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Highlights  Abstract  

▪ We determine the reliability index of each 

damage element 𝐷𝑖  and damage block 𝐵𝑖 . 

▪ We determined the Weibull shape and scale 

parameters for each 𝐷𝑖 , and 𝐵𝑖  element. 

▪ The estimated shape parameter represents the 

spread of the cumulated damage until D=1. 

▪ Fatigue vibration damage is cumulated by 

using a nonlinear model for AL6061-T6. 

▪ The only input of the reliability methodology is 

the data from the cumulated damage analysis. 

 In the paper, the formulated Weibull vibration reliability methodology is 

based on the cumulative vibration damage analysis. It lets us determine 

the reliability index of each damage element, each damage block, and 

the reliability of the analyzed element. Vibration damage is cumulated 

until 𝐷 = 1 , by using the addressed vibration stress and a nonlinear 

cumulative damage model. Based on static and modal analysis, the 

vibration stress is determined by incorporating to it, the geometry, 

weight and resonance effects. In the reliability analysis the Weibull 

shape (𝛽) parameter is determined directly from the number of damage 

blocks, for which 𝐷 = 1 . The damage element, damage block, and 

element reliability are all determined based on the beta (𝛽) value and 𝐷𝑖  

elements. Finally, based on the cumulated applied cycles 𝑛𝑖 the Weibull 

scale (𝜂𝑖) parameter is determined by each 𝐷𝑖  elements, damage block, 

and analyzed element. 
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1. Introduction 

Mechanical and structural elements subjected to random 

vibration cumulate damage due to fatigue (1). To avoid failing 

due to random vibration, a demonstration vibration zero failure 

test is performed. The test is based on a standard vibration 

profile, as those given in norm ISO16750-3 (2). And by 

considering the testing profile represents a stationary behavior, 

a probability density function is used to predict its behavior. 

And due to the GRMS (root mean square acceleration) is used 

to perform the analysis (3), then the Weibull distribution is used 

to model the random behavior. However, because in the 

demonstration test plan, no failure times are allowed, then in the 

analysis a supposed beta value in the range [2.0 ≤ 𝑏𝑒𝑡𝑎 ≤ 2.5] 

is used (see appendices C and D in GMW3172) (4). 

Therefore, the objective consists in determining the beta 

shape and eta scale parameters that represent the behavior of the 

analyzed profile. Among authors who have proposed methods 

to determine the element reliability by using the Weibull 

distribution we have (5,6), they improved the reliability and 

reduced the failure rate in motorized spindles in cycloid 

grinding machines using Monte Carlo simulation. In (7) they 

used the Weibull distribution and the traditional failure mode 

effects and criticality analysis tool to obtain the failure rate 
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function and predict the remaining door life. In (8,9) authors 

provided methods to reduce the vibration in shearer drum 

cutting by applying a finite element model, to characterize road 

transport vibration levels. In (10), the author determined the 

reliability using the exponential distribution, he concludes that 

“for accurate results in reliability analysis, it is necessary to 

consider the effects of the randomness of the material 

properties.”  

On the other hand, authors who have used the cumulative 

damage and the Weibull distribution in the vibration analysis are 

(11,12). In (11), the beta parameter was not estimated from the 

damage, but from the minimum and maximum GRMS values of 

the used profile. Consequently, the estimated beta value does 

not represent the damage dispersion, but it represents the profile 

dispersion. In (12), the beta value was determined from the 

vibration bending stresses. Consequently, the estimated beta 

value does not represent the damage dispersion, but it represents 

the stress dispersion.  

Thus, the novelty consists of the use of the number of 

damage blocks for which 𝐷 = 1 to determine beta. Therefore, 

because the number of blocks at which 𝐷 = 1 is random, then 

the estimated beta represents the randomness of the cumulated 

damage. Moreover, based on the cumulative 𝑛𝑖 applied cycles 

of the cumulative damage analysis, the scale parameter that 

corresponds to each 𝐷𝑖  element is determined. And due to the 

first cumulated block represents the application of the whole 

profile starting with zero damage, then we take the reliability of 

this first block as the reliability of the mechanical element. 

Additionally, observe that due to the only input of the proposed 

methodology is the cumulative damage analysis, then it can be 

applied to any analysis where the cumulative damage is 

available. 

As a study case an AL6061-T6 aluminum cantilever beam is 

used. Data was published in (13).  The simulation analysis was 

perform subjecting the beam to a weight of 2𝑁𝑤 mounted on 

the tip of the beam, with input PSD level of 0.475 𝑔^2/𝐻𝑧, and 

a frequency ranging between 20 𝑡𝑜 200𝐻𝑧, and it was tested by 

a period of 4.0 ℎ𝑜𝑢𝑟𝑠 . From the vibration static and modal 

analysis, we found the natural frequency is 60𝐻𝑧, the dynamic 

factor is 2.42𝑀𝑝𝑎 , and the vibration bending stresses that 

contain the geometry, weight and resonance effect are in Table 

3. The cycles to failure, and applied cycles are in Table 4 and le 

5, respectively, and the corresponding cumulated damage is in 

Table 6. As reliability results, we have that 𝛽 = 2.1169, and the 

element reliability is 𝑅(𝑡) = 0.9935, with Weibull family given 

as 𝑊(2.1169, 3.23𝐸 + 07 𝑐𝑦𝑐𝑙𝑒𝑠) . The corresponding 

reliability index of each 𝐷𝑖  element and their corresponding eta 

values are both given in Table 8. 

