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Highlights  Abstract  

▪ The Un-threshold Recurrence Plots (URP) and 

Vision Transformer (ViT) improved by 

Dropkey are used for diagnosing gear fault 

types and severities. 

▪ A new generated model, the Variational 

Autoencoder added Conditional variable 

(CVAE) combined with Generative 

Adversarial Network improved Mean feature 

difference function (MGAN), is used for data 

augmentation of un-threshold recurrence plots 

from gear under imbalanced and small sample 

conditions. 

▪ Dropkey-ViT has more advantages in 

comprehensively capturing fault information 

compared with the comparison method. 

 To improve diagnosis accuracy for gear fault diagnosis under 

imbalanced and small sample conditions, a method combining the Un-

threshold Recurrence Plots - Conditional Variational Autoencoder-Mean 

Generative Adversarial Network (URP-CVAE-MGAN) combined with 

Dropkey-Vision Transformer (DViT) is proposed. First, gear vibrational 

signals are transformed into Recurrence Plots (RP) images to extract 

more fault features without threshold effect. Then, a conditional variable 

and mean feature difference function are incorporated into VAE-GAN to 

improve the quality and diversity of generated samples, balancing the 

imbalanced and small sample sets. Dropkey is applied to the diagnosis 

model Vision Transformer to capture more fault information, improving 

diagnosis accuracy across various fault types and severities for gear. 

Finally, the proposed method is verified based on two datasets, 

demonstrating a significant accuracy improvement of up to 7.84% under 

the imbalanced and small samples, and confirming its feasibility and 

superiority. 
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1. Introduction 

In recent years, with the rapid advancement of industrial 

intelligence, increasing attention has been placed on the 

operation and maintenance of rotating machinery. As critical 

components of rotating machinery, gears, and bearings operate 

under harsh conditions and within complex structures. 

Therefore, efficient and accurate fault diagnosis is essential for 

the health management of rotating machinery. Prolonged 

operation can lead to various faults in gears, including Worn, 

Cracked, Missing, Chipped, and so on. If these faults are not 

detected and addressed promptly, significant losses in personnel 

and property may occur [1,2]. The diagnosis of gear faults 

primarily relies on vibration signals. Initially, time-domain [3,4], 

frequency--domain [5], and time-frequency analysis [6,7] were 

employed, alongside feature extraction methods such as 

Singular Value Decomposition (SVD) [8,9], Wavelet Transform 

(WT) [10] and Empirical Mode Decomposition (EMD) [11], 

often integrated with machine learning methods. Zhao et al. 

analyzed the vibrational properties of pitting-faulty gears using 
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time-frequency, frequency-domain, and time-domain methods, 

examining the impact of the pitting area [12]. Wang et al. 

applied sparse filtering to extract fault features from the 

frequency domain and classified different fault types using 

SoftMax regression [13]. Gradually, deep learning methods 

have gained widespread attention for their end-to-end manner 

of achieving fault diagnosis and eliminating human factors 

[14,15]. A common practice involves transforming vibration 

signals into time-frequency images by WT, which are then used 

as inputs to deep learning models. This mainly utilizes the 

powerful capabilities of deep learning in the field of image 

recognition by extracting features from time-frequency images 

for fault diagnosis. WT enables multi-resolution analysis, 

capturing both the time-domain and frequency-domain features 

of signals, and is suitable for non-stationary gear vibration 

signals. However, deep learning models require sufficient fault 

samples, which are often limited and unevenly distributed, 

particularly in rotating equipment that primarily operates in 

healthy states [16]. Currently, under small and imbalanced 

conditions, sufficient characterization of fault characteristics is 

crucial, and the global feature structure becomes crucial beyond 

just time-frequency domain features. Another primary problem 

to be solved is for augmenter imbalanced and small samples. 

The current data augmentation methods include rotating, 

translation, scaling, flipping, cropping, and noise-adding [17]. 

Yu et al. proposed seven augmentation strategies for small 

sample one-dimensional monitoring data [18]. Easy to 

implement, but alters signal characteristics like temporality, 

periodicity, and amplitude. Deep generative models, such as 

Generative Adversarial Network (GAN), can enhance datasets 

while preserving key signal features. Through adversarial 

training, samples with distributions similar to real data are 

generated, addressing imbalanced and small sample conditions. 

