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Highlights  Abstract  

▪ Machine learning enhances predictive 

maintenance for electric vehicles. 

▪ Advanced algorithms identify potential failure 

modes before they occur. 

▪ Improved efficiency and reduced downtime 

through accurate failure predictions. 

▪ Optimised maintenance schedules based on 

real-time vehicle performance data. 

▪ Data-driven insights extend the lifespan of 

electric vehicle components. 

 This study stands out for its novelty, offering an alternative solution to 

traditional methods for analyzing failure modes and their effects. We 

utilized machine learning techniques, which have enabled a significant 

shift in the predictive maintenance of electric vehicles. We performed 

numerous tests and evaluations of advanced models such as random 

forests, decision trees, logistic regression, and neural networks, where 

random forests and neural networks achieved exceptional accuracy of 

96.67%. This breakthrough improves fault prediction accuracy, reduces 

operational costs, and minimizes downtime by combining numerical and 

categorical data. The study focuses on the transformative potential of 

machine learning, enhancing the reliability, lifespan, and maintenance of 

electric vehicles through a data-driven approach. The main innovation 

of this study lies in integrating multiple models, such as Random Forest 

and Neural Networks, to analyze failures in electric vehicles. While 

previous studies typically relied on traditional techniques like decision 

trees or regression analysis, our research presents a multi-layered 

approach, enabling the models to detect more complex patterns and 

improve prediction accuracy. Moreover, we incorporate real-world data 

collected from electric vehicle sensors, which allows the model to make 

precise predictions in real-world operational environments. This 

approach significantly advances previous studies, which primarily relied 

on simulated data or isolated models. 
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1. Introduction 

The rapid transition towards electric vehicles (EVs) presents 

new challenges in maintaining the reliability and performance 

of these vehicles (1). Unlike traditional internal combustion 

engine (ICE) vehicles, EVs rely on complex electronic 

components, such as high-voltage batteries, electric motors, and 

associated control systems, introducing new failure modes that 

traditional maintenance methods cannot fully address (2-4). 

These failures can significantly impact operational efficiency, 

leading to unplanned downtime and higher maintenance costs 

(5, 6). To mitigate these issues, predictive maintenance using 

machine learning (ML) techniques has become a pivotal 

strategy in the automotive industry, including for EVs, to 
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enhance reliability and minimize downtime (7). 

Integrating ML models such as Random Forest (RF) and 

Neural Networks (NN) has shown significant promise in 

predicting failures in EV systems (8-10). These models can 

detect complex failure patterns by analyzing sensor data from 

various EV components (11, 12). Recent studies have 

demonstrated the effectiveness of these models, particularly in 

predicting failures in battery and motor control systems. This 

section synthesizes findings from multiple studies, highlighting 

the current state and challenges of ML-based predictive 

maintenance in EVs (10, 13, 14). 

1.1. Effectiveness of Machine Learning Models: 

• Random Forest and Neural Networks: 

Sheikh et al. (2024) highlighted the superior performance of 

RF models in predicting battery failures, achieving over 90% 

accuracy, which surpasses traditional methods such as Failure 

Mode and Effects Analysis (FMEA) (15). Similarly, Neural 

Networks have been employed to capture complex patterns in 

sensor data, improving predictive accuracy by handling non-

linear relationships and interactions between variables that 

traditional methods struggle to detect. 

• Long Short-Term Memory (LSTM) Networks: 

Li et al. (2023) demonstrated using LSTM networks to 

predict battery degradation. LSTM networks are particularly 

effective for capturing temporal dependencies in sensor data, 

making them more suitable for time-series analysis than simpler 

models that cannot account for these patterns (15). 

1.2. Hybrid Models and Their Advantages: 

• Combination of ML Techniques: 

Hybrid models, which integrate different ML techniques, are 

gaining traction due to their ability to improve prediction 

accuracy. Ullah et al. (2022) proposed a hybrid approach 

combining Random Forest (RF) and Support Vector Machines 

(SVM) to predict failures in motor control systems. This 

combination improved accuracy and operational efficiency by 

leveraging the strengths of both models in handling different 

aspects of the data (15). 

• Integration with Deep Learning: 

Peres et al. (2023) explored integrating deep learning 

methods with traditional ML models, such as RF and SVM, to 

handle large and complex datasets. This integration enhances 

the robustness of the prediction models, making them more 

capable of managing high-dimensional data and improving 

prediction reliability (15). 

1.3. Challenges and Limitations: 

• Data Quality and Real-World Applicability: 

One of the significant challenges in predictive maintenance 

is the reliance on simulated datasets or isolated ML models, 

which limits their applicability in real-world scenarios. The 

complexity and high dimensionality of real-world EV data, 

particularly when integrating data from multiple sensors, 

present significant challenges (16). Studies such as Ghelani 

(2024) emphasize the importance of high-quality, real-world 

data for training reliable models that can function effectively in 

operational environments. 

