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Highlights  Abstract  

▪ The hard failure process is constructed by the 

three-parameter Weibull distribution. 

▪ The unknown parameters of the reliability 

model are estimated by the MCMC-MH 

method. 

▪ A nonlinear function is proposed to design the 

correlation of different failure processes. 

 Considering the competitive failure that exists in the operation of 

industrial systems, including degradation failure and sudden failure, this 

paper presents a reliability assessment method based on the three-

parameter Weibull distribution and the Wiener process. The Wiener 

process models the degradation failure process, while the three-

parameter Weibull model describes the hard failure process. Nonlinear 

exponential functions are proposed to establish the relationship model 

between the different failure processes, and the reliability model for the 

competitive failure process is derived. The Metropolis-Hastings (MH) 

sampling algorithm of the Monte Carlo Markov Chain (MCMC) method 

is employed to estimate the parameters in this study. The reliability 

assessment results are obtained by the numerical and real degradation 

samples. The results show that the reliability model incorporating the 

three-parameter Weibull distribution produces more comprehensive and 

dependable results. Furthermore, MH sampling can solve the issues of 

complex likelihood functions that cannot directly obtain the evaluation 

results. Additionally, the sensitivity of proposed model parameters is 

analyzed, thereby offering theoretical support for enhancing the safe 

operation of the system. 
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1. Introduction 

The demand for high reliability and extended useful life of key 

equipment has been progressively rising, commensurate with 

the growing complexity of industrial systems [1][2]. Ensuring 

the safe operation of these systems, it becomes significantly 

crucial to effectively evaluate their reliability. Currently, the 

evaluation of complex systems' reliability is primarily 

investigated based on their performance degradation process, 

which heavily relies on the monitored data regarding to the 

system's performance degradation. Once the system reaches  

a specific failure threshold, it experiences failure. Consequently, 

a probabilistic model is constructed based on the failure 

mechanism, and the analysis results provide a deeper 

understanding of the system's reliability. 

Indeed, apart from failures caused by the system's own 
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performance degradation exceeding the specified failure 

threshold (designated as soft failures) [3-5], and those abruptly 

triggered by external shocks (termed sudden failures) [6]. As an 

illustrative case, the sliding spool valve in the hydraulic control 

system can fail not only due to wear degradation but also due to 

sudden stagnation [7]. Similarly, while prone to decline in their 

capacitive prowess, can experience a catastrophic short circuit 

when the operational voltage surpasses a critical juncture, 

causing the electric field to rupture the interstitial medium,  

a phenomenon attributed to the sudden onslaught of the external 

milieu. These two failure modes—natural degradation failure 

and sudden failure—are interdependent and competitive. 

Additionally, when the wear and tear of a tire transcend the 

failure thresholds enshrined in industry norms, its demise is 

inevitable. Similarly, sudden failure can occur when the tire is 

punctured by hard foreign objects on the road. Therefore, the 

failure mechanisms in complex system equipment encompass 

both natural degradation failure and sudden failure. Regardless 

of the type of failure process, the earliest failure process is the 

main cause of system failure. These two distinct failure modes 

together form the competitive failure process of the system. 

Studying system reliability modeling under competitive failure 

process conditions can enhance the safety and reliability of 

complex systems. 

When considering the competitive failure conditions, the 

change in performance degradation of the system during 

operation will gradually affect the ability of a system to resist 

external shocks. Furthermore, external random shocks will also 

affect the performance degradation. Therefore, in the actual 

operation of complex system, it is necessary to consider the 

interaction between the degradation process and the sudden 

failure process [8-10]. Generally, many literatures mainly 

describe the inter-relationships between failure processes 

through two aspects: (1) external environmental shock 

accelerates system degradation; (2) The degradation process 

affects the failure rate of sudden failures. The former mainly 

focuses on the impact of sudden failures on the degradation 

process. For example, in [11], a decreasing random process was 

set as the sudden failure threshold, and a correlation between 

sudden failures and degradation failure was constructed. The 

reliability results of radar power amplification systems were 

obtained using component failure probability. Reference [12] 

adopts a gamma process to construct a system degradation 

process, considering the generation of degradation increments 

caused by external shock processes, and the Copula function is 

used to build a multi-failure-related model. In [13-15],  

a degradation failure process is constructed using a linear 

function, and the influence of external shock increments on the 

degradation rate and degradation increment are utilized to 

construct a competitive failure reliability model. In [16], the 

influence of continuous shocks and accelerated degradation is 

considered to model the reliability with competing failure 

processes. In [17], the changed threshold δ is proposed to 

construct the competing failure reliability model. A copula-

based competing reliability model is proposed in [18], and the 

dependence structure is derived based on the lifetime data. In 

[19], a competing failure processes are conducted to analyze the 

complex system that constructed by multiple components, 

random shock model is used to model the sudden failure process, 

and degradation process follow a Gamma process. In [20], an 

age- and state-dependent competing risks model that considers 

random shocks is proposed. A linear degradation path is 

considered to generate degradation samples. In [21], a reliability 

model for the multi-component system subject to dependent 

competing failure processes considering multiple shock sources 

is presented.  

However, most of the above literature analyzes the impact 

of external shocks on the degradation process, describes the 

relationship between degradation failure and sudden failure 

model through the degradation process, and further constructs  

a probability model that the degradation amount does not 

exceed the soft failure threshold. Additionally, when the sudden 

failure samples are difficult to obtain, how to solve the problem 

that the system reliability can only be conducted by the 

degradation samples. In the above research, the impact of the 

degradation process on sudden failure was not considered. 

Taking tires as an example, as the amount of tire wear increases, 

the probability of tires being punctured by foreign objects also 

increases. Therefore, the second type of correlation is more 

conducive to describing the competitive failure process of 

complex systems. In [19], by considering the impact of 

degradation processes on impact processes, the relevant factors 

γ and degradation are utilized to build a relationship model. In 

[20], considering that the magnitude of external shock loads will 
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change with increasing degradation, a competitive failure 

reliability model is further proposed. Yang et al. [21] also 

considered a system that undergoes both two-stage degradation 

processes and random shocks, where the impact rate is 

influenced by the system state. In [22-23], the Weibull 

distribution is used to model the sudden failure process of tool 

wear, and the gamma process (Wiener process) is combined to 

construct a competitive failure reliability model. In [24], the 

aging failure rate of relay protection devices is estimated by 

considering the three-parameter Weibull distribution, and  

a reliability model through independent failure processes is 

established. In [25], q-Weibull distribution is proposed to solve 

the useful life prediction and fault diagnosis of system, and the 

maximum likelihood estimation (MLE) method and robust 

linear regression method is used to estimate the parameters. In 

[26], a novel flexible inverse modified Weibull model with  

a concave Weibull probability diagram is proposed to simulate 

the aging classes of life distributions, and the parameters of it is 

estimated by Weibull probability paper approach and the 

maximum likelihood method. In [27], the three-parameters (3-

p) Weibull model is used to evaluate the lifetime distribution of 

critical wind turbine subassemblies, and an improved ergodic 

artificial bee colony algorithm is proposed to estimate the 

parameters of 3-p Weibull model. In [28], the two-parameter 

Weibull distribution is proposed to fit the reliability indexes of 

vibration component.  

Based on the above research models, the three-parameter 

Weibull distribution is rarely used as a model for sudden failure 

in reliability analysis Moreover, most Weibull distributions are 

applied to lifetime prediction problems. Literature on reliability 

assessment using this distribution is scarce. For the sudden 

failure process modelling, only external shock models were 

considered, and the degradation process was described using  

a simplified path that further weakened the credibility of the 

model. Moreover, in building a sudden failure process model, 

the failure process model was too simplistic or did not consider 

competitive failure modes, which cannot solve the actual 

situation. On the other hand, in terms of parameter estimation 

for models, many literatures only rely on historical experience 

or parameter assumptions, without reasonable parameter 

estimation for the established model to improve its usability. 

