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Highlights  Abstract  

▪ New method for managing hybrid renewable 

energy in smart grids. 

▪ Electric vehicles' role in expanding the 

electricity market. 

▪ Optimize to boost electricity production and 

cut costs. 

 A novel optimization method, based on the Big Bang-Big Crunch hybrid 

algorithm, is employed to manage the timing and integration of EVs into 

the microgrid, aiming to minimize operational costs. The algorithm 

efficiently controls the energy flow between the EV batteries and the 

control system, dynamically adjusting to meet demand while reducing 

costs. The system was tested on the IEEE 14-bus system with real EV 

movement patterns over a 24-hour period. The results show a significant 

cost reduction, with the total cost decreasing from $132,869.9 without 

EVs to $112,981 when EVs equipped with ultracapacitor batteries are 

integrated, representing a 15% reduction. Moreover, the proposed 

method outperforms other algorithms, such as Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA). Compared to these 

methods, the Big Bang-Big Crunch hybrid algorithm achieves cost 

reductions of 17% over PSO and 13% over GA, demonstrating its 

effectiveness in optimizing energy management in a microgrid with 

renewable energy sources. 
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1. Introduction 

In traditional networks, supplying electric power required by the 

consumer is produced in a complex manner and far from the 

consumer, which has caused problems. From among these 

problems, we can refer to the high cost of building power plants 

and transmission lines at higher capacities, as well as the high 

losses of this type of networks [1]. Another defect of traditional 

networks is the low reliability of such networks, since if an error 

occurs and the transmission lines are cut, it is likely that many 

consumers will not have access to electricity [2]. Consequently, 

in order to overcome such problem, more and more attention 

has been paid to distributed production. Nowadays, using 

distributed generation method for electricity generation is one 

of the methods that has been recommended to supply the power 

required by the consumer [3-5]. Ref. [6] provides a detailed 

analysis of the real-time manifestation of islanding and 

islanding detection strategies (IDS). First, it focuses on 

presenting the concept of islanding detection, standardization of 

islanding detection, and an analysis of their advantages and 

disadvantages. Next, the detailed classification of the IDSS is 

presented with focus on remote and local methods. You can use 

passive, active and hybrids to classify local IDs. Microgrids are 

a collection of loads and producers that can work as islands or 
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connect to the grid. Producers of microgrids are distributed 

resource generators that include solar cells, wind turbines, 

microturbines, batteries, etc. [7]. However, power generation 

costs and environmental pollution caused by microgrids need to 

be addressed carefully [8-10]. Ref. [11] proposes a day-ahead 

scheduling system for a MG with solar power, focusing on the 

impact of weather on PV output. A modified fluid search 

optimization algorithm is used to improve energy management 

in grid-connected MGs with high unpredictability. Simulation 

results show enhanced energy management accuracy and 

reduced operational costs. Given the growing need for energy 

sources and the diminishing availability of fossil fuels, using 

renewable energy sources, such as solar and wind energy, can 

help maintain a clean environment and lower air pollution. With 

solar system installed capacity growing at a 60% annual growth 

rate, the use of renewable energies has expanded [12]. Despite 

having two significant drawbacks, namely the difficulty of 

accessing the generated electricity and the expensive cost of the 

equipment, DC systems are nonetheless more widely used than 

AC ones because of their higher levels of efficiency, 

dependability, and accessibility to renewable energy sources. To 

mitigate fluctuations in the production part of the hybrid system, 

a battery bank is used for energy storage, which absorbs excess 

power and provides power in various working conditions [13]. 

In [14], controlling strategy is presented with the aim of 

supplying the load of the system. The solar array is the main 

source of  supplying power required by the system load in such 

a way that if only solar energy is available, the solar array alone 

can supply the system load. The excess power of the system is 

delivered to the electrolyzer for hydrogen production and to the 

battery for storage. In the photovoltaic-fuel cell mode, the solar 

array alone is not able to supply the load of the system; in this 

case, the fuel cell enters the circuit and contributes with the 

hydrogen stored in the tank in supplying the load with the solar 

cell. In this case, due to the uncertainty of solar radiation, it is 

not able to produce power; the system load is supplied only by 

the hydrogen stored in the tank and the power is produced by 

the solar cell. 

A joint energy management and trading model for CCHP 

microgrids aims to reduce costs and improve efficiency by 

prioritizing self-generation and demand-side management is 

proposed in [15]. Microgrids can buy or sell energy to nearby 

grids or utilities when necessary, and diesel generators serve as 

backup when other energy sources are insufficient. This 

approach enhances system reliability and flexibility. In [16], 

deterministic algorithm method is used in order to determine the 

number and type of units optimally. Many researchers have 

proven that the direct algorithm is the most effective 

deterministic algorithm for finding the best solution in various 

problems. In the paper, the data of solar radiation intensity, wind 

speed and ambient temperature are recorded hour by hour for 

six months. The outcomes of simulation demonstrated that the 

separate hybrid solar/wind/diesel system with/without battery 

could be used as an economic technique for generating electric 

energy in remote areas, given its final costs. In [17], an optimal 

sizing method to optimize a hybrid photovoltaic-wind system 

with a battery, in which a genetic algorithm is used to optimize 

the size of the equipment according to the cost and reliability of 

the system. This paper assesses hybrid energy systems 

integrating PV, wind turbines, diesel generators, and storage 

options (fuel cells and batteries) for non-domestic loads in four 

locations in Cameroon. Using the Cuckoo Search Algorithm 

(CSA) for optimal sizing, the study finds that battery-based 

hybrid systems are more cost-effective than fuel cell systems in 

the short term. In [18], presents a hybrid energy storage system 

of battery fuel cell (FC) and passive control (PBC) for hybrid 

electric vehicles (HEVs) that improves power integration and 

increases operation speed. The first section describes the power 

management (PMC) that uses a fuzzy logic controller for the FC 

battery system to ensure continuous power supply. The second 

section describes the PBC method for vehicle permanent 

magnet synchronous motor (PMSM) considering nonlinearities 

and disturbances, and compares with proportional integral (PI) 

and sliding mode control (SMC) to evaluate the performance of 

PBC. Ref. [19] presents a microgrid integrating solar panels, 

wind turbines, a Li-ion battery system, an EV, and a DC load, 

connected through power converters to a DC bus and AC grid. 

The primary objectives include DC bus voltage regulation, 

optimizing renewable energy conversion, and maintaining 

energy quality. A novel energy management algorithm with 

fuzzy logic controllers, fine-tuned by Particle Swarm 

Optimization (PSO), enhances network stability and energy 

distribution. Simulations demonstrate significant improvements 

in control accuracy and system performance. 
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Previous research on energy management in EV integrated 

microgrids has focused primarily on managing EV charging and 

discharging based on charging curves and electricity prices. 

Although these approaches have several advantages, such as 

facilitating off-peak charging and selling stored energy to the 

grid during peak hours, they often overlook the potential of 

advanced storage technologies and optimization algorithms. 

