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batteries. 

▪ GPR-MC is employed to dynamically correct 

errors and optimize estimation accuracy. 

 To accurately estimate the State of Health (SOH) of lithium-ion batteries, 

this study proposes a novel approach combining a Convolutional Neural 

Network (CNN) and a Gated Recurrent Unit (GRU) with an error 

correction mechanism. By extracting health features from partial 

charging data, this method reduces dependence on complete charge-

discharge cycles, addressing challenges like long data acquisition times 

and high costs. The CNN captures local features of battery degradation, 

while the GRU models aging dynamics to provide an initial SOH 

estimate. An error correction strategy using Gaussian Process 

Regression (GPR) and Markov Chain (MC) further refines the results. 

GPR models nonlinear relationships to optimize predictions, and MC 

adjusts error distributions dynamically. Experiments on the University 

of Maryland dataset demonstrate that this method achieves lower Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE) than 

benchmark techniques, proving its accuracy and robustness. 
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1. Introduction 

Lithium-ion batteries, recognized for their long lifespan and 

high energy efficiency, have become increasingly popular in 

electric vehicles and energy storage systems [1]. Within Battery 

Management Systems (BMS), accurately determining the State 

of Health (SOH) of lithium-ion batteries is essential. Reliable 

SOH estimation not only ensures batteries operate safely and 

stably but also prolongs their lifespan and enables timely 

maintenance recommendations for users. However, as batteries 

age and are subjected to prolonged use, performance inevitably 

deteriorates. Consequently, the development of a highly precise 

SOH estimation model has emerged as a significant challenge 

in battery management research [2]. 

The SOH is defined as the ratio of a battery's current 

maximum available capacity to its rated capacity [3], expressed 

as follows: 

𝑆𝑂𝐻 =
𝑄cu
𝑄e

× 100% (1) 

where 𝑄cu represents the current maximum available capacity, 

and 𝑄e denotes the rated capacity. 

Battery SOH estimation methods are typically divided into 
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two main categories: model-based approaches and data-driven 

approaches [4]. Model-based methods rely heavily on 

constructing equivalent circuit models to determine SOH. For 

instance, Bustos et al. [5] proposed a methodology integrating 

the Kalman Filter (KF) with an innovative Sliding Innovation 

Filter (SIF). Ranga et al. [6] introduced a novel technique 

employing the Unscented Kalman Filter (UKF), while Ling et 

al. [7] developed an approach utilizing the Dual Fractional-

Order Extended Kalman Filter (DEKF). Furthermore, Xiong et 

al. [8] put forward a strategy combining Dual Adaptive 

Extended Kalman Filtering (DAEKF) for SOH estimation. 

Although these model-based methods leverage battery 

physical characteristics for accurate predictions, they often 

demand extensive electrochemical expertise and highly precise 

parameter inputs. This makes their application challenging in 

real-world scenarios, where obtaining such parameters is 

difficult and time-intensive [9]. 

In contrast to model-based approaches, data-driven SOH 

estimation methods have gained significant attention in recent 

years, primarily due to their ability to predict SOH directly by 

extracting features from operational battery data and applying 

machine learning or deep learning techniques [10]. For instance, 

Zhi et al. [11] proposed a hybrid method that combines Genetic 

Algorithm-Particle Swarm Optimization (GA-PSO) to optimize 

the parameters of a Support Vector Regression (SVR) model, 

subsequently applying it for SOH estimation. Similarly, Dai et 

al. [12] identified initial health features (HFs) derived from 

battery parameters such as voltage, current, temperature, 

Incremental Capacity (IC) curves, and Differential Thermal 

Voltage (DTV) curves, and utilized a dual-kernel Gaussian 

Process Regression (NGO-GPR) model for SOH estimation. 

Wu et al. [13] introduced a lithium-ion battery SOH prediction 

framework integrating Variational Mode Decomposition (VMD) 

with a Dung Beetle Optimization-Support Vector Regression 

(DBO-SVR) model. In another study, Wu et al. [14] proposed  

a method that combines HF extraction from charging voltage 

curves with Ridge Regression (RR) to estimate SOH and predict 

Remaining Useful Life (RUL). Additionally, Wang et al. [15] 

concentrated on extracting three specific HFs from battery 

charge-discharge cycles, including time intervals corresponding 

to identical charging and discharging voltage levels and the time 

related to internal temperature variations during discharge, 

employing an enhanced GPR model to estimate SOH. 