When dealing with the parameters of the Weibull distribution or 

its combined models, the  MLE method is predominantly 

employed. However, in scenarios where the reliability model 

becomes intricate, the corresponding likelihood function tends 

to be highly complex. This complexity often leads to suboptimal 

outcomes when utilizing the MLE method. 

To address the shortcomings of the above methods, this 

article considers the interaction between performance 

degradation and sudden failure processes and uses the Wiener 

process to construct a degradation process model for complex 

systems. To accurately describe the sudden failure mode of 

system equipment, a three-parameter Weibull distribution is 

used as the sudden failure time distribution. By combining the 

nonlinear exponential function to characterize the relationship 

between degradation and sudden failure, a system reliability 

model based on the competitive failure process is constructed 

using the failure rate function. Given the complexity of the 

likelihood function corresponding to the reliability model, 

direct estimation of the parameter results using maximum 

likelihood estimation is not feasible. Consequently, to overcome 

this obstacle, an accurate estimation of the unknown parameters 

of the reliability model is achieved by combining the MCMC-

MH sampling algorithm of the Bayes method. Subsequently, the 

reliability of different failure processes and the corresponding 

reliability of different sudden failure processes are compared 

using numerical samples and GaAs laser current as a measure 

of performance degradation. Furthermore, the sensitivity of 

different parameters to the reliability model is analyzed. The 

experimental results validate the rationality and advantages of 

the proposed method in evaluating the reliability of competitive 

failure processes. The proposed method offers theoretical 

support for the intelligent operation and maintenance of 

complex systems.  

The contribution of this paper is mainly including the 

following points:  

1). When it is not possible to obtain a set of sudden failure 

samples, this paper establishes a sudden failure process model 

using the failure time distribution and the three-parameter 

Weibull distribution. 

2). Due to the interactions between different failure 

processes, this paper establishes a relational model using  

a nonlinear exponential function. 

3). For the issue of the complex likelihood function of the 
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model, which prevents direct parameter estimation, this paper 

employs the MCMC-MH sampling method to obtain parameter 

estimates, thereby enhancing the model's reliability. 

The rest of this paper is organized as follows: Section 2 

provides a detailed problem description of this article. In 

Section 3, the reliability probability of the system is modeled 

based on a competitive failure process, encompassing 

degradation process modeling, sudden failure modeling, and 

competitive failure reliability modeling. The estimation of 

unknown parameters in the proposed model is discussed in 

Section 4, employing the MCMC-MH sampling method. 

Section 5 presents the experimental verification conducted 

using numerical samples and actual degradation samples. The 

reliability results of the laser are obtained utilizing the MCMC-

MH sampling algorithm and the proposed reliability model. 

Finally, Section 6 provides a summary of the overall paper.  

2. The problem description 

During the operational lifespan of a system, it is inevitable to 

encounter diverse influences such as wear and environmental 

shocks, which can result in system failure or malfunctions. 

Assessing system reliability plays a crucial role in determining 

maintenance requirements and predicting performance to 

facilitate subsequent decision-making. Through timely 

monitoring and decision-making throughout the system's 

operational process, overall system reliability and health status 

can be enhanced. However, in the current process of system 

reliability assessment, sudden failures caused by stress or 

environmental shock during operation are overlooked. 

Additionally, when establishing the failure process model, 

multiple influencing factors and the absence of shock samples 

are not considered, thereby diminishing the accuracy of 

reliability assessment. Based on the competitive failure process 

and combined with sudden failure time distribution of system,  

a reliability evaluation method that incorporates a three-

parameter Weibull distribution and the Wiener process of 

competitive failure is proposed. This method offers theoretical 

support for enhancing system safety, as well as intelligent 

operation and maintenance. 

System degradation refers to the decline in operation 

performance, influenced by various factors during its usage, 

leading to a decrease in certain monitored physical quantities 

over time. When the performance values exceed the established 

failure threshold, the system will malfunction or fail, impacting 

operational efficiency. The notation used in this paper is 

described in the bellow.

Table 1. the different notation used in this paper. 

Notation Description Notation Description 

X(t) The degradation process of Wiener process 𝛬(𝑡) Scale transformation function 

B(t) The standard Brownian motion TD The failure time of degradation process 

TS The failure time of sudden process 𝑅𝑆(𝑡) 
The reliability that only affected by the sudden failures 

process 

𝑅𝐷(𝑡) 
The system reliability function that only have the 

degradation failure process 
R(t) The reliability model with competing failure processes 

𝛫(𝑡) The failure rate function of sudden failures 𝛫(𝑆, 𝑋(𝑆)) 
The failure rate function of degradation and sudden 

failure processes 

𝛼 Scale parameter 𝛾 Position parameter 

𝛽 Shape parameter 𝜆𝑠(𝑡) 
The failure rate function based on the three-parameter 

Weibull distribution 

𝑞(𝑥𝑡) The density function of the degradation amount (𝑐0, 𝑐1) The coefficient of nonlinear exponential function 

𝜽1 The parameters of Wiener process 𝜽2 
The parameters of three-parameters Weibull 

distribution 

𝜽3 The parameters of nonlinear exponential function L The failure threshold 

𝜇 Degradation rate 𝜎 Diffusion parameter 

MCMC Monte Carlo Markov Chain MH Metropolis-Hastings 
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Fig. 1. The general degradation samples of different failure 

process.  

To more clearly describe the failure process manifested in 

the degradation samples, it is represented by Fig.1, which shows 

the degradation amount changes. Since the degradation samples 

are time series data, the X-axis is the time t during the operation 

of the system, and Y-axis represents a specific physical quantity 

of the sample (such as electric current, wear amount or diameter, 

etc.). The amount by which the physical quantity of the system 

changes over time t. The green solid line represents the failure 

threshold of the device (generally determined by expert 

experience or industry standards). The black and red lines are 

the degradation data monitored by different samples of the same 

device. In the black line, since the degradation samples 

corresponding to t=T1, t=T2, and t=T3 exceed the failure 

threshold L, these black samples belong to the degradation 

failure process; when t>t1, t>t2, and t>t3, the degradation 

amount of the red line samples no longer changes, and it belongs 

to the sudden failure process. Hence, when it is not possible to 

directly monitor the external environmental shock samples on 

the system, degradation failure samples exceeding the failure 

threshold, sudden failure samples with no incremental 

degradation, and normal samples can be directly obtained from 

the degradation samples. 

Given that complex systems are influenced by various 

factors during operation, such as the degradation of self-

monitoring variables and external environmental shocks, it is 

crucial to consider the interaction between multiple failure 

modes when analyzing the system failure process. Hence, we 

employ the nonlinear exponential function to construct  

a framework that captures the relationship between degradation 

and sudden failure process. Subsequently, a reliability model 

based on competitive failure process for complex systems is 

derived. The detailed process is illustrated in Fig. 2. 

 

Fig. 2. The reliability modelling based on the competing 

failure of system. 

In Fig. 2, the Wiener process is employed to represent the 

performance degradation failure process, while the sudden 

failure process is modeled by the three-parameter Weibull 

distribution and sudden failure time in this paper. When the 

performance degradation is greater than the failure threshold L, 

the system will fail (referred to as a soft failure). On the other 

hand, if the degradation remains below the failure threshold,  

a nonlinear exponential function is utilized to establish  

a relationship model between the degradation process and the 

sudden failure process. Then, the reliability model with the 

competing failure process can be obtained. 