However, adversarial training between two networks often 

results in instability and collapse, necessitating successive 

improvements. In response, a new Sparse Constraint Generative 

Adversarial Network model (SC-GAN) was proposed in [19], 

incorporating sparse constraints to make signals more 

interpretable, thus generating more stable vibration signals. 

Wang et al. employed a GAN variant optimized by Wasserstein 

to generate samples. In GAN and its variants, such as Stacked 

Generative Adversarial Networks (SGAN), Wasserstein 

Generative Adversarial Network (WGAN), Auxiliary Classifier 

Generative and Adversarial Network (ACGAN), data features 

are effectively learned, and samples are expanded. However, 

issues such as gradient vanishing or explosion persist [20]. 

Similarly, the Variational Auto-Encoder (VAE) introduces latent 

variables to capture the underlying data structure, generating 

new samples through a decoder [21]. By applying variational 

inference, VAEs learn complex features and structures, 

generating samples with distributions similar to the original data. 

These samples typically exhibit better interpretability and 

stability. Zhao et al used VAE to generate more vibrational 

signals for machines [22,23]. Alfredo et al established a new 

VAEs structure to process incomplete and heterogeneous 

datasets, suitable for both supervised and unsupervised 

scenarios [24]. However, when dealing with high-dimensional 

data and intricate distributions, VAEs may struggle to fully 

capture detailed information, resulting in lower quality and 

realism of the generated samples. Ensuring diversity and quality 

becomes challenging, especially when samples are scarce for 

certain categories, limiting the model’s ability to generate 

samples with specific attributes, and lacking generalization. In 

addition to generating sufficient samples, establishing accurate 

models is equally critical. Convolutional Neural Networks 

(CNN) [25], AlexNet [26], GoogLeNet [27], Deep Belief 

Network [28] and their variants [29-31] are widely employed in 

fault diagnosis. These models, composed of fully connected 

layer, convolution, and pooling operations, have demonstrated 

significant diagnostic success due to the powerful feature 

extraction ability of convolutional layers. However, when 

processing complex fault features, long-distance dependencies, 

or diverse data forms (e.g., two-dimensional gray maps, time-

frequency maps, etc.) from gear signals, CNNs often only 

capture partial features due to the limitations of convolutional 

kernels. Global features, particularly those from long-term 

series information, are often overlooked, especially under 

imbalanced and small sample conditions, leading to overfitting. 

To address these shortcomings, the Vision Transformer has been 

introduced. Tang et al. transformed one-dimensional bearing 

signals into time-frequency images using WT, constructed 

multiple parallel ViT models, and proposed a soft voting method 

to fuse diagnostic results [32]. Zhou et al. extracted time-

frequency features of bearings using CNN and implemented the 
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final diagnosis with ViT [33]. With the attention mechanisms, 

ViT captures global dependencies in signals and dynamically 

adjusts focus on different regions, effectively handling complex, 

non-stationary, and nonlinear gear signals. While Dropout 

prevents overfitting by randomly discarding activation values, 

its randomness may result in the loss of important fault features, 

impacting feature extraction and diagnostic accuracy. 

To overcome the limitations of gear fault diagnosis methods 

under imbalanced and small sample conditions, a method 

integrating UPR-CVAE-MGAN with an improved ViT using 

Dropkey is proposed. This method aims to enhance fault 

information representation, generate high-quality and diverse 

samples, and improve the diagnostic network’s ability to capture 

gear fault-related details. Accurate diagnosis of various types 

and severities of gear faults is achieved in the final. The key 

contributions are shown: 

(1) URP has been proposed to transform complex, non-

stationary gear vibration signals into two-dimensional images, 

capturing richer nonlinear and complex dynamic features 

compared to traditional time-frequency maps. Without relying 

on specific thresholds, the converted images more 

comprehensively reflect potential fault features. 

(2) By combining VAE and GAN, conditional variables are 

introduced to enable the generation of samples corresponding to 

specific fault modes. To ensure the correlation between 

generated samples and fault types, a mean feature difference 

loss function is applied, enhancing the quality of generated 

samples and their similarity to real samples. This reduces 

feature bias and improves the realism and diversity of the 

samples. 

