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Highlights  Abstract  

Á The hard failure process is constructed by the 

three-parameter Weibull distribution. 

Á The unknown parameters of the reliability 

model are estimated by the MCMC-MH 

method. 

Á A nonlinear function is proposed to design the 

correlation of different failure processes. 

 Considering the competitive failure that exists in the operation of 

industrial systems, including degradation failure and sudden failure, this 

paper presents a reliability assessment method based on the three-

parameter Weibull distribution and the Wiener process. The Wiener 

process models the degradation failure process, while the three-

parameter Weibull model describes the hard failure process. Nonlinear 

exponential functions are proposed to establish the relationship model 

between the different failure processes, and the reliability model for the 

competitive failure process is derived. The Metropolis-Hastings (MH) 

sampling algorithm of the Monte Carlo Markov Chain (MCMC) method 

is employed to estimate the parameters in this study. The reliability 

assessment results are obtained by the numerical and real degradation 

samples. The results show that the reliability model incorporating the 

three-parameter Weibull distribution produces more comprehensive and 

dependable results. Furthermore, MH sampling can solve the issues of 

complex likelihood functions that cannot directly obtain the evaluation 

results. Additionally, the sensitivity of proposed model parameters is 

analyzed, thereby offering theoretical support for enhancing the safe 

operation of the system. 
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1. Introduction  

The demand for high reliability and extended useful life of key 

equipment has been progressively rising, commensurate with 

the growing complexity of industrial systems [1][2]. Ensuring 

the safe operation of these systems, it becomes significantly 

crucial to effectively evaluate their reliability. Currently, the 

evaluation of complex systems' reliability is primarily 

investigated based on their performance degradation process, 

which heavily relies on the monitored data regarding to the 

system's performance degradation. Once the system reaches  

a specific failure threshold, it experiences failure. Consequently, 

a probabilistic model is constructed based on the failure 

mechanism, and the analysis results provide a deeper 

understanding of the system's reliability. 

Indeed, apart from failures caused by the system's own 
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performance degradation exceeding the specified failure 

threshold (designated as soft failures) [3-5], and those abruptly 

triggered by external shocks (termed sudden failures) [6]. As an 

illustrative case, the sliding spool valve in the hydraulic control 

system can fail not only due to wear degradation but also due to 

sudden stagnation [7]. Similarly, while prone to decline in their 

capacitive prowess, can experience a catastrophic short circuit 

when the operational voltage surpasses a critical juncture, 

causing the electric field to rupture the interstitial medium,  

a phenomenon attributed to the sudden onslaught of the external 

milieu. These two failure modesðnatural degradation failure 

and sudden failureðare interdependent and competitive. 

Additionally, when the wear and tear of a tire transcend the 

failure thresholds enshrined in industry norms, its demise is 

inevitable. Similarly, sudden failure can occur when the tire is 

punctured by hard foreign objects on the road. Therefore, the 

failure mechanisms in complex system equipment encompass 

both natural degradation failure and sudden failure. Regardless 

of the type of failure process, the earliest failure process is the 

main cause of system failure. These two distinct failure modes 

together form the competitive failure process of the system. 

Studying system reliability modeling under competitive failure 

process conditions can enhance the safety and reliability of 

complex systems. 

When considering the competitive failure conditions, the 

change in performance degradation of the system during 

operation will gradually affect the ability of a system to resist 

external shocks. Furthermore, external random shocks will also 

affect the performance degradation. Therefore, in the actual 

operation of complex system, it is necessary to consider the 

interaction between the degradation process and the sudden 

failure process [8-10]. Generally, many literatures mainly 

describe the inter-relationships between failure processes 

through two aspects: (1) external environmental shock 

accelerates system degradation; (2) The degradation process 

affects the failure rate of sudden failures. The former mainly 

focuses on the impact of sudden failures on the degradation 

process. For example, in [11], a decreasing random process was 

set as the sudden failure threshold, and a correlation between 

sudden failures and degradation failure was constructed. The 

reliability results of radar power amplification systems were 

obtained using component failure probability. Reference [12] 

adopts a gamma process to construct a system degradation 

process, considering the generation of degradation increments 

caused by external shock processes, and the Copula function is 

used to build a multi-failure-related model. In [13-15],  

a degradation failure process is constructed using a linear 

function, and the influence of external shock increments on the 

degradation rate and degradation increment are utilized to 

construct a competitive failure reliability model. In [16], the 

influence of continuous shocks and accelerated degradation is 

considered to model the reliability with competing failure 

processes. In [17], the changed threshold ŭ is proposed to 

construct the competing failure reliability model. A copula-

based competing reliability model is proposed in [18], and the 

dependence structure is derived based on the lifetime data. In 

[19], a competing failure processes are conducted to analyze the 

complex system that constructed by multiple components, 

random shock model is used to model the sudden failure process, 

and degradation process follow a Gamma process. In [20], an 

age- and state-dependent competing risks model that considers 

random shocks is proposed. A linear degradation path is 

considered to generate degradation samples. In [21], a reliability 

model for the multi-component system subject to dependent 

competing failure processes considering multiple shock sources 

is presented.  

