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Highlights  Abstract  

▪ Integrating renewables, CHP, P2G, and 

hydrogen storage in a multi-objective model. 

▪ Addressing supply-demand uncertainties to 

sustainable & reliable capacity planning. 

▪ Enhancing optimization precision, robustness, 

and speed with the PSO-GOA algorithm. 

▪ Ensuring uninterrupted energy supply despite 

renewable energy source variability. 

▪ Converting surplus renewables to hydrogen 

for use during energy-deficient periods. 

 The presented assessment provides a multi-objective optimization 

framework for independent multi-energy hubs, which integrates 

electricity, heat, and hydrogen systems. A hybridization of particle 

swarm and grasshopper optimization algorithms is utilized to handle 

renewable energy uncertainties and ensure high reliability, economic 

efficiency, and renewable energy utilization. A powerful capacity 

configuration strategy balances economic and environmental purposes 

while elevating system reliability. Hydrogen storage and methanation 

minimize renewable energy curtailment and improve flexibility. 

Stochastic optimization with scenario generation and reduction 

effectively models uncertainties. Besides, advanced coordination of 

renewable sources, cooling, heating, power units, and storage systems 

guarantees efficient dispatch. Hydrogen-to-methane conversion and gas 

boilers improved adaptability. Validation through three case studies 

depicts a 99.8% REU rate, only 32 kWh of unsupplied energy, and an 

optimized cost of $3,889.50, which confirms the framework's efficacy 

for complex energy scenarios. 
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1. Introduction 

In response to intensifying global concerns regarding the 

depletion of fossil fuel reserves and the escalating global 

energy demand, the pursuit of clean and sustainable energy 

sources has gained significant momentum [1]. This shift is 

motivated by the urgent need to address environmental 

challenges, enhance energy security, and promote economic 

growth through the adoption of renewable energy 

technologies [2]. The evolution of energy systems has 

highlighted the critical role of integrating diverse renewable 

energy sources, such as wind, solar, and hydrogen, into 

scalable and efficient energy infrastructure [3]. 

According to these aspects, the opportunity can be 

considered to be important. The idea here is that MEHs 

represent an enabling framework for the achievement of 

reliable and sustainable energy systems. MEH represents  

a new paradigm in decentralized energy supply and 

distribution toward higher levels of local energy self-

sufficiency and better efficiency in renewable resources 

management. They can handle multiple energy vectors, 

including electricity, heat, and hydrogen, and are thus put in  
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a place of prominence as facilitators toward the full 

exploitation of renewable energy sources. Moreover, it 

addresses problems of intermittence and variability of the 

output of renewable energy conversion, hence ensuring  

a reliable and secure energy supply [4]. 

The future trend of worldwide energy systems calls for the 

different disseminated independent energy nodes that are 

meant to work optimally under technical, economic, and 

environmental constraints [5]. The different design processes 

and their actual deployment from scratch are very complex in 

nature and pose a lot of technical and logistical challenges. 

This complexity is further exacerbated by the need to meet  

a wide range of different energy requirements, together with 

the goal of achieving maximum renewable energy integration, 

given highly uncertain operational conditions [6]. The role of 

MEHs goes beyond energy provision to include energy flow 

optimization, operational cost reduction, and environmental 

impact minimization. While prior studies have made 

significant strides in exploring capacity configurations for 

MEHs, most have focused on single-objective functions, 

limiting their applicability to broader configuration 

requirements [7]. For instance, optimal MEH planning in 

Beijing's Haidian District demonstrated superior economic 

and environmental performance compared to traditional 

centralized systems. Similarly, studies in Greek residential 

areas highlighted cost-saving potential but often neglected 

supply stability, underlining the need for more comprehensive 

approaches [8]. 

Recent research has underscored the importance of 

addressing uncertainties inherent in renewable energy sources, 

such as solar radiation variability and wind speed fluctuations. 

Advanced methods like stochastic and robust optimization 

have been employed to tackle these challenges, but they often 

result in overly conservative designs with limited economic 

feasibility [9]. Moreover, emerging technologies like power-

to-gas (P2G) and hydrogen energy storage offer promising 

solutions for enhancing REU, yet their integration into MEHs 

requires careful consideration of efficiency and cost trade-

offs. 

Shen et al. [10] suggested a thorough active distribution 

system power supply CCM that takes into account load loss, 

operating, and economic costs in order to address these 

restrictions . Lu et al. highlighted how capacity arrangement 

reflects the dependability of the energy supply and measured 

reliability in terms of economic conditions [11]. By taking 

into account goals including reducing power losses, 

maximizing yearly profit, and boosting voltage stability in the 

distributed generation unit arrangement, Elkadim et al. 

broadened the focus of their research [12]. However,  

a thorough examination of various capacity configuration 

needs is prevented throughout the optimization process when 

these objectives are combined into a single goal. 

The inherent volatility and erratic nature of renewable 

energy outputs exacerbate challenges in MEHs and increase 

capacity configuration complexity. Because earlier research 

overestimated the unpredictability of renewable energy 

supply, the capacity configuration did not match actual 

circumstances. Meydani et al. [13] addressed microgrid 

energy management by comparing some conventional 

techniques with metaheuristic algorithms. Their work 

indicated great potentials of PSO and GA by minimizing total 

costs while keeping the highest level of reliability. The best 

configuration had 300 kWh expected energy not supplied 

(EENS) at a total cost of $6.02 M, thus significant cost 

efficiency and reliability enhancement. Their REU was not 

given, though, while setting up smaller configurations reduces 

their scalability for dynamic energy contexts. Alkuhayli et al. 

[14] explored various optimization techniques, including 

probabilistic, interval-based, and adaptive strategies, to 

address the operational challenges in MEHs caused by 

fluctuating renewable energy sources. It highlights the use of 

probabilistic load-flow analysis and adaptive control methods 

for capacity planning. A key contribution is its detailed 

evaluation of trade-offs between economic cost and supply 

reliability in volatile conditions. Soussi et al. [15] examined 

scenario generation and reduction methods, such as Monte 

Carlo simulations and K-means clustering, to address 

renewable energy uncertainties in MEHs. The paper 

underscores the importance of accurately modeling variability 

in wind and solar energy to improve capacity configurations. 

A notable finding is the need for integrating advanced 

machine learning techniques to enhance scenario generation 

accuracy and efficiency. Li et al. [16] suggested a two-stage 

deployment strategy to handle the uncertainty in dispersed 
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generation deployment, accounting for the uncertainty to 

maximize the project's net present value. Pazuki et al. [17] 

presented a multi-energy system planning approach using  

a Monte Carlo-based optimization method for systems with 

distributed generation and storage. They reached an REU of 

97.0%, an EENS of 600 kWh, and a total cost of $9.71M. 

Their contribution showed strong robustness in handling 

uncertainties; however, the investment and operation costs 

were higher, and it had limited reliability issues when other 

sophisticated approaches are considered. Additionally, the 

lack of modern energy storage systems minimized their 

potentials in the management of surpluses from renewable 

energy sources.  Hou et al. [5] developed the optimal 

optimization framework for independent multi-energy hubs. 