The paper is structured as follows: section 2 presents the 

generalities of vibration analysis. In section 3, the numerical 

application of a cantilever beam is presented. Section 4 contains 

the formulation of the Weibull distribution and the steps of the 

proposed methodology. In section 5 the results of the 

application of the methodology are presented. Finally, the 

conclusions are given in section 6. The generalities of the 

performed vibration analysis are as follows. 

2. Generalities of vibration analysis 

Damage vibration analysis is performed on elements that are 

subjected to fatigue. Its accumulation damage is a complex 

process because it presents a nonlinear behavior. Among the 

models used to cumulate damage, we have the three-band 

technique (14), the Miner’s rule and the nonlinear curve damage 

model. They generalities are. 

2.1. Three-band technique generalities 

The Steinberg three-band technique is a simplified method for 

analyzing fatigue failure due to random vibration by using 

Miner’s rule approach. Unfortunately, although it let us a quick 

estimation of damage, as (15) mention it is not accurate. The 

method is based on the three sigma frequency bands of the 

normal distribution, 1𝜎  (68.3%), 2𝜎  (27.1%) and 3𝜎  (4.33%) 

(4,14). Where 𝜎  is the standard deviation of the normal 

distribution. Therefore, to perform the fatigue damage analysis 

we determine the expected number of applied cycles 𝑛𝑖  of each 

one of the three sigma bands, and their corresponding stress. 

Then the stresses values are used in the S-N curve to determine 

the corresponding cycles to failure (𝑁) (14,16,17) that we use 

in the Miner rule approach. 

2.2. Miner’s Linear Rule Model 

Miner (1945) (18) based on the work of Langer, applied the 

linear damage rule to axial stress-strain fatigue data of aircraft 

raw material. He found an agreement between the predictions 

of the linear damage rule and his experimental results (19). The 
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principle of cumulated damage using Miner's rule is performed 

based on the assumption that fatigue strength is determined by 

applying different stress levels. Where each stress level 

contributes to a certain amount of damage. Thus, Miner’s rule 

is used to predict the total life of a component subjected to  

a sequence of load levels, and it is given by eq.(1); 

𝐷𝑖 = 𝑛𝑖/𝑁𝑖   (1) 

where 𝑛𝑖 is the number of apply cycles of a specific stress level, 

𝑁𝑖 is the number of cycles to failure for this stress level, and 𝐷𝑖  

is the damage that the material has cumulated during the 

application of the applied load. Thus, 𝐷𝑖 ≤  1, means that the 

component or part does not fail yet. In general, for several stress 

levels the cumulated damage is as in eq.(2), and as in Figure 1; 

𝐷𝑐 = ∑(𝑛𝑖/𝑁𝑖)

𝑖=𝑘

𝑖=1

 (2)  

 

Figure 1. Miner’s cumulative damage. 

Therefore, the component failure is predicted when 𝐷𝑐 ≥ 1. 

From eq.(1), it is observed that the Palmgren-Miner rule is  

a simplistic model. It has no conclusive meaning because it does 

not allow us to evaluate probabilistically the selected design, 

which is fundamental in vibration fatigue analysis. Currently the 

Palmgren-Miner (1945) (18), and Palmgren (1924) approaches 

are still being used in most standards related to fatigue design 

to incorporate probability to the analysis. Moreover, from an 

engineering perspective, it is reasonable to consider damage as 

the probability of failure, derived from the field of the S-N curve, 

which agrees with the conventional concept of ultimate limit 

state (strength) (20). However, the nonlinear curve model was 

formulated to avoid the disadvantages of Miner’s rule. 

2.3. Nonlinear damage curve model 

The double linear damage model by Manson and Halford rule 

(21) is used to determine the damage of an element subject to 

vibration (22). This model considers the interactions of the 

applied load and the nonlinear nature behavior of vibration. It 

considers equal damage for the two load levels based on the 

theory of elasticity and material properties (22), therefore, the 

equivalent damage radius cycle is represented by 

𝑛1

𝑁𝑓2

= (
𝑛2

𝑁𝑓2

)

(
𝑁𝑓2

𝑁𝑓1
)

0.4

 
(3)  

Consequently, the damage curve model is given by the 

power law equation, 

𝐷𝑖 = (
𝑛𝑖

𝑁𝑖𝑓

)

(
𝑁𝑖𝑓

𝑁𝑖𝑓−1
)