However, most of the above literature analyzes the impact 

of external shocks on the degradation process, describes the 

relationship between degradation failure and sudden failure 

model through the degradation process, and further constructs  

a probability model that the degradation amount does not 

exceed the soft failure threshold. Additionally, when the sudden 

failure samples are difficult to obtain, how to solve the problem 

that the system reliability can only be conducted by the 

degradation samples. In the above research, the impact of the 

degradation process on sudden failure was not considered. 

Taking tires as an example, as the amount of tire wear increases, 

the probability of tires being punctured by foreign objects also 

increases. Therefore, the second type of correlation is more 

conducive to describing the competitive failure process of 

complex systems. In [19], by considering the impact of 

degradation processes on impact processes, the relevant factors 

ɔ and degradation are utilized to build a relationship model. In 

[20], considering that the magnitude of external shock loads will 
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change with increasing degradation, a competitive failure 

reliability model is further proposed. Yang et al. [21] also 

considered a system that undergoes both two-stage degradation 

processes and random shocks, where the impact rate is 

influenced by the system state. In [22-23], the Weibull 

distribution is used to model the sudden failure process of tool 

wear, and the gamma process (Wiener process) is combined to 

construct a competitive failure reliability model. In [24], the 

aging failure rate of relay protection devices is estimated by 

considering the three-parameter Weibull distribution, and  

a reliability model through independent failure processes is 

established. In [25], q-Weibull distribution is proposed to solve 

the useful life prediction and fault diagnosis of system, and the 

maximum likelihood estimation (MLE) method and robust 

linear regression method is used to estimate the parameters. In 

[26], a novel flexible inverse modified Weibull model with  

a concave Weibull probability diagram is proposed to simulate 

the aging classes of life distributions, and the parameters of it is 

estimated by Weibull probability paper approach and the 

maximum likelihood method. In [27], the three-parameters (3-

p) Weibull model is used to evaluate the lifetime distribution of 

critical wind turbine subassemblies, and an improved ergodic 

artificial bee colony algorithm is proposed to estimate the 

parameters of 3-p Weibull model. In [28], the two-parameter 

Weibull distribution is proposed to fit the reliability indexes of 

vibration component.  

Based on the above research models, the three-parameter 

Weibull distribution is rarely used as a model for sudden failure 

in reliability analysis Moreover, most Weibull distributions are 

applied to lifetime prediction problems. Literature on reliability 

assessment using this distribution is scarce. For the sudden 

failure process modelling, only external shock models were 

considered, and the degradation process was described using  

a simplified path that further weakened the credibility of the 

model. Moreover, in building a sudden failure process model, 

the failure process model was too simplistic or did not consider 

competitive failure modes, which cannot solve the actual 

situation. On the other hand, in terms of parameter estimation 

for models, many literatures only rely on historical experience 

or parameter assumptions, without reasonable parameter 

estimation for the established model to improve its usability. 

When dealing with the parameters of the Weibull distribution or 

its combined models, the  MLE method is predominantly 

employed. However, in scenarios where the reliability model 

becomes intricate, the corresponding likelihood function tends 

to be highly complex. This complexity often leads to suboptimal 

outcomes when utilizing the MLE method. 

To address the shortcomings of the above methods, this 

article considers the interaction between performance 

degradation and sudden failure processes and uses the Wiener 

process to construct a degradation process model for complex 

systems. To accurately describe the sudden failure mode of 

system equipment, a three-parameter Weibull distribution is 

used as the sudden failure time distribution. By combining the 

nonlinear exponential function to characterize the relationship 

between degradation and sudden failure, a system reliability 

model based on the competitive failure process is constructed 

using the failure rate function. Given the complexity of the 

likelihood function corresponding to the reliability model, 

direct estimation of the parameter results using maximum 

likelihood estimation is not feasible. Consequently, to overcome 

this obstacle, an accurate estimation of the unknown parameters 

of the reliability model is achieved by combining the MCMC-

MH sampling algorithm of the Bayes method. Subsequently, the 

reliability of different failure processes and the corresponding 

reliability of different sudden failure processes are compared 

using numerical samples and GaAs laser current as a measure 

of performance degradation. Furthermore, the sensitivity of 

different parameters to the reliability model is analyzed. The 

experimental results validate the rationality and advantages of 

the proposed method in evaluating the reliability of competitive 

failure processes. The proposed method offers theoretical 

support for the intelligent operation and maintenance of 

complex systems.  

The contribution of this paper is mainly including the 

following points:  

1). When it is not possible to obtain a set of sudden failure 

samples, this paper establishes a sudden failure process model 

using the failure time distribution and the three-parameter 

Weibull distribution. 