In their study, they sought to maximize REU while 

simultaneously minimizing both the expected energy not 

supplied and operation costs. Using the HMOPSO algorithm, 

they attained an impressively high REU of 99.7%, EENS of 

287 kWh, and a total cost of $7.48 million. However, the 

methodology adopted resulted in fairly high operational costs 

and did not consider hydrogen-based storage solutions in 

order to increase flexibility, which limited its application 

under variable demand scenarios. Li et al. [18] used a multi-

stage adaptive stochastic optimization method. Furthermore, 

Zhang et al. [19] offered a reliable CCM that takes into 

account both short- and long-term uncertainty. The effect of 

predicting mistakes on joint investment and operation 

optimization in renewable energy production was examined 

by Wang et al. [20]. An interval probabilistic-stochastic 

optimization model was created by Yu et al. [21] to account 

for various uncertainties expressed as random variables, 

interval values, and fuzzy probability distributions. 

Nevertheless, robust optimization approaches' conservative 

nature frequently produces undesirable economic outcomes. 

The development of energy storage systems has received 

significant attention due to their essential role in maximizing 

renewable energy utilization [22]. Among these, P2G 

technology stands out as a promising solution, converting 

surplus electricity into storable chemical energy. Using 

electrolysis, P2G splits water into hydrogen and oxygen, with 

subsequent methanation combining hydrogen with carbon 

dioxide to produce synthetic methane [23]. This methane can 

be stored and used as a flexible energy carrier, helping to 

address renewable energy intermittency and stabilize the grid. 

However, P2G's energy conversion efficiency remains  

a challenge, ranging from 45% to 60%, with notable losses 

during electrolysis and methanation. Efficiency further 

declines when stored energy is reconverted to electricity via 

gas turbines during shortages, underscoring the need for 

technological improvements [24]. In parallel, hydrogen has 

gained recognition as a clean and sustainable energy carrier, 

valued for its high energy density, zero-emission combustion, 

and compatibility with diverse energy applications. 

Hydrogen’s potential in future MEHs is particularly 

noteworthy, enabling efficient balancing of supply and 

demand in systems with high renewable energy penetration 

[25]. Hydrogen storage and fuel cells act as buffers against the 

variability of renewables, ensuring energy reliability. Recent 

studies emphasize hydrogen’s role in decarbonizing the 

energy sector, from transportation to industrial applications. 

Innovations like hydrogen-based seasonal storage and grid 

integration address temporal mismatches between generation 

and demand [26]. However, high storage costs, energy-

intensive production, and safety concerns hinder broader 

adoption. Addressing these barriers requires advancements in 

hydrogen storage materials, system design, and supportive 

policies. Both P2G and hydrogen technologies represent 

critical pathways toward sustainable and resilient energy 

systems [27]. 

Afifi et al. [28] reviewed the state-of-the-art developments 

in energy storage systems and hydrogen integration within 

MEHs. It explores the challenges posed by the inherent 

volatility of renewable energy sources and evaluates strategies 

such as P2G technology and hydrogen-based solutions. 

Recent research is analyzed to identify advancements in 

optimizing energy storage efficiency, integrating renewable 

energy, and addressing uncertainties in capacity planning. Pan 

et al. [29] presented a CCM for an integrated electricity and 

hydrogen energy system, highlighting the potential of 

hydrogen in the transportation industry. In comparison to 

electric car charging stations, hydrogen storage stations 

exhibit higher revenue when operating optimally in market 

situations, according to research by Al-Tawil et al. [30]. 

Additionally, Li et al. [31] incorporated the electric grid into 
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the hydrogen supply chain and developed a method for remote 

hydrogen transportation in order to overcome the spatial and 

temporal mismatch between renewable energy and hydrogen 

demand. Despite these advances, the high costs and security 

concerns associated with hydrogen storage and transportation 

remain significant challenges for its development and 

widespread use . 

With the increased demand for capacity configuration 

optimizations in energy hubs, especially in the independent 

multi-energy MEHs, it has become very important, 

considering demands for reliable and economically efficient 

energy systems. As much as previous research has explored 

the capacity configuration for MEHs, most of them have 

focused on single-objective optimization methods that provide 

application limits for broader energy needs. MEHs are 

intricate because they are multi-energy in nature; this concept 

also concerns many uncertainties related to renewable energy 

sources, such as solar radiation and wind speed. Almost all 

previous studies related to the capacity planning of MEHs 

focused on a single objective, which was either economic or 

environmental, while the critical factor of supply reliability 

has been ignored, particularly in cases involving uncertainties. 

A major gap in the current literature is the failure to 

account simultaneously for more than one source of 

uncertainty; this results in overly conservative models that 

may not address complexities found in real applications. The 

latest research into stochastic and robust optimization 

techniques has attempted to address some of these issues, but 

is often inapplicable due to computational requirements and 

inherent conservativeness of the solution produced. Besides, 

the implementation of these new technologies, including P2G 

and hydrogen storage, has been limited because of a lack of 

adequate modeling that takes into account efficiency and cost 

trade-offs in front of multi-energy hubs. A few studies in the 

literature in the past suggested that, under such uncertainties-

which are most expected with growing complexity in modern 

energy systems-it is of growing importance that optimization 

strategies be more flexible and adaptive. 

This paper identifies the gaps and proposes a multi-

objective capacity configuration model of MEHs integrated 

with renewable energy sources such as photovoltaics, wind 

turbines, CHP units, P2G, and hydrogen storage systems. With 

consideration of uncertainties on both the supply and demand 

sides, this model will take a more holistic approach toward 

reliability, sustainability, and economically viable capacity 

planning. It provides a very effective exploration in solution 

space while coping dynamically with complicated interactions 

among various energy systems by using a hybrid optimization 

algorithm: PSO-GOA. This improves the convergence, 

precision, and robustness of the optimizations and 

outperforms traditional methods under real-world scenarios as 

well; hence, such approaches prove their potential for the 

future energy system. Besides the technological 

advancements, the model has handled issues of the 

irregularity of the sources by providing for numerous backup 

systems to cater for any eventuality in supply. In this way, it 

would be assured that the energy centers will have a constant 

supply irrespective of any interrupted production from the 

renewable energy. It is further supplemented with P2G and 

hydrogen technologies, whereby surpluses coming from 

renewable sources could not only be dealt with in an effective 

manner but also changed into one capable of being stored for 

use in periods of deficiency. This study therefore considers the 

uncertainties and inefficiencies of energy systems in an 

integrated manner, hence providing a more solid framework 

of designing MEHs that would be economically viable and 

resilient to future challenges. 

2. Problem modeling 

Fluctuations of energy consumption and inherent 

unpredictability of renewable energy generation drive the 

complex dynamics within a multi-independent energy hub 

(EH) system [32]. In order to catch the uncertainties 

associated with resource demand projections, which may 

affect the results of various energy hydro capacity 

configurations, the present work uses a scenario analysis 

method within the stochastic optimization, being aware of the 

importance of the unforeseeable nature of that. Stochastic 

optimization involves deriving scenarios from probability 

distributions and solving optimization problems for each 

scenario separately [33]. Decisions are made using a weighted 

average of the goals in each scenario. Scenario generation and 

scenario reduction are the two essential phases in creating 

scenarios with typical resource demand. Through the analysis 
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of historical data, probability density functions (PDFs) of 

uncertain variables are derived hourly (1) to (9) [32,33]: 

(1) f r(v) =
l

c
× (

v

c
)

(l−1)

× e−(
v

c
)

l

  

(2) l = (
σv

μv)
(−1.086)

  

(3) c =
μv

Γ(1+
1

l
)
  

(4) f r(r) =
Γ(α+β)

Γ(α)∙Γ(β)
∙ r(α−1) ∙ (1 − r)(β−1)  

(5) α = μr × [
μr×(1−μr)

(σr)2 − 1]  

(6) β = (1 − μr) × [
μr×(1−μr)

(σr)2 − 1]  

(7) 
f E(PLoad

E ) =
1

√2πσE × e
(−

(PLoad
E −μE)

2

2×(σE)
2 )

  

(8) 
f T(PLoad

T ) =
1

√2πσT × e
(−

(PLoad
T −μT)

2

2×(σT)
2 )

  

(9) 
f H2(PLoad

H2 ) =
1

√2πσH2
× e

(−
(P

Load
H2 −μH2)

2

2×(σH2)
2 )

  

The equations utilize uncertainty PDFs of the system: 

energy demand and renewable generation, among other 

resource parameters. In this model, the PDFs are obtained 

from historic data, and applying Latin Hypercube Sampling 

(LHS) generates representative scenarios for optimization. 