Many of these studies rely solely on traditional rechargeable 

batteries for energy storage, which may result in limitations 

such as slow response times and high degradation rates during 

frequent charging cycles. Furthermore, the optimization 

techniques used in previous studies, such as traditional PSO and 

genetic algorithms (GA), may not be effective enough to 

minimize operational costs or maximize the efficiency of the 

system. The novelty of this paper lies in the integration of 

electric vehicles equipped with ultracapacitors into microgrids, 

combined with a smart optimization approach using a hybrid big 

bang-big crunch algorithm. Unlike traditional battery-based 

systems, ultracapacitors allow for faster discharge and recharge 

of energy, making them ideal for balancing the fluctuations of 

renewable energy sources such as wind and solar power. In this 

study, we present an integrated energy management model that 

optimizes the interaction between electric vehicles, renewable 

energy sources, and the power grid. Using the Big Bang-Big 

Crunch algorithm, we outperform PSO and GA, achieving 

significant cost savings and improved system performance. By 

incorporating real-world EV driving patterns and optimizing 

their grid integration timing, this study proposes a more 

dynamic and cost-effective solution for modern energy systems, 

addressing the limitations of previous approaches and 

advancing the field of intelligent microgrid energy management. 

In Section 2, we discuss the structure of the proposed system, 

including the renewable energy sources and electric vehicles 

(EVs). Section 3 focuses on the optimization methods, 

specifically the Big Bang-Big Crunch hybrid algorithm used in 

the study. In Section 4, the results of the proposed method 

applied to the IEEE 14-bus system are presented. Finally, 

Section 5 concludes the paper by summarizing the key findings 

and contributions. 

2. Modelling 

In this paper, an advanced approach to energy management 

within microgrids, particularly focusing on the integration of 

electric vehicles (EVs) equipped with supercapacitor energy 

storage systems is investigated. this study considers a microgrid 

environment that incorporates renewable energy sources, 

specifically wind turbines and photovoltaic (PV) panels, which 

contribute to the system's energy supply. The presence of 

electric vehicles introduces unique challenges and opportunities 

for optimizing energy distribution and storage within the grid. 

To address these challenges, a comprehensive optimization 

algorithm based on the Big Bang method, aiming to minimize 

the overall cost function is proposed. This algorithm effectively 

manages the dynamic and stochastic nature of energy generation 

and consumption in the microgrid, ensuring efficient energy 

utilization and cost reduction while maintaining system stability. 

Our findings demonstrate that the proposed approach 

significantly enhances the performance and economic 

feasibility of microgrids with integrated EVs and renewable 

energy sources. 

2.1. Vehicle to grid technology (V2G) 

Currently, power grids have very limited storage systems and, 

for this reason, matching production, and consumption in them 

requires permanent management and control of electrical 

energy generating units. Based on the researches it is found that 

limited-range electric vehicles (EVs) can meet the daily driving 

needs of a large proportion of drivers, with 9% of drivers never 

driving more than 100 miles per day and up to 32% of drivers 

willing to adapt their needs. driving speed several times a day. 

Furthermore, at least 75% of vehicles are always parked, 

indicating that the impact of EV charging on the grid is 

manageable, the batteries of these cars can provide a powerful 

storage system with high availability for the power grid [20]. In 

this way, an unused capital can act as an active element in the 

network and provide the energy stored in its battery to the 

network. What attracts the attention of so many people and 

researchers to electric vehicles is the concept of vehicle to 

network technology (V2G). 

V2G concept is initially associated with two large and 

independent systems, including the power generation system 

and the transportation system. This concept is completed 

through two-way connection between these two systems in the 

smart network environment. To put it another way, V2G means 
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that electric vehicles can transfer power from the grid to the cars 

during charging and transfer power from the cars to the grid 

when the cars are used as storage which is shown in Fig.1.

 

Fig. 1. V2G structure. 

After the introduction of electric and hybrid vehicles, which 

are only able to receive electricity from the network,  

a conventional design for electric vehicles is proposed by 

making simple changes in the power circuits of these cars. 

Hence, they can connect to the V2G network, in such a way that 

enabled them to transfer the energy stored in their batteries to 

the network when the vehicle is parked [21]. So, V2G can have 

a two-way exchange with the network, creating many 

opportunities that increase efficiency and reliability [22]. The 

electrical network must gather information to create two-way 

transfer of power and power-related data between network 

components and consumers, which requires the establishment 

of charging and discharging infrastructures. The result of this 

complexity in the transfer of data and energy is the need to 

expand the standards of each part of the valuable V2G chain. 

These standards include physical infrastructure alongside 

virtual standards that include communication, data security, 

convenience, and information transfer among stakeholders [23].  

One of the most important infrastructures required for the 

V2G system is fast charging and discharging stations for 

machines, requiring the use of new technologies for their 

production. These stations should have the ability of two-way 

connection to the network and should be designed and built 

according to the requirements and standards of operating 

companies in the field of electrification. Another category of 

infrastructure is related to the communication and measurement 

requirements of the smart network. In order to initiate V2G with 

all the functions and benefits that are discussed before, we need 

a smart network to manage and control the charging and 

discharging of cars. Initiating the smart grid itself requires smart 

measurements and telecommunication systems. 

Telecommunication systems in smart network can be formed in 

two ways, considering the electric vehicles: PLC and wireless. 

When EVs are parked, they are considered an unused capital 

and it is not even possible to impose costs such as parking fees, 

etc. V2G is a concept that is designed to utilize this unused 

capital. Each V2G has a converter and a battery, and the 

structure of each V2G can be considered as shown in Fig.2. 

 

Fig. 2. The internal structure of V2G. 

The power of V2G exchange with the network is defined as 

follows: 

𝑃𝑐ℎ =
𝑃𝑏𝑎𝑡
𝜂𝑐

 
(1) 

𝑃𝑑𝑐ℎ = 𝑃𝑏𝑎𝑡𝜂𝑑 (2) 

PBat is the amount of power that V2G can transfer to or 

receive from the converter. It charges the battery with the 

efficiency of ɳc and delivers battery power to the network with 

the efficiency of ɳd. Eq.1 and Eq.2 indicates that if ɳc and ɳd are 

not the same unit, V2G must buy more power than it stores to 
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charge its own battery, while the power it delivers to the network 

is less than the power stored in the battery. Therefore, the closer 

ɳc and ɳd are to one, the more profit V2G owner gets from using 

its battery capacity [23].  

2.2. Solar energy and photovoltaic 

Solar energy can be used in various ways, the most common of 

which is providing hot water for homes. A simple method is to 

transfer solar energy to a boiler by means of reflectors and use 

the created steam to turn a steam turbine. Another method is to 

convert solar energy directly into electricity using photovoltaic 

cells. In this method, the efficiency is about 30% to 37%. 