2). Due to the interactions between different failure 

processes, this paper establishes a relational model using  

a nonlinear exponential function. 

3). For the issue of the complex likelihood function of the 
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model, which prevents direct parameter estimation, this paper 

employs the MCMC-MH sampling method to obtain parameter 

estimates, thereby enhancing the model's reliability. 

The rest of this paper is organized as follows: Section 2 

provides a detailed problem description of this article. In 

Section 3, the reliability probability of the system is modeled 

based on a competitive failure process, encompassing 

degradation process modeling, sudden failure modeling, and 

competitive failure reliability modeling. The estimation of 

unknown parameters in the proposed model is discussed in 

Section 4, employing the MCMC-MH sampling method. 

Section 5 presents the experimental verification conducted 

using numerical samples and actual degradation samples. The 

reliability results of the laser are obtained utilizing the MCMC-

MH sampling algorithm and the proposed reliability model. 

Finally, Section 6 provides a summary of the overall paper.  

2. The problem description 

During the operational lifespan of a system, it is inevitable to 

encounter diverse influences such as wear and environmental 

shocks, which can result in system failure or malfunctions. 

Assessing system reliability plays a crucial role in determining 

maintenance requirements and predicting performance to 

facilitate subsequent decision-making. Through timely 

monitoring and decision-making throughout the system's 

operational process, overall system reliability and health status 

can be enhanced. However, in the current process of system 

reliability assessment, sudden failures caused by stress or 

environmental shock during operation are overlooked. 

Additionally, when establishing the failure process model, 

multiple influencing factors and the absence of shock samples 

are not considered, thereby diminishing the accuracy of 

reliability assessment. Based on the competitive failure process 

and combined with sudden failure time distribution of system,  

a reliability evaluation method that incorporates a three-

parameter Weibull distribution and the Wiener process of 

competitive failure is proposed. This method offers theoretical 

support for enhancing system safety, as well as intelligent 

operation and maintenance. 

System degradation refers to the decline in operation 

performance, influenced by various factors during its usage, 

leading to a decrease in certain monitored physical quantities 

over time. When the performance values exceed the established 

failure threshold, the system will malfunction or fail, impacting 

operational efficiency. The notation used in this paper is 

described in the bellow.

Table 1. the different notation used in this paper. 

Notation Description Notation Description 

X(t) The degradation process of Wiener process Ώὸ Scale transformation function 

B(t) The standard Brownian motion TD The failure time of degradation process 

TS The failure time of sudden process Ὑ ὸ 
The reliability that only affected by the sudden failures 

process 

Ὑ ὸ 
The system reliability function that only have the 

degradation failure process 
R(t) The reliability model with competing failure processes 

Ὼὸ The failure rate function of sudden failures ῺὛȟὢὛ  
The failure rate function of degradation and sudden 

failure processes 

‌ Scale parameter ‎ Position parameter 

‍ Shape parameter ‗ ὸ 
The failure rate function based on the three-parameter 

Weibull distribution 

ήὼ  The density function of the degradation amount ὧȟὧ  The coefficient of nonlinear exponential function 

Ᵽ The parameters of Wiener process Ᵽ 
The parameters of three-parameters Weibull 

distribution 

Ᵽ The parameters of nonlinear exponential function L The failure threshold 

‘ Degradation rate „ Diffusion parameter 

MCMC Monte Carlo Markov Chain MH Metropolis-Hastings 
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Fig. 1. The general degradation samples of different failure 

process.  

To more clearly describe the failure process manifested in 

the degradation samples, it is represented by Fig.1, which shows 

the degradation amount changes. Since the degradation samples 

are time series data, the X-axis is the time t during the operation 

of the system, and Y-axis represents a specific physical quantity 

of the sample (such as electric current, wear amount or diameter, 

etc.). The amount by which the physical quantity of the system 

changes over time t. The green solid line represents the failure 

threshold of the device (generally determined by expert 

experience or industry standards). The black and red lines are 

the degradation data monitored by different samples of the same 

device. In the black line, since the degradation samples 

corresponding to t=T1, t=T2, and t=T3 exceed the failure 

threshold L, these black samples belong to the degradation 

failure process; when t>t1, t>t2, and t>t3, the degradation 

amount of the red line samples no longer changes, and it belongs 

to the sudden failure process. Hence, when it is not possible to 

directly monitor the external environmental shock samples on 

the system, degradation failure samples exceeding the failure 

threshold, sudden failure samples with no incremental 

degradation, and normal samples can be directly obtained from 

the degradation samples. 

Given that complex systems are influenced by various 

factors during operation, such as the degradation of self-

monitoring variables and external environmental shocks, it is 

crucial to consider the interaction between multiple failure 

modes when analyzing the system failure process. Hence, we 

employ the nonlinear exponential function to construct  

a framework that captures the relationship between degradation 

and sudden failure process. Subsequently, a reliability model 

based on competitive failure process for complex systems is 

derived. The detailed process is illustrated in Fig. 2. 