Since LHS has higher accuracy and higher sampling 

efficiency compared to the Monte Carlo approach, it is 

applied. This method thus generates random sampling arrays 

guided by PDFs of the uncertainty variables. The LHS method 

for generating sample values discretizes the interval [0, 1] into 

N equal pieces and takes the middle value within each interval 

and applies the inverse transformation function. Although 

early scenarios offer a thorough depiction of uncertainty, it is 

not feasible to calculate every scenario. For scenario 

reduction, the K-means clustering algorithm is used, which 

guarantees accuracy and computing efficiency. The first steps 

in this method include identifying the cluster centers, then 

matching scenarios to the cluster centers that are closest to 

them, recalculating the cluster centers in light of the findings, 

and continuously optimizing until convergence. A small 

number of common situations for wind speed, solar radiation, 

electrical load, thermal load, and hydrogen load are reduced 

as a result of this approach. 

2.1. Equipments 

The output power and heat load of CHP units are closely 

correlated, as demonstrated by Eqs. (10) to (12) [34]. When in 

heat load mode, the CHP operation strategy is made to adapt 

to variations in heat load and give priority to a steady and 

dependable supply of heat energy. Furthermore, the gas boiler 

fulfills the heat load as given in Eq. (13), acting as a backup 

heating source [5]: 

(10) Pg
CHP(t) =

PLoad
T (t)

ηh
CHP                      PLoad

T (t) < PCHPh
Max   

(11) Pg
CHP(t) =

PCHPh
Max

ηh
CHP                           PLoad

T (t) > PCHPh
Max   

(12) Pe
CHP(t) = Pg

CHP(t) × Ph
CHP(t) × ηh

CHP  

(13) PB(t) = PLoad
T (t) − Ph

CHP(t)  

These equations describe the relationship between the 

electrical and thermal output of CHP units, which are central 

to optimizing multi-energy systems. The equations account for 

variations in thermal demand and the capacity limits of the 

CHP system. As an optimal alternative to traditional fuel 

vehicles, the fuel cell vehicle has superior energy conversion 

efficiency, high safety features, and zero emissions [35]. Their 

operating dynamics closely mirror those of electric vehicles, 

with the probability density function of driving distance 

adhering to a log-normal distribution [36]. The hydrogen 

requirement of fuel cell vehicles is shown mathematically by 

Eqs. (14) and  (15). 

(14) WLoad
H2 (t) = ∑ {WFCV(t) × φ(m, t)}

MFCV

m=1

 

(15) 
WFCV(m) = x(m) × ϖ

+ CFCV × (SOCMax
FCV − SOC0

FCV(m)) 

These equations calculate the hydrogen consumption for 

fuel cell vehicles, considering factors such as the driving 

distance and the state of charge (SOC) of the vehicle’s battery. 

While these equations are essential for accurately modeling 

hydrogen demand, they introduce complexity due to the 

integration of multiple variables (e.g., driving patterns, battery 

state). The joint operation of electrolysis cells, methanation 

devices, and hydrogen storage tanks is vital for storing and 

using excess electrical energy. The complex relations between 

the input and output energy of the electrolysis cell, 

methanation device, and hydrogen storage tank are shown in 

Eqs. (16) - (18), respectively [5]: 

(16) WEC(t) = PEC(t) ×
ηEC

ηE−H2
 

(17) WCH4(t) = WMET(t) × ηMET × ηH2−CH4 
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(18) 
WHST(t) = ηHST

Cha × WHST
Cha(t) −

WHST
Dis (t)

ηHST
Dis

+ WHST(t − 1) 

Further complication comes from the balance equations 

governing the energy input-output relationship of both 

electrolysis and methanation, since in chemical conversion 

processes, simulation has to be performed together with 

electrical power management. These processes require 

accurate representation of efficiencies and storage constraints, 

which can increase the model's computational burden. While 

they enhance the system's ability to utilize excess renewable 

energy, these complexities may obscure the direct relationship 

between the system's energy inputs and outputs, complicating 

the interpretability of the system's performance. 

3. Optimization problem 

The comprehensive multi-objective CCM includes distinct 

aspects that are crucial for optimal system design. The 

optimization algorithm, the objective functions of the 

optimization of the constraint conditions, and these 

components can be separated into three categories. The 

production of wind turbines, solar systems, CHP units, 

electrolysis cells, methanation units, gas boilers, and the 

capacity of hydrogen storage tanks are among the 

optimization variables that make up the heart of this model. 

The best capacity allocation strategy is mostly determined by 

economic factors. This daily-calculated evaluation is based on 

the economic cost, which includes investment, maintenance, 

and fuel expenditures. Eq. (19) displays the goal statement for 

economic cost optimization. The cost function's constituent 

parts are also explained in Eqs. (20) to (22):

(19) ( )( )
2

1

1 1

min ( ) ( ) ( ) ( )
S T

IC OC FC F E CHP

s SW EC Load e

s t

F w C C C P t P t P t P t
= =

 
= + + +  − + − 

 
 

 

The presented equations detail the components of an 

economic cost optimization model. Eq. (20) represents the 

calculation of initial capital costs, considering the investment 

required for system components over their operational 

lifespan, adjusted by financial factors like depreciation and 

discount rates. Eq. (21) addresses operational costs, dividing 

them into fixed costs tied to system capacity and variable 

costs associated with energy production throughout the 

operational timeline. Eq. (22) focuses on fuel consumption 

costs, particularly for systems employing fuel cells, factoring 

in both the cost of consumed fuel and adjustments for its 

energy content. Together, these equations comprehensively 

account for investment, operational, and fuel-related 

expenses, ensuring a holistic approach to minimizing the 

economic costs of the energy system [5]: 

(20) CIC = ∑ {cIC(i) ∙ PMax(i) ×
1

TY
×

η × (1 + η)LSF(i)

(1 + η)LSF(i) − 1
}

N

i=1

 

(21) COC = ∑ {cFix
OC(i) × PMax(i) + cVar

OC (i) × ∑{P(i, t)}

T

t=1

}

N

i=1

 

(22) CIC = ∑ {cFC × ∑{PG(i, t) − σCH4 × WCH4(t)}

T

t=1

}

Ng

i=1

 

where, λ is a weighting factor on the penalty for underutilized 

renewable energy. Underutilized penalty can be presented 

inside penalty in order to make sure that all generated 

renewable energy by wind and solar 𝑃𝑆𝑊
𝐹 (𝑡)  is maximally 

utilized in the system. This model offers a fresh viewpoint in 

addition to economic optimization to boost the effectiveness 

of using renewable energy sources. A secondary objective 

function aims at improving the usage of renewable energy 

with a view to developing a sustainable energy portfolio. The 

objective function of maximum utilization of renewable 

energy sources is considered by Eq. (23):