(3) To optimize the ViT’s extraction capabilities and prevent 

the loss of important information, DropKey is introduced as  

a replacement for traditional Dropout. This technique 

selectively discards irrelevant or redundant features, enhancing 

the model’s ability to capture fault-related information. 

(4) The URP recursive graph enhances gear fault features, 

while the CVAE-MGAN generates high-quality extended 

samples, mitigating issues related to small sample sizes and data 

imbalance. The Dropkey- ViT further improves the model’s 

classification performance in complex fault diagnosis. The 

integration of these components enables the diagnostic model to 

effectively address various types and severities of gear faults at 

different stages, including data input, feature enhancement, 

sample expansion, and feature extraction thereby demonstrating 

excellent accuracy and robustness. 

The paper is organized as follows: Section 2 presents the 

theoretical backdrop, Section 3 elaborates on the proposed 

method, Section 4 compares the method’s performance to 

prevalent approaches, and Section 5 concludes with key 

findings. 

2. Background 

2.1. Un-threshold Recurrence Plots (URP) 

The URP is primarily used to analyze the non-stationarity, chaos, 

and periodicity of time-series data [34]. A two-dimensional 

matrix (that is recursive plot) is constructed by comparing data 

from different time points, where each element represents the 

similarity or recurrence between corresponding points in the 

time series. Finally, the time-series data is encoded by PR to 

two-dimensional images to enhance feature information. The 

RP usually contains a traditional threshold recursive graph and 

a threshold-free recursive graph. Traditional RP often relies on 

threshold selection, which can lead to distortion, particularly for 

non-stationary signals. In contrast, threshold-free RP can 

automatically determine node connections based on the data 

characteristics, retaining more information [35,36]. In this paper, 

the URP is adopted to transform complex, non-stationary gear 

vibration signals into two-dimensional images, capturing richer 

nonlinear and dynamic features compared to traditional time-

frequency mapping methods without relying on any specific 

threshold. The main process is recorded as follows. 

The time series signal/data is provided as 𝑢𝑘(𝑘 = 1,2, . . . , 𝑛) 

and the sampling time interval is determined as 𝛥𝑡 . The 

embedding dimensions 𝑚  and latency time 𝜏  are used to 

reconstruct the phase space 𝑥𝑖. 

𝑥𝑖 = [𝑢𝑖, 𝑢𝑖+𝜏, . . . , 𝑢𝑖+(𝑚−1)𝜏]  (1) 

where, 𝑖 = 1,2, . . . , 𝑛 − (𝑚 − 1)𝜏. 

The distance between the 𝑖 point 𝑥𝑖 and the 𝑗 point 𝑥𝑗 from 

the phase space is calculated after reconstruction. 

𝑆𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖   (2) 

where, 𝑖, 𝑗 = 1,2, . . . , 𝑛 − (𝑚 − 1)𝜏, ‖ ‖ representatives norm. 

Finally, the recursive value is calculated as: 

𝑅𝑖𝑗 = 𝜃(𝜀𝑖 − 𝑆𝑖𝑗)   (3) 

where, 𝑅𝑖𝑗 is a 𝑁 × 𝑁  square matrix; 𝑁  is the number of 
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condition vectors 𝑥𝑖; The threshold 𝜀 represents a preset critical 

distance; 𝜃(⋅)representatives Heaviside function, its expression 

is : 

𝜃(𝑟) = {
1 𝑟 ≥ 0
0 𝑟 < 0

   (4) 

2.2. Principle of the proposed CVAE-MGAN 

VAE, introduced by Kingma and Welling in 2013, consists of an 

encoder and decoder [37]. VAE is applied to generate new data 

through potential representation. GAN, a generation model 

introduced by Ian Goodfellow in 2014, generates new data via 

adversarial training between a generator and a discriminator 

[38]. Both models have limitations, and their combination of 

VAE-GAN has been applied in sample augmentation, where 

VAE provides a robust initial latent space representation, and 

GAN refines the generated samples to enhance their realism 

[39]. However, the training process remains unstable, the 

generated samples lack clarity, and sample diversity is limited, 

despite the integration of GAN. Additionally, gradient 

vanishing and explosion frequently occur due to the Cross-

Entropy loss in GAN. Although the VAE-GAN combination 

partially mitigates some of their individual shortcomings, it 

exhibits poor adaptability to different fault types and fails to 

generate targeted samples for specific fault conditions. This is 

primarily because VAE-GAN lacks sufficient conditional 

constraints for various fault types, leading to generated samples 

that may not accurately reflect actual fault characteristics. 