 

Fig. 2. The reliability modelling based on the competing 

failure of system. 

In Fig. 2, the Wiener process is employed to represent the 

performance degradation failure process, while the sudden 

failure process is modeled by the three-parameter Weibull 

distribution and sudden failure time in this paper. When the 

performance degradation is greater than the failure threshold L, 

the system will fail (referred to as a soft failure). On the other 

hand, if the degradation remains below the failure threshold,  

a nonlinear exponential function is utilized to establish  

a relationship model between the degradation process and the 

sudden failure process. Then, the reliability model with the 

competing failure process can be obtained. 

To enhance the alignment of the method proposed in this 

article with the actual state and facilitate model calculations, 

assumptions are incorporated into the reliability evaluation 

process, i.e., assuming that the system is no longer usable after 

a sudden failure act on the system. 

In the reliability assessment process, after obtaining the 

competitive failure reliability model of a complex system 

through a nonlinear exponential function, the likelihood 

function of the model is calculated, and the unknown 

parameters of the model are estimated using the MCMC-MH 

sampling algorithm. Based on the monitored real degraded 

samples and estimated parameters, the reliability evaluation 

results in the overall life cycle are obtained. 
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The overall framework for reliability evaluation of 

competitive failure systems based on the three-parameter 

Weibull distribution and Wiener process is shown in Fig. 3. 

 

Fig. 3. Overall framework for reliability assessment of the 

system. 

Through the process of reliability modeling and parameter 

estimation under competitive failure conditions, the reliability 

of the system during its service life can be evaluated, thereby 

improving its remaining useful life, and maintaining the stable 

operation of the system. 

3. System Reliability Modeling Based on Competitive 

Failure Process 

Since the operational reliability model of complex systems is 

established based on competitive failure processes, wherein 

both gradual degradation and sudden failure may occur, the 

system will experience corresponding failures correspondingly. 

Consequently, a reliability model can be constructed by 

assessing the probability of simultaneous occurrence of 

degradation and sudden failures, implying that throughout the 

entire lifespan of the system, the present moment has not yet 

reached the measurement time of either degradation or sudden 

failure. 

If the failure time of degradation process in the system is TD, 

the probability of it not experiencing the degradation failure 

process can be expressed as P{TD>t}, where t is the current time; 

When a sudden failure process occurs in the operation process 

of system, the failure time is recorded as TS, and the probability 

of no sudden failure occurring within time t is P{TS>t}. If the 

degradation failure process and sudden failure process of 

system are determined independently, the reliability of the 

system can be calculated by multiplying the probabilities of 

these two events occurring. The relationship is illustrated by 

formula(1). 

Ὑὸ ὖὝ ὸὖὝ ὸ Ὑ ὸẗὙ ὸ ρ 

where,Ὑ ὸ is the reliability of system that only affected by the 

sudden failures process, andὙ ὸ is the reliability function that 

only have the degradation failure process.  

However, this situation ignores the correlation between the 

degradation process and the sudden failure process, thereby 

reducing the accuracy of system reliability. Hence, to account 

for the competitive failure process in complex systems, the 

reliability function of the system is the probability of both 

degraded and sudden failures occurring simultaneously, as 

represented by formula (2). 

Ὑὸ ὖὝ ὸȟὝ ὸ ὖὝ ὸȿὝ ὸẗὖὝ

ὸ ÅØÐɣὸ ẗὙ ὸ   ς 

where, R(t) is the reliability model with competing failure 

processes, Ὼὸ  is the failure rate function of the system that 

experiences sudden failures. 

In other words,Ὼὸ  represents the probability that the 

system has not failed before time t, but will experience failure 

after time t. Considering the impact of system performance 

degradation on the sudden failure process, the failure rate 

functionῺὸ is a non-constant function that changes over time 

and is related to the degradation amount X(t). Hence, the 

calculation process of the system reliability function is as 

follows. 

Ὑὸ ÅØÐ᷿ ɣὛȟὢὛ ὨὛẗὙ ὸ  σ 

In formula (3), ῺὛȟὢὛ  is the failure rate function related 

to degradation and sudden failure. Therefore, it is obvious that 

the reliability model of the system based on competitive failure 

mainly needs to calculate the failure rate functionῺὛȟὢὛ  

and performance degradation failure reliabilityὙ ὸ. 

3.1. Degenerate failure process model based on Wiener 

process 

Since the system degradation amount X(t) follows the Wiener 

process, its expression is shown in (4). 