To enhance the alignment of the method proposed in this 

article with the actual state and facilitate model calculations, 

assumptions are incorporated into the reliability evaluation 

process, i.e., assuming that the system is no longer usable after 

a sudden failure act on the system. 

In the reliability assessment process, after obtaining the 

competitive failure reliability model of a complex system 

through a nonlinear exponential function, the likelihood 

function of the model is calculated, and the unknown 

parameters of the model are estimated using the MCMC-MH 

sampling algorithm. Based on the monitored real degraded 

samples and estimated parameters, the reliability evaluation 

results in the overall life cycle are obtained. 
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The overall framework for reliability evaluation of 

competitive failure systems based on the three-parameter 

Weibull distribution and Wiener process is shown in Fig. 3. 

 

Fig. 3. Overall framework for reliability assessment of the 

system. 

Through the process of reliability modeling and parameter 

estimation under competitive failure conditions, the reliability 

of the system during its service life can be evaluated, thereby 

improving its remaining useful life, and maintaining the stable 

operation of the system. 

3. System Reliability Modeling Based on Competitive 

Failure Process 

Since the operational reliability model of complex systems is 

established based on competitive failure processes, wherein 

both gradual degradation and sudden failure may occur, the 

system will experience corresponding failures correspondingly. 

Consequently, a reliability model can be constructed by 

assessing the probability of simultaneous occurrence of 

degradation and sudden failures, implying that throughout the 

entire lifespan of the system, the present moment has not yet 

reached the measurement time of either degradation or sudden 

failure. 

If the failure time of degradation process in the system is TD, 

the probability of it not experiencing the degradation failure 

process can be expressed as P{TD>t}, where t is the current time; 

When a sudden failure process occurs in the operation process 

of system, the failure time is recorded as TS, and the probability 

of no sudden failure occurring within time t is P{TS>t}. If the 

degradation failure process and sudden failure process of 

system are determined independently, the reliability of the 

system can be calculated by multiplying the probabilities of 

these two events occurring. The relationship is illustrated by 

formula(1). 

𝑅(𝑡) = 𝑃{𝑇𝐷 > 𝑡}𝑃{𝑇𝑆 > 𝑡} = 𝑅𝑆(𝑡) ⋅ 𝑅𝐷(𝑡) (1) 

where,𝑅𝑆(𝑡) is the reliability of system that only affected by the 

sudden failures process, and𝑅𝐷(𝑡) is the reliability function that 

only have the degradation failure process.  

However, this situation ignores the correlation between the 

degradation process and the sudden failure process, thereby 

reducing the accuracy of system reliability. Hence, to account 

for the competitive failure process in complex systems, the 

reliability function of the system is the probability of both 

degraded and sudden failures occurring simultaneously, as 

represented by formula (2). 

𝑅(𝑡) = 𝑃{𝑇𝐷 > 𝑡, 𝑇𝑆 > 𝑡} = 𝑃{𝑇𝑆 > 𝑡|𝑇𝐷 > 𝑡} ⋅ 𝑃{𝑇𝐷 >

𝑡}=exp[−Κ(𝑡)] ⋅ 𝑅𝐷(𝑡)   (2) 

where, R(t) is the reliability model with competing failure 

processes, 𝛫(𝑡)  is the failure rate function of the system that 

experiences sudden failures. 

In other words, 𝛫(𝑡)  represents the probability that the 

system has not failed before time t, but will experience failure 

after time t. Considering the impact of system performance 

degradation on the sudden failure process, the failure rate 

function𝛫(𝑡) is a non-constant function that changes over time 

and is related to the degradation amount X(t). Hence, the 

calculation process of the system reliability function is as 

follows. 

𝑅(𝑡) = exp[−∫ Κ(𝑆, 𝑋(𝑆))𝑑𝑆
𝑡

0
] ⋅ 𝑅𝐷(𝑡)  (3) 

In formula (3), 𝛫(𝑆, 𝑋(𝑆)) is the failure rate function related 

to degradation and sudden failure. Therefore, it is obvious that 

the reliability model of the system based on competitive failure 

mainly needs to calculate the failure rate function𝛫(𝑆, 𝑋(𝑆)) 

and performance degradation failure reliability𝑅𝐷(𝑡). 

3.1. Degenerate failure process model based on Wiener 

process 

Since the system degradation amount X(t) follows the Wiener 

process, its expression is shown in (4). 

𝑋(𝑡) = 𝜇Λ(𝑡) + 𝜎𝐵(Λ(𝑡))  (4) 

where, 𝜇 is the drift parameter, which represent the degradation 

rate, such as the trend of laser current degradation rate; 𝜎 is  
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a diffusion parameter that describes the heterogeneity of the 

samples, that is, the impact degree of random factors act on 

performance degradation; 𝛬(𝑡)  is a scale transformation 

function that mainly describes the degradation path of the 

system. B(t) is the standard Brownian motion and follows the 

normal distribution, i.e. B(t)~N(0, t). 

Considering that unary Wiener process can describe 

continuous time degradation paths and is suitable for describing 

various system degradation phenomena, such as the wear, 

corrosion, aging, etc. Hence, this paper chooses the scale 

transformation function 𝛬(𝑡) = 𝑡 to model the degradation 

process in Eq. (4).  

Since the condition of degradation failure process not 

occurred is that the degradation amount 𝑋(𝑡) = 𝜇𝑡 + 𝜎𝐵(𝑡) 

does not exceed the soft failure threshold L, which is equivalent 

to the time Td when the degradation amount of the system first 

reaches the soft failure threshold. Therefore, the probability of 

the system not experiencing soft failure within time t is equal to 

the reliability of the system considering only degradation failure, 

which is shown in Eq.(5). 

𝑅𝐷(𝑡) = 𝑝(𝑇𝑑 > 𝑡) = 𝑝(𝑋(𝑡) < 𝐿) = ∫ 𝑓𝑑(𝑥, 𝑡)𝑑𝑥
𝐿

0
        (5) 

where,𝑇𝑑is the time when degradation failure occurs, L is the 

soft failure threshold.  

Furthermore, based on the Kolmogorov forward equation, 

the expression of the density function 𝑓𝑑(𝑥, 𝑡)  is obtained, as 

shown in formula (6). 

𝑓𝑑(𝑥, 𝑡) =
1

√2𝜎2𝜋𝑡
(𝑒𝑥𝑝 (−

(𝑥−𝜇𝑡)2

2𝜎2𝑡
) − 𝑒𝑥𝑝 (

2𝜇𝐿

𝜎2
) 𝑒𝑥𝑝 (−

(𝑥−2𝐿−𝜇𝑡)2

2𝜎2𝑡
))(6) 

Combining formula (5) (6) [32], the system reliability 

function considering only degradation failure is obtained as 

follows. 

𝑅𝐷(𝑡) = Φ (
𝐿−𝜇𝑡

𝜎√𝑡
) − 𝑒𝑥𝑝 (

2𝜇𝐿

𝜎2
)Φ(

−𝐿−𝜇𝑡

𝜎√𝑡
) (7) 

where, 𝛷(⋅) represents the normal cumulative distribution 

function.  

According to the properties of the Wiener process, the 

density function of the degradation amount X(t) follows a 

normal distribution, as shown in formula (8): 

𝑞(𝑥𝑡) =
1

√2𝜎2𝜋𝑡
𝑒𝑥𝑝 (−

(𝑥𝑡−𝜇𝑡)
2

2𝜎2𝑡
)  (8) 

3.2. Sudden failure process model based on three-

parameter Weibull distribution 

When the external shocks act on the system and cause sudden 

failure occurs, the external shock load is related to the 

degradation of the system. Therefore, it is necessary to construct 

a relationship model between degradation and external shocks. 