In recent years, deep learning techniques have seen 

extensive application in SOH estimation tasks. Particularly, 

hybrid neural network architectures have emerged as a focal 

area of research due to their capability to combine the strengths 

of different models, significantly enhancing predictive accuracy. 

For instance, Liao et al. [17] leveraged incremental capacity (IC) 

curves from battery discharge data and applied Gaussian 

filtering for noise reduction. They proposed a hybrid framework 

incorporating a Convolutional Neural Network (CNN) and  

a Multi-Layer Perceptron (MLP) to estimate the SOH of 

lithium-ion batteries. Wang et al. [18] extracted 19 critical 

features from charging voltage, current, temperature, and IC 

curves and utilized a model optimized by Particle Swarm 

Optimization (PSO) and a Generalized Regression Neural 

Network (GRNN) for prediction. Geng et al. [19] proposed  

a method that combines energy indicators from voltage and 

temperature signals with other metrics like capacity intervals, 

using a Back Propagation (BP) neural network optimized via  

a genetic algorithm for SOH prediction. Xu et al. [20] 

introduced a CNN-LSTM model enhanced by skip connections, 

which employs IC curves for SOH estimation. Lin et al. [21] 

identified health indicators from IC, differential thermal voltage 

(DTV), and other curves, employing an LSTM with attention 

mechanisms for SOH assessment. Park et al. [22] utilized multi-

channel features like voltage, current, and temperature data for 

SOH estimation, relying on LSTM networks for accuracy. Dai 

et al. [23] employed features like average voltage and capacity 

increments within a Prior Knowledge Neural Network (PKNN) 

framework enhanced by a Markov Chain for improved 

predictions.Ping et al. [24] utilized discharge sequence data 

from retired batteries, deploying a modified LSTNet model for 

SOH estimation. Li et al. [25] selected health features including 

charging voltage and curve statistics to estimate SOH and SOC 

in retired batteries using an AdaBoost.Rt-LSTM ensemble 

learning algorithm. Wang et al. [26] proposed a hybrid model 

leveraging Multi-Feature Extraction (MFE), GRU, and 

Temporal Convolutional Attention (TCA) mechanisms to 

predict SOH and RUL. Nasimov et al. [27] integrated improved 

Particle Swarm Optimization (IPSO) with BiLSTM for health 

estimation based on charge-discharge cycle data. Li et al. [28] 

introduced a Temporal Convolutional Network-Long Short-
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Term Memory (TCN-LSTM) hybrid model for SOH and RUL 

estimation, while Song et al. [29] used XGBoost with a focus 

on multi-feature correction. Zhao et al. [30] proposed  

a Bayesian regularized neural network combined with a KNN-

Markov strategy for SOH improvement. Wei et al. [31] focused 

on retired batteries, extracting parameters like Urest, TDCH, 

and ICpeak for use in a neural network integrated with a Markov 

Chain for SOH evaluation. Zou et al. [32] explored equal 

interval discharge time and IC analysis within a BiLSTM model 

with Attention Mechanisms (AM) for SOH prediction. Recent 

studies, including [23, 29, 30, 31], have emphasized error 

correction methodologies, which significantly improve 

prediction precision and reliability by refining initial 

estimations. 

In data-driven SOH estimation methods, the extraction of 

health features (HFs) is crucial. However, due to limitations in 

sensor deployment, obtaining battery temperature data often 

poses significant challenges [33]. Additionally, compared to the 

discharge process, data acquisition during the charging process 

is more feasible, but the charging process may not always start 

from a fully discharged state or reach full capacity. To address 

this issue, this study proposes a method for extracting health 

features from partial charging data, thereby effectively reducing 

reliance on complete charge-discharge data. 

The degradation of battery SOH is a complex process 

characterized by significant temporal dynamics. To more 

accurately capture the dynamic changes in battery SOH, this 

study employs a Gated Recurrent Unit (GRU) model from the 

Recurrent Neural Network (RNN) family, combined with the 

feature extraction capabilities of a Convolutional Neural 

Network (CNN). CNNs can extract local spatial features from 

the battery aging process, while GRUs capture long-term 

dependencies in the temporal characteristics of battery aging. 