0.4

 
(4) 

where the exponent 0.4 represents the cause-effect relationship 

of the material deformation, with the applied cycles. To consider 

the effect of the PSD (power spectral density) loads, the 

exponent of the previous model was modified by (23) to be  

a model that is in function of loads. It was formulated by 

substituting the exponent 0.4 by (𝜎𝑖  ±  1𝑣𝑏/𝜎𝑖𝑣𝑏) . Thus, the 

developed model is a nonlinear continuous damage function 

that incorporates the vibration-induced bending stress as 

follows 

𝐷 = ∑ 𝐷2

2

𝑖=1

= [
𝑛2

𝑁2,𝑓

]

(
𝑁2,𝑓
𝑁1,𝑓

)

[
𝜎1𝑣𝑏
𝜎2𝑣𝑏

]

 
(5) 

In this paper we used eq.(5) to cumulate the damage 

generated by vibration. Where the cycles to failure 𝑁𝑖    are 

determined by the Basquin equation    

𝑆 = 𝑎𝑁𝑏  (6) 

The numerical application is as follows. 

3. Application case  

In the numerical case, we used the analyzed cantilever beam 

element published by Kumar. Thus, here we present only the 

generalities, for deeper analysis see (13). The material 

proprieties are, aluminum Al 6061-T6, elasticity modulus 𝐸 =

68.9 𝐺𝑝𝑎 , Poisson’s ratio 𝛾 = 0.3 , yield strength 𝑆𝑦 =

276 𝑀𝑝𝑎 , ultimate tensile strength 𝑆𝑢𝑡 = 310 𝑀𝑝𝑎 , fatigue 

strength 𝑆𝑒 = 96.5 𝑀𝑝𝑎,  density 𝜌 = 0.0975 𝑙𝑏/𝑝𝑢𝑙^3 , and 

150 𝑚𝑚  length by 15 𝑚𝑚  wide and 7 𝑚𝑚  high, as shown in 

Figure 2. An overall damping ratio of 5 percent is considered in 

the analysis. The beam supports a weight of 2𝑁𝑤 mounted on 

the tip of the beam, and its movement is restricted to only 
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vertical direction. The mechanical element must be capable of 

operating in a white noise random vibration environment with 

an input PSD level of 0.475 𝑔^2/𝐻𝑧, and frequency range of 

20 to 200𝐻𝑧 for a period of 4.0 ℎ𝑜𝑢𝑟𝑠. 

 

Figure 2. Aluminum cantilever beam, (13). 

Base on the material characteristic and applied environment 

the nonlinear analysis is as follows. 

3.1. Nonlinear analysis 

The input test profile in the range frequency of 20 −  200𝐻𝑧 

with accelaration of 0.475 𝑔^2/𝐻𝑧  is given in Table 1. It 

presents a maximum of 9.25 𝐺𝑅𝑀𝑆 with a velocity of 31.5 𝑖𝑛/

𝑠 and a displacement of 0.3 𝑖𝑛. 

Table 1. Input testing profile. 

Frequency 

(HZ) 
Gravities (G) Acceleration [G^2/Hz] 

20 3.082 0.475 

50 4.873 0.475 

80 6.164 0.475 

120 7.550 0.475 

150 8.441 0.475 

200 9.747 0.475 

The corresponding simulation in Matlab is as follows. 

3.1.1. Incorporation of time effect to the test profile 

For simulation, we use a testing time of 4 hrs. (14400 sec) in the 

Matlab Vibrationdata library. The acceleration output response 

is shown in Table 2, and in Figure 3. 

Table 2. Matlab response acceleration 

Frequency 

(Hz) 

Response 

acceleration in G 

units 

Response 

acceleration in 

Grms (𝑮𝟐/𝑯𝒛) 

20 8.88 3.94 

50 19.21 7.38 

80 24.33 7.39 

120 29.77 7.38 

150 33.17 7.33 

200 29.03 4.21 

 

Figure 3. Matlab acceleration synthesis 

The difference between data of Table 1 and Table 2 is 

because of the testing time effect. Similarly, the effect in the 

analysis of geometry, weight, and resonance is as follows. 

3.1.2. Static and modal analysis 

To incorporate the effect of geometry, weight, and resonance 

into the analysis the corresponding angular natural frequency 

𝑊𝑛 in 𝑅𝑎𝑑/𝑆𝑒𝑐, is determinated as. 

𝑊𝑛 = √
3𝐸𝐼

𝑚𝑙3
 (7) 

where 𝐸  is the elasticity modulus in 𝐿𝑏/𝑖𝑛^2 , 𝐼  is the inertia 

moment in 𝑖𝑛^4 , 𝑚  is the effective mass of the load in 𝐿𝑏 −

𝑠𝑒𝑔^2/𝑖𝑛 , and 𝑙  is the length of the component in 𝑖𝑛 . 