The Weibull distribution is widely used and is also suitable for 

small failure samples. Considering the cost issue of system 

monitoring, the number of external shock samples monitored is 

relatively small or even unable to be effectively collected, the 

Weibull distribution is suitable for analyzing the distribution of 

useful life. In the early stages, the failure rate of the system is 

relatively low. Furthermore, the two-parameter Weibull 

distribution will easily cause nonlinear Weibull transformations. 

But the positional parameters γ in the three-parameter Weibull 

distribution can accurately describe the life distribution of the 

system. Therefore, this article uses a three-parameter Weibull 

distribution to construct a sudden failure process model, and its 

cumulative failure distribution function is shown in formula (9). 

𝐹(𝑡) = 1 − 𝑒
−(

(𝑡−𝛾)𝛽

𝛼
)

   (9) 

where, 𝛼  >0, 𝛾  >=0, 𝛽  >0 are the scale parameters, position 

parameters, and shape parameters in the failure distribution 

function, respectively.  

Then, the reliability, probability density, and failure rate 

functions of sudden failures in complex systems are accordingly 

obtained, which are shown in (10). 

{
 
 

 
 𝑅𝑠(𝑡) = 𝑒

−(
(𝑡−𝛾)𝛽

𝛼
)

𝑓𝑠(𝑡) =
𝑑𝑅𝑠(𝑡)

𝑑𝑡

ℎ𝑠(𝑡) =
𝑓𝑠(𝑡)

𝑅𝑠(𝑡)

   (10) 

The failure rate function based on the three-parameter 

Weibull distribution is shown in formula (11) through the failure 

distribution function and failure density function. 

𝜆𝑠(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
=

𝛽(𝑡−𝛾)(𝛽−1)

𝛼𝛽
  (11) 

By combining the three-parameter Weibull distribution 

failure rate function and the reliability RD(t), a probability model 

based on the competitive failure process can be further obtained. 

3.3. Competitive failure reliability model 

Considering that the degradation process of system will affect 

the failure rate function 𝛫(𝑡, 𝑋(𝑡)) of the sudden failure process, 
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to reflect the impact degree of the system degradation process 

act on the sudden failure, this paper constructs a relationship 

model between the degradation process and the sudden failure 

process through the nonlinear exponential function and the 

failure rate function of the sudden failure process, as shown in 

formula (12). 

Κ(𝑡, 𝑋(𝑡)) = Κ𝑠(𝑡, 𝑥𝑡) = 𝐻(𝑡, 𝑥𝑡) = 𝜆𝑠(𝑡) 𝑒𝑥𝑝(𝑐0 + 𝑐1𝑥𝑡)         (12) 

where 𝜆𝑠(𝑡)  is the failure rate function that the system only 

considers the existence of sudden failure processes, mainly 

described by the three parameter Weibull distribution failure 

rate function (formula (11)). 𝑒𝑥𝑝( 𝑐0 + 𝑐1𝑥𝑡)  is the nonlinear 

exponential function, 𝑐0, 𝑐1represents the model coefficients to 

describe the relationship between the degradation and sudden 

failure rate. 

Therefore, by combining formulas (8) and (11),  

a relationship function model between degradation failure and 

sudden failure process is obtained, as shown in formula (13).

Κ𝑠(𝑡, 𝑋(𝑡)) = ∫ 𝐻(𝑡, 𝑥𝑡)𝑞(𝑥𝑡)
𝐿

0
𝑑𝑥𝑡 = ∫ 𝜆𝑠(𝑡) 𝑒𝑥𝑝(𝑐0 + 𝑐1𝑥𝑡) 𝑞(𝑥𝑡)𝑑𝑥𝑡

𝐿

0
= ∫

𝛽(𝑡−𝛾)(𝛽−1)

𝛼𝛽
𝑒𝑥𝑝(𝑐0 + 𝑐1𝑥𝑡) ⋅

1

√2𝜎2𝜋𝑡
𝑒𝑥𝑝 (−

(𝑥𝑡−𝜇𝑡)
2

2𝜎2𝑡
) 𝑑𝑥𝑡

𝐿

0
=

𝛽(𝑡−𝛾)(𝛽−1)

𝛼𝛽
𝑒𝑥𝑝 (𝑐0 + 𝑐1𝜇𝑡 +

1

2
𝑐1𝜎

2𝑡)∫
1

√2𝜎2𝜋𝑡
𝑒𝑥𝑝 (−

(𝑥𝑡−𝜇𝑡−𝑐1𝜎
2𝑡)2

2𝜎2𝑡
) 𝑑𝑥𝑡

𝐿

0
=

𝛽(𝑡−𝛾)(𝛽−1)

𝛼𝛽
𝑒𝑥𝑝 (𝑐0 + 𝑐1𝜇𝑡 +

1

2
𝑐1𝜎

2𝑡)Φ(
(𝐿−𝜇𝑡−𝑐1𝜎

2𝑡)2

𝜎√𝑡
) (13) 

 

where 𝛷( ) is the standard normal distribution.  

Based on the formula (3), the reliability of the system in time 

t is the probability of neither soft failure nor hard failure in the 

entire life cycle. Combining the failure rate function 𝛫𝑠(𝑡, 𝑋(𝑡)) 

and the reliability model 𝑅𝐷(𝑡)  of Wiener process, the 

expression of the system reliability results with competitive 

failure process is shown in formula (14).

𝑅𝑖𝑛𝑑𝑒(𝑡) = 𝑃(𝑇𝑠 > 𝑡, 𝑇𝐷 > 𝑡) = 𝑃(𝑇𝑠 > 𝑡|𝑇𝐷 > 𝑡)𝑃(𝑇𝐷 > 𝑡) =  𝑒𝑥𝑝 (−∫ Κ𝑠(𝑡, 𝑋(𝑠))𝑑𝑠

𝑡

0

)𝑅𝐷(𝑡) 

 =exp (−∫
𝛽(𝜉−𝛾)(𝛽−1)

𝛼𝛽
𝑒𝑥𝑝 (𝑐0 + 𝑐1𝜇𝜉 +

1

2
𝑐1𝜎

2𝜉)Φ(−
(𝐿−𝜇𝜉−𝑐1𝜎

2𝜉)2

𝜎√𝜉
) 𝑑𝜉

𝑡

0
) ⋅ (Φ (

𝐿−𝜇𝑡

𝜎√𝑡
) − 𝑒𝑥𝑝 (

2𝜇𝐿

𝜎2
)Φ(

−𝐿−𝜇𝑡

𝜎√𝑡
))         (14) 

 

Based on the above calculation process, the trend of 

operational reliability variation of the system during its lifecycle 

can be obtained, which is the probability result that system does 

not fail in the service life. Then, to evaluate the operational 

reliability of the system, the parameters of the reliability model 

are evaluated by the bayes methods. The estimation process of 

unknown parameters will be described in the Section 4. 

4. Parameter estimation 

Assuming that N degradation samples of the system are 

collected through a sensor or radar, the system operation status 

without failure, with hard failure, or with soft failure are 

monitored in time. Specifically, the system status cannot be 

recorded after the hard failure occurs. Note that N=Z+V+M is 

the total number of samples, Z is the number of systems not 

failures, V is the number of system hard failures, and M is the 

number of soft failures occurs in the system. Therefore, the 

overall degradation of the system is described as bellow. 

𝑋𝑖𝑗 =

[
 
 
 
𝑋11, 𝑋12, . . . , 𝑋1𝐾𝑖
𝑋21, 𝑋22, . . . , 𝑋2𝐾𝑖  

  ⋮       ⋱       ⋮
𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝐾𝑖 ]

 
 
 

 

where Xij is the degradation amount at the j-th moment of the i-

th sample, 𝑗 = 1, . . . , 𝐾𝑖 and Ki is the measurement duration of 

the i-th sample. 