Previous studies [17][20] have demonstrated the excellent 

performance of similar hybrid models in SOH estimation. The 

combination of CNN and GRU allows the model to effectively 

integrate spatial and temporal features. Compared to other 

hybrid networks such as CNN-LSTM or BiLSTM, CNN-GRU 

offers greater simplicity, making it better suited for large-scale 

data scenarios and dynamic application environments in lithium 

battery SOH prediction. 

Although CNN-GRU provides relatively accurate 

preliminary predictions, the results may still be affected by data 

noise and complex nonlinear relationships, leading to systemic 

bias or local errors. To further improve prediction accuracy, this 

study introduces an error correction strategy based on Gaussian 

Process Regression (GPR) and Markov Chain (MC). GPR, as  

a nonparametric regression method grounded in Bayesian 

theory, captures the complex nonlinear relationships between 

prediction errors and input features while quantifying the 

uncertainty of predictions. MC dynamically models the 

evolution of error distributions through state transition matrices, 

making it particularly well-suited for describing the temporal 

dynamics of error sequences. The combination of GPR and MC 

not only corrects systemic biases in preliminary predictions but 

also dynamically adjusts the error model to accommodate 

complex distributions in different states. Similar strategies have 

been shown in other studies [29][30] to significantly improve 

SOH prediction accuracy, particularly in scenarios with high 

noise levels or complex data distributions. 

The paper is structured as follows: Section 2 provides  

a detailed description of the dataset, the extracted health 

features, and correlation analysis; Section 3 delves into the 

theoretical foundations and the structure of the proposed model; 

Section 4 presents algorithm validation, results, and analysis; 

and Section 5 summarizes the conclusions of the study. 

2. Dataset Description and Health Feature Extraction 

2.1. Dataset Description 

This research employs the University of Maryland's battery 

aging dataset as the source of experimental data, focusing on 

three specific batteries: CS35, CS36, and CS37. The dataset 

provides comprehensive information on the batteries' charging 

and discharging behavior. These batteries are LiCoO2 lithium-

ion types with a nominal capacity of 1.1 Ah. Measurements 

were conducted using an Arbin battery testing system, 

following a Constant Current (CC) - Constant Voltage (CV) 

charging methodology and executing discharge tests under  

a constant current protocol. 

2.2. Health Feature Extraction 

Figure 1 shows the voltage curves of the three batteries at 

different cycle intervals. As the number of cycles increases, the 

aging of the batteries becomes progressively more severe, 
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characterized by a gradual reduction in charging time.

 

Figure 1. Voltage curves under different cycles. 

To better align with practical application scenarios, this 

study considers that batteries in actual usage may not always 

start charging from the cutoff discharge voltage or reach full 

charge. Therefore, the following five HFs were extracted: 

HF1: The constant current charging time within the voltage 

range of 3.75V to 4.15V, representing the time required for the 

battery to charge within this specific range. 

HF2: The integral of the voltage-time curve within the same 

voltage range, reflecting the cumulative charging behavior of 

the battery in this interval. 

HF3: The average voltage within the 3.75V to 4.15V range, 

serving as an indicator of the overall voltage level of the battery 

in this interval and indirectly reflecting the battery's capacity 

change trend. 

HF4: The maximum rate of voltage change (maximum 

voltage change rate), which characterizes the dynamic response 

of the battery during the charging process. Its fluctuation 

amplitude can indirectly reflect the degree of battery aging. 

HF5: The ratio of the standard deviation to the mean of 

voltage changes (voltage variation coefficient), used to measure 

the relative extent of voltage fluctuations. 

2.3. Correlation Analysis 

To evaluate the relationship between HFs and SOH, this 

research utilizes both the Pearson correlation coefficient and the 

Spearman correlation coefficient. Their mathematical 

representations are provided below as equations (2) and (3), 

respectively: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =
𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2) − 𝐸2(𝑋)√𝐸(𝑌2) − 𝐸2(𝑌)
(2) 
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𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1

(3)
 

Table 1. Correlation Coefficient Analysis. 