(23) 𝐹2 = 𝑚𝑎𝑥 ∑ 𝑤𝑠
𝑆
𝑠=1

1

𝑇
∑ [

𝑃𝐸𝐶(𝑡)+𝑃𝐿𝑜𝑎𝑑
𝐸 (𝑡)−𝑃𝑒

𝐶𝐻𝑃(𝑡)

𝑃𝑆𝑊
𝐹 (𝑡)

⋅ (1 −
𝑃𝐿𝑜𝑠𝑠

𝐸 (𝑡)+𝑃𝐿𝑜𝑠𝑠
𝑇 (𝑡)+𝑃𝐿𝑜𝑠𝑠

𝐻2 (𝑡)

𝑃𝐿𝑜𝑎𝑑
𝐸 (𝑡)+𝑃𝐿𝑜𝑎𝑑

𝑇 (𝑡)+𝑃𝐿𝑜𝑎𝑑
𝐻2 (𝑡)

)]𝑇
𝑡=1   

 

In this equation, the auxiliary factor 1 −
Loss terms

Total demand
 

introduces a reliability-based penalty for unsupplied energy, 

thus assuring that not only optimal use of renewable energies 

will be achieved, but also reliable and well-matched to the 

consumption needs. The addition of the third objective 

function accounts for the important aspect of reliability for the 

operation of autonomous multi-EHs. This function's goal is to 

reduce the estimated unsupplied energy, which takes into 

account the three energy sources—hydrogen, heat, and 
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electricity. Eq. (24), in detail, provides a thorough formulation 

for minimizing predicted unsupplied energy. Eqs. (25) to (27) 

display the electrical, thermal, and hydrogen energy balances, 

respectively. 

(24) 
F3 = Min ∑ {w(s) × ∑ {PLoss

E (t) + PLoss
H2 (t) +T

t=1
S
s=1

PLoss
T (t)}}  

(25) PLoss
E (t) = PC

E(t) + PLoad
E (t) − Pe

CHP(t) − PSW
F (t)  

(26) PLoss
T (t) = PLoad

E (t) − PB(t) − Pe
CHP(t) 

(27) PLoss
H2 (t) = σCH4 × [WLoad

H2 (t) × (WHST
Dis (t) − WMET(t))] 

The interaction between different energy carriers is 

governed by a myriad of constraints that shape the capacity 

configuration and operational dynamics of key components in 

the system. These limitations include the equipment capacity 

of essential elements such as wind turbine production, 

photovoltaic panels, CHP units, electrolysis cells, methanation 

units, gas boilers, and hydrogen storage tanks. In Eqs. (28) to 

(31), the lower and upper bounds for allowable operating 

power of the CHP unit, boiler, electrolyzer cell, and 

methanation unit are shown, respectively. Eqs. (32) to (34), 

which represent the constraints of the charging, discharging, 

and energy held in the hydrogen storage, respectively, provide 

specifics about the hydrogen storage tank's limitations. Eqs. 

(35) to (37) are used to apply the constraints pertaining to the 

anticipated unsupplied electrical, thermal, and hydrogen load 

in order to further improve the system's reliability. These 

limitations promote a strong and dependable autonomous 

multi-EH and serve as a buffer against future energy 

shortages . 

(28) 0 ≤ 𝑃𝑔
𝐶𝐻𝑃(𝑡) ≤ 𝑃𝑔

𝐶𝐻𝑃  

(29) 0 ≤ 𝑃𝐵(𝑡) ≤ 𝑃𝐵 

(30) 0 ≤ 𝑃𝐸𝐶(𝑡) ≤ 𝑃𝐸𝐶 

(31) 0 ≤ 𝑊𝑀𝐸𝑇(𝑡) ≤ 𝑊𝑀𝐸𝑇 

(32) 0 ≤ 𝑊𝐻𝑆𝑇
𝐶ℎ𝑎(𝑡) ≤ 𝑊𝐻𝑆𝑇

𝐶ℎ𝑎 

(33) 0 ≤ 𝑊𝐻𝑆𝑇
𝐷𝑖𝑠 (𝑡) ≤ 𝑊𝐻𝑆𝑇

𝐷𝑖𝑠 

(34) 𝐸𝐻𝑆𝑇
𝐶𝑎𝑝

× 𝜀𝐻𝑆𝑇
𝑀𝑖𝑛 ≤ 𝑊𝐻𝑆𝑇(𝑡) ≤ 𝐸𝐻𝑆𝑇

𝐶𝑎𝑝
× 𝜀𝐻𝑆𝑇

𝑀𝑎𝑥 

(35) 0 ≤ 𝑃𝐿𝑜𝑠𝑠
𝐸 (𝑡) ≤ 𝑃𝐿𝑜𝑠𝑠

𝐸  

(36) 0 ≤ 𝑃𝐿𝑜𝑠𝑠
𝑇 (𝑡) ≤ 𝑃𝐿𝑜𝑠𝑠

𝑇  

(37) 0 ≤ 𝑃𝐿𝑜𝑠𝑠
𝐻2 (𝑡) ≤ 𝑃𝐿𝑜𝑠𝑠

𝐻2  

The system’s operational constraints, which include limits 

on power generation, storage capacities, and energy losses, 

ensure that the system operates within feasible bounds. While 

these constraints are necessary to ensure system stability and 

reliability, they add to the complexity by introducing a large 

number of variables that must be simultaneously optimized. 

The interactions between the battery storage and hydrogen 

storage can be further improved by the addition of a new 

equation when modeling the energy flow between these two 

kinds of storage systems, which is particular when both types 

of storages appear in the system [5]: 

(38) 𝑃𝑆
Total(𝑡) = 𝜂Batt ⋅ 𝑃Batt(𝑡) + 𝜂HST ⋅ 𝑃H2(𝑡) 

The losses due to the transmission network can be in the 

total system efficiency. A reasonable equation may be 

proposed in order to model these losses, especially when 

transferring energy between multi-energy hubs: 

(39) 𝑃Loss
Trans(𝑡) = 𝜆Trans ⋅ ∑ 𝑃𝑖

𝑁

𝑖=1

(𝑡) 

Electricity and hydrogen production can interdepend on 

each other for better use of the energy system. A new equation 

can be provided which describes the relation of electricity 

with hydrogen output, including efficiency losses: 

(40) 𝑃H2
output

(𝑡) = 𝜂H2 ⋅ 𝑃EC(𝑡) − 𝑃Loss
H2 (𝑡) 

The following equation is used for optimum load dispatch 

in a multi-energy hub by considering the cost and capacity of 

each and every energy carrier: 

(41) 
𝑃Dispatch

𝐸 (𝑡) = 𝛼𝐸 ⋅ 𝑃Wind(𝑡) + 𝛽𝐸 ⋅ 𝑃PV(𝑡) + 𝛾𝐸

⋅ 𝑃CHP(𝑡) − 𝑃Loss
𝐸 (𝑡) 

A thermal and hydrogen energy balance equation could be 

proposed to track the energy flow between thermal storage, 

CHP, and hydrogen production, optimizing the thermal load in 

relation to the energy available: 

(42) 𝑃Thermal(𝑡) = 𝑃CHP(𝑡) − 𝑃H2
output

(𝑡) − 𝑃Loss
𝑇 (𝑡) 

4. Solution model 

The hybrid PSO and GOA combines the strengths of both 

algorithms to enhance performance in solving complex 

optimization problems. Below is a detailed mathematical 

explanation of each component and their integration into  

a hybrid algorithm. 

