equipment. In model M1, when parameters 𝜈𝑖  and 𝛿𝑖 are given, 

according to the properties of the WP, the degradation increment 

for the ith observed sample follows a normal distribution and 

can be represented as 

Δ𝑥𝑖𝑗 = 𝑥𝑖𝑗 − 𝑥𝑖,𝑗−1~𝑁 (𝜈𝑖Δ𝜏𝑖𝑗 ,
Δ𝑡𝑖𝑗

𝛿𝑖
)  (13) 

Where 𝛥𝑡𝑖𝑗 = 𝑡𝑖𝑗 − 𝑡𝑖,𝑗−1  is the time increment and 𝛥𝜏𝑖𝑗 =

∫ 𝛬(𝑧, 𝑏)𝑑𝑧
𝑡𝑖𝑗
𝑡𝑖,𝑗−1

 is the nonlinear increment function. 

Based on the distribution of degradation increments, when 
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parameters 𝜈𝑖  and 𝛿𝑖 are given, the likelihood function of the ith 

sample can be expressed as 

𝑃(𝑥𝑖,0:𝑀𝑖 ∣ 𝜈𝑖 , 𝛿𝑖) =∏𝑓(Δ𝑥𝑖𝑗 ∣ 𝜈𝑖 , 𝛿𝑖)

𝑀𝑖

𝑗=1

 

  = ∏ {
1

√2𝜋Δ𝑡𝑖𝑗

𝛿
𝑖

1

2 𝑒𝑥𝑝 (−
(Δ𝑥𝑖𝑗−𝜈𝑖Δ𝜏𝑖𝑗)

2

2Δ𝑡𝑖𝑗
𝛿𝑖)}

𝑀𝑖
𝑗=1  (14) 

The likelihood function for 𝜈𝑖  and 𝛿𝑖 can be written as 

𝑃(𝜈𝑖 ∣ 𝛿𝑖) = ∏ 𝑓(𝜈𝑖 ∣ 𝛿𝑖)
𝑀𝑖
𝑗=1 = ∏ {

1

√2𝜋𝜙
𝛿𝑖

1

2 𝑒𝑥𝑝 [−
(𝜈𝑖−𝜇𝜈)

2

2𝜙
𝛿𝑖]}

𝑀𝑖
𝑗=1 (15) 

𝑃(𝛿𝑖) = ∏ 𝑓(𝛿𝑖)
𝑀𝑖
𝑗=1 = ∏ {

𝛽𝛼

Γ(𝛼)
𝛿𝑖
𝛼−1 𝑒𝑥𝑝( 𝛽𝛿𝑖)}

𝑀𝑖
𝑗=1       (16) 

Since 𝜈|𝛿~𝑁(𝜇𝜈 ,
𝜙

𝛿
) ,𝛿~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) , according to the 

distribution of the degradation increment 𝛥𝑥𝑖𝑗  , the likelihood 

function of the ith sample represented by the degradation 

increment 𝛥𝑥𝑖𝑗  is

𝐿𝑖(Θ) = ∫ ∫ 𝑃(𝑥𝑖,0:𝑀𝑖
∣ 𝜈𝑖 , 𝛿𝑖)

+∞

−∞

+∞

0
𝑃(𝜈𝑖 ∣ 𝛿𝑖)𝑃(𝛿𝑖) 𝑑 𝛿𝑖 𝑑 𝜈 =

𝛽𝛼Γ(
𝑀𝑖
2
+𝛼)

Γ(𝛼)√Δ𝑤𝑖,𝑀𝑖𝜙+1(2𝜋)
𝑀𝑖
2 ∏ (Δ𝑡𝑖𝑗)

1
2(

Δ𝑐𝑖,𝑀𝑖
2

+
𝜇𝑎

2

2𝜙
−
(Δ𝑑𝑖,𝑀𝑖

𝜙+𝜇𝜈)
2

2𝜙(Δ𝑤𝑖,𝑀𝑖
𝜙+1)

+𝛽)

𝑀𝑖
2
+𝛼

𝑀𝑖
𝑗=1

          (17) 

 

Where 𝛥𝑐𝑖,𝑀𝑖 = ∑ (
𝛥𝑥𝑖𝑗

2

𝛥𝑡𝑖𝑗
)

𝑀𝑖
𝑗=1  , 𝛥𝑑𝑖,𝑀𝑖 = ∑

𝛥𝑥𝑖𝑗𝛥𝜏𝑖𝑗

𝛥𝑡𝑖𝑗

𝑀𝑖
𝑗=1  , 𝛥𝑤𝑖,𝑀𝑖 =

∑
𝛥𝜏𝑖𝑗

2

𝛥𝑡𝑖𝑗

𝑀𝑖
𝑗=1 . 