Numerically, 𝑊𝑛 is estimated as 

𝑊𝑛 = √
3(9993100.12 

𝑙𝑏
𝑖𝑛2)(0.0010976 𝑖𝑛4)

(0.000937757 
𝑙𝑏 − 𝑠𝑒𝑐2

𝑖𝑛
)(6.33)

= 374.60
𝑅𝑎𝑑

𝑆𝑒𝑐
 

Thus, based on 𝑊𝑛 the corresponding natural frequency is, 

𝑓𝑛 =
𝑊𝑛

2𝜋
 (8) 

𝑓𝑛 =
374.60

2𝜋
≈ 60 𝐻𝑧 

On the other hand, the dynamic factor used to determine the 

generated bending vibration stress is determined as  

𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = (
𝐾𝑚𝑒�̂�𝐶

𝐼
) 𝐴 (9) 

where, 𝑘 = 1, is the stress concentration factor, 𝐶 = 0.1377𝑖𝑛 

is the distance to the neutral axis, �̂� = 5.9 𝑖𝑛  is the distance 

from the fixed point of the component to the point of application 

of the mass, 𝐴 = 386 𝑖𝑛/𝑠𝑒𝑐2  is the constant of gravity, 𝐼 =

0.0010976𝑖𝑛^4  is the inertia moment, and 𝑚𝑒 =

0.001232311 𝑙𝑏 − 𝑠𝑒𝑐2/𝑖𝑛  is the effective mass . Therefore, 
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numerically, its value is 𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 352.08 𝑃𝑠𝑖 (2.42 𝑀𝑃𝑎) . 

With this dynamic factor value, (11), the corresponding bending 

stress is determined as follows.  

3.1.3. Bending stress analysis.  

The bending stresses used to calculate the cycles to failure, 

based on the response acceleration from Table 2, and the 

dynamic factor given in eq.(9) are presented in Table 3. It is 

determined as  

𝜎𝑣𝑏 = 𝜎𝑑𝑖𝑛𝑎𝑚𝑖𝑐 ∗ 𝐴𝑟𝑒𝑠 (10) 

Table 3. Vibration profile with bending stress. 

Frequency 

(Hz) 

Response 

Acceleration 𝑨𝒓𝒆𝒔 

(𝑮𝟐/𝑯𝒛) 

Scale Factor  

𝝈𝒅𝒚𝒏𝒂𝒎𝒊𝒄(Mpa) 

Bending 

Stress 𝝈𝒗𝒊𝒃 

(Mpa) 

20 8.88 

2.42 

21.5784 

50 19.21 46.6803 

80 24.32 59.0976 

120 29.77 72.3411 

150 33.17 80.6031 

200 29.03 70.5429 

Therefore, by using the bending stress of Table 3 in the 

Basquin’s formula defined in eq.(6), the corresponding failure 

cycles are determined as 

𝑁𝑖 = (
𝜎𝑣𝑖𝑏/𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

𝑎
)

1
𝑏

 (11) 

The 𝑁𝑖 data is presented in Table 4. The material coefficient 

is 𝑏 = −
1

3
𝑙𝑜𝑔 [

0.92∗310 𝑀𝑝𝑎

96.5 𝑀𝑃𝑎
] = −0.1568  and 𝑎 =

(0.92∗310 𝑀𝑃𝑎)2

96.5 𝑀𝑃𝑎
= 842.89.  

Table 4. Results of cycles to failure (𝑁𝑖). 

Frequency (HZ) 
Bending Stress 

𝝈𝒗𝒊𝒃 (Mpa) 

𝑵𝒊(Cycles to 

Failure) 

20 21.5784 1.40E+10 

50 46.6803 1.02E+08 

80 59.0976 2.28E+07 

120 72.3411 6.28E+06 

150 80.6031 3.15E+06 

200 70.5429 7.37E+06 

On the other hand, the applied cycles of each damage block 

are determined by using the Rainflow algorithm (ASTM E 

1049-85) of Matlab. They are given in Table 5. 

Table 5. Applied cycles (𝑛𝑖) Rainflow. 

Frequency (Hz) 𝒏𝒊 (applied cycles) 

20 110437 

50 74883.5 

80 114802 

120 137055 

150 249066 

200 156561.5 

Therefore, based on the 𝑁𝑖 values of Table 4 and 𝑛𝑖 values 

of Table 5, the cumulative damage is performed as fallows. 

3.1.4. Determination of the accumulated damage 

The accumulation of the vibration damage is performed by 

using the nonlinear curve model (23) as. 

𝐷𝑖 = [
𝑛𝑖

𝑁𝑖,𝑓

]

(
𝑁𝑖,𝑓

𝑁𝑖−1,𝑓
)

(
𝜎𝑣𝑓(𝑖−1)

𝜎𝑣𝑓(𝑖)
)

 
(12) 

The accumulated damage until 𝐷 = 1 is given in Table 6.

Table 6. Results of the accumulated damage calculation. 