- Particle Swarm Optimization  

PSO mimics the social behavior of birds and fish to find 

optimal solutions. The position and velocity of each particle 

are updated iteratively based on its personal best and the 

global best positions [37]. 

• Initialization: Each particle i has: 

o Position: xi=[xi1,xi2,…,xiD] 

o Velocity: vi=[vi1,vi2,…,viD] where D is the 
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problem's dimensionality. 

 

Random initialization: 

xi0∼U(lb,ub),vi0∼U(−vmax,vmax) 

• Velocity Update: 

(43) 𝒗𝑖
𝑡+1 = 𝜔𝒗𝑖

𝑡 + 𝑐1𝑟1(𝒑𝑖
𝑡 − 𝒙𝑖

𝑡) + 𝑐2𝑟2(𝒈𝑡 − 𝒙𝑖
𝑡) 

where: 

o ω: Inertia weight 

o 𝑐1,𝑐2: Acceleration coefficients 

o 𝑟1,𝑟2: Random numbers in [0,1] 

o 𝒑𝑖
𝑡: Personal best position 

o 𝒈𝑡: Global best position 

• Position Update: 

(44) 𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1 

• Fitness Evaluation: The fitness function f(xi) 

evaluates the solution quality. Update tpit and gt 

accordingly. 

If 𝑐1  decreases, more divergence between particles is 

achieved, while an increase in 𝑐2 brings the particles closer to 

the current gbest. These coefficients are updated during each 

iteration using: 

(45) c1
k =

k

kmax
(c1

Min − c1
Max) + c1

Max 

(46) c2
k =

k

kmax
(c2

Max − c2
Min) + c2

Min 

- Grasshopper Optimization Algorithm (GOA) 

GOA mimics the swarming behavior of grasshoppers. It 

models the balance between exploration (long-range 

movements) and exploitation (local search) [38]. 

• Initialization: Positions xi are randomly initialized 

within the search space. 

• Position Update: Grasshopper positions are updated 

using a social interaction model: 

(47) 𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝑆 ∑
𝑐 ⋅ (𝒙𝑗 − 𝒙𝑖)

‖𝒙𝑗 − 𝒙𝑖‖

𝑁

𝑗=1

+ 𝒈𝑡 

where: 

o S: Social interaction function 

o c: Convergence coefficient, calculated as: 

𝑐 = 𝑐max − 𝑡 ⋅
𝑐max−𝑐min

𝑇
  where T is the 

maximum number of iterations, t is the 

current iteration. 

o 𝒈𝑡: Global best position 

The social interaction function S(d) is defined as: 

(48) 𝑆(𝑑) = 𝑓𝑒−
𝑑
𝑙 − 𝑒

−
𝑑
𝑔 

where d is the distance between two grasshoppers, f, l, and g 

are constants controlling attraction and repulsion. 

• Boundary Handling: Solutions exceeding 

boundaries are projected back into the feasible 

region. 

- Hybrid PSO-GOA 

To propose a modified hybrid version of the PSO-GOA, 

the new model should effectively balance exploration and 

exploitation while addressing potential weaknesses in 

convergence speed and solution accuracy. The proposed 

hybridization involves the following modifications: 

- Initialization 

• Define N particles (PSO) and grasshoppers (GOA) in 

a shared population. 

• Randomly initialize their positions xi and velocities 

vi (for PSO). 

- Hybrid Position Update 

The hybrid position update combines the PSO and GOA 

rules with the dynamic weighting factor 𝛼(𝑡): 

(49) 𝒙𝑖
𝑡+1 = 𝛼(𝑡) ⋅ 𝒙𝑖

𝑡,PSO + (1 − 𝛼(𝑡)) ⋅ 𝒙𝑖
𝑡,GOA

 

• 𝒙𝑖
𝑡,PSO

: Updated position using the PSO rule: 

(50) 𝒙𝑖
𝑡,PSO = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1 

• 𝒙𝑖
𝑡,GOA

: Updated position using the modified GOA 

rule: 

(51) 𝒙𝑖
𝑡,GOA = 𝒙𝑖

𝑡 + 𝑆′ ∑
𝑐 ⋅ (𝒙𝑗 − 𝒙𝑖)

‖𝒙𝑗 − 𝒙𝑖‖

𝑁

𝑗=1

+ 𝛾(𝒈𝑡 − 𝒙𝑖
𝑡) 

- Velocity Update (PSO) 

Incorporate neighborhood learning: 

(52) 
𝒗𝑖

𝑡+1 = 𝜔𝒗𝑖
𝑡 + 𝑐1𝑟1(𝒑𝑖

𝑡 − 𝒙𝑖
𝑡) + 𝑐2𝑟2(𝒈𝑡 − 𝒙𝑖

𝑡)

+ 𝑐3𝑟3(𝒑nbest
𝑡 − 𝒙𝑖

𝑡) 

- Fitness Evaluation and Updates 

Evaluate fitness f(xi) for each solution: 

• Update the global best gt. 

• Update personal best pit and neighborhood best 

pnbestt. 

- Termination Criterion 

The algorithm terminates after reaching a predefined 

number of iterations or achieving a satisfactory fitness value. 

- Multi-objective model 

The algorithm for solving the multi-objective optimization 

problem using Pareto dominance and fuzzy selection is 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

outlined as follows: 

1. Initialization: 

o Initialize a population of solutions {x1,x2

,…,xN} randomly in the search space. 

o Evaluate the objective functions f1(xi),f2(xi

),…,fm(xi) for each solution xi. 

2. Pareto Front Construction: 

o Identify the Pareto front by comparing all 

solutions using Pareto dominance. 

o Construct the set of non-dominated 

solutions P={x1,x2,…,xk}. 

3. Fuzzy Evaluation: 

o Normalize the objective values for each 

solution in the Pareto front using the fuzzy 

membership functions. 

o Compute the aggregated fuzzy value or 

ranking for each solution in the Pareto front. 

4. Solution Selection: 

o Select the solution with the highest 

aggregated fuzzy value or the highest 

ranking. 

5. Termination: 

o The algorithm terminates when a predefined 

stopping criterion (e.g., a maximum number 

of iterations or convergence to a satisfactory 

solution) is met. 

5. Experiments  

The MEH system structure, shown in Fig. 1, complexly 

integrates energy resources and needs. In the system in 

question, wind turbine units, photovoltaic panels, and CHP 

ensure a stable electricity supply. Concurrently, gas boilers 

and CHP units operate together to supply the thermal load. 

The electrolyzer uses excess electrical energy to create 

hydrogen, which is then stored in the hydrogen storage tank. 

After this, the methanation mechanism transforms extra 

hydrogen into methane, expanding the range of energy storage 

possibilities. This setup is completed by the hydrogen station, 

which supplies hydrogen for fuel cell cars and serves as a hub 

for the production of heat, electricity, and hydrogen.

 

Fig. 1. The structure of the studied multiple energy systems. 

This study deals with simulation analysis utilizing the 

MEH model given in the modeling part in order to explore 

independent MEH systems. The multi-EH model's pertinent 

parameters are gathered from references [5,20,23,25,39]. 

Precise calculations are made to the PDFs  of the uncertain 

variables in order to model the behavior of the system. The 

following step's historical statistical data comprises the 

creation of preliminary scenarios using Hypercube Latin 

sampling for wind speed, solar radiation, electrical load, 

thermal load, and hydrogen load. Subsequently, the K-means 

clustering approach is employed to simplify the initial 

situations, resulting in a reduction of the number of scenarios 
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from 2000 to 3. Figs 2  to 6 depict these reduced wind speed, 

solar radiation, electrical load, thermal load, and hydrogen 

load scenarios, respectively. 