After obtaining the likelihood function 𝐿𝐶(𝛩) =

∏ 𝐿𝑖
𝑁
𝑖=1 (𝛩)  of the complete data, the log-likelihood function 

can be obtained by taking the logarithm on both sides as

𝑙𝑛 𝐿𝐶 (Θ) = ∑ ∑ [
1

2
𝑙𝑛 𝛿𝑖 −

1

2
𝑙𝑛( 2𝜋) −

1

2
𝑙𝑛(Δ𝑡𝑖𝑗) −

(Δ𝑥𝑖𝑗−𝜈𝑖Δ𝜏𝑖𝑗)
2

2Δ𝑡𝑖𝑗
𝛿𝑖]

𝑀𝑖
𝑗=1

𝑁
𝑖=1 + ∑ [

1

2
𝑙𝑛 𝛿𝑖 −

1

2
𝑙𝑛( 2𝜋) −

1

2
𝑙𝑛 𝜙 −

(𝜈𝑖−𝜇𝜈)
2

2𝜙
𝛿𝑖]

𝑁
𝑖=1 +

∑ [𝛼 𝑙𝑛 𝛽 − 𝑙𝑛 Γ (𝛼) + (𝛼 − 1) 𝑙𝑛(𝛿𝑖) − 𝛽𝛿𝑖]
𝑁
𝑖=1      (18) 

 

4.2. The Posterior Distribution Update 

Based on 𝜈|𝛿~𝑁(𝜇𝜈,
𝜙

𝛿
) , 𝛿~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)  and Bayesian 

formula, the posterior distribution of parameters 𝜈𝑖 , 𝛿𝑖  can be 

expressed as

𝑃(𝜈𝑖 ∣ 𝑥𝑖,0:𝑀𝑖 , 𝛿𝑖) =
𝑃(𝑥𝑖,0:𝑀𝑖

∣𝜈𝑖,𝛿𝑖)𝑃(𝜈𝑖∣𝛿𝑖)𝑃(𝛿𝑖)

𝑃(𝑥𝑖,0:𝑀𝑖
,𝛿𝑖)

∝ 𝑃(𝑥𝑖,0:𝑀𝑖 ∣ 𝜈𝑖 , 𝛿𝑖) ⋅ 𝑃(𝜈𝑖 ∣ 𝛿𝑖) ⋅ 𝑃(𝛿𝑖) ∝ 𝑒𝑥𝑝 [−
(𝜈𝑖−

Δ𝑑𝑖,𝑀𝑖
𝜙+𝜇𝜈

Δ𝑤𝑖,𝑀𝑖
𝜙+1

)

2

2𝜙

(Δ𝑤𝑖,𝑀𝑖
𝜙+1)

𝛿𝑖]     (19) 

𝑃(𝛿𝑖 ∣ 𝑥𝑖,0:𝑀𝑖
) =

𝑃(𝑥𝑖,0:𝑀𝑖∣𝛿𝑖)𝑃
(𝛿𝑖)

𝑃(𝑥𝑖,0:𝑀𝑖)
∝ ∫ 𝑃

+∞

−∞
(𝑥𝑖,0:𝑀𝑖

∣ 𝜈𝑖 , 𝛿𝑖)𝑃(𝜈𝑖 ∣ 𝛿𝑖)𝑑𝜈𝑖𝑃(𝛿𝑖) ∝ 𝛿𝑖

𝑀𝑖
2
+𝛼−1

𝑒𝑥𝑝 {− [
Δ𝑐𝑖,𝑀𝑖

2
+
𝜇𝜈

2

2𝜙
−

(Δ𝑑𝑖,𝑀𝑖𝜙+𝜇𝜈)
2

2𝜙(Δ𝑤𝑖,𝑀𝑖𝜙+1)
+ 𝛽] 𝛿𝑖}    (20) 

 

So the posterior distribution of parameters 𝜈𝑖  and 𝛿𝑖 can be 

rewritten as 

𝜈𝑖 ∣ 𝑥𝑖,0:𝑀𝑖 , 𝛿𝑖~𝑁 (
Δ𝑑𝑖,𝑀𝑖

𝜙+𝜇𝜈

Δ𝑤𝑖,𝑀𝑖
𝜙+1

,
𝜙

(Δ𝑤𝑖,𝑀𝑖
𝜙+1)𝛿𝑖

) (21) 

𝛿𝑖 ∣ 𝑥𝑖,0:𝑀𝑖
~𝐺𝑎𝑚𝑚𝑎(𝛼 +

𝑀𝑖

2
,
Δ𝑐𝑖,𝑀𝑖

2
+
𝜇𝜈

2

2𝜙
−

(Δ𝑑𝑖,𝑀𝑖𝜙+𝜇𝜈)
2

2𝜙(Δ𝑤𝑖,𝑀𝑖𝜙+1)
+ 𝛽)(22) 