HF 
Correlation 

Coefficient 
CS35 CS36 CS37 

HF1 
Pearson 99.7400 99.8313 99.7681 

Spearman 99.6314 99.8359 99.6496 

HF2 
Pearson 99.7617 99.8466 99.7860 

Spearman 99.6518 99.8370 99.6552 

HF3 
Pearson -96.9381 -96.6624 -96.5870 

Spearman -95.8434 -96.6787 -95.6690 

HF4 
Pearson -88.5515 -84.2194 -86.1015 

Spearman -86.1785 -85.2394 -86.9546 

HF5 
Pearson 89.3308 87.0211 86.1560 

Spearman 85.1085 88.6657 86.1658 

Table 1 shows that the correlation coefficients of HF1 and 

HF2 exceed 99%, indicating a very strong positive correlation 

with SOH. This suggests that constant-current charging time 

and charging integral are key features for evaluating battery 

health status. In contrast, although HF3 and HF4 exhibit 

negative correlations with SOH and HF5 shows a positive 

correlation, the correlations of these three health features with 

SOH are significantly lower than those of HF1 and HF2. 

Therefore, this study ultimately selects HF1 and HF2 as input 

features. 

Figure 2 illustrates the degradation trends of SOH, HF1, and 

HF2 of battery CS35 with the increase in cycle count. The 

results show that both HF1 and HF2 exhibit significant 

attenuation as the cycle count increases, which is highly 

consistent with the degradation trend of SOH. This consistency 

indicates that the selected health features effectively reflect the 

aging state of the battery. By adopting this feature extraction 

method, the health features used in this study reduce reliance on 

full lifecycle data, simplify data collection, and enhance the 

model's applicability in practical scenarios.

 

Figure 2. Degradation trends of health features and SOH with cycle count. 

3. SOH Estimation Method 

This paper proposes an SOH estimation method based on  

a CNN-GRU model combined with a GPR-MC error correction 

strategy. The method leverages the capability of CNN to extract 

sequential features in the time dimension, the ability of GRU to 

dynamically learn temporal data, and the statistical advantages 

of GPR-MC in error correction. First, the CNN-GRU model is 

used to perform an initial SOH estimation, followed by GPR-

MC for error correction. The estimation process is shown in 

Figure 3. 
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Figure 3. SOH Estimation Model. 

3.1. Initial SOH Estimation 

1.CNN 

A CNN is a type of feedforward neural network extensively 

applied in tasks like feature extraction and pattern recognition 

[34]. By performing convolution operations, CNNs extract 

features from input data, progressively building higher-level 

feature representations through layered processing. These 

features are eventually processed by fully connected layers to 

achieve tasks such as classification or regression.  

The conventional structure of a CNN includes the following 

components: input layer, convolutional layers, pooling layers, 

fully connected layers, and output layer. Convolutional layers 

apply sliding window filters to input data to generate feature 

maps. Pooling layers are used to downsample these feature 

maps, thereby preserving essential information while reducing 

computational complexity. Fully connected layers combine the 

features from earlier layers to generate the final output. For 

sequential data applications, such as battery state of health 

estimation, one-dimensional CNNs (1D CNNs) offer significant 

advantages.  

The mathematical representation of the convolutional 

layer’s output can be expressed as: 

ℎ𝑐𝑛𝑛 = 𝜎(𝜔𝑐𝑛𝑛 × 𝑥𝑡 + 𝑏𝑐𝑛𝑛) (4) 

where 𝜔𝑐𝑛𝑛 denotes the weight, 𝑏𝑐𝑛𝑛 represents the bias, 𝜎 

is the activation function, and 𝑥𝑡 is the input data at a given time 

step. 

2.GRU 

The GRU, an improved version of the RNN [25], addresses 

the common issue of gradient vanishing when handling long 

sequential data. As illustrated in Figure 4, it introduces two key 

gating mechanisms—update and reset gates—that control the 

information flow. These gates help the GRU effectively 

determine which data should be retained or discarded, 

enhancing its ability to capture long-term dependencies within 

sequential data. This architecture not only strengthens the 

GRU's capacity to model temporal relationships but also 

reduces the number of parameters, thereby increasing 

computational efficiency.
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Figure 4. GRU Structure Diagram. 

The GRU operates based on two primary gates: 

Update Gate: This gate regulates the extent to which 

information from the previous hidden state is carried forward to 

the current state, enabling efficient transfer of information 

across time steps. 

Reset Gate: This gate manages the influence of the previous 

hidden state on the current input, allowing the model to 

selectively ignore unnecessary historical information for better 

adaptation to new inputs. 