Currently, due to the high price of photovoltaic cells, it is an 

expensive design. However, it is hoped that more research is 

done in this field and the costs are reduced [24]. Photovoltaic 

(PV) systems are an important component of renewable energy 

production, converting sunlight directly into electrical energy 

through solar cells made of semiconductor materials such as 

silicon. When sunlight hits a photovoltaic cell, it excites 

electrons and creates an electric field that produces direct 

current (DC), which is then converted to alternating current (AC) 

for use in homes and businesses. This technology forms the 

basis of solar energy and is critical to driving sustainable energy 

solutions for a variety of applications, from small residential 

installations to large solar power plants. 

2.2.1 Output power of PV 

Photovoltaic systems are increasingly used in microgrids to 

provide reliable, clean energy, reduce dependence on fossil fuels, 

and increase energy sustainability. Microgrids often integrate 

photovoltaic systems with energy storage solutions, allowing 

excess energy produced during peak hours to be stored and used 

during times of less sunlight or higher demand. It not only 

stabilizes the microgrid, but also optimizes energy efficiency, 

making it a key solution for remote or off-grid areas and 

contributing to global sustainability [24].  

The output power Ppv of a photovoltaic module can be 

calculated using the following formula: 

𝑃𝑃𝑉 = 𝜂 × 𝐴 × 𝐺 × (1 − 𝑇𝐶)  (1) 

Where,  

Ƞ is the efficiency of PV module, and A is the area of the PV 

module (in square meters). G is the solar irradiance incident on 

the PV module (W/ m2). TC is the temperature coefficient, 

representing the loss of efficiency due to temperature increases 

above the standard test conditions (STC) temperature, typically 

25°C. 

2.3. Wind energy  

Wind turbines are an important part of renewable energy 

systems that use the kinetic energy of the wind to generate 

electricity. These turbines consist of large blades mounted on  

a rotor that spins as the wind blows. The rotary motion drives  

a generator, which converts mechanical energy into electrical 

energy. Wind turbines are usually installed in wind farms on 

land or offshore, and together they produce large amounts of 

electricity. This technology is key to reducing greenhouse gas 

emissions and various energy excellence, which promotes  

a more sustainable and flexible energy infrastructure. Microgrid 

wind turbines are often used with other renewable energy 

sources, such as photoelectric (PV) systems to provide a stable 

and continuous power supply. The integration of micro -grid 

medium wind turbines has enhanced energy reliability, 

especially in areas with the same wind mode. The generated 

power can be directly used or stored in the battery for future use 

during low winds. This not only optimizes the use of renewable 

resources, but also reduces dependence on fossil fuels, making 

microgrids an efficient and environmentally friendly solution 

for urban and remote areas [25]. 

2.3.1. Output power of WT  

The actual power is also extremely dependent on the wind speed, 

as the power available from the wind is proportional to the cube 

of the wind speed. 

When considering a wind turbine's power output, consider 

the cut-in speed (v cut−in) and the cut-out speed (vcut-off) model is 

critical. Wind turbine output power 𝑃 as a function of wind 

speed 𝑣 can be expressed as follows: 

𝑃𝑤𝑡(𝑣) =

{
 
 

 
 
0𝑖𝑓𝑣 < 𝑣𝑐𝑢𝑡−𝑖𝑛

𝑃𝑟𝑎𝑡𝑒𝑑 × (
𝑣3−𝑣𝑐𝑢𝑡−𝑖𝑛

3

𝑣𝑟𝑎𝑡𝑒𝑑
3 −𝑣𝑐𝑢𝑡−𝑖𝑛

3 )𝑖𝑓𝑣 < 𝑣𝑐𝑢𝑡−𝑖𝑛 < 𝑣𝑟𝑎𝑡𝑒𝑑

𝑃𝑟𝑎𝑡𝑒𝑑𝑖𝑓𝑣𝑟𝑎𝑡𝑒𝑑 < 𝑣𝑐𝑢𝑡−𝑖𝑛 < 𝑣𝑟𝑎𝑡𝑒𝑑
0𝑖𝑓𝑣 > 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡

  
(2) 

Where: 

𝑃𝑤𝑡(𝑣) is the power output at a given wind speed v. vcut−in  is 

the cut-in wind speed, the minimum wind speed at which the 

turbine begins generating power. vcut−out  is the cut-out wind 
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speed, the maximum wind speed at which the turbine stops 

operating to avoid damage. vrated is the rated wind speed, the 

wind speed at which the turbine generates its maximum (rated) 

power output. Prated is the rated power output of the turbine at 

the rated wind speed. 

This formula reflects that the turbine does not produce 

power at very low wind speeds, also stops generating power at 

very high wind speeds to protect the turbine from potential 

damage. Between the cut-in and rated wind speeds, the power 

output increases with the cube of the wind speed, reflecting the 

increasing kinetic energy available in the wind. Once the wind 

speed reaches the rated value, the turbine continues to produce 

its maximum power output Prated until the cut-out speed is 

reached. 

This model is crucial for understanding and predicting the 

performance of wind turbines in various wind conditions, 

particularly when integrating wind energy into microgrids 

where stable and predictable power output is essential. 

2.4. Hybrid energy storage system and method 

There are several ways to generate electricity, and one of them 

is through the use of storage devices. These devices convert 

chemical energy into electrical energy through chemical 

reactions. Hybrid energy storage systems (HESS) and battery 

systems are the most commonly used storage devices in the 

electric vehicle industry. However, they face challenges such as 

limited life cycle due to sink current, temperature changes, and 

restricted power density resulting in larger size and weight. An 

electric vehicle's energy storage system (ESS) must have wider 

characteristics than a simple battery since it needs to provide 

enough energy for long distances at a steady state, good 

acceleration, and transient rating powers. To address these 

challenges, a main ESS can be hybridized with a secondary ESS 

to protect the battery from high flow pressure. Flywheel energy 

storage system (FESS), ultracapacitors (UC), and 

superconducting magnetic energy storage (SMES) are proposed 

ESSs for EV applications. UC-battery hybrid systems are the 

most promising HESSs in recent studies due to their long-life 

cycle, quick response time, quick charging time, high efficiency, 

and low maintenance. Fig. 3 depicts the UC-HESS battery used 

in  our proposed electric vehicles with Battery with UC in mode 

can be used to generate braking power [26].

 

Fig. 3. hybrid charging of HESs in Evs. 

The power output PUC of an ultracapacitor in the electric EVs 

formulated by using the following formula: 

𝑃𝑢𝑐 =
𝑉𝑢𝑐
2

4𝑅𝑢𝑐
  (3) 

Where: 

-Puc is the power output of the ultracapacitor (W). 

- Vuc is the voltage across the ultracapacitor (V). 

- Ruc is the equivalent series resistance (ESR) of the 

ultracapacitor (Ω). 

This formula accepts that the ultracapacitor is being 

discharged optimally. The power delivered by the ultracapacitor 

be contingent on its voltage and internal resistance.  

Alternatively, the energy stored E in an ultracapacitor, which 

influences the power output, is given by: 

𝐸 =
1

2
𝐶𝑉𝑢𝑐

2   (4) 

Where: 

-E is the energy stored in the ultracapacitor (J). 

- C is the capacitance of the ultracapacitor (F). 