  20 Hz  50 Hz  80 Hz  120 Hz  150 Hz  200 Hz 

Block No. 𝐧𝐢 D1 neq+n2 D1+2 neq+n3 D1+2+3 neq+n4 D1+2+3+4 neq+n5 D1+2+3+4+5 neq+n6 D1+2+3+4+5+6 

1 1.10E+05 7.88E-06 9.84E+06 8.18E-06 2.07E+06 1.07E-05 1.46E+05 1.36E-03 2.53E+05 8.04E-02 2.99E+06 9.27E-02 

2 1.10E+05 9.27E-02 6.37E+07 9.32E-02 1.40E+07 9.70E-02 1.80E+06 1.11E-01 6.00E+05 1.91E-01 4.09E+06 2.11E-01 

3 1.10E+05 2.11E-01 7.51E+07 2.12E-01 1.66E+07 2.19E-01 2.78E+06 2.40E-01 1.00E+06 3.19E-01 4.94E+06 3.47E-01 

4 1.10E+05 3.47E-01 8.30E+07 3.49E-01 1.84E+07 3.59E-01 3.64E+06 3.84E-01 1.46E+06 4.63E-01 5.66E+06 4.99E-01 

5 1.10E+05 4.99E-01 8.92E+07 5.01E-01 1.98E+07 5.15E-01 4.44E+06 5.44E-01 1.96E+06 6.23E-01 6.32E+06 6.66E-01 

6 1.10E+05 6.66E-01 9.45E+07 6.69E-01 2.11E+07 6.87E-01 5.20E+06 7.19E-01 2.52E+06 7.99E-01 6.92E+06 8.48E-01 

7 1.10E+05 8.48E-01 9.92E+07 8.51E-01 2.21E+07 8.73E-01 5.95E+06 9.09E-01 3.11E+06 9.88E-01 7.49E+06 1.05E+00 
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From Table 6, we notice 𝐷 =  1.0  (fatigue failure) is 

reached in block 7. The corresponding nonlinear cumulated 

damage behavior is shown in Figure 4.  

  

Figure 4. Damage curve behavior. 

At this point, it is important to mention that although the 

cumulative damage already contains the effect of test time, 

geometry, weight, and resonance, it is still impossible to 

determine neither the reliability of the element nor the reliability 

that each damage blocks presents. Thus, in this paper, the 

novelty is that based on the Weibull distribution and on the 

cumulated damage, we determine those reliabilities indices. 

4. Weibull distribution  

Due to in the vibration analysis, the effect is represented by the 

vibration stress eq.(9), then the two parameter Weibull 

distribution (22) is used to perform the reliability analysis (11). 

The Weibull density function is: 

𝑓(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

𝑒
{−(

𝑡
𝜂

)
𝛽

}
 (13) 

where beta (𝛽) is the shape parameter and eta (𝜂) is the scale 

parameter. Thus, the Weibull reliability function is given by: 

𝑅(𝑡) = 𝑒
{−(

𝑡
𝜂

)
𝛽

}
 

(14) 

With cumulative risk function given by   

𝐻(𝑡) = (
𝑡

𝜂
)

𝛽

        (15) 

Consequently, since eq.(15) represents the Weibull 

cumulative risk, and because the 𝐷𝑖   elements of the 

accumulated damage analysis already represent the time, 

geometry, weight and resonance effects, and they also are 

accumulated, then for the reliability estimation, we only need to 

find an equivalence between eq.(15) and the addressed 𝐷𝑖  

elements, and an alternative way of estimating the Weibull 

shape parameter, as they are formulated in section 5. However, 

before describing the methodology, because in vibration the 

generated stress has a variant behavior (11), then in the 

determination of the reliability index of the analyzed element, it 

is advisable to use the cumulative damage model for variant 

stress given in the following section. 

4.1. Cumulative damage variant stress model 

The formulation of the cumulative damage model for variant 

stress that could be used in the reliability vibration analysis 

using the Weibull distribution, is as follows (24,25), 

𝑅(𝑡, 𝑥(𝑡)) = 𝑒
−[∫

1
𝜂(𝑢)

𝑡
0  𝑑𝑢]

𝛽

= 𝑒
−(

𝑏𝑖
𝜂(𝑡)

)
𝛽

 (16) 

where 𝑏𝑖  is the ith block of the cumulative damage analysis 

generated by vibration. In eq.(16) the scale parameter eta 𝜂 in 

function of the variant stress (𝑥(𝑡)), could be estimated as  

𝜂(𝑡) = [
𝑎

𝑥(𝑡)
]

𝑛

 (17) 

where 𝑎  and 𝑛  are the model parameters to be estimated. 