According to Eqs. (21) and (22), by using the variance 

formula, the expectations of 𝜈𝑖 , 𝛿𝑖, 𝜈𝑖
2 and 𝑙𝑛 𝛿𝑖 are 

𝐸(𝜈𝑖 ∣ 𝑥𝑖,0:𝑀𝑖 , 𝛿𝑖) =
Δ𝑑𝑖,𝑀𝑖

𝜙+𝜇𝜈

Δ𝑤𝑖,𝑀𝑖
𝜙+1

   (23) 

𝐸(𝛿𝑖 ∣ 𝑥𝑖,0:𝑀𝑖) =
𝛼+

𝑀𝑖
2

Δ𝑐𝑖,𝑀𝑖
2

+
𝜇𝜈2

2𝜙
−
(Δ𝑑𝑖,𝑀𝑖

𝜙+𝜇𝜈)
2

2𝜙(Δ𝑤𝑖,𝑀𝑖
𝜙+1)

+𝛽

 (24) 

𝐸(𝜈𝑖
2 ∣ 𝑥𝑖,0:𝑀𝑖 , 𝜗𝑖) = 𝐸

2(𝜈𝑖 ∣ 𝑥𝑖,0:𝑀𝑖 , 𝛿𝑖) + 𝑉𝑎𝑟(𝜈𝑖 ∣

𝑥𝑖,0:𝑀𝑖 , 𝛿𝑖)  = (
Δ𝑑𝑖,𝑀𝑖

𝜙+𝜇𝜈

Δ𝑤𝑖,𝑀𝑖
𝜙+1

)
2

+
𝜙

(Δ𝑤𝑖,𝑀𝑖
𝜙+1)𝛿𝑖

 (25) 

𝐸(𝑙𝑛 𝛿𝑖 ∣ 𝑥𝑖,0:𝑀𝑖) = 𝜓 (𝛼 +
𝑀𝑖

2
) − 𝑙𝑛 [

Δ𝑐𝑖,𝑀𝑖

2
+

𝜇𝜈
2

2𝜙
−

(Δ𝑑𝑖,𝑀𝑖
𝜙+𝜇𝜈)

2

2𝜙(Δ𝑤𝑖,𝑀𝑖
𝜙+1)

+ 𝛽] (26) 

Where 𝜓(•)  is the digamma function. In order to obtain the 

expectation of the log-likelihood function used in the EM 

algorithm, Eqs. (23) to (26) can be rewritten as 

𝐸1𝑖(𝛩) = 𝐸(𝜈𝑖 ∣ 𝑥𝑖,0:𝑀𝑖 , 𝛿𝑖) 𝐸2𝑖(𝛩) =
𝜙

(𝛥𝑤𝑖,𝑀𝑖
𝜙+1)

𝐸3𝑖(𝛩) = 𝐸(𝛿𝑖 ∣ 𝑥𝑖,0:𝑀𝑖) 𝐸4𝑖(𝛩) = 𝐸(𝑙𝑛 𝛿𝑖 ∣ 𝑥𝑖,0:𝑀𝑖)
(27) 

The above expectations and related definitions can be used 

to calculate the expectation function of the E-step in the EM 
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algorithm. 

4.3. EM Algorithm Parameter Estimation 

E-step. The latent variable is estimated by calculating the 

expected value at this step. The result of the kth iteration of the 

unknown parameter vector is denoted as 𝛩(𝑘) =

(𝜇𝜈
(𝑘), 𝜙(𝑘), 𝑏(𝑘), 𝛼(𝑘), 𝛽(𝑘)) . The expectation of the log-

likelihood function of the complete data under the condition of 

the measured equipment degradation data 𝑋1:𝑁,0:𝑀𝑖   and the 

estimated value 𝛩1
(𝑘)

 after the kth iteration is

𝑄(𝛩 ∣ 𝑋1:𝑁,0:𝑀𝑖 , 𝛩
(𝑘)) =∑∑{

1

2
𝐸4𝑖(𝛩

(𝑘)) −
1

2
𝑙𝑛( 2𝜋) −

1

2
𝑙𝑛(𝛥𝑡𝑖𝑗)

𝑀𝑖

𝑗=1

𝑁

𝑖=1

− [
𝛥𝑥𝑖𝑗

2

2𝛥𝑡𝑖𝑗
𝐸3𝑖(𝛩

(𝑘)) −
𝛥𝑥𝑖𝑗𝛥𝜏𝑖𝑗

𝛥𝑡𝑖𝑗
𝐸1𝑖(𝛩

(𝑘))𝐸3𝑖(𝛩
(𝑘)) + 

𝛥𝜏𝑖𝑗
2

2𝛥𝑡𝑖𝑗
[𝐸1𝑖

2 (𝛩(𝑘)) +
𝐸2𝑖(𝛩

(𝑘))

𝐸3𝑖(𝛩
(𝑘))