• Computational Complexity: 

As noted by Lorenti et al. (2023), deep learning models 

require significant computational resources, which can limit 

their feasibility for real-time applications in resource-

constrained environments. The computational demands of deep 

learning models can hinder their deployment, especially in real-

time predictive maintenance scenarios where speed and 

efficiency are critical (17). 

1.4. Broader Perspectives and Future Directions: 

While the advancements in ML-based predictive maintenance 

for EVs are promising, several broader perspectives should be 

considered. Integrating domain knowledge and human expertise 

into ML algorithms can enhance the predictive accuracy and 

relevance of the models. Ghelani (2023) discusses how 

incorporating expert insights can help refine predictions, 

especially in complex scenarios where data alone might not 

provide a full understanding of failure mechanisms (16). 

Additionally, the role of edge computing and distributed ML 

techniques is gaining attention in enabling real-time predictive 

maintenance, particularly in remote or resource-constrained 

environments (16). These approaches allow for the deployment 

of models on-site, reducing the need for constant cloud 

connectivity and enabling quicker decision-making processes. 

As Ghelani (2024) explored, this is an ongoing research area. 

Finally, ethical considerations like privacy protection and 

regulatory compliance are crucial when deploying ML-based 

predictive maintenance solutions. Researchers, including 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

Ghelani (2024), emphasize the importance of addressing 

privacy concerns related to the data used in these systems, 

mainly when dealing with personal or sensitive data from 

vehicle sensors. 

This study’s innovative approach of integrating multiple 

machine learning models, specifically Random Forest and 

Neural Networks, using real-world data significantly enhances 

predictive accuracy. It provides deeper insights than traditional 

methods reliant on isolated models or simulated data. 

2. Methodology 

2.1. Data Collection and Preprocessing 

A dataset of real-world data collected from multiple sensors in 

electric vehicles, including high-voltage batteries, electric 

motors, and control systems, was used. The data provides 

insights into electric vehicles' thermal performance, energy 

consumption, and charge status. This data was gathered from 

several electric cars operating in various environments, 

encompassing over 300 data points ranging from minor faults 

to complete failures. The dataset is representative of the real-

world operational conditions of electric vehicles. 

Data preprocessing was crucial in cleaning and organizing 

the dataset for subsequent analysis. The primary tasks involved 

addressing missing values, encoding categorical variables, and 

normalizing numerical features to ensure consistency across the 

dataset. Specifically, missing numerical values were replaced 

using mean imputation, while categorical variables were 

handled through mode imputation. Furthermore, the dataset was 

randomly split into training and testing sets with an 80/20 ratio 

to ensure that the models were evaluated on data not used during 

training, which is essential for accurate model evaluation. Data 

normalization was also applied to ensure all features were on 

the same scale, which is particularly crucial for models like 

Neural Networks. 

Following the preprocessing, Failure Modes and Effects 

Analysis (FMEA) was conducted on various vehicle 

components, as shown in Table 1. This analysis highlighted the 

priority for preventive measures for each identified failure mode. 

In the initial phase, we examined the components of electric 

vehicles through a detailed review of subprocess activities, 

identifying potential failure modes and their underlying causes. 

Once the FMEA was completed, data mining techniques 

were applied to enhance the prediction of failure modes. 

Machine learning models, including Neural Networks and 

Random Forests, were utilized to predict critical failure modes 

accurately and effectively. 

The failure modes were classified based on specific criteria 

related to the severity of the failure and its impact on vehicle 

performance. Data from embedded electric vehicle sensors, 

including voltage, current, temperature, and pressure 

measurements, were used. The failures were then categorized 

into four groups: operational failures, minor faults, critical 

failures, and total failures. This classification process was 

driven by a set of factors analyzed using machine learning 

techniques like Random Forest and Neural Networks, where the 

model identifies patterns in the data to determine the most likely 

failure category. 

2.1.1. Handling Missing Values 

For missing numerical values, we used mean imputation as 

described by (18): 

𝑥̂𝑖 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1     (1) 

For categorical values, we applied mode imputation (19): 

𝑥̂mode = argmax
𝑣∈𝑋

𝑃(𝑣)   (2) 

Table 2 shows the summary of the missing value imputation 

applied. 

Table 2. Missing Value Imputation. 

Feature 
Missing Value 

Count 

Imputation 

Method 

Numeric Features 10 Mean 

Categorical Features 5 Mode 

Table 1. Failure Mode and Effects Analysis (FMEA) for Electric Vehicle Components. 