Therefore, the Weibull/cumulative damage stress variant model 

is 

𝑓(𝑡, 𝑥(𝑡))

= {𝛽 [
𝑥(𝑡)

𝑎
]

𝑛

[∫ [
𝑥(𝑢)

𝑎
]

𝑛

𝑑𝑢
𝑡

0

]

𝛽−1

} 𝑒
−[∫ [

𝑥(𝑢)
𝑎

]
𝑛

𝑑𝑢
𝑡

0 ]

𝛽

 
(18) 

However, notice that to apply eq.(18) to vibration data, it is 

necessary to know the value of beta (𝛽), as well as known how 

the vibration affects behaves, or how these effects are related to 

the corresponding 𝜂(𝑡) value (26). Also notice the complexity 

of this relationship is that, it must be a function of the testing 

profile and the vibration stress given by eq.(10). And that for the 

estimated model parameters 𝑎  and 𝑛 , it must be possible to 

predict the correct value of eta (𝜂) . On the other hand, also 

observe that although the parameters of eq.(18) could be 

determined by using the maximum likelihood method, currently 

it is not possible because in the vibration analysis we have not 

failure times, therefore more research must be undertaken. 

Thus, in this paper instead of use the time to failure which 

are unknown, we use the accumulated damage element (𝐷𝑖) as 

the variable that represents the accumulated damage in the 

Weibull reliability function (27) (see eq.(15)) up to time 𝑡𝑖 to 

determine the reliability of the element. This is performed based 

on the following formulation. By linearizing eq.(14), we get 

𝑦 = 𝛽[𝑙𝑛(𝑡) − 𝑙𝑛(𝜂)] , implying that   
𝑦

𝛽
= 𝑙𝑛(𝑡) − 𝑙𝑛(𝜂) →
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𝑦

𝛽
= 𝑙𝑛 (

𝑡

𝜂
). Thus, from eq. (15), 𝑒

𝑦

𝛽 = (
𝑡

𝜂
) = 𝐻(𝑡)

1

𝛽 . Therefore, 

the damage element 𝐷𝑖 =
𝑛𝑖𝑒𝑞

𝑁𝑖
  , by considering  𝑛𝑖𝑒𝑞 = 𝑡𝑖  and 

𝑁𝑖 = 𝜂𝑖, in terms of the Weibull cumulative hazard function is 

given by. 

𝐷𝑖 = 𝑒
𝑦
𝛽 = (

𝑡

𝜂
)                          (19) 

Since 𝐷𝑖  in eq.(19) represents the cumulative damage at 𝑡𝑖 

in the Weibull cumulative risk function (eq.(15)), then using the 

element 𝐷𝑖   in eq.(15), and by replacing it in eq.(14), the 

reliability of the damage element is given by. 

𝑅(𝑡𝑖) = 𝑒{−1∗𝐷𝑖𝑘
𝛽} (20) 

Where the beta parameter is determined according to the 

methodology presented in section 4.2 (see step 6). Additionally, 

since 𝐷𝑖  is a function of 𝑛𝑖,𝑒𝑞 which from eq.(12) is given as. 

𝑛𝑖,𝑒𝑞 = 𝑁𝑖,𝑓 ∗ (𝐷𝑖−1)(𝑁𝑖.𝑓/𝑁𝑟𝑒𝑓)

1

(𝜎𝑣𝑓(𝑖−1)/𝜎𝑣𝑓(𝑖))

 
(21) 

Then since the relation between  𝑛𝑖,𝑒𝑞  and 𝐷𝑖  is unique, the 

reliability of the element in terms of 𝑛𝑖,𝑒𝑞  is also given as. 

𝑅(𝑡𝑖) = (
𝑛𝑖𝑒𝑞

𝜂
)

𝛽

 (22) 

Consequently, from eq.(22) we have that the reliability of 

the element as well as the reliability of each accumulated 

damage blocks, can be determined based on either the 𝐷𝑖 , or the 

𝑛𝑖,𝑒𝑞   elements. Based on this, the steps of the proposed 

methodology are as follows. 

4.2. Steps of the methodology for vibration reliability 

analysis 

1. Determine the accelerated testing profile, and by 

simulation, incorporate the effect that the testing time 

has on the initial input acceleration of the testing profile. 

From this simulation, obtain the corresponding output 

response acceleration data (see sections 3.1, and 3.1.1). 

In our case, we use the vibration library of the Matlab 

software. 

2. Perform the static and modal analysis, to incorporate the 

effect of geometry, weight and resonance (see section 

3.1.2). 

3. Determine the dynamic factor defined in section 3.1.2, 

eq.(9) and by using it with the  response acceleration of 

step 1 in eq.(10), determine the corresponding vibration 

stresses (see section 3.1.3). 

4. Determine the cycles to failure 𝑁𝑖 corresponding to each 

vibration stress using the Basquin’s formula given in 

eq.(11). And from the rainflow analysis, determine the 

applied cycles 𝑛𝑖 (see section 3.1.3). 

5. Based on eq.(12) perform the cumulative damage 

analysis, and identify the element of the block for which 

𝐷 = 1. In our case, we perform the cumulative damage 

analysis using the nonlinear curve model given in eq.(12) 

(see section 3.1.4).  