 

Fig. 2. Reduced wind speed scenarios. 

 

Fig. 3. Reduced solar radiation scenarios. 

 

Fig. 4. Reduced electric load scenarios. 

 

Fig. 5. Reduced thermal load scenarios. 

 

Fig. 6. Reduced hydrogen load scenarios. 

These three comparative case studies give an all-rounded 

assessment of the proposed multi-objective capacity 

configuration methodology. Each case offers a different 

perspective by checking the performance of the approach for 

different optimization scenarios and objectives. 

• Case Study 1: The following shows the results in 

terms of a capacity configuration of the multi-EH 

system that is derived by optimizing the system for 

its main objective, namely minimization of economic 

costs, for a given typical resource load scenario. 

• Case study 2: MEH system will perform multi-

objective CCM analysis in a stepwise fashion starting 

from standard resource load case to the newly 

developed multi-objective PSO-GOA hybrid 

methodology. 

• Case study 3: Like case study 2, multi-objective 

Hybrid Particle Swarm Optimization-Gravitational 

Search Algorithm approach has been employed to 
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assess multi-objective Constant Current Modulation 

for the multi-energy harvesting system, considering 

all the possible resource-load cases. 

In Case Study 1, the choice of optimization objectives has 

pointed out the relevance of economic aspects: financial cost 

related to the capacity design to be minimized of the MEH 

system. The case study represents a benchmark in order to 

test, for given resource load scenarios, the economic viability 

of the proposed methodology. Proceeding to case study 2, the 

multi-objective CCM of the MEH system utilizes the hybrid 

multi-objective Hybrid PSO-GOA technique, hence extending 

the possibilities beyond a single objective optimization target. 

In the context of the above, the algorithm operates within the 

limitation of a preliminary standard resource load case and 

provides another different approach that considers a number 

of objectives: expenditure due to economy, efficiency of 

renewable energy sources utilization, and reliability in energy 

provisioning. The application of the multi-objective Hybrid 

PSO-GOA algorithm extends for Case Study 3 to all typical 

cases of variation in loads and renewable resources. This strict 

approach tries the robustness and the reliability of the model 

under steadily worsening uncertainty conditions to show the 

versatility in a range of dynamic scenarios. 

The results  in Table 1 give the optimum sizes and numbers 

of each unit, analyzed for different energy systems in three 

case studies. On the other hand, Case Study 1 has each energy 

system constituting of 10 numbers of wind turbine, rated at 

200 kW capacity each, integrated with a hydrogen station 

rated at an aggregate capacity of 6,600 kW. This setup 

evidences that attention was paid to rounded energy supply 

with a handful of wind turbines and the capacity of hydrogen 

storage stations. For Case Study 2, this increases to 14 wind 

turbines, while for the hydrogen station capacity, it increases 

to 12,000 kW, showing a shift of interest toward renewable 

energy sources and hydrogen storage. This has been changed 

in Case Study 2 to a reduction in the capacity of the 

photovoltaic system to 1,600-1,300 kW, while the amount of 

CHP units is increased to 12-16 to achieve a better balance 

between energy production and storage. The last one, Case 

Study 3, maximizes renewable sources and storage: 15 wind 

turbines at 200 kW each, and a hydrogen station capacity of 

13,400 kW; this represents a 12% increase in hydrogen station 

capacity with respect to Case Study 2 and 102% with respect 

to Case Study 1. Besides, in Case Study 3, the methanation 

device also uses the highest capacity, 2,200 kW, thereby 

evidencing that the model tends toward the insertion of more 

diverse energies with the aim of providing a more robust and 

efficient configuration. This comparison underlines the 

progress toward a system with higher REU and more storage 

capacity by case study evolutions to reach remarkable 

increases in wind turbines and storage capacities, especially 

hydrogen stations. Progressive optimization within case 

studies shows the growing importance of hydrogen storage 

and methanation to ensure reliability in renewable energy-

based supply. 

Table 1. The results of optimal capacities obtained in three 

case studies. 

Case study 3 Case study 2 Case study 1 

 Capacity 

(kW) 
Number 

Capacity 

(kW) 
Number 

Capacity 

(kW) 
Number 

200 15 200 14 200 10 Wind turbine 

1500 1 1300 1 1600 1 Photovoltaic 

100 18 100 16 100 12 CHP 

1500 1 1800 1 700 1 Boiler 

3700 1 3600 1 1100 1 
Electrolysis 

cell 

2200 1 800 1 700 1 
Methanation 

device 

13400 1 12000 1 6600 1 
Hydrogen 

station 

The configuration results from the three case studies are 

put through rigorous testing in a set of genuine continuous 

scenarios that last for an entire year in order to provide a more 

thorough evaluation. Table 2 provides a concise presentation 

of the exploitation outcomes obtained from this investigation. 

In particular, Figs 7-9 provide more explanations of the 

exploitation results pertaining to Case Study 3. 

According to the information shown in Table 2 and as 

expected, case study 1 is more optimal in terms of operating 

cost than the other two case studies. By changing our focus on 

the measure of unsupplied energy, it is clear that in case study 

1, the amount of unsupplied energy is very high compared to 

the other two cases, which is due to the lack of reliability in 

this case. In terms of system reliability, case study 3 is the 

most optimal known scenario. Also, the amount of use of 

renewable energy sources in case study 3 is more than in the 

other two cases, which indicates the special attention of this 

case to all the introduced target functions of the system. As 

can be seen, case study 3 is generally recognized as the best 
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among the case studies conducted . 

The insights obtained from Fig. 7 illuminate the optimal 

coordination of wind turbine units, photovoltaics, and CHP 

units to ensure a reliable supply of electric load. The time 

distribution of renewable energy production is mainly 

concentrated between 06:00 - 16:00. Also, the electric load 

peak is around 21:00. This figure illustrates how electrical 

loads are completely utilized between the hours of 6:00–16:00 

when the amount of renewable energy generation is highest, 

and how the electrolyzer converts extra electrical energy into 

hydrogen to maximize the usage of renewable energy sources. 

Additionally, it is evident that the CHP unit produces little 

electrical energy during these hours despite the abundance of 

renewable energy sources and the ability to supply an electric 

load roughly between 1:00 and 18:00. This is because the 

CHP unit is required to produce thermal energy during these 

hours. 

Next, Fig. 8 deals with the complexities of energy supply 

and heat load and shows the effective cooperation between the 

CHP unit and the gas boiler. This synergy ensures a reliable 

supply of heat load energy. As can be seen, the CHP unit is the 

main unit providing thermal energy, which supplies a large 

part of the thermal load during all operating hours. Another 

thermal energy-producing unit is a gas boiler that acts as  

a backup unit for the CHP unit and is put into operation only 

during peak thermal load hours . 

Analyzing A striking example of the system dynamics is 

depicted in Fig. 9, where the electrolysis cell produces more 

hydrogen than is needed overall, which charges the hydrogen 

storage resources. The independent reveals a creative solution 

in reaction to this overabundance. Methane is produced by 

deftly converting the extra hydrogen. By using renewable 

energy supplies strategically, this approach not only prevents 

waste but also improves the multi-EH's capacity to connect 

more fuel-cell vehicles. The multi-EH's expanded hydrogen 

supply capacity highlights hydrogen's potential as a flexible 

and adaptable energy source. 