According to formula (14), the reliability function of the 

system includes three sets of parameters, including the Wiener 

process parameters 𝜽1 = (𝜇, 𝜎
2) and the relationship model 

parameters 𝜽2 = (𝛼, 𝛽, 𝛾) , 𝜽3 = (𝑐0, 𝑐1) . To estimate the 

parameters accurately, the estimation process is mainly divided 

into two parts: 𝜽1  of Wiener process and 𝜽2, 𝜽3  of competing 

failure process. The specific estimation process is described in 

bellow. 

4.1. Parameter 𝜽𝟏estimation of Wiener process 

In this article, the system degradation failure process follows 

the Wiener process. According to the properties of the Wiener 

process, its degradation increment also follows a normal 
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distribution, that is, 𝛥𝑋𝑖𝑗~𝑁[𝜇𝛥𝑡𝑖𝑗 , 𝜎
2𝛥𝑡𝑖𝑗] . The parameters 

that need to be estimated are 𝜽1 = (𝜇, 𝜎
2) . Hence, the 

parameter likelihood function of n systems in Ki measurement 

durations is: 

𝐿(𝜇, 𝜎2) = ∏ ∏
1

√2𝜎2𝜋Δ𝑡𝑖𝑗

𝑒𝑥𝑝 [−
(Δ𝑥𝑖𝑗−𝜇Δ𝑡𝑖𝑗)2

2𝜎2Δ𝑡𝑖𝑗
]

𝐾𝑖
𝑗=1

𝑛
𝑖=1 (15) 

Through the maximum likelihood estimation, the estimated 

results �̂�1 = (�̂�, �̂�2) can be obtained, as the formula (16) shown. 

�̂� =
∑ 𝑋𝑖𝐾𝑖
𝑛
𝑖=1

∑ 𝑡𝑖𝐾𝑖
𝑛
𝑖=1

, �̂�2 =
1

∑ 𝐾𝑖
𝑛
𝑖=1

[∑ ∑
(Δ𝑋𝑖𝑗)

2

Δ𝑡𝑖𝑗
−
(∑ 𝑋𝑖𝐾𝑖

𝑛
𝑖=1 )2

∑ 𝑡𝑖𝐾𝑖
𝑛
𝑖=1

𝐾𝑖
𝑗=1

𝑛
𝑖=1 ]     (16) 

4.2 Parameters 𝜽𝟐, 𝜽𝟑 estimation of competing failure 

process 

Considering the different number of failure samples and of the 

measurement duration, the parameters 𝜽1  are obtained (the 

model parameters 𝜽1 = (𝜇, 𝜎
2)  have been estimated by 

maximum likelihood), the parameters estimation of 𝜽2, 𝜽3 can 

be mainly divided into the following three situations: 

A. When the system has not failed, the relationship between 

the useful life and the measurement time is 𝑇𝑖 > 𝑡𝑖𝐾𝑖 . Hence, 

the system reliability function is 𝑅(𝑡𝑖𝐾𝑖)  ( combining 

formula (14)); 

B. Once a hard failure of the system occurs, the operation state 

is not monitored after the hard failure. The measurement 

time of the system is𝑡𝑖ℎ. So, the distribution function of the 

system life is: 

𝐹𝑠(𝑡𝑖ℎ) = 1 − 𝑒𝑥𝑝 [− ∫ 𝐾𝑠(𝜉, 𝑋(𝜉)|�̂�, �̂�
2)𝑑𝜉

𝑡𝑖ℎ
0

] (17) 

C. When a soft failure of the system occurs, the measurement 

time of the system is𝑡𝑖𝑑, and its life distribution function is: 

𝐹𝑑(𝑡𝑖𝑑) = 𝑒𝑥𝑝 [−∫ 𝐾𝑠(𝜉, 𝑋(𝜉)|�̂�, �̂�
2)𝑑𝜉

𝑡𝑖𝑑
0

] 𝐹𝑑(𝑡𝑖𝑑|�̂�, �̂�
2)    (18) 

Therefore, based on the above description, the likelihood 

function of the system operation reliability model parameters is 

shown in (19).

𝐿(𝛼, 𝛽, 𝛾, 𝑐0, 𝑐1|�̂�, �̂�
2) = ∏ 𝑅(𝑡𝑖𝐾𝑖|�̂�, �̂�

2)𝑍
𝑖=1 ⋅ ∏

𝑑𝐹𝑠(𝑡𝑖ℎ|�̂�,�̂�
2)

𝑑𝑡𝑖ℎ

𝑉
𝑖=1 ⋅ ∏ 𝐹𝑑(𝑡𝑖𝑑|�̂�, �̂�

2)𝑀
𝑖=1  = ∏ 𝑒𝑥𝑝 [−∫ Κ(𝜉, 𝑋(𝜉)|�̂�, �̂�2)𝑑𝜉

𝛿𝑖
0

]𝑁
𝑖=1 ⋅

∏ Κ(𝑡𝑖ℎ , 𝑋(𝑡𝑖ℎ)|�̂�, �̂�
2)𝑉

𝑖=1  = ∏ 𝑒𝑥𝑝 [−∫ [
𝛽(𝜉−𝛾)(𝛽−1)

𝛼𝛽
𝑒𝑥𝑝 (𝑐0 + 𝑐1�̂�𝜉 +

1

2
𝑐1�̂�

2𝜉)Φ (
(𝐿−�̂�𝜉−𝑐1�̂�

2𝜉)2

�̂�2√𝜉
)]|�̂�, �̂�2)𝑑𝜉

𝛿𝑖
0

]𝑁
𝑖=1 ⋅

∏
𝛽(𝑡𝑖ℎ−𝛾)

(𝛽−1)

𝛼𝛽
𝑒𝑥𝑝 (𝑐0 + 𝑐1�̂�𝑡𝑖ℎ +

1

2
𝑐1�̂�

2𝑡𝑖ℎ)Φ(
(𝐿−�̂�𝑡𝑖ℎ−𝑐1�̂�

2𝑡𝑖ℎ)
2

�̂�√𝑡𝑖ℎ
) |�̂�, �̂�2)𝑉

𝑖=1     (19) 

 

where 𝛿𝑖 = {𝑡𝑖𝐾𝑖 , 𝑡𝑖ℎ, 𝑡𝑖𝑑}is the measurement duration of the i-th 

sample. 

Since the integral function existed in the likelihood function 

of the system reliability model, which are difficulty to estimate 

its maximum likelihood, this paper uses the MCMC method in 

Bayesian area to obtain the estimated parameters�̂�2, �̂�3 . The 

MCMC method mainly obtains the posterior distribution results 

through prior distribution knowledge and uses sampling 

methods to obtain parameter convergence results. 

Therefore, the transformation form of the Likelihood 

function of the model parameters can be obtained based on the 

Bayesian formulas. 

𝜋(𝛉2, 𝛉3|𝐗) =
𝐿(𝐗|𝛉2, 𝛉3)𝜋(𝛉2, 𝛉3)

∬ 𝜋(𝛉2, 𝛉3)𝐿(𝐗|𝛉2, 𝛉3)𝑑𝛉2𝑑𝛉3𝛉2,𝛉3

 

                  ∝ 𝐿(𝐗|𝛉2, 𝛉3)𝜋(𝛉2, 𝛉3)  (20) 

where 𝑿 is the monitoring sample matrix of system, 𝜋(𝜽2, 𝜽3) 

is a prior distribution, and 𝜋(𝜽2, 𝜽3|𝑿)  represents a posterior 

distribution. This paper adopts an uninformed prior distribution 

as the prior distribution. 