ὢὸ ‘ɤὸ „ὄɤὸ   τ 

where, ‘ is the drift parameter, which represent the degradation 

rate, such as the trend of laser current degradation rate; „ is  
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a diffusion parameter that describes the heterogeneity of the 

samples, that is, the impact degree of random factors act on 

performance degradation;Ώὸ  is a scale transformation 

function that mainly describes the degradation path of the 

system. B(t) is the standard Brownian motion and follows the 

normal distribution, i.e. B(t)~N(0, t). 

Considering that unary Wiener process can describe 

continuous time degradation paths and is suitable for describing 

various system degradation phenomena, such as the wear, 

corrosion, aging, etc. Hence, this paper chooses the scale 

transformation functionΏὸ ὸ to model the degradation 

process in Eq. (4).  

Since the condition of degradation failure process not 

occurred is that the degradation amountὢὸ ‘ὸ„ὄὸ 

does not exceed the soft failure threshold L, which is equivalent 

to the time Td when the degradation amount of the system first 

reaches the soft failure threshold. Therefore, the probability of 

the system not experiencing soft failure within time t is equal to 

the reliability of the system considering only degradation failure, 

which is shown in Eq.(5). 

Ὑ ὸ ὴὝ ὸ ὴὢὸ ὒ ᷿Ὢ ὼȟὸὨὼ        υ 

where,Ὕis the time when degradation failure occurs, L is the 

soft failure threshold.  

Furthermore, based on the Kolmogorov forward equation, 

the expression of the density function Ὢ ὼȟὸ  is obtained, as 

shown in formula (6). 

Ὢ ὼȟὸ
Ѝ

Ὡὼὴ Ὡὼὴ Ὡὼὴ φ 

Combining formula (5) (6) [32], the system reliability 

function considering only degradation failure is obtained as 

follows. 

Ὑ ὸ ɮ
Ѝ

Ὡὼὴ ɮ
Ѝ

 χ 

where, ẗ represents the normal cumulative distribution 

function.  

According to the properties of the Wiener process, the 

density function of the degradation amount X(t) follows a 

normal distribution, as shown in formula (8): 

ήὼ Ὡὼὴ   ψ 

3.2. Sudden failure process model based on three-

parameter Weibull distribution 

When the external shocks act on the system and cause sudden 

failure occurs, the external shock load is related to the 

degradation of the system. Therefore, it is necessary to construct 

a relationship model between degradation and external shocks. 

The Weibull distribution is widely used and is also suitable for 

small failure samples. Considering the cost issue of system 

monitoring, the number of external shock samples monitored is 

relatively small or even unable to be effectively collected, the 

Weibull distribution is suitable for analyzing the distribution of 

useful life. In the early stages, the failure rate of the system is 

relatively low. Furthermore, the two-parameter Weibull 

distribution will easily cause nonlinear Weibull transformations. 

But the positional parameters ɔ in the three-parameter Weibull 

distribution can accurately describe the life distribution of the 

system. Therefore, this article uses a three-parameter Weibull 

distribution to construct a sudden failure process model, and its 

cumulative failure distribution function is shown in formula (9). 

Ὂὸ ρ Ὡ    ω 

where, ‌  >0, ‎  >=0, ‍  >0 are the scale parameters, position 

parameters, and shape parameters in the failure distribution 

function, respectively.  

Then, the reliability, probability density, and failure rate 

functions of sudden failures in complex systems are accordingly 

obtained, which are shown in (10). 

ừ
Ử
Ừ

Ử
ứὙ ὸ Ὡ

Ὢὸ

Ὤ ὸ

   ρπ 

The failure rate function based on the three-parameter 

Weibull distribution is shown in formula (11) through the failure 

distribution function and failure density function. 

‗ ὸ   ρρ 

By combining the three-parameter Weibull distribution 

failure rate function and the reliability RD(t), a probability model 

based on the competitive failure process can be further obtained. 

3.3. Competitive failure reliability model 

Considering that the degradation process of system will affect 

the failure rate function Ὼὸȟὢὸ of the sudden failure process, 
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to reflect the impact degree of the system degradation process 

act on the sudden failure, this paper constructs a relationship 

model between the degradation process and the sudden failure 

process through the nonlinear exponential function and the 

failure rate function of the sudden failure process, as shown in 

formula (12). 

ɣὸȟὢὸ ɣ ὸȟὼ Ὄὸȟὼ ‗ ὸὩὼὴὧ ὧὼ          ρς 

where ‗ ὸ  is the failure rate function that the system only 

considers the existence of sudden failure processes, mainly 

described by the three parameter Weibull distribution failure 

rate function (formula (11)). Ὡὼὴὧ ὧὼ   is the nonlinear 

exponential function, ὧ, ὧrepresents the model coefficients to 

describe the relationship between the degradation and sudden 

failure rate. 

Therefore, by combining formulas (8) and (11),  

a relationship function model between degradation failure and 

sudden failure process is obtained, as shown in formula (13).