-Vuc is the voltage across the ultracapacitor (V). 
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The power output is a function of how quickly this stored 

energy can be released, which is directly related to the 

capacitance, the voltage, and the internal resistance of the 

ultracapacitor. This makes ultracapacitors particularly effective 

in applications requiring quick bursts of energy, such as 

acceleration in electric vehicles. 

3. Modeling the problem of power generation and storage 

management  

In this paper, we develop an energy management strategy for  

a microgrid integrating renewable energy sources, such as wind 

turbines and photovoltaic (PV) systems, and electric vehicles 

connected to a hybrid energy storage system (HESS) consisting 

of batteries and ultracapacitors. The main objective is to 

minimize the operational costs of the microgrid while ensuring 

a stable and reliable power supply. The energy management 

process is designed in such a way that the DC bus is mainly 

powered by electricity generated from wind and solar resources. 

When renewable generation is insufficient, energy is taken from 

the battery. If additional power is still required, a certain amount 

of electricity will be purchased from the grid, but this option is 

considered a last resort. This structured approach minimizes 

grid power consumption, thereby reducing costs and 

maximizing the efficiency of the use of renewable energy in the 

microgrid. The renewable energy management problem is 

considered as a mixed-integer nonlinear programming problem. 

The operational cost of the microgrid, which includes renewable 

resources, storage systems, and electric vehicles, is discussed in 

the subsequent section. 

3.1. Costs 

Most of the system costs contain the price of PV panels, WT, 

HESS and EVs. The total cost of the MG (dollars per year) 

contains initial costs and operation and maintenance costs, 

which can be expressed as the following formula: 

𝐶𝑜𝑠𝑡 = 𝐶𝐺𝑟𝑖𝑑 +
∑ (𝐼𝑖 + 𝑂𝑀𝑖)𝑖=𝑃𝑉,𝑊𝑇,𝐻𝐸𝑆𝑆

𝑁

+∑𝑃𝐸𝑉(𝑣, 𝑡)Ω(𝑡)

𝑁𝑣

𝑣=1

 

(5) 

where Ii and OMi stand for each element's initial purchase price 

and ongoing operating and maintenance costs, respectively. N, 

CGrid, and Cost stand for the system's life cycle, the cost of grid 

power input, and the system's overall annual cost in dollars. Nv 

is the number of EVs and PEV(v,t) is the amount of EVs power 

in time t. if the EVs is in the charging mode the injected power 

to grid is as load and if the EVs is in the discharging mode the 

injected power isas a battery with negative amount. Hence, the 

first objective function is formulated as follows: 

Min: {𝐶𝑜𝑠𝑡(𝐴𝑃𝑉 , 𝐴𝑊𝑇 , 𝑃𝐻𝐸𝑆𝑆 , 𝜓)} (6) 

APV, AWT, PHESS and 𝜓 are the parameters designed in this 

paper, which respectively express the panel surface area, the 

footprint area, the HESS capacity, and the input power ratio 

from the network to the load. 

The initial and operation and maintenance costs for the 

photovoltaic subsystem are expressed as follows:  

𝐼𝑃𝑉 = 𝜆𝑃𝑣𝐴𝑃𝑉  (7) 

𝑂𝑀𝑃𝑉 = 𝑂𝑀𝑦𝑒𝑎𝑟𝑙𝑦𝐴𝑃𝑉∑(
1 + 𝑣

1 + 𝛾
)𝑖

𝑁

𝑖=1

 (8) 

where OMyearly, v, and γ depict the annual operating as well as 

cost of maintenance in each unit, amplification rate and the rate 

of interest, respectively. Besides, IPV and OMPV are the initial 

cost and the total cost of operating and maintaining the solar 

subsystem, respectively. λPV also shows the cost of the panel, 

which is 525 $/m2.   

The initial and operating as well as cost of maintenance for 

the wind turbine subsystem are similarly expressed by:  

𝐼𝑊𝑇 = 𝜆𝑊𝑇𝐴𝑊𝑇  (9) 

𝑂𝑀𝑊𝑇 = 𝑂𝑀𝑦𝑒𝑎𝑟𝑙𝑦𝐴𝑊𝑇∑(
1 + 𝑣

1 + 𝛾
)𝑖

𝑁

𝑖=1

 (10) 

where, IWT, OMyearly and OMwind respectively show the initial 

cost, the annual operation as well as cost of maintenance in each 

unit and the total cost of operation and maintenance of the wind 

subsystem. Also, λWT represents the cost of the wind turbine 

which 100 dollars per square meter ($/m2). 

The initial and operating as well as cost of maintenance for 

the battery bank are formulated by:  

𝐼𝐻𝐸𝑆𝑆 = 𝜆𝐻𝐸𝑆𝑆𝐴𝐻𝐸𝑆𝑆 (11) 

𝑂𝑀𝐻𝐸𝑆𝑆 = 𝑂𝑀𝑦𝑒𝑎𝑟𝑙𝑦𝑃𝐻𝐸𝑆𝑆∑(
1 + 𝑣

1 + 𝛽
)(𝑖−1)𝑁𝐻𝐸𝑆𝑆

𝑇𝑏

𝑖=1

 (12) 

where IHESS, OMyearly, OMHESS and β, respectively, represent the 

initial cost, the annual operation as well as cost of maintenance 

in each unit, the cost of operation and maintenance of the battery 

subsystem and the inflation rate. Moreover, λHESS, which 

represents the cost of the battery bank, is 100 dollars per 

kilowatt hour. 

The HESS has a shorter lifespan compared to solar cells and 
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wind turbines, which means that they need to be replaced 

multiple times throughout the system's lifespan. Therefore, the 

cost of operation and maintenance in Eq. (12) refers to the cost 

of replacing the HESS. 

The cost of input power from the network is formulated as 

follows: 

𝐶𝐺𝑟𝑖𝑑 =∑𝑃𝐺𝑟𝑖𝑑,𝑡𝜆𝐺𝑟𝑖𝑑

𝑇

𝑖+1

 (13) 

where PGrid,t represents the power purchased from the grid in 

each unit and λgrid represents the price of input power from the 

network, which is $0.1 per kilowatt hour.  

3.2. Accessibility  

When energy is available, accessibility is obtainable as  

a significant pointer for the system. There is great variance 

among availability and reliability. Reliability is the system's 

capacity to function without failure, whereas accessibility is its 

capacity to supply electricity to the load. For instance, an 

extremely reliable PV system, in which mechanisms do not fail 

can have little access, if there is sufficient energy storage to 

provide the required load power during the night or on a cloudy 

day [27].  

A certain level of accessibility can be achieved with many 

system settings. Accessibility for the considered time period is 

formulated as follows: 

𝐴 = 1 −
𝐷𝑁𝑀

𝐷
 (14) 

DNM is formulated as follow: 

𝐷𝑁𝑀 =∑[𝑃𝐻𝐸𝑆𝑆. 𝑆𝑂𝐶𝑃𝑉𝑊𝑇𝐺𝑟𝑖𝑑𝐷𝐻𝐸𝑆𝑆,𝑚𝑖𝑛

𝑇∑

𝑡=

 (15) 

where if the supplied power is bigger than or equal to the 

demand, u(t) is a zero-step function; if the demand is not 

encountered, it is supposed to be one. 