The computational process of GRU is described 

mathematically as follows: 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (5) 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (6) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (7) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 (8) 

where, 𝑥𝑡 signifies the current input, ℎ𝑡−1 denotes the previous 

hidden state, and ℎ𝑡  represents the hidden state passed to the 

next time step. ℎ̃𝑡 is the candidate hidden state, while 𝑟𝑡 and 𝑧𝑡 

correspond to the reset and update gates, respectively. 

The CNN-GRU framework in this study is designed with 

two inputs and one output. The Adam optimization algorithm is 

utilized, initialized with a learning rate of 0.01, a maximum of 

1000 iterations, and a dropout rate of 0.1. For the CNN 

component, the convolutional kernel size is set to 10, with 64 

kernels employed. Details of GRU parameter exploration and 

optimization are elaborated in Section 4.2. 

3.2. Error Correction 

GPR is a regression method based on a non-parametric 

Bayesian framework. Its theoretical foundation lies in modeling 

the nonlinear relationship between input features and output 

targets through kernel functions. In error correction, GPR uses 

the predicted value as the input feature and the initial prediction 

error as the output target. By employing a Gaussian radial basis 

function (RBF) kernel, it learns the distribution pattern between 

the input and error, allowing precise modeling of the error. GPR 

has the following characteristics: it can capture complex 

nonlinear error distributions and provide both the predicted 

mean and its uncertainty, facilitating subsequent processing. 

MC utilizes a state transition probability matrix to describe 

the dynamic changes in the error distribution. Its theoretical 

foundation lies in the time-series characteristics of the Markov 

process, where the current state depends only on the previous 

state. In error correction, MC constructs state divisions and 

transition matrices to dynamically adjust the error distribution, 

with the following advantages: it allows dynamic adaptation of 

error distribution to different sample states and enables flexible 

adjustments between different states, improving the robustness 

and accuracy of the correction results. 

This paper proposes a dynamic error correction method by 

modeling the error using training data and combining GPR with 

MC. The specific process is as follows: 

First, the initial prediction error is calculated based on the 

training data. The Gaussian Process Regression model is used 

to model the error, with the predicted value as the input feature 

and the error as the output target, resulting in an error 

adjustment model. The GPR model uses a Gaussian radial basis 

function (RBF) kernel, and its parameters are optimized by 
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maximizing the marginal likelihood. 

The error is normalized to the range [0,1] to facilitate 

subsequent state division and processing. The normalized error 

is divided into three states based on its mean μ and standard 

deviation σ： 

State1: [0, μ−0.5) 

State2: [μ−0.5, μ+0.5σ) 

State3: [μ+0.5σ, 1] 

Data is assigned to the corresponding state based on the 

value of the normalized error, describing the characteristics of 

the error distribution. Based on the sequence of error states, the 

transition frequencies between states are calculated to construct 

a state transition matrix P. For each state, the average value of 

the correction error is computed to form a state error matrix Q. 

During the testing phase, the test error adjustment values are 

obtained based on the initial estimates. These adjustment values 

are normalized and assigned to the corresponding state based on 

the defined state intervals. Using the state sequence of the test 

data, along with the state transition matrix P and state error 

matrix Q, the test error is dynamically corrected to produce the 

final estimation result. 

4. Experiments and Analysis 

This research carried out three simulation experiments using the 

battery aging dataset from the University of Maryland. The 

experiments focused on data from three specific batteries: CS35, 

CS36, and CS37. The model's performance was assessed 

through the Leave-One-Out Cross-Validation approach, where 

in each iteration, one battery's data was designated as the test 

set, and the remaining two batteries' data were utilized as the 

training set. 

4.1. Evaluation Metrics 

To assess the model's predictive performance, this study utilizes 

two widely recognized error metrics: Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE). These metrics 

provide a quantitative approach to analyze the model's 

prediction accuracy. The formulas are defined as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)
2 (9) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖=1

(10) 

In these equations, 𝑦̂𝑖 represents the predicted value for the 

i-th data point, 𝑦𝑖  is the corresponding actual value, and n 

denotes the total number of predictions. 

4.2. Determining CNN-GRU Model Parameters 

GRU plays a pivotal role in SOH estimation. This section 

examines the impact of GRU layers and the number of neurons 

in the network. The neuron counts are set at 32, 64, and 128, 

while the GRU layer counts are configured to 1, 2, and 3. Using 

CS35 as a case study, the hyperparameters of the GRU network 

are analyzed. Initially, the GRU layer count is fixed at 1, and the 

SOH estimation performance for neuron counts of 32, 64, and 

128 is assessed. 