No 
Process 

Activities 
Sub-Process Activities Failure Modes Causes Effects 

Detection 

Means 
Detection Severity Frequency RPN 

Preventive 

Actions 

1 Servitude Battery Transmit current No longer charges 
Wear due to 

recharge cycles 

"Ignition 
interruption on 

board" 

No light 8 3 24 576 
Replace the low-

voltage battery 

2 
HT/400V 

Traction Battery 
Transmit current to the 

traction motor 
No longer charges 

Wear due to 
recharge cycles 

Vehicle 
shutdown 

No traction 9 7 2 126 
Replace the low-
voltage battery 
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No 
Process 

Activities 
Sub-Process Activities Failure Modes Causes Effects 

Detection 

Means 
Detection Severity Frequency RPN 

Preventive 

Actions 

3 Recharge Circuit 

Ensures connection 

between batteries and 

charger 

Lack of electrical 
continuity 

Wear of 
electrical cables 

No ignition on 
board 

Visual 2 2 2 8 
Replace the 

electrical wiring 

4 
Converter, 

DC/DC Inverter 

Ensures connection 

between batteries and 

charger 

Aging of electrical 
components 

Thermal 
warming 

No recharge on 

the servitude 

low-voltage 

Heating with 
or without 

7 2 2 28 
Replace the 

electronic card 

5 
AC/DC Charger 

Rectifier 
Recharges the traction 

low-voltage battery 
Aging of electrical 

components 
Thermal 
warming 

No recharge on 

the traction 

low-voltage 

Heating with 
or without 

7 2 2 28 
Replace the 

electronic card 

6 Electric Motor 
The power source of 

the vehicle 
Poor traction 

Vehicle 

shutdown 

Wear of rotor 

brushes 

The motor no 

longer runs 
7 9 2 126 

Change the 

brushes 

7 
Transmission 

Group 
The link between the 
motor and the wheels 

Misalignment 
Poor traction 

with noise 
Loose bolts 

The receiver 

organ does not 

rotate 

5 9 2 90 
Periodic 

inspection 

8 Engine Computer 

Manages electronically 

the engine/ignition and 

security 

Poor engine 
performance 

The vehicle 
does not start 

Thermal 
warming 

No ignition 7 9 2 126 
Replace the 
computer 

9 Brake Pump 
Allows oil distribution 
to the brake cylinder 

Allows oil 

distribution to the 

brake cylinder 

Brake system 
failure 

Oil loss, 
Damaged hose 

Visual 2 2 2 8 Periodic check 

10 
Pneumatic 

Pressure Sensor 
Measures tire pressure 

Energy 

overconsumption 

Loss of 

performance 

Wear and 

temperature 
Visual 5 9 2 90 Replacement 

11 
Accelerator Pedal 

Sensor 
Detects pedal position 

Anomaly: engine 
speed 

Loss of 
performance 

Wear and 
temperature 

Instrument 7 9 2 126 Replacement 

2.1.2. Encoding Categorical Features 

 

Figure 1. Data Processing Flowchart. 

Categorical features were converted into numeric values 

using Label Encoding. For example, the Component Status 

column, which initially contained text labels (such as 

"Working"  and "Failing"), was transformed into numeric codes 

like 0 and 1. This encoding was crucial for models that cannot 

process categorical data directly (20). 

𝐿(𝑋) = Integer representation of categorical feature 𝑋    (3) 

This flowchart (Figure 1) illustrates a data processing 

pipeline's basic steps, from data input to handling missing 

values and applying categorical encoding. Numeric columns 

require processing with the imputation of missing values  with 

the mean, while categorical columns are addressed by imputing 

missing data with the mode (most frequent value). Label 

encoding is then applied to categorical columns. (21). 

2.1.3. Feature Scaling 

Standardizing the features ensured that all numerical values had 

the same scale. The StandardScaler function was applied to the 

features, transforming them into a mean of zero and a standard 

deviation of one. This procedure is critical for algorithms such 

as Support Vector Machines (SVM) and Neural Networks, 

which demonstrate sensitivity to the size of input values. 

2.1.4. Standardization 

Standardization guarantees that all features are adjusted to have 

a mean of zero and a variance of one (22): 

𝑋scaled =
𝑋−𝜇

𝜎
    (4) 
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2.2. Data Exploration  

2.2.1. Correlation Matrix 

We compute the correlation matrix to evaluate relationships 

between numerical features. (23): 

𝜌(𝑋, 𝑌) =
Cov(𝑋,𝑌)

𝜎𝑋𝜎𝑌
   (5) 

Table 3 provides a correlation matrix for critical features. 

Table 3. Correlation Matrix. 

 

Figure 2. Correlation heatmap visualizing the strength of relationships between features. 

2.2.2. Scatter Matrix and Histograms 

Figure 3 shows the scatter matrix for the numerical features, 

providing insights into pairwise relationships between different 

variables. This visualization helps identify correlations between 

features and their influence on failure mode prediction.