] 𝐸3𝑖(𝛩
(𝑘))]} +∑{

1

2
𝐸4𝑖(𝛩

(𝑘)) −
1

2
𝑙𝑛( 2𝜋) −

1

2
𝑙𝑛 𝜙

𝑁

𝑖=1

− [
𝜇𝜈

2

2𝜑
𝐸3𝑖(𝛩

(𝑘)) −
𝜇𝜈
𝜑
𝐸1𝑖(𝛩

(𝑘))𝐸3𝑖(𝛩
(𝑘)) + 

1

2𝜑
[𝐸1𝑖

2 (𝛩(𝑘)) +
𝐸2𝑖(𝛩

(𝑘))

𝐸3𝑖(𝛩
(𝑘))
] 𝐸3𝑖(𝛩

(𝑘))]} + ∑ [𝛼 𝑙𝑛 𝛽 − 𝑙𝑛 𝛤 (𝛼) + (𝛼 − 1)𝐸4𝑖(𝛩
(𝑘)) − 𝛽𝐸3𝑖(𝛩

(𝑘))]𝑁
𝑖=1  (28) 

 

M-step. The central goal in this step is to find the maximum 

of function 𝑄(𝛩 ∣ 𝑋1:𝑁,0:𝑀𝑖 , 𝛩
(𝑘))  with respect to 𝛩 . It can be 

written as 

𝛩̂(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝛩

{𝑄(𝛩 ∣ 𝑋1:𝑁,0:𝑀𝑖 , 𝛩
(𝑘))} (29) 

To obtain the parameter values after the k+1th iteration, 

Eq.(28) is differentiated with respect to the parameters 𝛩 and 

the five resulting expressions are set to zero. Eq.(28) can be 

expressed as 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑄

𝜕𝜇𝜈
= −∑ [

𝜇𝜈

𝜙
𝐸3𝑖(𝛩

(𝑘)) −
𝐸1𝑖(𝛩

(𝑘))𝐸3𝑖(𝛩
(𝑘))

𝜙
] = 0𝑁

𝑖=1

𝜕𝑄

𝜕𝜙
= ∑ {−

1

2𝜙
− [−

𝜇𝜈
2

2𝜙2
𝐸3𝑖(𝛩

(𝑘)) +
𝜇𝜈

𝜙2
𝐸1𝑖(𝛩

(𝑘))𝐸3𝑖(𝛩
(𝑘)) −𝑁

𝑖=1

         
𝐸1𝑖
2 (𝛩(𝑘))𝐸3𝑖(𝛩

(𝑘))

2𝜙2
−
𝐸2𝑖(𝛩

(𝑘))

2𝜙2
]} = 0

𝜕𝑄

𝜕𝑏
= ∑ ∑ {

𝛥𝑥𝑖𝑗𝛥𝜏𝑖𝑗

𝛥𝑡𝑖𝑗
𝐸1𝑖(𝛩

(𝑘))𝐸3𝑖(𝛩
(𝑘)) −

𝑀𝑖
𝑗=1

𝑁
𝑖=1

         
𝛥𝜏𝑖𝑗

2

2𝛥𝑡𝑖𝑗
[𝐸1𝑖

2 (𝛩(𝑘))𝐸3𝑖(𝛩
(𝑘)) + 𝐸2𝑖(𝛩

(𝑘))]}|
𝑏

′

= 0

𝜕𝑄

𝜕𝛼
= ∑ [𝑙𝑛𝛽 − 𝜓(𝛼) + 𝐸4𝑖(𝛩

(𝑘))] = 0𝑁
𝑖=1

𝜕𝑄

𝜕𝛽
= ∑ [

𝛼

𝛽
− 𝐸3𝑖(𝛩

(𝑘))] = 0𝑁
𝑖=1

(30) 

In the third formula of Eq.(30), the derivative expression of 

parameter b cannot be explicitly expressed, and it can be solved 

by using the fsolve function in MATLAB. Then the results of 

the parameters 𝛩  in Eq.(30) after the k+1th iteration can be 

obtained as 

𝜇𝑣
(𝑘+1)

=
∑ [𝐸1𝑖(𝛩

(𝑘))𝐸3𝑖(𝛩
(𝑘))]𝑁

𝑖=1

∑ 𝐸3𝑖
𝑁
𝑖=1 (𝛩(𝑘))

   (31) 

𝜙(𝑘+1) =
1

𝑁
 +∑ 𝐸1𝑖

2𝑁
𝑖=1 (𝛩(𝑘))𝐸3𝑖(𝛩

(𝑘)) + ∑ 𝐸2𝑖
𝑁
𝑖=1 (𝛩(𝑘))}(32) 