Furthermore, the cross-entropy loss function performs 

inadequately when there are significant feature differences. 

When the generated samples deviate significantly from the real 

fault signal in feature space, the model may fail to capture key 

features, thus impacting the accuracy of fault diagnosis. Thus, 

the conditional variable (e.g., label) and a mean feature 

matching function are introduced to improve VAE-GAN [40]. 

Additional conditional information is incorporated to generate 

samples that better align with the expectations of the encoder. 

The adversarial training process helps mitigate the issue of 

mode collapse, enhances training stability, and improves both 

the diversity and clarity of generated samples. The improved 

model, named CVAE-MGAN, comprises an encoder, generator, 

discriminator, and classifier. Input data with conditional 

encoding is transformed into distribution variables (mean and 

standard deviation) in the latent space by the encoder, replacing 

the random variable input in the original generator. The 

generator then reconstructs the original pixels, aligning the 

characteristics of the original image with a given latent vector. 

The discriminator is presented with both real samples and 

generated samples, while the classifier calculates the class 

probability of the input data. The improved CVAE-MGAN’s 

specific structure is illustrated in Fig.1.  
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Fig. 1. The structure of the proposed CVAE-MGAN. 

Especially, the goal of the improved method is to minimize 

the following loss function. 

ℒ = ℒ𝐷 + ℒ𝐶 + 𝜆1ℒ𝐾𝐿 + 𝜆2ℒ𝐺 + 𝜆3ℒ𝐺𝐷 + 𝜆4ℒ𝐺𝐶        (5) 

ℒ𝐷 = −𝔼𝑥~𝑃𝑟
[𝑙𝑜𝑔 𝐷 (𝑥)] − 𝔼𝑧~𝑃𝑧

[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑧)))]  (6) 

ℒ𝐺𝐷 =
1

2
‖𝔼𝑥~𝑃𝑟

𝑓𝐷(𝑥) − 𝔼𝑧~𝑃𝑧
𝑓𝐷(𝐺(𝑧))‖

2

2
        (7) 

ℒ𝐶 = −𝔼𝑥~𝑃𝑟
[𝑙𝑜𝑔 𝑃 (𝑐|𝑥)]         (8) 

ℒ𝐺𝐶 =
1

2
∑ ‖𝔼𝑥~𝑃𝑟

𝑓𝐶(𝑥) − 𝔼𝑧~𝑃𝑧
𝑓𝐶(𝐺(𝑧, 𝑐))‖

2

2
𝑐        (9) 

ℒ𝐾𝐿 =
1

2
(𝜇𝑇𝜇 + 𝑠𝑢𝑚(𝑒𝑥𝑝( 𝜀) − 𝜀 − 1))     (10) 

ℒ𝐺 =
1

2
(‖𝑥 − 𝑥′‖2

2 + ‖𝑓𝐷(𝑥) − 𝑓𝐷(𝑥′)‖2
2 + ‖𝑓𝐶(𝑥) − 𝑓𝐶(𝑥′)‖2

2)(11) 

where, ℒ𝐷 represents the loss function of the discriminator, 𝐺 

represents a generative network, 𝐷 represents a discriminative 

network,   represents a real sample, 𝑝𝑟  represents the real 

samples’ probability distribution, 𝑧  represents random noises 

being input to 𝐺  network (Generally followed by Gaussian 

distribution). 𝑝𝑧  represents the probability distribution of 

x



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

random noises, 𝐺(𝑧)  represents the samples generated by 𝐺 , 

𝐷(𝑥) represents the probability that 𝐷 determines whether the 

real sample is true or not, 𝐷(𝐺(𝑧))  represents the probability 

that 𝐷 determines whether the generative sample by 𝐺 is true or 

not. ℒ𝐺𝐷 represents the discriminator’s loss function improved 

by the mean feature matching function. 𝑓𝐷represents a feature 

centre for discrimination. ℒ𝐶   represents the classifier’s loss 

function, 𝑃(𝑐|𝑥) represents the probability of some x as some 

class classed by the classifier. ℒ𝐺𝐶   represents the generator’s 

loss function improved by the mean feature matching function. 