 

Feature 1 Feature 2 Correlation Coefficient 

Severity Feature A 0.65 

Severity Feature B -0.34 
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Figure 3. Scatter Matrix. 

Figure 4 presents the histograms for key numerical features. 

These histograms show the distribution of each feature, 

assisting in identifying any anomalies or outsiders in the data 

that could affect the results of the machine-learning models.

 

Figure 4. Histograms of Numerical Features. 
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2.3. Feature Selection and Dataset Splitting 

2.3.1. Defining Features and Target 

The features (X) and the target value (y) were specified as 

follows. (24): 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} and 𝑦 = Severity 

2.3.2. Train-Test Split 

We split the dataset into training and testing sets with an 80/20 

ratio. (25): 

𝑋train, 𝑋test, 𝑦train, 𝑦test =

                           train_test_split(𝑋, 𝑦,test_size=0. 2)               (6) 

Table 4. Train-Test Split. 

Set Number of Samples 

Train 240 

Test 60 

Table 4 summarises the distribution of data between the 

training and testing sets. 80% of the data was allocated for 

model training, while the remaining 20% was set aside for 

testing. This approach ensures that the models are assessed on 

previously unseen data, enhancing their generalization 

capabilities. 

2.4. Predictive Modeling 

2.4.1. Machine Learning Models 

The following models are trained and evaluated for fault 

detection: 

• Logistic Regression: 

The logistic regression equation used to predict the 

probability of a binary outcome through the logistic function is 

described below. (26): 

𝑃(𝑦 = 1|𝑋) =
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛) (7) 

where 𝑃(𝑦 = 1 ∣ 𝑋) is the probability of failure mode, 𝛽0 Is the 

intercept and 𝛽1, 𝛽2, … , 𝛽𝑛 are the coefficients of the features 

𝑋1, 𝑋2, … , 𝑋𝑛 

• Decision Tree Classifier: 

A decision tree splits the feature space recursively based on 

conditions that maximize the information gain or reduce the 

Gini impurity. 

The Gini impurity is calculated at each node to determine 

the quality of the split. (27): 

Gini_Impurity=1 − ∑ 𝑃𝑖
2𝑛

i=1    (8) 

where 𝑃𝑖  is the probability of class i in a particular node. The 

algorithm chooses the split that minimizes the Gini Impurity 

across all possible splits. 

Entropy (for Information Gain): Alternatively, entropy is 

used in some decision trees (e.g., ID3 algorithm) (28): 

Entropy = − ∑ 𝑃𝑖
2𝑛

i=1 𝑙𝑜𝑔2 (𝑃𝑖)  (9) 

The best split is the one that maximizes the Information 

Gain. (29):  

Information_Gain=Entropy(parent) − ∑
|𝑇𝑘|

|𝑇|𝑘 Entropy(𝑇𝑘)      (10) 

• Random Forest Classifier: 

A Random Forest is an aggregation of decision trees in 

which multiple trees are trained on bootstrapped data samples. 

Bootstrap Sampling: Each tree is trained on a random 

subset of the data, and each split in the tree is chosen from a 

random subset of features. This introduces diversity into the 

trees and reduces overfitting. 

Prediction: Predictions are generated by calculating the 

average of the projections from all individual decision trees in 

the case of regression or by determining the majority vote in the 

case of classification (30): 

𝑦̂ =
1

𝑇
∑ 𝑦̂𝑡

𝑇
𝑡=1     (11) 

In this context, 𝑦̑𝑡  Represents the prediction generated by 

tree t, while T represents the total count of trees included in the 

analysis. 

• Support Vector Machine (SVM): 

SVM aims to find the optimal hyperplane that maximizes 

the margin between the two classes. It uses the kernel trick for 

nonlinear cases to project data into higher dimensions. (31). 

Primal Problem: 

𝑚𝑖𝑛𝑤,𝑏
1

2
||𝑤||2 subject to 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1    (12) 

Here, w is the average vector to the hyperplane, 𝑥𝑖 are the 

feature vectors and 𝑦𝑖 are the class labels. 

Dual Problem (for Kernel SVM) (32): 

𝑚𝑖𝑛𝛼 ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖𝑖,𝑗 𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) (13) 

Where 𝛼𝑖  are the Lagrange multipliers and 𝐾(𝑥𝑖 , 𝑥𝑗)  is the 

kernel function (e.g., radial basis function or polynomial kernel). 

• K-Nearest Neighbors (KNN): 

KNN, a non-parametric technique, classifies data points by 
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their K-nearest neighbors' majority class. 