A, DNM, PHESS,min (t), PHESS,SOC (t) and PD(t) parameters are 

respectively the availability index, unmet demand (kWh per 

year), minimum charge of the battery bank at the time, charging 

status of the battery bank at the time and the amount of demand 

per unit of time. 

The input power from the network is: 

𝑃𝐺𝑟𝑖𝑑 = 𝜓(𝑃𝐷(𝑡) − 𝑃𝑃𝑉(𝑡)

− 𝑃𝑊𝑇(𝑡)

− 𝑃𝐻𝐸𝑆𝑆(𝑡)) 

(16) 

𝑃𝑊𝑇 = 𝑃𝑊𝑇𝐴𝑊𝑇𝜂𝑊𝑇 (17) 

𝑃𝑃𝑉 = 𝐼𝑛𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝐴𝑃𝑉𝜂𝑃𝑉  (18) 

In Equations (16) to (18), the parameters of PPV, ηpv, 

Insolation, Pwt and ηwt respectively indicate the production 

power of the solar subsystem, efficiency of the PV, amount of 

sunshine to the superficial of the cell, production power of the 

WT and effectiveness of the wind turbine. Besides, PWT 

indicating the power rating of the wind turbine generator is 5 

kW.  

Therefore, the second objective function can be stated as 

follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝐴(𝐴𝑃𝑉 , 𝐴𝑊𝑇 , 𝑃𝐻𝐸𝑆𝑆 , 𝑃𝐸𝑉𝑠 , 𝜓) (19) 

As mentioned in Equation (8), the operating life of the 

battery is shorter than the life of solar cells and wind turbines, 

so it is necessary to replace the batteries several times in a 20-

year period. 

The values of the hybrid system parameters are mentioned 

in Table 1. 

Table 1. Parameter of hybrid system. 

Parameter Value 

Life cycle of system (N) 20 years 

Life cycle of HESS (NHESS) 5 years 

Inflation rate(β) 8% 

Efficiency rate(γ) 12% 

Resonance rate(v) 12% 

Other limitations related to the system are listed in Table 2. 

Table 2. parameter of renewable energy sources. 

Parameter Value 

Minimum area of PV (APVmin) 0 

Maximum area of PV (APVmax) 4221m2 

Minimum area of WT (AWTmin) 100m2 

Maximum area of WT (Awtmax) 4350 m2 

3.3. Limitations of the problem 

3.3.1. Balance load 

The amount of produced power and demand power should be 

balance on a period which is calculated as follow: 

𝑃𝐺𝑟𝑖𝑑(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) + ∑ 𝑃𝐸𝑉
𝑑𝑖𝑠𝑐ℎ(𝑣, 𝑡)

𝑁𝑒𝑣

𝑒𝑣=1

= ∑ 𝑃𝐸𝑉
𝑐ℎ(𝑣, 𝑡)

𝑁𝑒𝑣

𝑒𝑣=1

+ 𝐷𝑡∀𝑡

∈ {1, . . . , 𝑇}/∀𝑣 ∈ {1, . . . , 𝑁𝐸𝑉} 

(20) 
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3.3.2. The production capacity of active power 

Output power of WT and PV ranges are between the minimum 

and maximum defined production power. Also, the power of the 

main network does not exceed the defined minimum and 

maximum values, every hour.  

𝑃𝑤𝑡𝑤𝑡,𝑚𝑎𝑥𝑤𝑡,𝑚𝑖𝑛 (21) 

𝑃𝑃𝑉𝑃𝑉,𝑚𝑎𝑥𝑃𝑉,𝑚𝑖𝑛 (22) 

𝑃𝐺𝑟𝑖𝑑𝐺𝑟𝑖𝑑,𝑚𝑎𝑥𝐺𝑟𝑖𝑑,𝑚𝑖𝑛 (23) 

PWT,min , PPV,min and Pgrid,min  represent the minimum active 

power of PV, WT and grid at time t, respectively. Also, PWT,max , 

PPV,max and Pgrid,max are the  maximum active power of PV, WT 

and grid at time t, respectively. 

3.3.3. Regulations related to electric vehicles 

Electric vehicle batteries are not charged and discharged in the 

same time period.  

𝑋(𝑣, 𝑡) + 𝑌(𝑣, 𝑡) ≤ 1∀𝑡

∈ {1, . . . , 𝑇}, 𝑋, 𝑌 ∈ {0,1}∀𝑣

∈ {1, . . . . , 𝑁𝑣} 

(24) 

Where, X (v, t) and Y (v, t) is a binary variable and represent the 

charging and discharging mode of EVs.  

Each electric vehicle's battery needs to be in energy balance. 

In the charge mode, 𝐸𝑡𝑟𝑖𝑝
𝑣,𝑡

is the last energy the EVs battery has 

before moving during time period t. EVs (V, T) is the energy 

stored in the vehicle battery up until the end of time period t.  

𝐸𝑆(𝑣, 𝑡) = 𝐸𝑆(𝑣, 𝑡 − 1)

+ 𝜂𝑒𝑣
𝑐ℎ𝑃𝐸𝑉

𝑐ℎ(𝑣, 𝑡)

− 𝐸𝑡𝑟𝑖𝑝
𝑣,𝑡 − 

1

𝜂𝑒𝑣
𝑑𝑖𝑠𝑐ℎ

𝑃𝐸𝑉
𝑑𝑖𝑠𝑐ℎ(𝑣, 𝑡)∀𝑡 ∈ {1, . . . , 𝑇}, 𝑋, 𝑌

∈ {0,1}∀𝑣

∈ {1, . . . . , 𝑁𝑣} 

(25) 

𝜂𝑒𝑣
𝑐ℎand 𝜂𝑒𝑣

𝑑𝑖𝑠𝑐ℎare the charging and discharging efficiency for 

the EVs, respectively. During charging and discharging, we 

have losses, equal to the defined amount. The charging and 

discharging range for each electric vehicle according to the 

charging and discharging rate of the battery is as follows: 

𝑃𝐸𝑉
𝑐ℎ(𝑣, 𝑡) ≤ 𝑃𝑚𝑎𝑥, 𝐸𝑉

𝑐ℎ 𝑋(𝑣, 𝑡) 

𝑃𝐸𝑉
𝑑𝑖𝑠𝑐ℎ(𝑣, 𝑡) ≤ 𝑃𝑚𝑎𝑥, 𝐸𝑉

𝑑𝑖𝑠𝑐ℎ 𝑌(𝑣, 𝑡)∀𝑡

∈ {1, . . . , 𝑇}, 𝑋, 𝑌

∈ {0,1}∀𝑣 ∈ {1, . . . . , 𝑁𝑣} 

(26) 

𝑃𝑚𝑎𝑥, 𝐸𝑉
𝑐ℎ  and 𝑃𝑚𝑎𝑥,𝐸𝑉

𝑑𝑖𝑠𝑐ℎ   are the maximum charging and 

discharging power of the v-th electric vehicle. 