𝑓𝐶 represents the feature centre similarly to the classifier. 

ℒ𝐾𝐿represents the encoder’s loss function. 𝜇 and 𝜀 represent the 

discriminator mean and covariance for the potential variables. 

ℒ𝐺 represents the loss function added an L2 reconstruction loss 

and feature matching loss based on the loss functions 𝑥 and the 

generated x' for the generator. 

2.3. Principle of the improved Vision Transformation 

In 2021, Google introduced ViT at ICLR, marking a significant 

advancement by applying the transformer framework to the 

Computer Vision (CV) domain. [41]. Vit processes one-

dimensional tokens (vectors) as input, requiring the input image 

to be transformed into a sequence of patches through an 

embedding layer, as shown in the following [42]. 

If the input image is 𝑂 ∈ ℝ𝑚×𝑚×𝑐, it will be divided into 

𝑂𝑖 ∈ ℝ𝑘×𝑘×𝑐  (𝑖 = 1,2, . . . , 𝑁 ) which are several equally sized 

k×k patches with the number of N by the Embedding layer, 

𝑁𝑘2 = 𝑚2 , 𝑚  represents width, height, and 𝑐  represents 

number of channels for the original image. Then, each patch 

𝑂𝑖  becomes a one-dimensional vector 𝐼𝑖 ∈ ℝ1,𝑑  ( 𝑑 = 𝑐 × 𝑘2 ) 

after being exhibited and mapping a linear layer to a high-

dimensional space form patching embedding (𝑃𝐸𝑖).  

Subsequently, a class token 𝐶𝐿𝑆 ∈ ℝ1,𝑑𝑒 is added into 𝑃𝐸𝑖 

jointly form expansion embedding of the first dimension 𝐸𝐸 ∈

ℝ𝑁+1,𝑑𝑒 , and then positional information 𝑃𝑜𝐸 ∈ ℝ𝑁+1,𝑑𝑒 is 

added. The accurate input is informed as 𝐹𝐸.  

𝑃𝐸𝑖 = 𝐼𝑖𝑊𝑃𝐸     (12) 

𝐹𝐸 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝐸𝐸 + 𝑃𝑜𝐸, 0.1) (13) 

where, 𝑊𝑃𝐸  is the parameter matrix, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡is a regularization 

technique. 

Through self-attention mechanism, the Transformer block 

converts the given hidden layer input into outputs of the same 

dimension, incorporating Multi-Headed Self Attention (MSA) 

to perform self-attention and a Feed Forward Network (FFN) to 

update weights. In MSA, the input tokens are transformed into 

three crucial vectors respectively D-dimensional Keys ( 𝐾 ), 

Values (𝑉 ), and uueries (𝑄 ). If there is only one head, the 

dimensional is (𝑁 + 1) × 𝑑 . Else the dimensional is (𝑁 +

1) × 𝑎 and 𝑛 × 𝑎 = 𝑑, the output dimensional is same as (𝑁 +

1) × 𝑑. Finally, the result is obtained by multi-layer perceptron 

(MLP). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉  (14) 

𝐹𝐹𝑁(𝑥) = 𝜎((𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2)        (15) 

where, 𝑊1 ， 𝑊2  are respectively weights of two linear 

transformations, 𝜎(⋅)is the nonlinear activation function. 

However, regularization in ViT is performed through 

Dropout, where the same attention dropout is uniformly applied 

across different layers during the attention computation. 

Although simple, this method frequently leads to local features 

and instability during training. To address this, Li [43] proposed 

a novel regularization technique called DropKey. The key 

concept of DropKey is to treat the Key as the dropout target, 

allowing the model to adjust attention weights adaptively. By 

penalizing overly attended regions and redistributing attention 

towards other relevant areas, the model's capacity to capture 

global information is enhanced. As the layers deepen, the drop 

probability decreases, leading to more stable training. The 

details are detailed below: 

The system calculates the dot products between each key 

and the query when a feature map consists of a query 𝑄 ∈

ℝ𝑛ℎ𝑛𝑤×𝑛𝑐 , keys 𝐾 ∈ ℝ𝑛ℎ𝑛𝑤×𝑛𝑐 , and values 𝑉 ∈ ℝ𝑛ℎ𝑛𝑤×𝑛𝑐 . 