∑ ∑ {
𝛥𝑥𝑖𝑗𝛥𝜏𝑖𝑗

𝛥𝑡𝑖𝑗
𝐸1𝑖(𝛩

(𝑘))𝐸3𝑖(𝛩
(𝑘)) −

𝑀𝑖
𝑗=1

𝑁
𝑖=1

𝛥𝜏𝑖𝑗
2

2𝛥𝑡𝑖𝑗
[𝐸1𝑖

2 (𝛩(𝑘))𝐸3𝑖(𝛩
(𝑘)) +

𝐸2𝑖(𝛩
(𝑘))]}|

𝑏

′

= 0  (33) 

∑ {𝑙𝑛𝑁 + 𝑙𝑛 𝛼 − 𝑙𝑛[∑ 𝐸3𝑖
𝑁
𝑖=1 (𝛩(𝑘))] − 𝜓(𝛼) +𝑁

𝑖=1

                            𝐸4𝑖(𝛩
(𝑘))} = 0           (34) 

𝛽(𝑘+1) =
𝑁𝛼(𝑘+1)

∑ 𝐸3𝑖
𝑁
𝑖=1 (𝛩(𝑘))

   (35) 

A better estimation value can be obtained after a certain 

number of iterations. By substituting the estimation results into 

the PDFs of RUL, the exact expressions of the RUL can be 

obtained. The flowchart of the EM algorithm is shown in Fig. 1. 

5. Experimental Investigations 

The model proposed in this paper is designated as model M1, 

and the work of Si et al.[40] is denoted as Model M2, which 

only takes into account the individual differences random effect 

of the drift coefficient. The degradation model can be expressed 

as 

𝑋(𝑡𝑘) = 𝑋(0) + 𝜈 ∫ 𝛬(𝑧, 𝑏)
𝑡𝑘
0

dz+𝜎𝐵(𝑡𝑘) (36) 

Where the drift coefficient 𝜈 follows a normal distribution with 

mean 𝜇𝜈 and variance 𝜎𝜈
2 , denoted as 𝜈~𝑁(𝜇𝜈, 𝜎𝜈

2) . The 

nonlinear function ∫ 𝛬(𝑧, 𝑏)
𝑡𝑘
0

𝑑𝑧 = 𝜇(𝑡𝑘; 𝑏) is the same as that 

in M1, while the diffusion coefficient 𝜎 is fixed in M2. Thus, 

the unknown parameters of M2 can be denoted as 𝛩1 =

(𝜇𝜈, 𝜎𝜈 , 𝑏, 𝜎) . By employing two performance metrics, the 

proposed model is compared with the models existing in 

previous studies to assess the performance of RUL estimation. 

Meanwhile, the two performance metrics are Akaike 

Information Criterion (AIC) criterion and the Total Mean 
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Square Error (TMSE). The AIC is utilized to prevent over-

parameterization and achieve a balance between model 

complexity and fitting accuracy. A smaller AIC value implies 

better model performance[41]. 

𝐴𝐼𝐶 = −2𝑚𝑎𝑥 ℓ + 2𝑝  (37) 

Where 𝑚𝑎𝑥 ℓ is the maximum log-likelihood function (Log-LF) 

value, 𝑝 is the total number of parameters. In addition, the Mean 

Square Error (MSE) is defined as the expectation of the 

difference between the actual RUL and the estimated RUL at 

each monitoring point. A smaller MSE indicates a more accurate 

estimate. The TMSE is the sum of the squared differences 

between the estimated RUL and the actual RUL for all the 

monitoring points, and can be expressed as 

𝑇𝑀𝑆𝐸 = ∑ 𝐸((𝐿𝑘 − 𝐿̃𝑘)
2)𝑁

𝑘=1    (38) 

Where 𝐿𝑘, 𝐿̃𝑘  is the actual RUL and the estimated RUL at 𝑡𝑘, 

and 𝑁 is the number of all samples. In order to conduct a more 

in-depth comparison, the following two data-sets are utilized for 

experimental investigations. 

5.1. XJTU-SY Rolling Bearing Accelerated Life Test 

Dataset 

The XJTU-SY rolling bearing dataset is acquired from the 

testbed depicted in Fig. 1. The platform comprises an AC motor, 

a motor speed controller, a rotating shaft, support bearings, and 

other components. This platform is capable of performing 

accelerated degradation tests on bearings to provide real 

experimental data that characterize the degradation of bearings 

throughout their entire operating lifespan. The tested bearing 

type is LDK UER204, and three different operating conditions 

are applied to 15 bearings. The DT9837 portable dynamic signal 

collector is utilized to collect horizontal and vertical vibration 

signals.  

 

Start

Likelihood function of degradation increment under 

random parameters of the i-th sample

Log-likelihood function of random parameters with complete data

The expectation of the log-likelihood function for the given observed 

degradation data and current estimate of unknown parameters

Simultaneous solution of first partial derivation equation with each 

unknown parameters, obtain the value of next iteration 

Posterior distribution of 

random parameters

Distribution of random 

parameters

The expectation and its 

square of the random 

parameter distribution 

Given the initial value of the unknown parameters

Whether the convergence 

condition is met？

End

yes

no

 

Figure 1. Flowchart of the extended EM algorithm. 
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Digital force display Motor speed controller Accelerometers

Support bearings

Tested bearing

Hydraulic loadingAC motor  

Figure 2. Bearing testbed[42]. 