In Eq. (20), it is necessary to calculate the posterior 

distribution results of unknown parameters for the estimated 

parameters �̂�2, �̂�3 . Based on the likelihood 

function 𝐿(𝛼, 𝛽, 𝛾, 𝑐0, 𝑐1|�̂�, �̂�
2)  (formula(19)), the posterior 

distribution results of parameters 𝛼, 𝛽, 𝛾, 𝑐0, 𝑐1are described as 

bellows. 

𝜋(𝛼|𝛽, 𝛾, 𝑐0, 𝑐1, Data) ∝ 𝜋(𝛼) ⋅ 𝐿(𝛼|𝛽, 𝛾, 𝑐0, 𝑐1, 𝐗) 

∝ 𝜋(𝛼) ⋅ 𝑒𝑥𝑝 [−∑
1

𝛼𝛽
𝑁
𝑖=1 ⋅ 𝛿𝑖] ⋅

1

𝛼𝛽
  (21) 

𝜋(𝛽|𝛼, 𝛾, 𝑐0, 𝑐1 , Data) ∝ 𝜋(𝛽) ⋅ 𝐿(𝛽|𝛼, 𝛾, 𝑐0, 𝑐1 , 𝐗) 

 ∝ 𝜋(𝛽) ⋅ 𝑒𝑥𝑝 [−∑ ∫
𝛽(𝜉−𝛾)(𝛽−1)

𝛼𝛽
𝑑𝜉

𝛿𝑖
0

𝑁
𝑖=0 ] ⋅ ∏

𝛽(𝑡𝑖ℎ−𝛾)
(𝛽−1)

𝛼𝛽
𝑉
𝑖=1      (22) 

𝜋(𝛾|𝛼, 𝛽, 𝑐0, 𝑐1, Data) ∝ 𝜋(𝛾) ⋅ 𝐿(𝛾|𝛼, 𝛽, 𝑐0, 𝑐1, 𝐗)  ∝ 𝜋(𝛾) ⋅

𝑒𝑥𝑝 [−∑ ∫ 𝛽(𝜉 − 𝛾)(𝛽−1)𝑑𝜉
𝛿𝑖
0

𝑁
𝑖=0 ] ⋅ ∏ 𝛽(𝑡𝑖ℎ − 𝛾)

(𝛽−1)𝑉
𝑖=1 (23) 

𝜋(𝑐0|𝛼, 𝛽, 𝛾, 𝑐1, Data) ∝ 𝜋(𝑐0) ⋅ 𝐿(𝑐0|𝛼, 𝛽, 𝛾, 𝑐1, 𝐗) 

∝ 𝜋(𝑐0) ⋅ 𝑒𝑥𝑝[− 𝑒𝑥𝑝( 𝑐0)∑ 𝛿𝑖
𝑁
𝑖=1 ] ⋅ 𝑒𝑥𝑝( 𝑐0) (24) 
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𝜋(𝑐1|𝛼, 𝛽, 𝛾, 𝑐0, Data) ∝ 𝜋(𝑐1) ⋅ 𝐿(𝑐1|𝛼, 𝛽, 𝛾, 𝑐0, 𝐗) ∝ 𝜋(𝑐1) ⋅ 𝑒𝑥𝑝 [−∑∫ 𝑒𝑥𝑝 (𝑐1�̂�𝜉 +
1

2
𝑐1�̂�

2𝜉)Φ(
(𝐿 − �̂�𝜉 − 𝑐1�̂�

2𝜉)2

�̂�√𝜉
) 𝑑𝜉

𝛿𝑖

0

𝑁

𝑖=1

] 

                           ⋅ 𝑒𝑥𝑝 ∑ (𝑐1�̂�𝑡𝑖ℎ +
1

2
𝑐1�̂�

2𝑡𝑖ℎ) ⋅ ∏ Φ(
(𝐿−�̂�𝑡𝑖ℎ−𝑐1�̂�

2𝑡𝑖ℎ)
2

�̂�√𝑡𝑖ℎ
)𝑉

𝑖=1
𝑉
𝑖=1     (25) 

The MCMC method mainly obtains a stationary distribution 

by establishing a Markov chain. In formulas (21) - (25), the 

posterior distribution that needs to be sampled is not a standard 

distribution, that is, the conditional probability density function 

of the parameters cannot be directly obtained. Therefore, the 

Gibbs sampling method cannot be used to estimate the 

parameters. In this paper, the MH sampling method is used to 

obtain the estimated parameters�̂�2, �̂�3 = (�̂�, �̂�, 𝛾,ĉ0,ĉ1). Record 

that 𝑢 follows a uniform distribution𝑢~𝑈(0,1); To simplify the 

parameter estimation process, the parameters to be estimated are 

recorded as𝜣, the recommended distribution is 𝑄(𝜣[𝑡]|𝜣∗) and 

the acceptance probability is  

𝛼(𝜣∗|𝜣[𝑡])=min {
𝑝(𝜣∗|𝑡)𝑄(𝜣[𝑡]|𝜣∗)

𝑝(𝜣[𝑡]|𝑡)𝛼(𝜣∗|𝜣[𝑡])
, 1} . Hence, the specific 

steps of MH sampling are as follows: 

a) Determining the prior distribution 𝜋(𝜣)  and the 

initial value𝜣(0) of the parameter to be estimated 

based on the prior distribution without information;  

b) Sampling u in a uniform distribution U (0,1) and 

obtaining alternative parameter values through 

formulas (19) - (22) and suggested distributions𝜣∗; 

c) By comparing the magnitude of u and the acceptance 

probability value, if 𝑢 ≤ 𝛼(𝜣∗|𝜣[𝑡]) , assign the 

candidate parameter value𝜣∗ to the estimated value 

of the parameter 𝜣[𝑡]at the current time; otherwise, 

the current value remains unchanged𝜣[𝑡] = 𝜣[𝑡-1];  

d) Repeating the second step m times to obtain m 

sampling samples(𝜣(𝑡)), 𝑡 = 1, . . . , 𝑚; 

e) Until the function of the parameter to be estimated 

converges to the function 𝛼, 𝛽, 𝛾, 𝑐0, 𝑐1 according to 

the distribution, the converged model parameter 

estimation value (�̂�, �̂�, 𝛾,ĉ0,ĉ1) is obtained. 

 

Fig. 4. The flow chart of system reliability evaluation based on competitive failure process. 
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Based on the above steps, combined with the estimated 

parameter values (�̂�, �̂�2, �̂�, �̂�, 𝛾,ĉ0,ĉ1)  and the monitored 

degradation samples, the reliability evaluation results of the 

system under competitive failure process can be further 

obtained. By constructing a relationship model between system 

soft failure and hard failure, the reliability assessment results of 

system based on three parameter Weibull distribution and 

Wiener process are obtained. The overall process is shown in 

Fig. 4. According to the overall evaluation process in Fig.4, it is 

possible to obtain the operational reliability results of the 

system effectively in its entire lifecycle. the real degradation 

samples are used as the validation indicator, and the specific 

experimental results are shown in the following section. 

5. Experiment evaluation and analysis 

To evaluate the effectiveness of the methods proposed in this 

paper, the numerical example and real samples are used for 

experience verification. The degradation process is the Wiener 

process, and the sudden failure process follows the Three-

parameter Weibull distribution. 

Based on the reliability function 𝑅𝑖𝑛𝑑𝑒(𝑡) and the estimated 

parameters, the reliability evaluation results in the entire life 

cycle are further obtained. 

5.1. The numerical example 

In this subsection, a simulation experiment is carried out to 

verify the reliability model and the estimation process. The 

degradation samples are generated by the Wiener process, while 

the sudden failure samples are obtained by the three-parameter 

Weibull distribution. We set the /mu=0.05, /sigma=0.009, the 

time length is 100, and the samples size is 20. The degradation 

samples are shown in Fig.5.