Each result is scaled down by a normalizing factor √𝑑𝑘 . 

Subsequently, a random mask matrix 𝑀 ∈ ℝ1×(𝑛ℎ𝑛𝑤×𝑛ℎ𝑛𝑤)  is 

created, and its specifics are determined as outlined below: 

𝑚𝑗 = {
0 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑚

−∞ 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚
  (16) 

The attention weight matrix is derived in part from the mask 

matrix. As a result, the following is how each patch's output 

within the attention layer is calculated: 

𝑜 = ∑ (
𝑚𝑗𝑝𝑗

∑ 𝑚𝑗𝑝𝑗
𝑛ℎ𝑛𝑤
𝑗=1

)
𝑛ℎ𝑛𝑤
𝑗=1 𝑣𝑗 = ∑ 𝑝𝑗

𝑛ℎ𝑛𝑤
𝑗=1 𝑣𝑗   (17) 

𝑝𝑗 =
𝑒𝑥𝑝(

𝑞𝑘𝑗
𝑇

𝑠𝑐𝑎𝑙𝑒
)

∑ 𝑒𝑥𝑝(
𝑞𝑘𝑗

𝑇

𝑠𝑐𝑎𝑙𝑒
)

𝑛ℎ𝑛𝑤
𝑗=1

=
𝑒𝑥𝑝(𝑚𝑗+

𝑞𝑘𝑗
𝑇

√𝑑𝑘
)

∑ 𝑒𝑥𝑝(𝑚𝑗+
𝑞𝑘𝑗

𝑇

√𝑑𝑘
)

𝑛ℎ𝑛𝑤
𝑗=1

  (18) 
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where, 𝑞𝑖  stands up query of 𝑖𝑡ℎ  patch, 𝑘𝑖  corresponds key of 

𝑗𝑡ℎ patch, 𝑣𝑗 represents value of 𝑗𝑡ℎ patch. 

During training, the fixed probability is replaced with the 

number of dropped keys decreases as the layers deepen. The 

enhanced details and the structure of DViT are illustrated in Fig. 

2.

 

(a)                                            (b) 

Fig.2. The details of the improved ViT.

3. The proposed method 

The proposed URP-CVAE-MGAN method combined with 

DViT for diagnosing gear faults is illustrated in Fig.3. 

Step 1 Gear signal collection and normalization: One-

dimensional vibration signals for gear in health and multi-fault 

states are collected using sensors during the gear fault 

experiment. The signals, which generally vary in scale, are 

normalized to improve diagnostic efficiency and to handle 

various feature types. 

Step 2 Signal transforming into the recursive image: The 

one-dimensional vibration signals for gear, both in health and 

multi-fault states, are transformed into two-dimensional 

recursive images using URP. This helps remain more fault-

related information and enhances feature extraction. 

Step 3 Image sets expansion: The URP images are divided 

into a training set, which is used to train the proposed CVAE-

MGAN model, generating an adequate number of fault samples 

for model training. 

Step 4 Fault diagnosing: The generated samples, along with 

the original training set, are split in a 7:2:1 ratio into the training 

set, validation set, and testing set. These sets are then input into 

the DViT model for training and validation. The optimal model 

is saved and employed in the testing set, ultimately outputting 

the diagnostic results. 

Data preprocessing 

Start

The collection of vibration signal from the gear under health and fault state

Data normalization 
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Fig.3. The implementation details of the URP-CVAE-MGAN 

DViT method. 

4. Experiment 

To assess the performance and superiority of the proposed 

method, two comprehensive case studies are conducted. The 

method is implemented on a computing platform equipped with 

an Intel Core i5-14400F 10-core CPU operating at 2.5GHz, an 

NVIDIA GeForce RTX 4060Ti GPU, and utilizing software 

such as Matlab R2022a, Python 3.8. 
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4.1. Case1: analysis of the SEU datasets 

1) Experiment details and dataset preprocessing 

The experiment data are obtained from a gear fault 

experiment conducted at Southeast University (SEU), and the 

related details of the experiment are demonstrated in Fig.4 [44]. 