ɣ ὸȟὢὸ ᷿Ὄὸȟὼ ήὼ Ὠὼ ᷿‗ ὸὩὼὴὧ ὧὼ ήὼ Ὠὼ ᷿ Ὡὼὴὧ ὧὼ ẗ
Ѝ

Ὡὼὴ Ὠὼ

Ὡὼὴὧ ὧ‘ὸ ὧ„ὸ᷿
Ѝ

Ὡὼὴ Ὠὼ Ὡὼὴὧ ὧ‘ὸ ὧ„ὸɮ
Ѝ

 ρσ 

 

where    is the standard normal distribution.  

Based on the formula (3), the reliability of the system in time 

t is the probability of neither soft failure nor hard failure in the 

entire life cycle. Combining the failure rate function Ὼ ὸȟὢὸ 

and the reliability modelὙ ὸ  of Wiener process, the 

expression of the system reliability results with competitive 

failure process is shown in formula (14).

Ὑ ὸ ὖὝ ὸȟὝ ὸ ὖὝ ὸȿὝ ὸὖὝ ὸ Ὡὼὴ ɣ ὸȟὢί Ὠ Ὑ ὸ 

ÅØÐ᷿ Ὡὼὴὧ ὧ‘‚ ὧ„‚ɮ Ὠ‚ẗɮ
Ѝ

Ὡὼὴ ɮ
Ѝ

         ρτ 

 

Based on the above calculation process, the trend of 

operational reliability variation of the system during its lifecycle 

can be obtained, which is the probability result that system does 

not fail in the service life. Then, to evaluate the operational 

reliability of the system, the parameters of the reliability model 

are evaluated by the bayes methods. The estimation process of 

unknown parameters will be described in the Section 4. 

4. Parameter estimation 

Assuming that N degradation samples of the system are 

collected through a sensor or radar, the system operation status 

without failure, with hard failure, or with soft failure are 

monitored in time. Specifically, the system status cannot be 

recorded after the hard failure occurs. Note that N=Z+V+M is 

the total number of samples, Z is the number of systems not 

failures, V is the number of system hard failures, and M is the 

number of soft failures occurs in the system. Therefore, the 

overall degradation of the system is described as bellow. 

ὢ

ụ
Ụ
Ụ
ợ
ὢ ȟὢ ȟȢȢȢȟὢ

ὢ ȟὢ ȟȢȢȢȟὢ

ể Ệ ể
ὢ ȟὢ ȟȢȢȢȟὢ Ứ

ủ
ủ
Ủ

 

where Xij is the degradation amount at the j-th moment of the i-

th sample, Ὦ ρȟȢȢȢȟὑ and Ki is the measurement duration of 

the i-th sample. 

According to formula (14), the reliability function of the 

system includes three sets of parameters, including the Wiener 

process parametersⱣ ‘ȟ„  and the relationship model 

parametersⱣ ‌ȟ‍ȟ‎ ,Ᵽ ὧȟὧ . To estimate the 

parameters accurately, the estimation process is mainly divided 

into two parts: Ᵽ  of Wiener process and ⱣȟⱣ  of competing 

failure process. The specific estimation process is described in 

bellow. 

4.1. Parameter Ᵽestimation of Wiener process 

In this article, the system degradation failure process follows 

the Wiener process. According to the properties of the Wiener 

process, its degradation increment also follows a normal 
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distribution, that is, ῳὢ ὔͯ‘ῳὸȟ„ῳὸ  . The parameters 

that need to be estimated are Ᵽ ‘ȟ„  . Hence, the 

parameter likelihood function of n systems in Ki measurement 

durations is: 

ὒ‘ȟ„ Б Б Ὡὼὴ ρυ 

Through the maximum likelihood estimation, the estimated 

results Ᵽ ‘Ƕȟ„  can be obtained, as the formula (16) shown. 

‘Ƕ
В

В
ȟ„

В
В В

В

В
     ρφ 

4.2 Parameters ⱣȟⱣ estimation of competing failure 

process 

Considering the different number of failure samples and of the 

measurement duration, the parameters Ᵽ  are obtained (the 

model parametersⱣ ‘ȟ„   have been estimated by 

maximum likelihood), the parameters estimation of ⱣȟⱣ can 

be mainly divided into the following three situations: 

A. When the system has not failed, the relationship between 

the useful life and the measurement time is Ὕ ὸ . Hence, 

the system reliability function isὙὸ   ( combining 

formula (14)); 

B. Once a hard failure of the system occurs, the operation state 

is not monitored after the hard failure. The measurement 

time of the system isὸ. So, the distribution function of the 

system life is: 

Ὂὸ ρ Ὡὼὴ᷿ ὑ ‚ȟὢ‚ȿ‘Ƕȟ„ Ὠ‚ ρχ 

C. When a soft failure of the system occurs, the measurement 

time of the system isὸ, and its life distribution function is: 

Ὂ ὸ Ὡὼὴ᷿ ὑ ‚ȟὢ‚ȿ‘Ƕȟ„ Ὠ‚Ὂ ὸȿ‘Ƕȟ„     ρψ 

Therefore, based on the above description, the likelihood 

function of the system operation reliability model parameters is 

shown in (19).