                     

              Fig. 5. The original degradation samples.                            Fig.6. The distribution of different failure process.   

To obtain the sudden failure data and degradation failure 

data, the failure threshold is determined as L=5.5. The sudden 

failure time is set three points (ts=50,76,79). Hence, the different 

failure data is shown as the Fig. 6. 

In. Fig.6, the black line is the failure threshold, the blue line 

are the sudden failure samples, the red line represents the 

degradation failure samples, and the others are the non-failure 

samples. The black rot line represents the failure threshold, and 

it is obvious that the degradation samples exceed the threshold 

is 7. Hence, the total number N of samples is 20 (N=20), the 

number of non-failure samples Z=10, the number of sudden 

failures V=3, and the number of degradation failures M is 7 

(M=7).  

Based on the Formulas(15)-(16), the Wiener process 

parameters𝜽1 = (𝜇, 𝜎
2)can be obtained. 

�̂�=0.04265, �̂�2=0.009234, which represent the estimation 

results of the MLE method and indicate its accuracy. Hence, 

according to the non-informative prior distribution, the 

positional parameter 𝛾 of 𝜽2 is assumed as follow the uniform 

distribution( 𝛾 ~U[0,4000]), shape parameter 𝛽  follow the 

uniform distribution( 𝛽 ~U[0,1]), and the proportional 

parameters α follow the normal distribution(α~N(0,100)).  

Table 1. The parameter estimation results of MCMC-MH 

sampling method. 

Parameter Mean Variance MCE 

𝑐0 -0.5073 1.6223 0.00016 

𝑐1 1.8189 0.0855 0.00022 

𝛼 54.9363 1.7995e+03 0.00001 

𝛽 505.0679 5.2243e+04 0.00042 

𝛾 -0.9931 68.9973 0.00006 

Furthermore, the prior distribution of parameter𝜽3 follows 

0 20 40 60 80 100
0

1

2

3

4

5

6

7

t

d
e
g
ra

d
a
ti
o
n
 X

(t
)

degradation samples

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Time

D
e
g
ra

d
a
ti
o
n
 X

(t
) 

 

 

normal data

degradation failure data

sudden failure data

failure threshold L



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

the normal distribution ( 𝑐0~𝑁(0,100) , 𝑐1~𝑁(0,100) ). The 

initial value of parameters 𝛼, 𝛽, 𝛾, 𝑐0, 𝑐1 

(𝛼(0), 𝛽(0), 𝛾(0), 𝑐0
(0), 𝑐1

(0)) = (0,0,0,0,0). 

Based on the formulas (21)-(25), the MCMC-MH sampling 

algorithm is used to estimate the parameters of the competitive 

failure reliability model. To evaluate the steady ability of the 

estimation process, the samples are extracted 10000 times 

repeatedly, and the estimation results of the numerical samples 

are shown in Table 1.

           

Fig. 7. the parameters estimation results of numerical samples. 

It is obvious that the parameters are convergence by the 

MCMC-MH sampling method. Based on the estimation result, 

the reliability results can be obtained by the formulas(14). 

Furthermore, the reliability of the independent degradation 

process is used to compare with the model proposed in this 

paper, the comparison results are shown in Fig.8. 

 

Fig.8. The comparison results of different reliability model 

under the numerical samples. 

In Fig.8, the X-axis is the variable t (no physical meaning), 

the Y-axis represents the degradation amount. It is obvious that 

the reliability results under competing failure process is higher 

than other failure process, and the failure time is less than the 

independent failure process. The results of independent sudden 

failure process are far lower than the Rinde(t), Hence, the 

competing failure process can reflect the real state, and the 

constructed reliability model has been proven to be useful in the 

process of reliability assessment. 

To analyze the influence of failure threshold L on the 

reliability model, the sensitivity of it is calculated and shown in 

Fig. 9. 

 

Fig. 9. The sensitivity results of failure threshold. 

In Fig.9, the higher the value of failure threshold L, the 

higher the reliability results. In other words, a higher failure 

threshold indicates that the conditions for system failure are 

more stringent, resulting in higher reliability outcomes, which 

aligns with the actual state. 
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5.2. The real case application  

GaAs lasers are widely used in industrial systems, the failure 

process includes two parts. On the one hand, excessive current 

density can cause device overheating and may cause excessive 

carrier density, leading to gain saturation. Generally, the current 

threshold is set to 10%. When this threshold is exceeded, the 

laser will fail due to degradation. In addition, the driving current 

of the laser directly affects its working state, and even in 

extreme cases, it can cause thermal breakdown of the material, 

resulting in sudden failure. Therefore, the failure process of the 

laser is very consistent with the failure model established in this 

article. 

A. Dataset description 

The laser degradation process is established by the Wiener 

process, and the sudden failure time is determined which 

follows a three-parameter Weibull distribution. The 

performance degradation of GaAs lasers is mainly due to the 

percentage change in operating current, and the current 

degradation data is shown in Fig.5 [33]. The total number of 

samples is 15, which is the number of monitored lasers, with a 

time interval of 250 (h). The laser is tested at a temperature of 

80℃ and becomes ineffective when the working current 

increases to 10% of the initial value. Hence, according to expert 

experience and historical data, the soft failure threshold L of 

GaAs lasers is 10, that is, when the current percentage exceeds 

10%, the GaAs laser will fail. 

 

Fig. 10. The current degradation trajectory of GaAs lasers. 

In Fig. 10, the degradation of samples 1, 6, 10 are exceeded 

the soft failure threshold L within the measurement time 4000 

(h), causing laser degradation failure; Due to the degradation of 

the working current of laser samples 3,14 are no longer changes 

after the measurement time 3500 (h), it is determined that the 

laser has experienced sudden failure caused by the external 

environmental shocks; The remaining samples are not failed 

during the measurement time. Therefore, the total number of 

samples N=15, the number of not failure samples Z=10, the 

number of hard failures V=2, and the number of soft failures 

M=3. Based on expert experience and historical data, it is 

known that the soft failure threshold L of the laser is L=10 (%). 

B. The parameter estimation of constructed reliability 

model 

Since the degradation amount of the laser degradation sample 

during the measurement time is not monotonic increasing, and 

the performance degradation at a certain monitoring time will 

decrease and then increase, the laser degradation data are the 

non-monotonic samples. The physical performance variables of 

laser degradation only include the working current. Hence, 

using the one-dimensional Wiener process to describe the 

degradation process is in line with actual working conditions. 

In this paper, the sudden failure time distribution of GaAs 

laser follows a three-parameter Weibull distribution, while the 

position parameter represents the product will not fail within γ, 

the shape parameter β represents the failure rate of the laser will 

change with the measurement time, and the scale parameter 𝛼 

indicate the scaling of the failure rate. Therefore, based on the 

formula (14), the reliability model of the GaAs laser can be 

obtained.  

Hence, same as the parameter estimation process in the 

subsection 5.2-A, the estimation results of the GaAs samples are 

shown in Table 2.  

Table 2. The parameter estimation results of MCMC-MH 

sampling method. 

Parameter Mean Variance MCE 

𝑐0 -0.6130 1.6323 0.00027 

𝑐1 -0.5765 0.3466 0.00002 

𝛼 0.0053 0.1360 0.00001 

𝛽 0.6564 0.2073 0.0001 

𝛾 14.0610 7.5329 0.00036 

The Monte Carlo error (MCE), the iterative process as well 

as the traversal mean results of the parameters𝜽2,𝜽3are used to 

describe the convergence degree of the MCMC-MH algorithm 

for the constructed reliability model, which are shown in  

Fig. 11 and Fig. 12.
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          Fig. 11. Traversal mean of estimated parameters.                       Fig. 12. Estimation parameter iteration process 

From the experience results, the Markov chain process of 

the parameters has reached convergence, and the parameters 

value are obtained. Based on the estimation results, the 

reliability operation curve of the constructed competitive failure 

reliability model can be obtained. The life distribution density 

function GaAs lasers over measurement time can be further 

calculated. Based on the formulas (14-15), the parameters𝜽1 =

(𝜇, 𝜎2) of the Wiener process is estimated, and the reliability 

analysis and experimental results are described in the next 

section. 