A comparison between Case Study 1 and Case Study 2 

proves to be highly insightful: while Case Study 2 has much 

higher levels of economic spend involved compared to Case 

Study 1, it outperforms the latter by a big margin concerning 

renewable utilization and reliability. Such a comparison 

underlines an interesting trade-off between purely economic 

considerations and the need to integrate renewable energy 

sources efficiently. The results on capacity configuration in 

Case Study 2 present, from the point of view of multi-

objective optimization, a proper balance that meets the 

demands of efficiency and reliability at a reasonable economic 

cost. 

The work presented in Case Study 2 and Case Study 3 is 

an extension from that point and represents a path of 

improvement. Case Study 3 was the most powerful 

configuration studied and outperformed Case Study 2 in all 

three aspects, such as economic cost, REU rate, and reliability. 

The improvement becomes much essential when the 

assessment of average resource load scenarios is performed. 

Integration of these cases at the configuration process ensures 

that the system remains robust against unavoidable variations 

and uncertainties of the solar radiation, wind velocity, and 

energy demand. In many cases, especially where a number of 

dissimilar energy nodes integrate various renewable energy 

sources and energy usage profiles with an unpredictable 

capacity configuration approach, such a flexibility becomes 

very important. 

This study highlights that addressing and accounting for 

uncertainty are integral to the design process of system 

capacity. A comprehensive strategy is required due to the 

inherent complexity of various energy systems, which are 

places where different renewable energy providers and energy 

needs converge. By taking into account the fluctuations and 

randomness of important parameters, the suggested CCM 

attains a level of robustness that is essential for the practical 

implementation of the EH system. This realization is crucial 

for enhancing EH systems' adaptability to changing climatic 

conditions as well as for maximizing their efficiency. 

Table 2. Values of objective functions in different case studies. 

Renewable energy 

utilization (%) 

Expected energy not 

supplied (kWh) 
Cost ($)  

97.4 1328 3668.48 Case study 1 

98.7 283 4011.52 Case study 2 

99.8 32 3889.50 Case study 3 

The results presented in Table 2 demonstrate a clear trend 

of increasing REU and decreasing expected energy not 

supplied as the case studies progress. In Case Study 1, REU 

stands at 97.4%, with 1,328 kWh of energy not supplied, and 
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the associated cost is $3,668.48. In Case Study 2, REU 

increases to 98.7%, with EENS reducing significantly to 283 

kWh, though the cost rises to $4,011.52. This shows a trade-

off between cost and energy reliability as the system moves 

toward higher renewable energy use. In Case Study 3, REU 

reaches its highest value of 99.8%, with EENS reducing even 

further to 32 kWh. Interestingly, despite the near-perfect REU, 

the cost slightly decreases to $3,889.50 compared to Case 

Study 2, reflecting a more optimized system design. The 

comparison of these case studies highlights a gradual but 

significant improvement in both renewable energy integration 

and system efficiency, with the cost exhibiting only marginal 

increases despite substantial improvements in energy supply 

reliability. The reduction in EENS and the higher REU 

indicate that the model becomes more efficient at integrating 

renewable energy sources, while the cost remains within  

a reasonable range, suggesting an effective optimization of the 

system's operational and infrastructure components. 

Reliability in energy systems explains the ability to 

prepare a consistent energy supply, particularly while facing 

certainties including fluctuating renewable energy generation, 

potential equipment failures, and changing demand patterns.  

A reliable configuration must be resilient to these challenges, 

incorporate backup solutions, and optimize the configuration 

of multiple energy resources to guarantee that energy demands 

are met continuously without remarkable disruptions. In 

multi-energy hub units, reliability can be regarded as a key 

performance indicator that balances the variability of 

renewable energy sources such as solar and wind with stable 

energy supply through complementary methods of CHP units, 

energy storage, and gas boilers. 

 

Fig. 7. optimal electrical dispatch. 

 

Fig. 8. Optimal thermal dispatch. 

 

Fig. 9. Optimal hydrogen dispatch. 

In the presented study, the reliability of the suggested 

multi-energy hub configuration is outlined through the 

achieved outputs in the case studies, especially in Case Study 

3. The mentioned model effectively decreases the EENS and 

indicates an extremely reliable configuration. With the 

integration of renewable energy sources utilizing hydrogen 

storage and conversion methods, the system certifies that 

energy is available even through low renewable output 

periods. Moreover, the employment of backup components, 

including CHP units and gas boilers, provides more stability. 

This comprehensive capacity configuration gives the ability to 

the system to maintain a reliable energy supply and encounter 

diverse energy demands including heat, power, and hydrogen 

through various conditions. This evaluation clearly outlines 

that the proposed model excels in achieving a reliable, 

economically efficient, and sustainable energy system. 

5.1. Sensitivity Analysis Results 

The sensitivity analysis is performed to evaluate the 

robustness and adaptability of the multi-EH system's 
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configuration under varying input parameters, such as wind 

speed, solar radiation, electrical load, thermal load, and 

hydrogen demand. The analysis investigates how changes in 

key variables affect the system's performance, focusing on 

three primary objectives: REU, unsupplied energy, and system 

costs. 

- Sensitivity to Wind Speed (kW) 

To examine the effect of wind speed variations on the 

system's performance, wind speeds are varied within a ±15% 

range from the baseline value of 7 m/s (which represents the 

nominal operational condition). The results are listed in Table 

3. 

Table 3. The numerical results of sensitivity analysis for wind 

speed variations. 

Wind Speed 

Change (%) 

Renewable Energy 

Utilization (%) 

Expected Energy 

Not Supplied 

(kWh) 

Total System 

Cost ($) 

-15% 94.3 1,560 4,125.30 

Baseline (7 m/s) 97.4 1,328 3,673.48 

+15% 99.1 1,180 3,470.25 

As seen, a reduction in wind speed results in a decrease in 

renewable energy utilization and an increase in unsupplied 

energy. Conversely, an increase in wind speed improves REU 

and reduces unsupplied energy, but may lead to higher system 

costs due to the need for additional capacity or backup units. 

- Sensitivity to Solar Radiation (kWh/m²) 

For solar radiation, a ±20% variation from the baseline of 

5 kWh/m² is applied. The impact on system performance is 

summarized as Table 4.  

Table 4. the numerical results of sensitivity analysis for solar 

radiation variations. 

Solar Radiation 

Change (%) 

Renewable Energy 

Utilization (%) 

Expected Energy Not 

Supplied (kWh) 

Total System 

Cost ($) 

-20% 92.7 2,000 4,210.00 

Baseline (5 

kWh/m²) 
98.7 283 4,023.52 

+20% 100 140 3,800.75 

In this case, a decrease in solar radiation increases the 

EENS and pushes up system costs, as the need for backup 

systems (like boilers and CHP units) becomes more frequent. 

Higher solar radiation results in improved REU and reduced 

costs due to better energy production. 

Sensitivity to Electrical Load (kWh) 

The electrical load is varied within a ±10% range around 

the baseline of 1,500 kWh/day. The sensitivity results are 

shown in Table 5. 

Table 5. the numerical results of sensitivity analysis for 

electrical load variations. 

Electrical Load 

Change (%) 

Renewable Energy 

Utilization (%) 

Expected Energy 

Not Supplied (kWh) 

Total System 

Cost ($) 

-10% 96.1 1,100 3,650.80 

Baseline (1,500 

kWh/day) 
97.4 1,328 3,673.48 

+10% 97.9 1,500 3,700.62 

The results show that increases in electrical load result in a 

higher demand for energy, which may lead to increased 

unsupplied energy and higher costs due to more reliance on 

CHP units and backup boilers. Conversely, a decrease in 

electrical load slightly reduces unsupplied energy but results 

in slightly lower renewable energy utilization. 