6. Determine the Weibull beta ( 𝛽)  value by using the 

number of blocks (𝑏𝑖) at which 𝐷 = 1, as the variable 𝑡 

(𝑏𝑖 = 𝑡𝑖)  in eq.(13), and solve it by applying the 

maximum likelihood method (retain only the beta value 

(𝛽), the eta value (𝜂) is not used) (27).  

7. Determine the reliability of each damage 𝐷𝑖  element of 

the cumulative damage analysis by using the 𝐷𝑖  value as 

the variable 𝑡 (𝐷𝑖 = 𝑡𝑖) with the beta value (𝛽) of step 6 

in eq.(20). 

8. Determine the value of eta 𝜂𝑖 that corresponds to each 

damage 𝐷𝑖  element by using the 𝑛𝑒𝑞  value in eq.(23). 

𝜂𝑖 =
𝑛𝑖𝑒𝑞

[−𝐿𝑛 (𝑅(𝑛𝑖𝑒𝑞))]
1/𝛽

 
(23) 

9. In each block, take the reliability of the last 𝐷𝑖  element 

as the reliability of this block.  

10. Take the element’s reliability as the first block’s 

reliability index. 

In the next section, the numerical case is presented. 

5. Results of numerical application case 

The step-by-step analysis of the numerical application is as 

follows. 

1. See section 3.1.1 The output response acceleration is 

given in Table 2. 

2. See section 3.1.2.  

3. See section 3.1.3. The dynamic factor and the 

corresponding vibration stresses are given in Table 3.  

4. See section 3.1.3. The cycles to failure 𝑁𝑖 are given in 

Table 4, and the applied cycles 𝑛𝑖 are given in Table 5. 

5. From eq.(12), the cumulated data is given in Table 7 

(see also section 3.1.4). 
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Table 7. Cumulated damage data. 

 0 - 20 Hz 20 - 50 Hz 50 - 80 Hz 80 - 120 Hz 120 - 150 Hz 150 - 200 Hz 

Block No. D1 D1+2 D1+2+3 D1+2+3+4 D1+2+3+4+5 D1+2+3+4+5+6 

1 7.88E-06 8.18E-06 1.07E-05 1.36E-03 8.04E-02 9.27E-02 

2 9.27E-02 9.32E-02 9.70E-02 1.11E-01 1.91E-01 2.11E-01 

3 2.11E-01 2.12E-01 2.19E-01 2.40E-01 3.19E-01 3.47E-01 

4 3.47E-01 3.49E-01 3.59E-01 3.84E-01 4.63E-01 4.99E-01 

5 4.99E-01 5.01E-01 5.15E-01 5.44E-01 6.23E-01 6.66E-01 

6 6.66E-01 6.69E-01 6.87E-01 7.19E-01 7.99E-01 8.48E-01 

7 8.48E-01 8.51E-01 8.73E-01 9.09E-01 9.88E-01 1.05E+00 

 

From Table 7 observe 𝐷 = 1 occurred on the seventh block. 

6. By using the maximum likelihood method, the 

addressed Weibull parameters are 𝛽 = 2.1169 , 𝜂 =

4.5184, with 𝐿𝑘 𝑣𝑎𝑙𝑢𝑒 = −14.5769. (Remember, the 

eta value will not be used). 

7. The reliability index that corresponds to each one of 

the damages 𝐷𝑖  elements are given in Table 8. 

8. The eta 𝜂𝑖 elements that correspond to each one of the 

damages 𝐷𝑖  elements are given in Table 8.

Table 8. Summary of cumulative blocks damage nalysis 𝛽 = 2.1169. 

Block 1 D1 D2 D3 D4 D5 D6 

𝑫 0.000008 0.000008 0.000011 0.001359 0.080424 0.092679 

𝑹(𝒏𝒊𝒆𝒒) 1.000000 1.000000 1.000000 0.99999915 0.995194 0.993517 

𝒏𝒊𝒆𝒒 1.10E+05 9844194.1745 2070793.2004 146354.8597 253347.6474 2993717.2565 

𝜼 1.40E+10 1.20E+12 1.93E+11 1.08E+08 3.15E+06 3.23E+07 

 

Block 2 D1 D2 D3 D4 D5 D6 

𝑫 0.092687 0.093234 0.096978 0.111455 0.190519 0.211205 

𝑹(𝒏𝒊𝒆𝒒) 0.993516 0.993435 0.992866 0.99043427 0.970540 0.963490 

𝒏𝒊𝒆𝒒 1.10E+05 63741504.4362 13967924.1449 1799452.5535 600167.1037 4089575.3686 

𝜼 1.19E+06 6.84E+08 1.44E+08 1.61E+07 3.15E+06 1.94E+07 

 