C. The reliability analysis and results 

 

Fig. 13. The reliability under different failure process. 

By incorporating the estimated values into formula (14), the 

lifetime distribution density function and reliability curve of 

GaAs lasers over time can be obtained. To verify the accuracy 

of the established reliability model, the comparison results of 

lasers corresponding to individual failure processes, 

independent failure processes, and competitive failure 

processes were compared, as shown in Fig.13. 

In Fig. 13, the red line Rinde (t) is the reliability change curve 

of the model constructed in this paper, the blue line Rde (t) 

represents the reliability results corresponding to independent 

failure. The green line RS (t) and black line RD (t) are the 

reliability results of GaAs laser that suffer from single failure 

process, respectively. It is evident that the proposed reliability 

result Rinde (t) based on the three-parameter Weibull and Wiener 

processes is in line with the actual operating state mostly. The 

failure rate in the early usage stage of the laser is relatively low, 

but when the failure threshold L is exceeded by 10%, the 

reliability of the laser rapidly decreases and with a higher failure 

rate. At this moment, replacement or intelligent maintenance 

strategies should be considered to improve the usage 

performance. When the different failure processes 

independently existed in the operation process, the reliability 

results Rde(t) with independent failure process underestimate the 

actual reliability of the laser seriously, and the failure time is 
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earlier (the reliability is already lower than 0.024 at the time 

(500h)), which will affect the normal operation and 

maintenance strategy of the laser.  

Furthermore, when only considering a single failure state, 

there will be a significant impact on the reliability results of the 

laser. For example, when only the degradation failure process is 

considered in the reliability modeling, the reliability RD (t) of 

the laser will continue to be high, which will overestimate the 

reliability of the laser and cause misjudgment for normal 

maintenance. On the other hand, when only sudden failure RS(t) 

is considered, the high-reliability time of the laser is too short, 

resulting in the inability of the laser to operate normally. 

Therefore, the reliability results also indicate the effectiveness 

of the model established in this paper in the system reliability 

evaluation process. 

Furthermore, to demonstrate the advantages of the three-

parameter Weibull distribution in the reliability modeling under 

competing failure process, this article compares the different 

sudden failure process (three-parameter Weibull distribution 

and two-parameter Weibull distribution), the comparison results 

are as shown in Fig. 14. 

 

Fig. 14. The reliability under different sudden failure process. 

In Fig. 14, due to the positional parameters γ, with the 

extension of monitoring time, it can be seen that the reliability 

results corresponding to the competition failure process based 

on the three-parameter Weibull distribution are better than those 

corresponding to the two-parameter Weibull distribution, and 

can maintain higher reliability within the entire operation time. 

This indicates that the reliability model method based on the 

three-parameter Weibull distribution is feasible and has better 

analytical results. 

 

Fig. 15. The sensitivity of failure threshold. 

For the sensitivity evaluation of model parameters to the 

reliability model, the laser reliability with different parameter 

values is set to compare the performance. Since the different 

failure thresholds correspond to different failure processes of 

lasers. First, the different failure threshold is changed L=[7,10], 

and the corresponding reliability results are as shown in Fig. 10. 

The red, blue, green, and black lines correspond to reliability 

results with failure thresholds of L=10%, L=9%, L=8%, and 

L=7%, respectively. The larger the failure threshold L, the 

longer the degradation time corresponding to the current 

degradation failure of the laser, the fewer failure samples, and 

the higher the reliability of the laser. This is in line with the true 

operating state of the laser. Therefore, the specified failure 

threshold of the laser can be set based on the relationship 

between the failure threshold and the operation reliability. 

Furthermore, to analyze the influence of reliability models 

on different parameters in the three-parameter Weibull 

distribution, two parameters in the Weibull distribution are fixed, 

and the value range of one parameter is changed to obtain the 

operation reliability results. In the three-parameter Weibull 

distribution, the reliability results under different positional 

parameters γ, scale parameters α, and shape parameters β are 

shown in Fig. 16.
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               (a)        (b)       (c) 

Fig. 16. Sensitivity of different Weibull parameters. (a). positional parameters𝛾 (b). scale parameters𝛼 (c). shape parameters𝛽 

In Fig. 16, the X-axis represents the laser degradation time, 

and the Y-axis is the reliability results corresponding to different 

parameters. In Fig. 16 (a), before the monitoring duration of 

3000 (h), the reliability corresponding to different position 

parameters remained almost unchanged. However, after the 

measurement time 3000 (h) of laser, the position parameters are 

proportional to the laser operation reliability, with the larger the 

value, the higher the reliability R(t); Fig. 16(b) shows the laser 

reliability corresponding to different scale parameters. When 

the measurement time is less than 2000 hours (i.e. T<2000 (h)), 

the scale parameters will not affect the reliability results of the 

laser. However, when the running time is greater than 2000 (h), 

the scale parameters𝛼 are proportional to the laser reliability. 

The larger the scale parameters, the higher the reliability results 

R(t), and the longer the failure time of laser; In Fig. 16 (c), the 

influence of shape parameters on laser reliability will changes 

with the measurement time. When the operation time less than 

2250(h) (i.e. T<2250 (h)), the shape parameter𝛽does not affect 

the laser reliability. When the operation time T is greater than 

2250(h)and less than 4450(h) (i.e. 2250(h)<T<4450(h)), the 

larger the shape parameters 𝛽 , the greater the operation 

reliability of laser. When operation time T>4450 (h), the shape 

parameters𝛽are inversely proportional to the reliability of the 

laser. Therefore, when setting shape parameters, it is necessary 

to determine the effective size of shape parameters based on 

different maintenance needs. 

6. Conclusion 

In the operation of the complex system, when external 

environmental shock samples cannot be directly recorded,  

a reliability evaluation method based on a three-parameter 

Weibull distribution and Wiener process is proposed in this 

paper. The degradation failure process and sudden failure 

process of the system are described using a univariate Wiener 

process and a three-parameter Weibull distribution, respectively, 

representing competing failure processes. A nonlinear 

exponential function is employed to establish the relationship 

model between the degradation process and the sudden failure 

process, and the corresponding reliability model under the 

competitive failure process is derived. To accurately obtain the 

reliability evaluation results, the Bayesian method is combined 

with the MCMC-MH sampling algorithm to estimate the values 

of the proposed reliability model. Subsequently, the established 

model is validated using real performance degradation samples 

and compared with different reliability models. The impact and 

sensitivity of the proposed model on various parameters are 

analyzed. The simulation results demonstrate that the 

constructed model in this study better aligns with the actual 

operating state and can enhance the operational reliability of the 

system. The proposed reliability evaluation method provides an 

analytical basis for the maintenance strategy of repairable 

systems and enables the calculation of the remaining life of the 

system within its lifecycle based on this model, thus further 

extending the service life of the system. 

In the future work, there are 3 points should be considered. 

1) a dynamic failure threshold will be considered to modeling 

the failure process. Since the system or equipment is affected by 

environmental shocks, fixed failure thresholds do not conform 

to the actual operating state. 2) Due to the complexity of the 

actual operating environment of the system, the simple three-

parameter Weibull distribution may not accurately describe 

sudden failures. In the future, a combination of multiple 

distributions will be considered to establish a sudden failure 

model. 3) How to combine the reliability assessment process 

with model fault-tolerant control is an important research 

direction.
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