So, to prevent damage to the battery of electric vehicles, it 

is possible to discharge up to the minimum level of ψv
min and 

charge up to the maximum level of ψv
max. 

𝐸𝑠(𝑣, 𝑡) ≤ Ψ𝑣
𝑚𝑎𝑥  

𝐸𝑠(𝑣, 𝑡) ≤ Ψ𝑣
𝑚𝑖𝑛 

(27) 

𝛹𝑣
𝑚𝑎𝑥 and 𝛹𝑣

𝑚𝑖𝑛 depend on the range of battery capacity for 

each electric vehicle and are calculated according to the 

following equation: 

Ψ 

𝑣𝑚𝑎𝑥

𝑣
𝑚𝑎𝑥𝐵𝑎𝑡,𝐸𝑉

𝑚𝑎𝑥
Ψ𝑣
𝑚𝑖𝑛𝑣

𝑚𝑖𝑛𝐵𝑎𝑡,𝐸𝑉
𝑚𝑎𝑥

 

(28) 

𝐸𝐵𝑎𝑡,𝐸𝑉
𝑚𝑎𝑥   is the maximum battery capacity of an electric 

vehicle. 𝛷𝑣
𝑚𝑎𝑥  and 𝛷𝑣

𝑚𝑖𝑛  are maximum and minimum battery 

capacity (%), respectively. The amount of energy stored in the 

battery of electric vehicles during the last period of connection 

to the grid before moving should provide the energy required 

for moving.  

𝐸𝑠(𝑣, 𝑡𝑙𝑎𝑠𝑡
𝑞
) ≥ 𝐸𝑡𝑟𝑖𝑝

𝑣,𝑡  (29) 

𝑡𝑙𝑎𝑠𝑡
𝑞

 indicates the last time when the electric vehicle is 

connected to the network and before starting the q-th time travel. 

3.4. Optimization 

3.4.1. Hybrid Big Bang-Big Crunch algorithm 

The BC-BB algorithm is based on the concept of the big bang 

and big crunch in the universe, representing the creation and 

collapse of the universe. This algorithm is similar to other 

evolutionary algorithms, and it has two stages for generating the 

initial population [28]. The first stage is the Big Bang phase, 

where the population is randomly and uniformly distributed 

throughout the search space. Then comes the Big Crunch phase, 

which is a converging operator that produces a single output 

known as the center of mass. This center of mass is calculated 

using the following equation:  

𝑋𝑖
𝑘 =

∑
𝑋𝑖
𝑘,𝑗

𝑓𝑗
𝑁
𝑗=1

∑
1
𝑓𝑗

𝑁
𝑗=1

, 𝑖 = 1,2, . . . 𝑐 (30) 

where 𝑋𝑖
𝑘, is the i-th component from the center of gravity in 

the k-th iteration, and 𝑋𝑖
𝑘,𝑗

 is the i-th component of the j-th 

Particle produced in the kth iteration. The value of the objective 

function of j and n points are the number of points or Particles 

and c is the number of control variables. 

However, in the suggested HBB-BC method, the search 

capability of the BB-BC algorithm is increased by utilizing the 

capabilities of the PSO, which prevents from getting caught in 

the local optimal locations. Similar to the PSO method, the 
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HBB-BC algorithm uses general optimum points to create new 

points while local optimal points are employed to locate the 

centers.  

𝑋𝑖
(𝑘+1,𝑗)

=  𝛼2𝑋𝑖
𝑘 + (1 + 𝛼2) (𝛼3𝑋𝑖

𝑔𝑏𝑒𝑠𝑡(𝑘)
) +

(1 − 𝛼3) (𝑋𝑖
𝑝𝑏𝑒𝑠𝑡(𝑘,𝑗)

) + 
𝑟𝑗𝛼𝑧(𝑋𝑖 𝑚𝑎𝑥−𝑋𝑖 𝑚𝑖𝑛)

𝑘+1
  

(31) 

In Eq. (31), 𝑋𝑖
𝑝𝑏𝑒𝑠𝑡(𝑘,𝑗)

 is the best location of the j-th Particle 

up to the kth iteration and 𝑋𝑖
𝑔𝑏𝑒𝑠𝑡(𝑘)

 is the best general location 

up to the k-th iteration. In the proposed algorithm, 𝛼2 and 

𝛼3 control the influence of the global best 𝑋𝑖
𝑔𝑏𝑒𝑠𝑡(𝑘)

 and local 

best 𝑋𝑖
𝑝𝑏𝑒𝑠𝑡(𝑘,𝑗)

positions on applicant updates.  

 

Fig. 4. Flowchart of HBB-BC algorithm [28]. 

Specifically, 𝛼2 pulls applicants more strongly towards the 

global best, endorsing faster convergence towards a potentially 

optimal solution. In contrast, 𝛼3emphasizes adjustments around 

the local best, promotion examination within the applicant’s 

neighborhood and helping avoid local optimal by indorsing 

diversity. Together, these parameters manage each applicant’s 

position update each iteration, effectively balancing 

examination and exploitation. By doing so, they create  

a dynamic search behavior, where larger adjustments drive 

examination and smaller ones let for advanced searching in 

promising areas, enhancing the algorithm’s ability to converge 

efficiently and robustly.The flowchart of HBB- BC algorithm is 

shown in Fig.4. 

The order of implementing this algorithm is as follows:  

1) Determining the required parameters for implementing 

the multi-objective Particle swarm algorithm, including the 

maximum repetition to implement the population size algorithm 

of 𝛼2and 𝛼3 values and the amount of reservoir members. 

2) The first population is established. 

3) Each Particle's best individual response is chosen. 

4) Separated non-dominant members are kept in the 

reservoir.  

5) Each Particle selects a leader from the reservoir's 

members and executes its movement (updating its speed and 

position). 

6) Each Particle's top individual response is updated.  

7) The tank gains new recruits that are unstoppable. 

8) The tank is empty of the victorious participants. 

Now, by taking the variables into account, the multi-

objective optimization algorithm calculates Gbest throughout the 

whole population by considering a value for the error rate as 

Error while optimizing the values of the gains. Therefore, the 

cost function can be minimized by specifying the adjustment 

parameters of the above-mentioned algorithm. 

4. Simulation result:

 

Fig. 5. Proposed MG structure. 
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The studied micro grid is shown in Fig. 5. This micro grid 

includes the main grid and ten scattered productions, including 

two PV with the capacity of 7 MW, two fuel cells (PAFC) with 

the capacity of 2MW, four WT with the capacity of 5 MW and, 

the electric vehicles which provide the energy needed by 

consumers. 

In Fig. 6, the load curve and electrical price can be seen. 

According to the load curve, the peak consumption is 6785 

kW. In this network, the price of electricity is not the same in 

different hours. Electricity is cheap in off-peak hours, but 

expensive in peak hours. Using multi-rate electricity prices is 

encouraged by the consumers and producers to reduce 

consumption during peak hours and increase production. 