Distance Metric: KNN utilizes Euclidean Distance to 

measure neighbor proximity. (33): 

𝑑(𝑥, 𝑥′) = √∑ (𝑥𝑖 − 𝑥𝑖′)2𝑛
𝑖=1    (14) 

where 𝑥𝑖 and 𝑥𝑖 ′ are feature values of the test and training points, 

respectively. 

Prediction: The predicted class 𝑦̂ is determined by  

a majority vote among the k-nearest neighbors: 

𝑦̂ = mode(𝑦1, 𝑦2, … , 𝑦𝑘)   (15) 

• Gradient Boosting: 

Gradient Boosting builds decision trees successively, 

correcting their faults. This is done by minimizing a loss 

function using gradient descent. 

Loss Function: Let 𝐿(𝑦, 𝑦̂)  be the loss function, such as 

mean squared error, is utilized in regression analysis. Gradient 

Boosting minimizes the residuals by fitting decision trees to the 

negative gradient of the loss function. (34): 

𝑦̂𝑚+1 = 𝑦̂𝑚 + 𝜈 ∑ 𝛾𝑖
𝑁
𝑖=1 ℎ(𝑥𝑖)   (16) 

where 𝑦̂𝑚 is the current prediction, ℎ(𝑥𝑖) is the decision tree, 

𝛾𝑖 are the step sizes (learning rates), and 𝜈 is a scaling factor. 

Final Prediction: After M boosting iterations, the final 

prediction is (35): 

𝑦̂ = ∑ 𝜈𝑀
𝑚=1 ℎ𝑚(𝑥)    (17) 

• Neural Networks (MLP Classifier): 

Multi-layer Perceptron (MLP) neural networks have several 

nodes. Neurons in one layer link to those in the next  (36). 

Forward Propagation: For a single-layer network: 

𝑎(𝑙+1) = 𝜎(𝑊(𝑙)𝑎(𝑙) + 𝑏(𝑙))   (18) 

where 𝑊(𝑙)are the weights, 𝑎(𝑙)  is the activation of layer 𝑏(𝑙)are 

the biases and 𝜎  is the activation function (e.g., sigmoid or 

ReLU). 

Backpropagation: During training, the network uses 

backpropagation to adjust weights and biases according to the 

loss rate gradient (37): 

∇𝑊(𝑙) =
∂𝐿

∂𝑊(𝑙)   (19) 

where 𝛻𝑊(𝑙) is the loss gradient concerning the weights at layer 

l, and L is the loss function (e.g., cross-entropy for 

classification). 

Loss Function: For classification, the expected loss 

function is cross-entropy (38): 

𝐿 = − ∑ 𝑦𝑖
𝑛
𝑖=1 𝑙𝑜𝑔( 𝑦̂𝑖)   (20) 

where 𝑦𝑖  is the actual label, and 𝑦̂𝑖 is the predicted probability 

of class i. 

𝑦𝑖  is an accurate label and is class i expected probability. 

The results of different models, such as Random Forest and 

Neural Networks, were combined using an Ensemble Voting 

approach to achieve the best classification outcome. After 

training each model separately on the dataset, the outputs of the 

models were merged based on the highest accuracy achieved by 

each method. The voting principle was applied to determine the 

final classification, helping to improve prediction accuracy and 

reduce potential errors. 

2.4.2. Model Evaluation Metrics 

In addition to accuracy and ROC AUC, metrics such as 

precision, recall, and F1-score were calculated to evaluate the 

model’s classification performance comprehensively. These 

metrics are essential for assessing how well the models perform 

across the different classes of failure modes. 

• Precision measures the accuracy of the optimistic 

predictions made by the model. It is defined as the ratio 

of accurate optimistic predictions to the total predicted 

positives (39): 

Precision =
True Positives

True Positives+False Positives
  (21) 

• Recall (Sensitivity or True Positive Rate) measures the 

model's ability to identify all positive instances 

correctly. It is defined as the ratio of accurate 

optimistic predictions to the total actual positives (40): 

Recall =
True Positives

True Positives+False Negatives
  (22) 

• F1-score is the harmonic mean of precision and recall, 

providing a metric that balances both concerns. It is 

beneficial when the classes are imbalanced: 

F1 − score =
2×Precision×Recall

Precision+Recall
   (23) 

These metrics allow for a more detailed evaluation of the 

model's performance, especially when there is an imbalance in 

the classes or when the costs of false positives and false 

negatives are significant. 

Table 5 below summarizes the models' performance based 

on accuracy, precision, recall, and F1-score, providing a clearer 

view of their classification abilities across different failure 

modes. 
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Table 5. Model Performance. 