Table 2 presents the estimation errors for different neuron 

configurations. When neurons are set to 32, the RMSE and 

MAE are 0.7046% and 0.5378%, respectively. For 64 neurons, 

the RMSE decreases to 0.5661%, and MAE reduces to 0.4382%. 

With 128 neurons, the RMSE is 0.6043%, and MAE is 0.4525%. 

When the number of GRU neurons is set to 64, the model 

achieves lower RMSE and MAE compared to other settings, 

indicating that an appropriate number of neurons can achieve 

the optimal balance between complexity and generalization 

ability. 

Table 2. Estimation errors under different neuron counts. 

Number RMSE (%) MAE (%) 

32 0.7046 0.5378 

64 0.5661 0.4382 

128 0.6043 0.4525 

Figure 5 depicts the SOH estimation outcomes and 

associated errors for three distinct neuron counts. By cross-

referencing Table 2 and Figure 5, it becomes evident that the 

estimation accuracy is the lowest when the neuron count is set 

at 32, reaches its highest at 64 neurons, and is marginally 

reduced at 128 neurons, though the difference between 64 and 

128 is minimal. To further explore the impact of network layers, 

the number of hidden layer neurons is fixed at 64, and the 

influence of GRU layers on SOH estimation performance is 

investigated.
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Figure 5. SOH estimation results and errors under different neuron counts. 

Table 3 presents the SOH estimation accuracy for three 

different layer numbers when the number of neurons is set to 64. 

Figure 6 illustrates the SOH estimation results and errors under 

different layer numbers. As shown in Table 3, when the number 

of layers is 1 and the number of neurons is 64, the RMSE is 

0.5661% and the MAE is 0.4382%, achieving the highest 

estimation accuracy. Increasing the number of layers does not 

improve estimation accuracy and may introduce risks of 

overfitting and increased computational costs. Therefore, this 

study ultimately determines that the optimal GRU configuration 

is 64 neurons and 1 layer. 

Table 3. Estimation errors under different layer numbers. 

Number RMSE (%) MAE (%) 

1 0.5661 0.4382 

2 0.5788 0.4404 

3 0.7098 0.5185 

 

Figure 6. SOH estimation results and errors under different layer numbers. 

Table 4. Estimation errors of the CNN-GRU model. 

Battery RMSE (%) MAE (%) 

CS35 0.5661 0.4382 

CS36 0.6937 0.6083 

CS37 0.4424 0.3500 

Average 0.5674 0.4655 

Table 4 and Figure 7 present the SOH estimation results and 

errors of the finalized model. As shown in Table 4, the model 

achieves the highest estimation accuracy on the CS37 battery, 

with RMSE = 0.4424% and MAE = 0.3500%. The estimation 

accuracy is the lowest on the CS36 battery, with RMSE = 

0.6937% and MAE = 0.6083%. 
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Figure 7. SOH estimation results and errors. 

4.3. Comparative Analysis with Other Algorithms 

 

Figure 8. SOH estimation results and errors of SVM, GPR, and CNN-LSTM. 

This subsection introduces a comparative analysis involving 

SVM, GPR, and CNN-LSTM models. Table 5 presents the 

estimation errors of the three models across three batteries, 

while Figure 8 illustrates the SOH estimation results and 

absolute errors for each model. As shown in Tables 4 and 5, the 

proposed CNN-GRU achieves an RMSE of 0.5674% and an 

MAE of 0.4655%, which outperforms the SVM model (average 

RMSE = 0.6872%, average MAE = 0.5380%) and the GPR 

model (average RMSE = 0.9558%, average MAE = 0.5381%). 

This improvement in estimation accuracy is mainly attributed to 

the local feature extraction capability of CNN and the strength 

of GRU in handling long-sequence data. Furthermore, 
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compared to the more complex CNN-LSTM model (average 

RMSE = 0.6216%, average MAE = 0.5125%), CNN-GRU 

maintains higher accuracy while simplifying the network 

structure. 

Table 5. Estimation errors of the comparative models. 