 

Fig. 6. Electrical load and price of energy curve of proposed 

MG. 

 

Fig. 7. produced power of WT and PV. 

WT and PV systems cannot produce a constant amount of 

power in all hours of the day and night. Fig.7 shows the WT and 

PV power generation curve. In this network, 300 electric 

vehicles are used, which are divided into five groups based on 

the same conditions of the car owners. In the simulation, the 

connection of EVs to the network is considered as one, the 

absence of EVs in the network with the purpose of movement is 

considered as zero and the number two is considered for the 

standby mode. Standby is a mode in which EVs connected to 

the network are not studied and they are not moving either (does 

not participate in charging and discharging). Table 3 shows the 

presence and absence of EVs in the network. 

Table 3. Presence or absence of EVs in MG. 

Time EV1 EV2 EV3 EV4 EV5 

1 1 1 1 2 1 

2 1 1 1 2 1 

3 1 1 1 2 1 

4 1 1 1 2 1 

5 1 1 1 2 1 

6 1 1 1 0 1 

7 0 0 0 0 1 

8 1 1 2 1 1 

9 1 1 2 1 0 

10 1 1 2 1 0 

11 1 1 2 1 0 

12 1 1 2 1 1 

13 1 2 1 1 1 

Time EV1 EV2 EV3 EV4 EV5 

14 1 2 1 1 1 

15 1 2 1 1 1 

16 1 2 1 1 1 

17 0 2 1 1 1 

18 0 1 0 1 1 

19 0 1 0 2 0 

20 1 0 1 2 0 

21 1 0 1 2 0 

22 1 1 1 2 1 

23 1 1 1 2 1 

24 1 1 1 2 1 

In this paper, the simulation is done for 500 iterations, but in 

some cases, in order to comprehensive the simulation operation, 

the operation is repeated until that at least one of the following 

events happens as a termination condition: 

HBB–BC: population size (N) = 500, α1 = 1, α2 = 0.41, α3 = 

0.82, Pm = 0.01, maximum iteration = 500. 

A) The algorithm spreads the maximum number of iteration 

(N=500). 

b) The speed methods zero and the optimal answer is found. 

Given the information about the number of electric vehicles 

and the time of connection to the network, it is assumed in the 

present study that the owners of electric vehicles move at 

constant speed and each EVs consumes an average of 3 kW 

power per hour. A point which should be mentioned when 

examining smart networks despite EVs are the energy stored in 

the EV’s battery to cover the travel distance, which should be 
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sufficient. In this paper, we studied the Nissan car with a 

capacity of 24 kW and used the specifications of these EVs. 

For scattered productions and different groups of electric 

vehicles, the maximum and minimum ranges of power 

alterations per hour are mentioned in Table 4. 

Table 4. Max and min value of DG and EVS (kW) 

Parameter Min (kW) Max (kW) 

PAFC 200 2000 

WT 0 5000 

PV 0 7000 

EV1(Tesla X plaid) -760 760 

EV2 (Porsche Taycan 

Turbo GT) 
-815 815 

EV3 (Audi SQ7)  -373 373 

EV4(Nissan leaf) -110 110 

EV5(Bentley V8) -467 467 

Upstream grid -15000 15000 

The range of changes in charging and discharging power of 

electric vehicles per hour is selected according to the number of 

EVs in each category.  

Table. 5 provides an overview of the power output functions 

for ultracapacitor in different EV. It highlights five EV models 

from different brands, including Tesla (Maxwell), UCAP Power, 

Audi E-Tron, Nissan Leaf and BMW i3. The table lists the 

minimum and maximum power for each model, starting from 5 

kW in low-demand scenarios up to 300 kW for high-

performance applications. These vehicle ultracapacitors range 

in capacity from 600 farads to 3400 farads depending on the 

specific needs of the vehicle. The supercapacitors in these 

models support quick bursts of power, especially during 

acceleration and regenerative braking, supplementing the 

battery system and improving overall efficiency and 

performance. These vehicles benefit from the fast charging and 

discharging capabilities of supercapacitors, making them ideal 

for meeting peak power requirements. To increase the battery 

life, when discharging EVs, it is better to leave at least 15% of 

the battery charge. The amount of battery charge should not be 

more than 90% of the EVs capacity. Hence, it should be checked 

every hour. If the EVs are power suppliers, the power of each 

group of EVs should not be less than the minimum defined in 

Table 5, after delivering power every hour. However, if they are 

consumers, the amount of power absorbed by each group of cars 

should not exceed the maximum limit defined in Table 5, after 

absorbing power every hour.  

Table 5. Max and min capacity of battery.  

EV 

Model 
Brand 

Min Power 

Output 

(kWh) 

Max Power 

Output 

(kWh) 

Ultracapacitor 

Capacity (F) 

EV 1 
Tesla Model 

X plaid 
10 300 600 F - 3400 F 

EV 2 

Porsche 

Taycan Turbo 

GT 

10 320 3000 F 

EV 3 Audi SQ7 15 95 500 F - 3000 F 

EV 4 Nissan Leaf 5 40 3400 F 

EV 5 Bentley V8 10 300 3000 F - 3400 F 

The ultracapacitors recorded in Table 5 play a crucial role in 

improving the energy management abilities of each EV model. 

With their high-power density, ultracapacitors can quickly save 

and release energy, allowing EVs to capture excess energy 

produced by renewable sources, such as, during low-demand 

times. This saved energy can then be discharged back into the 

MG when demand increases, which cause to reduce the need for 

additional grid power and thereby lowering operational costs. 

By integrating ultracapacitors with traditional batteries, EVs 

benefit from extended battery life, as ultracapacitors handle 

high-demand discharges that would then rinsing the battery. 

This dual-storage method improves the economic efficiency of 

the MG by minimizing dependency on external energy sources 

and leveraging saved energy during peak cost periods, 

ultimately contributing to a more cost-effective and sustainable 

energy management system. 

In Table 6, the cost of the power generation of the generator 

elements as well as the initiation cost (kWh) is mentioned. The 

cost of charging and discharging EVs is 0.82 ($/kW). This cost 

is related to the initial cost, maintenance, parking, etc. 

Table 6. Cost of units in MG ($/kW). 

 WT($/kW) PV($/kW) PAFC($/kW) EVs/HESS($/kW) 

Generation 

cost 
1.073 2.584 0.295 0.82 

Startup cost 0 0 1.65 0 

After presenting the appropriate pattern of charging and 

discharging by BC-HBB algorithm, the results are recorded. 

Fig.8 is related to the cost of the entire network with and without 

considering the cars. Fig. 8 shows the total electricity cost of the 

microgrid over a 24-hour period, comparing scenarios with and 

without the integration of EVs. The integration of EVs leads to 

notable cost reductions, particularly between 10 and 20 hours, 

where the cost with EVs consistently falls below the cost 

without EVs. This discount proves the effectiveness of EVs' 

V2G abilities, which allow them to supply saved energy back to 
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the grid during high-demand periods, effectively stabilizing 

costs and reducing the grid's reliance on more expensive energy 

sources. For example, around hour 12, the microgrid cost 

without EVs peaks at approximately $13,525, whereas, with EV 

integration, this cost is significantly reduced to around $3,874. 