The information regarding the total number of samples, 

basic rated life 𝐿10 , actual life under the first operating 

condition is listed in Table 1. According to the national standard, 

the basic rated life 𝐿10 is the life that a group of bearings of the 

same type can reach or exceed under identical conditions with  

a reliability of 90%[42]. The operating conditions of the test 

bearings are a rotational speed of 2100 r/min and a radial force 

of 12 KN. For further details, refer to reference [42].  

Table 1. Information of XJTU-SY rolling bearing dataset[42]. 

Total number of 

samples 
𝐿10 actual life Data-set 

123 

5.6~9.7 h 

2h3min Bearing 1_1 

161 2h41min Bearing 1_2 

158 2h38min Bearing 1_3 

122 2h2min Bearing 1_4 

52 52min Bearing 1_5 

To represent the degradation process from the normal state 

to the failure state, signal processing techniques are typically 

employed to extract features from the time domain, frequency 

domain, and time-frequency domain during the entire operating 

life of a bearing. For instance, the typical horizontal vibration 

signals throughout the operating life are selected to illustrate the 

degradation process. Fig.3 displays the horizontal vibration 

signal of bearing 1_1. To depict the performance degradation 

process more intuitively, the Hilbert transform is applied to 

calculate the envelope of the vibration amplitude. It is evident 

that the amplitude increases with the running time, particularly 

in the final stage of the operating period. The relative method is 

utilized to determine the failure threshold of the bearing, i.e. 

when the maximum value of the vibration signal exceeds 

10 × 𝐴ℎ, where 𝐴ℎ is the maximum value of the bearing during 

the normal operation stage.

  
Vibration amplitude of bearing 1_1 (b) Vibration amplitude after Hilbert transform 

Figure 3. Typical horizontal vibration signals. 
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Interference signals and noise are commonly present in the 

monitoring data and accumulate during the data collection 

process. These signals and noise can affect the accuracy of the 

estimation results. The moving average method is selected to 

reduce the noise of the data-sets, due to its easy implementation 

and wide usage. To obtain the development trend of the whole 

data, the data are shifted backward one by one according to the 

given filter window width and the existing time series. The 

measurement values of adjacent times are added and averaged 

as follows 

𝑝𝑡 =
∑ (𝑥𝑡−𝑖+𝑥𝑡+𝑖)
𝑛
𝑖=1 +𝑥𝑡

2𝑛+1
   (39) 

Where 𝑝𝑡  is the filtering result, 𝑥𝑚 is the true degradation value 

at time m, and n is the filter window width. The sliding window 

is an important parameter in the moving average filtering. The 

smaller the sliding window, the higher the sensitivity; while the 

larger the sliding window, the more obvious the smoothing 

effect, making the trend of data change more distinct.  

Take bearing 1_3 as an example, the filtering result of the 

vibration signal is shown in Fig. 4(a). After filtering, the quality 

and reliability of the signals are improved, making the 

degradation trends more intuitive. The processed results of the 

monitoring data for the 5 test bearings of dataset bearing 1 are 

shown in Fig. 4(b). The result shows that the life varies among 

individuals. It further demonstrates the necessity of considering 

individual differences in the model. 

  
(a) Comparison of signal before and after filter (b) The vibration signal of bearings 1-5 after filter 

Figure 4. Filtering results of the vibration signal. 

Due to individual differences, the test life of the bearings in 

dataset 1 is significantly different. In order to verify the model 

more clearly, the vibration signal data of the third bearing of 

dataset 1 is taken as the verification data of the model. The 

actual life of the third bearing is 158 minutes, and the failure 

threshold of amplitude is 8, calculated by using the relative 

method mentioned above. In addition, nonlinear functions can 

take various forms, including polynomials, exponential 

functions, and power functions. By observing the degradation 

curve, the exponential function is selected as the nonlinear 

function for calculations in the experimental studies of this 

paper, i.e. 𝛬(𝑡; 𝑏) = 𝑏 𝑒𝑥𝑝 𝑏 𝑡 . The unknown parameters are 

estimated by using the extended EM algorithm introduced 

above. Table 2 shows the comparison of the estimated parameter 

values and the performance evaluation index values of different 

models.

Table 2. Comparisons of different Models with XJTU-SY rolling bearing data. 