Model Accuracy 
ROC 

AUC 
Precision Recall 

F1-

Score 

Logistic Regression 85.67% 0.88 0.83 0.80 0.81 

Decision Tree 87.33% 0.85 0.86 0.85 0.85 

Random Forest 95.00% 0.93 0.92 0.94 0.93 

K-Nearest Neighbors 84.67% 0.77 0.75 0.78 0.76 

Support Vector 

Machine 
94.33% 0.91 0.89 0.91 0.90 

Gradient Boosting 94.67% 0.91 0.90 0.92 0.91 

Neural Network 96.00% 0.92 0.93 0.95 0.94 

2.5. Cross-Validation 

We use Stratified K-Fold Cross-Validation to evaluate models 

on multiple data splits, ensuring equal class proportions in each 

fold. (41): 

CV Accuracy =
1

𝑘
∑ Accuracy𝑖

𝑘
𝑖=1   (24) 

Where k is the number of folds. 

2.6. Hyperparameter Tuning 

Each model's essential hyperparameters were grid-searched to 

optimize performance. In Random Forest, the number of trees 

(n_estimators) and maximum tree depth (max_depth) were 

adjusted, whereas Neural Networks optimized hidden layers 

and neurons per layer. The tuning method was 5-fold cross-

validated to avoid overfitting. 

Table 6 outlines the specific hyperparameters tuned for each 

model and the optimal values found through cross-validation. 

This process allowed the models to generalize unseen data better. 

Table 6. Model Performance. 

Model Hyperparameters Tuned Best Values 

Logistic 

Regression 
Regularisation strength (C) 0.1 

Random 

Forest 

Number of trees (n_estimators), Max 

depth (max_depth) 
200, 15 

Neural 

Networks 

Number of layers, Neurons per layer, 

Learning rate 

3, 64 

neurons, 

0.001 

Gradient 

Boosting 

Learning rate and the number of 

boosting steps (n_estimators). 
0.05, 300 

The methodology presented in this study outlines  

a comprehensive approach to failure mode prediction in electric 

vehicles, starting from data collection and preprocessing to 

predictive modeling and evaluation. By employing various 

machine learning models and techniques such as feature scaling, 

encoding, and cross-validation, this methodology ensures that 

the dataset is optimally prepared for analysis and that the 

models are rigorously tested for robustness. Advanced models 

like Random Forest and Neural Networks, alongside simpler 

interpretable models like Logistic Regression, provide  

a balanced approach to performance and interpretability. 

Additionally, hyperparameter tuning and cross-validation 

further enhanced model generalization and predictive accuracy. 

3. Results & Discussion 

3.1. Overview of Model Performance and Study 

Contribution 

This section analyses and discusses the results of applying 

various machine-learning models to the dataset. The models 

evaluated in this analysis consist of Random Forest, Neural 

Networks, Logistic Regression, and K-Nearest Neighbours 

(KNN). Performance metrics, including accuracy, confusion 

matrices, and ROC AUC, were utilized for comparative analysis. 

Visual representations, including plots, confusion matrices, and 

tables, are presented for comprehensive analysis. 

This study examines the performance of multiple machine 

learning models for classifying failure modes in electric 

vehicles (EVs), categorized into four severity classes: 

- Class 0: Operational – Normal operation without faults. 

- Class 1: Minor Fault – Issues that do not require immediate 

attention. 

- Class 2: Critical Fault – Issues that need attention but are 

not immediately dangerous. 

- Class 3: Severe Failure – Serious faults requiring urgent 

maintenance. 

The models were evaluated based on accuracy, ROC AUC, 

confusion matrices, and the time required for training and 

prediction. 

Neural Networks and Random Forest demonstrated the 

highest overall accuracy (96.00% and 95.00%, respectively), 

with perfect performance in Class 3 (Severe Failure) based on 

ROC AUC values of 1.00. 

Models like Naive Bayes and AdaBoost struggled with 

lower accuracy rates and ROC AUC values, particularly in the 

minor fault categories. 

Table 7 below summarises the key performance metrics for 

each model.
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Table 7. Performance Comparison of Machine Learning Models. 

Model 
Accuracy 

(%) 

ROC AUC  

(Class 0) 

ROC AUC  

(Class 1) 

ROC AUC  

(Class 2) 

ROC AUC  

(Class 3) 

Training 

Time (s) 

Test Time 

(s) 

Logistic Regression 85.67 0.78 0.65 0.72 0.80 0.75 0.25 

Decision Tree 87.33 0.85 0.75 0.77 0.88 1.50 0.50 

Random Forest 95.00 0.95 0.92 0.93 1.00 2.50 0.75 

K-Nearest Neighbors 84.67 0.77 0.68 0.75 0.79 1.00 0.40 

Support Vector 

Machine 
94.33 0.90 0.85 0.89 0.98 3.00 1.00 

Naive Bayes 80.33 0.70 0.61 0.63 0.76 0.50 0.20 

Gradient Boosting 94.67 0.92 0.88 0.90 0.98 5.00 1.25 

AdaBoost 78.00 0.60 0.55 0.52 0.65 4.00 1.10 

Neural Network 96.00 0.96 0.91 0.94 0.99 10.00 1.50 

 

3.2. Accuracy and Confusion Matrix Analysis 

The confusion matrix, shown in Figure 5,  provides a detailed 

breakdown of correct and incorrect predictions, highlighting 

areas where the model excels or struggles in predicting failure 

modes. (42). 