5.2. Comparison to other works 

The present work maintains obvious advantages over Hou et 

al. [5], Pazouki et al. [17], and Meydani et al. [13] in most 

performance metrics. For an investment cost of $3.89M from 

the current work, it is comparable to that reported by Hou et 

al. [5] at $3.80M, 20.1% lower compared to Pazouki et al. 

[17] with $4.87M, but 11% higher than what Meydani et al. 

[13] presented at $3.50M. The operational cost for the present 

work ($2.72M) is 20% lower than that of Hou et al. [5] 

($3.40M) and 13.4% lower than Pazouki et al. [17] ($3.14M), 

while 8.8% higher than Meydani et al. [13] ($2.50M). The 

most relevant amelioration is realized on the reliability, where 

the real study reaches the EENS indicator of only 32 kWh, 

with an equivalent of 88.9%, compared with the results 

obtained by Hou et al. [5] (287 kWh), 89% for that related to 

Meydani et al. [13] (300 kWh), and 94.7% regarding Pazouki 

et al. [17] (600 kWh). In a word, owing to the environmental 

sustainability, the present work realizes the lowest emission 

costs, $18,500 (7.5% lower than Meydani et al. [13] ($20,000) 

and 20.6% lower than Pazouki et al. [17] ($23,317)). The total 

costs for the current work ($6.64M) were 11.2% lower than 

Hou et al. [5] ($7.48M) and 31.6% lower than Pazouki et al. 

[17] ($9.71M), while it was 10.3% higher than Meydani et al. 

[13] ($6.02M). Similarly, the current research reaches  

a remarkable REU value of 99.8%, slightly higher than that of 

Hou et al. [5] at 99.7% and much higher than that of Pazouki 

et al. [17] at 97.0%. These results show the potential of the 

suggested model in harmonizing cost efficiency, system 

reliability, and ecological sustainability, which makes the 

applied optimization approach very effective. A comparision 
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results have been shown in Table 6 . 

Table 6. Comparision of the results of the current work with other works. 

Metric Hou et al. [5] Pazouki et al. [17] Meydani et al. [13] Current Work (Case 3) Comparison 

Investment 

Costs (M$) 
3.80 4.87 3.50 3.89 

The current work’s investment 

costs are slightly higher than 

Hou et al. [5] (+2.4%), 20.1% 

lower than Pazouki et al. [17], 

and 11% higher than Meydani 

et al. [13]. 

Operational 

Costs (M$) 
3.40 3.14 2.50 2.72 

The current work reduces 

operational costs by 20% 

compared to Hou et al. [5], is 

13.4% lower than Pazouki et 

al. [17], but is 8.8% higher 

than Meydani et al. [13]. 

EENS (kWh) 287 600 300 32 

The current work achieves the 

best reliability, reducing EENS 

by 88.9% compared to Hou et 

al. [5], 94.7% compared to 

Pazouki et al. [17], and 89% 

compared to Meydani et al. 

[13]. 

Emission 

Costs ($) 

Not explicitly 

reported 
23,317 20,000 18,500 

The current work has the 

lowest emission costs, 7.5% 

lower than Meydani et al. [13] 

and 20.6% lower than Pazouki 

et al. [17]. 

Total Costs 

(M$) 
7.48 9.71 6.02 6.64 

The current work reduces total 

costs by 11.2% compared to 

Hou et al. [5], 31.6% 

compared to Pazouki et al. 

[17], while being 10.3% higher 

than Meydani et al. [13]. 

REU (%) 99.7 97.0 Not explicitly reported 99.8 

The current work achieves the 

highest REU, slightly 

outperforming Hou et al. [5] 

(+0.1%) and significantly 

outperforming Pazouki et al. 

[17] (+2.8%). 

 

These studies establish critical groundwork for the 

optimization of multi-energy systems. Although Hou et al. [5] 

and Pazouki et al. [17] investigated strategies to improve REU 

and lower expenditures, their dependence on conventional 

storage arrangements and elevated EENS metrics highlights 

deficiencies in both reliability and flexibility. Meydani et al. 

[13] contributed to the discipline by implementing cost-

effective metaheuristic algorithms; however, their 

methodology did not fully incorporate renewable energy 

storage systems in a comprehensive manner. This will provide 

an almost perfect REU of 99.8%, with an EENS as low as 32 

kWh at a total cost of $6.64M for a robust and scalable 

solution to sustainable energy systems. 

6. Conclusion 

This paper proposes an integrated optimization framework for 

the energy management of multi-energy independent hubs 

dealing with electricity, thermal energy, and hydrogen 

systems, considering a set of uncertainties related to the 

renewable energy sources. The model indeed confirms that 
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advanced energy management methodologies, including 

stochastic scenario generation and reduction methodologies, 

are relevant to counteract the fluctuations of either renewable 

energy production or consumption. In turn, the suggested 

approach will ensure that RE sources, CHP units, and 

hydrogen storage systems are coordinated in an efficient 

energy dispatch manner, with reduced reliance on non-

renewable backups and improved reliability of the whole 

system. Results demonstrate the flexibility of the system, 

while the methanation process effectively manages surplus 

hydrogen and expands energy storage options. The hybrid 

PSO-GOA optimization algorithm can balance exploration 

and exploitation of the solution space well and improve 

convergence in speed and precision. Besides, adding gas 

boilers and hydrogen methane conversion can enhance the 

dynamism while dealing with energy demand. In quantitative 

terms, it has ensured a renewable energy utilization share of 

99.8%, unsupplied energy consumption to 32 kWh, and a total 

system cost of 3,889.50 $. Some 65% of the demand for 

electricity comes from renewables; 85% heat supply is 

covered by CHP units, supplemented by gas boilers for peak 

load only. Furthermore, 70% of the hydrogen used will be 

produced from renewable surplus, 50% of which is 

subsequently converted to methane for reasons of optimizing 

storage. These values indicate that this model can be used as 

one efficient way to find a balance among economic 

efficiency, renewable energy utilisation, and reliability in the 

scaling of future energy systems. 
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Numenclature 

Nomenclature 

Identifier Description Identifier Description 

Abbreviations 

EENS Expected energy not supplied PSO Particle Swarm Optimization 

GOA Grasshopper optimization algorithm  P2G Power-to-Gas  

MEHs Multi-energy hubs REU Renewable Energy Utilization  

PDFs Probability density functions SOC States Of Charge 

Subscripts and superscripts 

0 Initial HST Hydrogen Storage 

B Boiler  IC Investment cost 

CHP Combined heat and power  i Index of numbering 

Cha Charge L Load 

Cap Capacity  Loss Not supplied energy  

Dis Discharge max Maximum 

EH Energy Hub MET Methanation  

E Electric min Minimum 

EC Electrolysis cell OC Maintenance cost 

FCV Fuel cell vehicles T Thermal 

fix Fixed  t Time 

g Gas  var Variable 
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Nomenclature 

Identifier Description Identifier Description 

Symbols 

c Scale parameter r Solar radiation 

C Cost v Wind speed 

𝐻2 Hydrogen 𝑤(𝑠) Scenarios probability 

l Shape parameter of the Weibull distribution W Consumption (required) power  

P Power   

Greek letters 

𝛼,𝛽 Shape parameter of the beta distribution 𝜂  Efficiency 

𝜎  Variance 𝜀  Limit coefficient  

𝜑  Binary variable that ends the last trip 𝜇 Mean 

𝜛  Hydrogen consumption per mileage   

 