This difference illustrates the substantial economic impact of 

using EVs as mobile storage assets that can discharge energy to 

the grid when electricity prices are high, thereby offsetting peak 

costs. 

 

Fig. 8. Energy cost of MG in the absence and presence of Evs. 

Overall, the analysis shows that integrating EVs into the 

microgrid results in a total daily cost reduction of approximately 

17.85%. This percentage varies slightly depending on EV usage 

patterns, grid demand fluctuations, and the timing of V2G 

participation. By allowing EVs to discharge strategically during 

peak times, the system not only benefits from cost savings but 

also achieves greater flexibility and resilience, highlighting the 

potential of EVs to play a critical role in reducing energy costs 

and supporting grid stability. 

In order to investigate comprehensively the total cost in the 

end of a day which is shown in Fig .8 is given in Table 7. Also, 

the obtained cost through the other algorithms is given.  

Table 7. Total cost of each Evs. 

Total cost Proposed Algorithm PSO GA 

Without EVs ($) 132869.9 152730.8 144800.3 

With EVs ($) 112981 136875.3 129928.2 

In the IEEE 14-bus system, the integration of electric 

vehicles (EVs) equipped with ultracapacitor batteries has 

resulted in a significant reduction in total operational costs. 

Without the presence of EVs, the total cost amounted to 

132,869.86$. However, adding the electric vehicles brought the 

total cost down to 112,981.00$, a cost reduction of almost 15%. 

This reduction can be attributed to the ability of EVs equipped 

with supercapacitors to efficiently store and release energy, 

especially during periods of peak demand. Ultracapacitors 

provide quick bursts of energy and help balance the grid, 

reducing reliance on more expensive power generation 

resources. As a result, the system benefits from improved power 

management, reduced peak load costs, and improved overall 

network stability. This proves that electric vehicles and 

advanced energy storage technology are integrated into the 

economic and operational benefits of modern energy systems.in 

Fig.9 the trade power between the upstream grid and IEEE 14 

bus system is shown. On the other hand, it is obvious that the 

obtained result by proposed algorithm in comparison to another 

algorithm is so better.

 

Fig. 9. The exchange power of MG and utility grid. 
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Based on the provided definition, the main network can 

inject power into the target network and absorb power from the 

target network. At hours 1 to 8, due to the low price of electricity, 

the main network is considered as a power injector. At hours 9 

to 14, based on the diagram, the values are negative, indicating 

that the main network not only did not inject power during these 

hours, but also absorbed power from the studied network. At 

hours 15 to 24, the main network is considered as a power 

injector. Fig.10 represents the power values of each producer 

per hour.

 

Fig. 10. Amount of produced power of each unit 

Based on Fig.10, it can be seen that the integration of 

ultracapacitors allows EVs to save extra energy, specifically 

during periods of extra generation from renewable sources such 

as PV and WT. The ultracapacitor’s high energy storage 

capability enables EVs to arrest and store this excess energy 

effectively. When there is increased demand in the microgrid, 

as shown during peak hours, EVs are able to discharge this 

stored energy back into the microgrid, contributing to overall 

stability and reducing reliance on the main network supply. This 

role of ultracapacitors in EVs not only improves energy 

management flexibility but also optimizes the use of renewable 

sources, enhancing the efficiency and resilience of the MG 

system. Also, Fig.10 shows the energy contribution from 

different sources - PAFC, PV, WT, HEV, grid and battery storage 

- over a 24-hour period. During peak hours (20:00 to 22:00) the 

total capacity increases significantly and reaches approximately 

10,000 to 12,000 kW. This is fueled by PAFC, WT investment 

and the recently added Battery Storage providing only 500kW, 

550kW at 20:00 21:00, 600 kW 22:00. Throughout the day, PV 

peaks at 450 kW at 1:00 p.m., while WT peaks at 825 kW 

around 5:00 p.m. HEVs do not provide power between 20:00 

and 22:00 in discharge mode, but the Grid compensates by 

supplying up to 5000 kW during these peak hours. In general, 

the distribution of energy ensures the satisfaction of demand, 

significantly increasing the amount of production during the 

peak period.  

Finally in order to show the superiority of the proposed 

algorithm, the comparison of proposed algorithm with PSO and 

GA is shown in Fig.11. A sensitivity analysis is conducted by 

testing the algorithm with various iteration counts 200, 400, 500, 

and 700 to determine the optimal balance between convergence 

and computational efficiency. Fig.11 shows that stable 

convergence is achieved at 400 iterations for the Big Bang-Big 

Crunch Hybrid Algorithm, indicated by the flattening of the 

curve, with minimal further improvement beyond this point. 

Increasing the iteration count beyond 500 iterations 

insignificant gains in accuracy while significantly increasing 

computational time. This finding suggests that 500 iterations 

provide sufficient performance, ensuring both accuracy and 

time efficiency. Therefore, 500 iterations are selected as the 

optimal choice, as they offer reliable results while effectively 

balancing convergence accuracy and computational resources. 

Fig.11 compares the convergence of three optimization 

algorithms HBC-BB hybrid, PSO, and GA over 500 iterations. 

The BB-BC hybrid algorithm shows superior performance by 

reaching stability within the first 250 iterations, while PSO and 

GA take around 350 and 400 iterations, respectively. This faster 

convergence demonstrates the BB-BC hybrid algorithm's 

efficiency, making it more suitable for optimization problems 

that require quick and accurate solutions compared to the slower 
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convergence of PSO and GA.

 

Fig. 11. Comparison between the proposed algorithm and other algorithms.  

5. Conclusion 

This study introduces a comprehensive energy management 

approach for the IEEE 14-bus network, including distributed 

generation and advanced energy storage. The proposed system 

includes RES (WT, and PV panels), alongside EVs with 

ultracapacitor batteries, which work as mobile storage, 

responding rapidly to fluctuations in renewable energy. An 

intelligent energy management strategy using a hybrid Big 

Bang-Big Crunch algorithm optimizes EV charging and 

discharging, coordinating energy flow between generation, 

storage, and the grid for cost-effective distribution and system 

stability. By using V2G abilities, EVs help decrease peak loads, 

and optimal off-peak charging planes further benefit EV owners. 

Without EV integration, system costs are $132,869.9; with EVs, 

costs decreased to $112,981, about 15% reduction. The hybrid 

BB-BC algorithm also compared with PSO and GA, achieving 

cost reductions of 17% and 13% over these methods, 

respectively. Although focusing on short-term energy 

management under ideal conditions, the study is limited in its 

applicability to scenarios with uncertainties, such as variable 

EV availability and fluctuating renewables, and usages the 

small IEEE 14-bus system, restrictive scalability. Future 

research should integrate long-term strategies, probabilistic 

models for uncertainties, and expand to larger networks, 

possibly combining ultracapacitors with batteries or fuel cells, 

to enhance performance and reliability for real-world 

applications.
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