ὒ‌ȟ‍ȟ‎ȟὧȟὧȿ‘Ƕȟ„ Б Ὑὸ ȿ‘Ƕȟ„ ẗБ
ȿȟ

ẗБ Ὂ ὸȿ‘Ƕȟ„ Б Ὡὼὴ᷿ ɣ‚ȟὢ‚ȿ‘Ƕȟ„ Ὠ‚ẗ

Б ɣὸȟὢὸ ȿ‘Ƕȟ„ Б Ὡὼὴ᷿ Ὡὼὴὧ ὧ‘Ƕ‚ ὧ„‚ɮ ȿ‘Ƕȟ„ Ὠ‚ẗ

Б Ὡὼὴὧ ὧ‘Ƕὸ ὧ„ὸ ɮ ȿ‘Ƕȟ„     ρω 

 

where ‏ ὸ ȟὸȟὸ is the measurement duration of the i-th 

sample. 

Since the integral function existed in the likelihood function 

of the system reliability model, which are difficulty to estimate 

its maximum likelihood, this paper uses the MCMC method in 

Bayesian area to obtain the estimated parametersⱣȟⱣ . The 

MCMC method mainly obtains the posterior distribution results 

through prior distribution knowledge and uses sampling 

methods to obtain parameter convergence results. 

Therefore, the transformation form of the Likelihood 

function of the model parameters can be obtained based on the 

Bayesian formulas. 

“ ȟ ȿἦ
ὒἦȿ ȟ “ ȟ

Ḁ “ ȟ ὒἦȿ ȟ Ὠ Ὠ
ȟ

 

ᶿὒἦȿ ȟ “ ȟ   ςπ 

where ╧ is the monitoring sample matrix of system, “ⱣȟⱣ  

is a prior distribution, and “ⱣȟⱣȿ╧  represents a posterior 

distribution. This paper adopts an uninformed prior distribution 

as the prior distribution. 

In Eq. (20), it is necessary to calculate the posterior 

distribution results of unknown parameters for the estimated 

parametersⱣȟⱣ . Based on the likelihood 

functionὒ‌ȟ‍ȟ‎ȟὧȟὧȿ‘Ƕȟ„   (formula(19)), the posterior 

distribution results of parameters ‌ȟ‍ȟ‎ȟὧȟὧare described as 

bellows. 

“‌ȿ‍ȟ‎ȟὧȟὧȟ $ÁÔÁᶿ“‌ẗὒ‌ȿ‍ȟ‎ȟὧȟὧȟἦ 

ᶿ“‌ẗὩὼὴВ ẗ‏ ẗ   ςρ 

“‍ȿ‌ȟ‎ȟὧȟὧȟ $ÁÔÁᶿ“‍ẗὒ‍ȿ‌ȟ‎ȟὧȟὧȟἦ 

ᶿ“‍ẗὩὼὴВ ᷿ Ὠ‚ẗБ      ςς 

“‎ȿ‌ȟ‍ȟὧȟὧȟ $ÁÔÁᶿ“‎ẗὒ‎ȿ‌ȟ‍ȟὧȟὧȟἦ ᶿ“‎ẗ

ὩὼὴВ ᷿ ‍‚ ‎ Ὠ‚ẗБ ‍ὸ ‎ ςσ 

“ὧȿ‌ȟ‍ȟ‎ȟὧȟ $ÁÔÁᶿ“ὧ ẗὒὧȿ‌ȟ‍ȟ‎ȟὧȟἦ 

ᶿ“ὧ ẗὩὼὴὩὼὴὧ В ‏ ẗὩὼὴὧ  ςτ 
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“ὧȿ‌ȟ‍ȟ‎ȟὧȟ $ÁÔÁᶿ“ὧ ẗὒὧȿ‌ȟ‍ȟ‎ȟὧȟἦ ᶿ“ὧ ẗὩὼὴ Ὡὼὴὧ‘Ƕ‚
ρ