Model 𝜇𝜈 𝜎𝜈 𝜙 𝑏 𝛼 𝛽 Log-LF AIC TMSE 

M1 2.1686E-11 - 1.4771E-14 1.0369 1.0862 4.0880 69 -128 6.2014 

M2 1.1452E-13 7.4338 - 1.0218 - - 32 -56 8.0672 

 

It can be seen from the estimated results in Table 2 that the 

value of log-LF of M1 is greater than that of M2, and the AIC 

of M1 is smaller than that of M2. Meanwhile, the value of 

TMSE of M1 is smaller. The results of these three aspects show 

that the performance of M1 is better than that of M2. In order to 

further compare the performance of RUL estimation, the PDFs 
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of different operating times are analyzed. 

The estimated parameter results are used to calculate the 

RULs of the PDFs for the models. The RUL PDFs curves for 

different operating times are shown in Fig. 5. The figure depicts 

the RUL PDFs curves for the third bearing of dataset bearing 1. 

From the figure, it can be observed that as the operating time 

increases, the RUL PDFs curves become narrower and taller, 

indicating a more concentrated distribution of the RUL and 

reduced uncertainty in the estimations. The true RUL values 

consistently fall within the estimated RUL distributions, 

validating the effectiveness of the proposed method.  

 

Figure 5. Comparison of the PDFs of the RULs under M1 and 

M2 with rolling bearing dataset. 

5.2. C-MAPSS Turbofan Aero-engine Degradation 

Simulation Dataset 

Aero-engines are one of the most critical components of an 

aircraft and serve as a key guarantee for flight safety. The 

overall condition of the engine is not only related to the health 

status of its individual components but also influenced by 

various factors such as the aircraft’s operating environment, 

load, usage patterns, and maintenance quality. In this paper, an 

aero-engine dataset provided by NASA is utilized. It is derived 

from the Commercial Modular Aero-Propulsion System 

Simulation (C-MAPSS) for a large-scale turbofan engine 

simulation. The simulation primarily emulates the degradation 

process of five significant rotating components, including the 

fan, low-pressure turbine (LPT), low-pressure compressor 

(LPC), high-pressure turbine (HPT), and high-pressure 

compressor (HPC)5. The schematic diagram of the engine is 

illustrated in Fig. 6. 

 

Figure 6. Schematic diagram of an aero-engine[18]. 

The C-MAPSS dataset consists of four parts, i.e., FD001 to 

FD004, each comprising a training set and a test set. The initial 

state of each dataset is randomized, and the testing stops when 

an engine failure occurs. The dataset has a total of 26 columns, 

and columns 6 to 26 record the measurements values of 

monitored sensor with added noise. The descriptions of some 

sensors are provided in Table 1 (See more details in [18]). 

Table 3. Description of some aero-engine sensors[18]. 

Number Symbol Illustrate Unit 

1 T2 Total fan inlet temperature °R 

2 T24 LPC outlet temperature °R 

3 T30 HPC outlet temperature °R 

4 T50 LPT outlet temperature °R 

5 P2 Fan inlet pressure psia 

6 P15 Culvert pressure psia 

7 P30 HPC outlet pressure psia 

8 Nf Fan speed rpm 

In the C-MAPSS dataset, different sensors exhibit different 

degradation trends. Selecting sensors with obvious degradation 

trends for the estimation of RUL is more conducive to model 

validation and yields more reliable calculation results. In this 

paper, the multi-dimensional monitoring values of the sensors 

from 16 engine groups in the FD001 training set are converted 

into one dimensional performance indicators to reflect the 

health status of the aero-engine. The FD001 data-set consists of 

monitoring results from 100 engines, comprising a total of 

20,631 data entries. The engine operates in cycles, with  

a minimum lifespan of 128 cycles and a maximum lifespan of 

378 cycles. 

As described before, the initial data has great random 

characteristics, and a large number of random noises are added 

to each monitoring data. In addition, interference signals are 
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commonly present in the measurement data and accumulate 

during the data collection process. It is necessary to pre-process 

the initial data of the dataset. 

 

Figure 7. Monitoring data from different sensors. 

It is more beneficial and reliable to select the sensor with an 

obvious degradation tendency for estimating the RUL. Sensors 

1# to 4#, namely T2, T24, T30 and T50 were chosen for analysis. 

The monitoring data of these four sensors is shown in Fig. 7. It 

can be observed that the monitoring data of each sensor exhibits 

different degradation trends. The value of the T2 sensor does 

not change with the operation of the engine. The concept of the 

Spearman Rank Correlation Coefficient (SRCC) [43] is 

introduced to evaluate the magnitude of the degradation trend 

of the remaining three sensors. The SRCC range is [-1,1], where 

-1 indicates a complete negative correlation, 0 indicates no 

correlation, and 1 indicates a complete positive correlation. The 

closer the SRCC is to 1 or -1, the stronger the degradation trend, 

while the closer it is to 0, the weaker the no degradation trend. 