Block 3 D1 D2 D3 D4 D5 D6 

𝑫 0.211213 0.212269 0.219426 0.239773 0.318838 0.347161 

𝑹(𝒏𝒊𝒆𝒒) 0.963487 0.963107 0.960477 0.95251251 0.914899 0.898975 

𝒏𝒊𝒆𝒒 1.10E+05 75141298.5128 16574955.0381 2783438.5685 1004391.9805 4936402.8615 

𝜼 5.23E+05 3.54E+08 7.55E+07 1.16E+07 3.15E+06 1.42E+07 

 

Block 4 D1 D2 D3 D4 D5 D6 

𝑫 0.347169 0.348740 0.359323 0.384367 0.463432 0.499038 

𝑹(𝒏𝒊𝒆𝒒) 0.898970 0.898051 0.891765 0.87624095 0.821764 0.794848 

𝒏𝒊𝒆𝒒 1.10E+05 82984683.4795 18379932.7636 3641478.5470 1459885.8765 5663617.8214 

𝜼 3.18E+05 2.38E+08 5.12E+07 9.47E+06 3.15E+06 1.13E+07 

 

Block 5 D1 D2 D3 D4 D5 D6 

𝑫 0.499046 0.501146 0.515229 0.544399 0.623463 0.666171 

𝑹(𝒏𝒊𝒆𝒒) 0.794842 0.793214 0.782188 0.75878705 0.692242 0.654946 
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𝒏𝒊𝒆𝒒 1.10E+05 89225225.3764 19821958.4851 4439710.4883 1964011.3842 6318324.1153 

𝜼 2.21E+05 1.78E+08 3.85E+07 8.16E+06 3.15E+06 9.48E+06 

Block 6 D1 D2 D3 D4 D5 D6 

𝑫 0.666179 0.668824 0.686505 0.719452 0.798517 0.848231 

𝑹(𝒏𝒊𝒆𝒒) 0.654939 0.652608 0.636981 0.60770433 0.537366 0.493722 

𝒏𝒊𝒆𝒒 1.10E+05 94526806.4543 21050840.0254 5203561.2843 2515459.4615 6923692.6626 

𝜼 1.66E+05 1.41E+08 3.07E+07 7.23E+06 3.15E+06 8.16E+06 

 

Block 7 D1 D2 D3 D4  D6 

𝑫 0.848239 0.851448 0.872835 0.909325 0.988389 1.045066 

𝑹(𝒏𝒊𝒆𝒒) 0.493715 0.490926 0.472450 0.44143080 0.376974 0.333603 

𝒏𝒊𝒆𝒒 1.10E+05 9.92E+07 2.21E+07 5.95E+06 3.11E+06 7.49E+06 

𝜼 1.30E+05 1.17E+08 2.54E+07 6.54E+06 3.15E+06 7.17E+06 

 

9. The reliability index of each block is given in Table 9.  

Table 9. Block’s reliability indices. 

Block 1 2 3 4 5 6 7 

𝑅(𝑡) 0.993517 0.963490 0.898975 0.794848 0.654946 0.493722 0.333603 

10. From the first row of Table 9, the reliability of the 

analyzed element is 𝑅(𝑡) = 0.993517. 

6. Conclusions  

1. The given methodology could be used as a guideline to 

perform reliability vibration analysis because it presents 

the step from the testing profile simulation to the 

reliability indices estimation. 

2. In the reliability analysis only the cumulative damage 

(Table 6) analysis is needed. 

3. Due to beta (𝛽) is estimated directly from the number of 

damage blocks until  𝐷 = 1, then its value represents the 

dispersion for the blocks until 𝐷 = 1  occurs. In case, 

𝐷 = 1 occurs in the first or second block, then we can 

use the recommended beta value mentioned in norm 

GMW3172 which is in the range of [2.0 ≤ 𝛽 ≤ 2.5].    

4. The proposed methodology lets us determine the 

reliability index for each one of the cumulated 𝐷𝑖  

elements and damage blocks 𝑏𝑖.  

5. The reliability of the first block is selected as the 

reliability of the analyzed element because it represents 

the first complete application of the testing profile. This 

is because only the first block starts with zero damage. 

6. By applying the proposed methodology, it will be always 

possible to calculate the eta 𝜂𝑖 value that corresponds to 

each one of the 𝐷𝑖  elements. This occurs because, from 

the accumulated damage analysis, the corresponding 𝑛𝑒𝑞  

values used in eq.(23), are always determined. 

7. In section 4.1, the formulation to relate the Weibull 

cumulative risk function and the cumulated vibration 𝐷𝑖  

elements is given. 

8. Since in eq.(21) a unique relationship between the 𝑛𝑒𝑞  

and 𝐷𝑖  elements exists, then eq.(21) can be used as the 

life/stress model in vibration analysis and accelerated 

vibration test analysis. This by taking the 𝐷𝑖  elements as 

the accelerated stress, which in practice can be 

accelerated by increasing either the frequency and/or the 

generating bending stress. However, because it could not 

be evident, more research must be undertaken.
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