Method Battery RMSE (%) MAE (%) 

SVM 

35 0.8001 0.5903 

36 0.7570 0.6357 

37 0.5055 0.3879 

Average 0.6872 0.5380 

GPR 

35 1.7192 0.7040 

36 0.6741 0.5516 

37 0.4740 0.3589 

Average 0.9558 0.5381 

CNN-LSTM 

35 0.6378 0.4970 

36 0.7421 0.6533 

37 0.4850 0.3872 

Average 0.6216 0.5125 

4.4. Results After Error Correction 

Table 6 highlights the SOH estimation errors for the three 

batteries following the application of error correction. As 

indicated, the RMSE and MAE values for CS35 are 0.2154% 

and 0.1746%, respectively. For CS36, the RMSE is 0.2514% 

while the MAE stands at 0.2313%. Similarly, for CS37, the 

RMSE and MAE are recorded as 0.3128% and 0.2652%, 

respectively. Figure 9 provides a visual representation using 

CS37 as an example, showing the SOH estimation results and 

corresponding absolute errors post error correction. When 

comparing these findings with Table 4 and Figure 7, it becomes 

apparent that the SOH estimation accuracy has been 

significantly enhanced through the error correction process. 

Table 6. Estimation errors after error correction. 

Battery RMSE (%) MAE (%) 

CS35 0.2154 0.1746 

CS36 0.2514 0.2313 

CS37 0.3128 0.2652 

Average 0.2599 0.2237 

 

Figure 9. SOH estimation results and absolute errors of CS37 after error correction. 

4.5. Validation on Other Datasets 

To further verify the generalization ability of the proposed 

model, this section introduces experimental analyses using the 

Oxford Battery Aging Dataset and the NASA Battery Aging 

Dataset. Cell1 and Cell4 were selected as test samples from the 

Oxford dataset, while B0005 and B0007 were selected from the 

NASA dataset for validation. 

Table 7 presents the SOH estimation errors on different 

datasets before and after error correction, where RMSE and 

MAE denote the root mean square error and mean absolute error 

before correction, respectively, while RMSE* and MAE* 

represent the errors after correction. As shown in the table, 

before error correction, the average RMSE and MAE of the 

CNN-GRU model on the Oxford dataset are 0.3603% and 

0.2955%, respectively, while the corresponding values on the 

NASA dataset are 1.2190% and 1.0690%. After applying error 

correction, the average RMSE and MAE on the Oxford dataset 

decrease to 0.2234% and 0.1632%, respectively, while those on 

the NASA dataset decrease to 0.9075% and 0.7147%. The 

significant reduction in errors after correction demonstrates that 
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the proposed GPR-MC error correction strategy effectively 

optimizes the initial prediction results. 

Figure 10 further illustrates the SOH estimation results on 

the Oxford and NASA datasets before and after error correction. 

It can be clearly observed that the corrected estimates better 

track the actual values, and the model's estimation accuracy is 

significantly improved. 

Table 7. Estimation Errors Before and After Error Correction. 

Battery RMSE (%) MAE (%) RMSE* (%) MAE* (%) 

Cell1 0.3465 0.2868 0.1836 0.1292 

Cell4 0.3741 0.3041 0.2631 0.1972 

Average 0.3603 0.2955 0.2234 0.1632 

B0005 1.2382 1.0845 0.8678 0.6336 

B0007 1.1998 1.0535 0.9472 0.7957 

Average 1.2190 1.0690 0.9075 0.7147 

 

Figure 10. SOH Estimation Results Before and After Error Correction. 

5. Conclusion 

This study presents a novel method for estimating battery SOH 

using a CNN-GRU-based deep learning framework, augmented 

with a GPR-MC error correction strategy. The proposed 

approach has been thoroughly validated through experiments, 

demonstrating its effectiveness and distinct advantages. Firstly, 

the methodology derives health features from partial charging 

data, reducing the dependency on comprehensive datasets and 

thereby improving the model's adaptability and utility in 

practical, real-world scenarios. Secondly, the framework 

capitalizes on the CNN's robust feature extraction capabilities 

and the GRU's proficiency in processing sequential temporal 

data, enabling precise tracking of dynamic variations in the 

battery aging process and significantly enhancing SOH 

estimation accuracy. Moreover, to further refine the estimation 

results, the inclusion of the GPR-MC error correction strategy 

provides additional optimization to the initial SOH predictions. 

The experimental findings confirm that this strategy markedly 

enhances the model’s prediction accuracy.
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