The SRCC 𝜌𝑖 of sensor i is expressed as 

𝜌𝑖 =
|∑ (𝑇𝑘−𝑇̄1:𝑘)(𝑋𝑘

𝑖−𝑋̄1:𝑘
𝑖 )𝐾

𝑘=1 |

√∑ (𝑇𝑘−𝑇̄1:𝑘)
2∑ (𝑋𝑘

𝑖−𝑋̄1:𝑘
𝑖 )2𝐾

𝐾=1
𝐾
𝑘=1

  (40) 

Where 𝑋𝑘
𝑖  is the kth monitoring value of the ith sensor, 𝑋̄1:𝑘

𝑖  is 

the average monitoring value of the ith sensor from 1 to k, 𝑇𝑘 is 

the kth monitoring time, and 𝑇̄1:𝑘 is the average monitoring time 

from 1 to k. The SRCC values of different sensors are listed in 

Fig. 8. After analysis, the sensor with an SRCC greater than 0.8 

can be used as the performance index of the aero-engines. The 

measurement results from the T50 sensor of 16 aero-engines in 

FD001 dataset are selected as the performance monitoring index.  

 

Figure 8. The SRCC of different sensors. 

  
(a) Filter results of the sensors (b) Degradation trend of engines No. 1-16 

Figure 9. Filtering results of the sensors. 

To reduce the order of magnitude of the whole life cycle 

degradation data and facilitate the calculation, the mean value 

of the first ten cycles is subtracted. Moreover, the multi-

dimensional measurement values are converted into one-
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dimensional performance indicators to reflect the health status. 

The life of the aero-engines is defined as 200 cycles, and the 

failure threshold is set at 1423.4 °R. In this paper, the filter 

window width of the moving average method is set as 30, and 

one of the data filtering results is shown in Fig. 9. After filtering, 

noise and sharp signals are removed, making the degradation 

trends more apparent.  

The performance comparison of different models conducted 

on aero-engines is shown in Table 4. A conclusion similar to that 

of bearing dataset was obtained. The results of log-LF, AIC and 

TMSE still indicate that the performance of M1 is better than 

that of M2. In addition, it could be observed from the 

comparison between Table 2 and Table 4 that the parameter 

value of 𝜙 of the XJTU-SY rolling bearing data in Table 2 are 

significantly smaller than that in Table 4. 

Table 4. Comparisons of different Models with C-MAPSS aero-engine data. 

Model 𝜇𝜈 𝜎𝜈 𝜙 𝑏 𝛼 𝛽 𝜎 Log-LF AIC TMSE 

M1 0.3922 - 0.9401 0.0206 93.5738 3.1101 - 767 -1524 0.7882 

M2 0.2789 0.1464 - 0.3108 - - 0.3738 433 -958 1.0421 

 

 

Figure 10. Comparison of the PDFs of the RULs under M1 

and M2 with aero-engine data. 

This indicates that the range of operating conditions of the 

samples in the XJTU-SY rolling bearing data is not extensive 

enough to fully activate the optimization and adjustment 

mechanisms of all parameters in M1. The significant advantages 

of M1, which considers individual differences, external random 

effects and their coupling relationship, are further verified by C-

MAPSS aero-engine data. Fig. 10 depicts the RUL PDFs curves 

for the aero-engines operating from 100 cycles to 180 cycles, as 

well as the estimated RUL and true RUL for each operating 

cycle. From the figure, it can be seen that the RUL PDF curve 

of M1 is narrower and taller compared to that of M2. This 

implies that the estimations of M1 are more concentrated and 

have lower uncertainty, resulting in a better performance in 

RUL estimation. By comparing the TMSE of the true and 

estimated RUL values, it can be concluded that the estimations 

of M1 are closer to the true values. To further validate the 

accuracy of M1, the fitting results of M1 are compared with the 

actual degradation curves, as illustrated in Fig. 11. From the 

figure, it can be seen that the fitting curve of M1 closely 

approximates the true average degradation curve, thereby 

attesting to the accuracy and effectiveness of the model 

presented in this paper. 

 

Figure 11. Fitting curve of M1. 

6. Conclusions 

The nonlinear WP degradation model proposed in this paper 

shows high RUL estimation accuracy, which proves its 

effectiveness under various equipment degradation conditions. 

The proposed model precisely captures individual differences, 

external random factors and their coupling, providing a more 

realistic portrayal of the degradation process. The 

comprehensive RUL estimation method was verified using the 

datasets of rolling bearings and aero- engines. This involves the 
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detailed procedures of deriving the analytical expression of the 

PDF of the model's RUL considering the FHT and conducting 

parameter estimation using the extended EM algorithm. This 

paper lays a foundation for the development of degradation 

model addressing the coupling of multiple factors, thus 

promoting the progress of PHM. 

The proposed nonlinear WP degradation model shows high 

RUL estimation accuracy, which proves its effectiveness under 

various equipment degradation conditions. 

The development of degradation model addressing the 

coupling of multiple factors 

The comprehensive RUL estimation method was verified 

using the datasets of rolling bearings and aero-engines.
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