ς
ὧ„‚ɮ

ὒ ‘Ƕ‚ ὧ„‚

„ ‚
Ὠ‚ 

ẗὩὼὴВ ὧ‘Ƕὸ ὧ„ὸ ẗБ ɮ     ςυ 

The MCMC method mainly obtains a stationary distribution 

by establishing a Markov chain. In formulas (21) - (25), the 

posterior distribution that needs to be sampled is not a standard 

distribution, that is, the conditional probability density function 

of the parameters cannot be directly obtained. Therefore, the 

Gibbs sampling method cannot be used to estimate the 

parameters. In this paper, the MH sampling method is used to 

obtain the estimated parametersⱣȟⱣ ‌ȟ‍ȟ‎ȟÃȟÃ. Record 

that ό follows a uniform distributionόͯ Ὗπȟρ; To simplify the 

parameter estimation process, the parameters to be estimated are 

recorded as◙, the recommended distribution is ὗ◙ ȿ◙ᶻ and 

the acceptance probability is  

‌◙ᶻȿ◙ ÍÉÎ
◙zȿ ◙ ȿ◙z

◙ ȿ ◙zȿ◙
ȟρ . Hence, the specific 

steps of MH sampling are as follows: 

a) Determining the prior distribution “◙  and the 

initial value◙  of the parameter to be estimated 

based on the prior distribution without information;  

b) Sampling u in a uniform distribution U (0,1) and 

obtaining alternative parameter values through 

formulas (19) - (22) and suggested distributions◙ᶻ; 

c) By comparing the magnitude of u and the acceptance 

probability value, if ό ‌◙ᶻȿ◙  , assign the 

candidate parameter value◙ᶻ to the estimated value 

of the parameter ◙ at the current time; otherwise, 

the current value remains unchanged◙ ◙ Ȥρ;  

d) Repeating the second step m times to obtain m 

sampling samples◙ ȟὸ ρȟȢȢȢȟά; 

e) Until the function of the parameter to be estimated 

converges to the function ‌ȟ‍ȟ‎ȟὧȟὧ according to 

the distribution, the converged model parameter 

estimation value ‌ȟ‍ȟ‎ȟÃȟÃ is obtained. 

 

Fig. 4. The flow chart of system reliability evaluation based on competitive failure process. 
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Based on the above steps, combined with the estimated 

parameter values ‘Ƕȟ„ȟ‌ȟ‍ȟ‎ȟÃȟÃ  and the monitored 

degradation samples, the reliability evaluation results of the 

system under competitive failure process can be further 

obtained. By constructing a relationship model between system 

soft failure and hard failure, the reliability assessment results of 

system based on three parameter Weibull distribution and 

Wiener process are obtained. The overall process is shown in 

Fig. 4. According to the overall evaluation process in Fig.4, it is 

possible to obtain the operational reliability results of the 

system effectively in its entire lifecycle. the real degradation 

samples are used as the validation indicator, and the specific 

experimental results are shown in the following section. 

5. Experiment evaluation and analysis 

To evaluate the effectiveness of the methods proposed in this 

paper, the numerical example and real samples are used for 

experience verification. The degradation process is the Wiener 

process, and the sudden failure process follows the Three-

parameter Weibull distribution. 

Based on the reliability function Ὑ ὸ and the estimated 

parameters, the reliability evaluation results in the entire life 

cycle are further obtained. 

5.1. The numerical example 

In this subsection, a simulation experiment is carried out to 

verify the reliability model and the estimation process. The 

degradation samples are generated by the Wiener process, while 

the sudden failure samples are obtained by the three-parameter 

Weibull distribution. We set the /mu=0.05, /sigma=0.009, the 

time length is 100, and the samples size is 20. The degradation 

samples are shown in Fig.5.

                     

              Fig. 5. The original degradation samples.                            Fig.6. The distribution of different failure process.   

To obtain the sudden failure data and degradation failure 

data, the failure threshold is determined as L=5.5. The sudden 

failure time is set three points (ts=50,76,79). Hence, the different 

failure data is shown as the Fig. 6. 

In. Fig.6, the black line is the failure threshold, the blue line 

are the sudden failure samples, the red line represents the 

degradation failure samples, and the others are the non-failure 

samples. The black rot line represents the failure threshold, and 

it is obvious that the degradation samples exceed the threshold 

is 7. Hence, the total number N of samples is 20 (N=20), the 

number of non-failure samples Z=10, the number of sudden 

failures V=3, and the number of degradation failures M is 7 

(M=7).  

Based on the Formulas(15)-(16), the Wiener process 

parametersⱣ ‘ȟ„ can be obtained. 

‘ǶπȢπτςφυȟ„ πȢππωςστ, which represent the estimation 

results of the MLE method and indicate its accuracy. Hence, 

according to the non-informative prior distribution, the 

positional parameter ‎ of Ᵽ is assumed as follow the uniform 

distribution(‎ ~U[0,4000]), shape parameter ‍  follow the 

uniform distribution(‍ ~U[0,1]), and the proportional 

parameters Ŭ follow the normal distribution(Ŭ~N(0,100)).  

Table 1. The parameter estimation results of MCMC-MH 

sampling method. 

Parameter Mean Variance MCE 

ὧ -0.5073 1.6223 0.00016 

ὧ 1.8189 0.0855 0.00022 

‌ 54.9363 1.7995e+03 0.00001 

‍ 505.0679 5.2243e+04 0.00042 

‎ -0.9931 68.9973 0.00006 

Furthermore, the prior distribution of parameterⱣ follows 
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