The confusion matrix helps evaluate classification errors. 

For each model, the matrix is computed as: 

 

Figure 5. Performance of Classification Algorithms – Confusion Matrices. 

Confusion Matrix = [
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

] (11) 
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Table 8. Accuracy and Confusion Matrix Comparison Across 

Models. 

Model Accuracy (%) Confusion Matrix 

Logistic Regression 96.67 

See Figure 5 

Decision Tree 96.67 

K-Nearest Neighbors 95.00 

Support Vector Machine 95.00 

Naive Bayes 95.00 

Gradient Boosting 96.67 

AdaBoost 25.00 

Neural Networks 95.00 

Logistic Regression and Gradient Boosting exhibit the 

highest accuracy, while Random Forest and Neural Networks 

perform closely with 95% accuracy. Figure 5 shows Random 

Forest's confusion matrix, where we observe a low number of 

false positives, indicating this model's suitability for failure 

prediction. Additionally, Table 8 presents a detailed comparison 

of accuracy and performance metrics across all models, 

providing further insights into each model's effectiveness. 

The confusion matrices have been updated with different 

color schemes to highlight the performance of each 

classification algorithm. The image title is "Performance of 

Classification Algorithms—Confusion Matrices." 

Here are the insights based on the confusion matrices: 

- Logistic Regression: The model exhibits balanced 

misclassification across all classes, particularly struggling 

with correctly classifying class 1 and class 2. 

- Decision Tree: The model performs well in predicting class 

3, with 15 correct predictions, but it struggles in other areas, 

possibly due to overfitting. 

- Random Forest: The algorithm manages a relatively good 

classification balance, especially for class 0 and class 1, 

though it makes some misclassifications in class 3. 

- K-Nearest Neighbors: This model shows considerable 

errors across different classes, particularly with classes 0 

and 2, indicating difficulties in proper classification. 

- Support Vector Machine: The SVM performs very well in 

class 3, but it misclassifies many instances in class 0 and 

class 1, which impacts its overall performance. 

- Naive Bayes: The model shows a higher misclassification 

rate for classes 1 and 2, struggling to separate these 

categories. 

- Gradient Boosting: It provides moderate performance, with 

reasonable classification in most categories, but still shows 

room for improvement, particularly in class 1 and class 2. 

- AdaBoost: This model's performance is similar to Gradient 

Boosting, showing consistent challenges in classifying 

class 1 correctly. 

- Neural Network: The model performs very well in class 3, 

making 16 correct predictions, but it struggles with class 1, 

which suggests some tuning is required for better balance. 

Each classification algorithm displays both advantages and 

disadvantages. Depending on the type of data and the 

complexity of the classification task.  

3.3. Accuracy and ROC AUC Comparison 

Figure 6 shows each model’s accuracy and ROC AUC in the 

same plot, allowing for a comprehensive model performance 

evaluation. 

 

Figure 6. Model Accuracy and ROC AUC Comparison  

(Line Plot) 

This dual-line plot provides a holistic view of model 

performance by juxtaposing accuracy with ROC AUC scores. It 

emphasizes that higher accuracy often correlates with better 

AUC performance, showcasing robust models across multiple 

evaluation metrics. 

3.4. Error Analysis 

We provide a classification report with accuracy, recall, and F1-

score for each model to evaluate performance.
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Figure 7. Error Analysis (Precision, Recall, F1-Score). 

Figure 7 details precision, recall, and F1-score for every 

class. It identifies strengths and weaknesses in model 

predictions, indicating where improvements can be made. 

3.5. Interpretability vs. Performance 

Understanding the trade-off between interpretability and 

performance is crucial for practical applications. The following 

scatter plot illustrates this relationship.

 

Figure 8. Interpretability vs. Performance for Machine Learning Models. 

The scatter of Figure 8 highlights the inverse relationship 

between interpretability and performance. Models that are 

easier to interpret, such as Logistic Regression and Decision 

Trees, may only sometimes provide the highest performance. In 

contrast, more complicated models, such as neural networks, 

provide more accuracy but are more challenging to understand. 
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3.6. ROC Curves 

Figure 9 plots the ROC curves for the top models, including 

Random Forests and Neural Networks. The curves indicate the 

TPR-FPR relationship, demonstrating the models' ability to 

distinguish between failure and normal modes. Random Forests 

and Neural Networks exhibit near-perfect ROC curves, 

indicating their high performance in accurately predicting 

failures. 

The following plots present ROC curves for each model 

across multiple classes, allowing for a comparative evaluation 

of model performance in distinguishing between different 

failure modes.

 

Figure 9. ROC Curves for Multi-Class Classification. 

Figure 9 presents the ROC curves for all models across 

multiple classes. Each curve shows the model's ability to 

discriminate failure types, while AUC values show how well it 

predicts classes.
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Figure 10. Model Performance Based on Average AUC Across Multiple Classes. 

Figure 10 illustrates the average AUC (Area Under the 

Curve) performance of different machine learning models 

across several classes. The pie chart shows how different 

models contribute to classification accuracy based on their AUC 

values. Neural Networks and SVM lead with the highest 

average AUC values, demonstrating superior classification 

capabilities, particularly in complex or high-dimensional data. 

Neural Networks have an average AUC of 0.67, and SVM 

follows closely with 0.66, indicating their reliability in 

distinguishing between classes. 

In contrast, Naive Bayes and Decision Tree show lower 

contributions, with average AUC values of 0.40 and 0.44, 

respectively, highlighting their limitations in handling more 

complex data structures. Ensemble methods like Gradient 

Boosting and Random Forest offer balanced performance, 

making them versatile models for various classification tasks. 

This visualization emphasizes each model's comparative 

strengths and weaknesses, providing insight into which 

algorithms are more suited for accurate class prediction. 

3.7. Comparative Analysis with Previous Studies 

This study advances the field by incorporating multi-class 

failure detection, offering more profound insights into EV 

failure modes. Prior studies typically focused on binary 

classification, which limited their application in real-world 

scenarios. Table 9 presents a Comparative Analysis of Results 

with Previous Studies, highlighting the advancements made in 

this research:

Table 9. Comparative Analysis of Results with Previous Studies. 

Study 
Dataset 

Size 
Model Accuracy 

ROC AUC  

(Critical Failure) 
Key Contributions 

(43) 10,000 Decision Tree 80% 0.75 Binary classification; limited scope for multi-class detection 

(44) 5,000 Naive Bayes 72% 0.65 
Focused on simple binary classification; no attention to failure 

severity 

This Study 

(2024) 
300 

Random 

Forest, NN 
96.67% 1.00 

First multi-class classification of failure severity using ensemble 

methods and neural networks 

 

The improvements in accuracy and ROC AUC, especially 

for critical and severe failure detection, demonstrate the 

superior performance of ensemble methods and neural networks 

compared to traditional models like Decision Trees and Naive 

Bayes. 

Finally, Random Forest, Support Vector Machine, and 

Neural Networks anticipate electric car failure modes well. 

These models are accurate yet sophisticated, which may restrict 
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their use. Logistic Regression and Decision Trees are 

appropriate for real-world applications that need forecast 

transparency. Objective function analysis shows how models 

react to input characteristics, facilitating assessment. 

4. Conclusion 

This study has achieved significant advancements in electric 

vehicle (EV) maintenance by integrating advanced machine 

learning techniques for detecting multi-class faults, offering 

an enhanced understanding of the mechanisms underlying EV 

failure. This study distinguishes itself from previous research, 

which focused solely on binary classification, by demonstrating 

the effectiveness of multi-class classification, particularly in 

predicting critical and severe faults and applying random forests 

and neural networks shown superior performance to 

conventional models, including decision trees and Naive Bayes, 

with an accuracy rate of 96.67%. The results indicate  

a significant improvement in the accuracy of predictive 

maintenance. This advancement facilitates a reduction in 

operational costs and unplanned downtime while also 

contributing to the longevity of electric vehicles. This study 

emphasizes the significance of employing contemporary 

techniques in predictive maintenance, highlighting that 

ensemble-based models and neural networks demonstrate clear 

advantages in managing multidimensional and complex data. 

The superiority was validated through enhancements in the 

ROC AUC values and accuracy, particularly in detecting critical 

faults (refer to Table 9). This advancement improves the 

reliability of electric vehicles and facilitates the application of 

big data analytics in formulating maintenance strategies 

grounded in precise and timely predictions. This, in turn, 

promotes vehicle sustainability and mitigates both economic 

and environmental impacts. 

The findings of this study establish a foundation for 

subsequent research aimed at broadening the range of data 

utilized and incorporating real-time sensor systems to enhance 

the precision and dependability of predictive models. The 

studies may investigate the integration of hybrid models that 

amalgamate various machine learning techniques, thereby 

improving performance and facilitating significant 

advancements in detecting more intricate failure patterns. 

Continuing this approach enables the accelerated advancement 

of contemporary technologies and situates electric vehicle 

maintenance within a future-oriented framework emphasizing 

proactive maintenance driven by artificial intelligence.
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