The gear fault types are labeled as 1, 2, 3, 4 and 5 

corresponding to Health, Chipped, Missing, Cracked, and Worn 

respectively. They primarily occur in parallel-axis gearboxes. 

The sampling frequency is 5120Hz, and the gear operates under 

a 20HZ-0V condition with an input shaft speed of 1200 rpm and 

a torque of 0 Nm. Three-channel signals are collected using 

608A11 sensors and the second channel signal is used in this 

study. For each gear state, the vibration signals are normalized 

based on 784000 sampling points. 

 

Fig.4. The specific setup for the experiment about the gearbox 

dataset. 

2) Fault feature enhancement based on URP 

The one-dimensional normalized vibration signals under 

different fault states are transformed into two-dimensional grey-

scale images using URP. This conversion improves processing 

speed and highlights key features. Where, according to the gear 

input shaft speed and sampling frequency, every 784 points, 

containing at least two fault features, are converted into a URP 

image, resulting in a total of 1000 samples  

3）Sample generation based on the URP-CVAE-MGAN 

a) Creation of imbalanced and small sample sets 

In practical applications, gear faults are rare, with varying 

types and degrees of severity. The number of samples in the 

healthy state often far exceeds the number of faulty samples, 

leading to an imbalanced dataset. The URP-CVAE-MGAN is 

used to generate additional samples to address the small and 

imbalanced sample problem. The accuracy of fault diagnosis is 

verified by Dropkey ViT. In this part, the creation of small and 

imbalanced sample sets is illustrated in the Table. 1. 

Table 1. The creation of sample sets. 

 
Sample 

set 

Training sample 

P 
Testing 

sample 
Labels 

1 2 3 4 5 

Imbalanced 

sample 

1 800 800 800 800 800 100% 200 

2 800 600 600 600 600 75% 200 

3 800 400 400 400 400 50% 200 

4 800 200 200 200 200 25% 200 

Small 

sample 

5 500 500 500 500 500 100% 200 

6 300 300 300 300 300 100% 200 

7 100 100 100 100 100 100% 200 

Note: P represents the degree of imbalanced samples. Its 

definition is the proportion of small samples to normal samples. 

b) Parameter setting of the proposed generated model 

The CVAE-MGAN model parameters are set as follows, the 

batch size is 128, the noise vector is 100, the epoch is 500, the 

learning ratio is 0.0001, and Adam is selected as the optimized 

function. The iteration process is drawn in Fig.5. 

 

Fig.5. The training details of the CVAE-MGAN model. 

From Fig.5, the losses of both the generator and the 

discriminator gradually decrease as iterations increase. By the 

500th iteration, the generator’s loss approaches 0.4. while the 

discriminator’s loss stabilizes near 0.2, both remaining below 

0.5. These results indicate that the generator can produce fault 

samples with probability distribution closely resembling real 

samples after multiple adversarial iterations. The generated 

samples using the best-generation model are shown in Fig.6. 
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           (d)                           (e)                            (f) 

           

                      (g)                                    (h) 

           

                      (i)                                     (j) 

Fig.6. URP diagrams for five types of gear faults based on 

the CVAE-MGAN for generated and original samples. (a)-(c) 

Label 1, 2, 3 from the original samples. (d)-(f) Label 1, 2, 3 from 

the generated samples. (g)-(h) Label 4,5 from the original 

samples. (i)-(j) Label 4,5 from the generated samples. 

URP shows the periodicity, stability, and complexity of gear 

vibration signals, as well as fault state information. In healthy 

states, it exhibits a regular and uniform grid-like structure, 

reflecting strong signal periodicity and repeatability due to 

proper gear meshing and minimal dynamic disturbances. Under 

faulty states, the overall regional density becomes uneven as 

faults disrupt the signal’s periodicity. For example, in the 

chipped state, the upper left corner of the diagonal retains  

a uniform grid structure, but the stripes in the diagonal area 

appear slightly blurred due to irregular high-frequency 

components introduced by gear damage, reducing periodicity 

and signal repeatability. In the missing state, symmetry is 

clearly broken, and the grid structure becomes highly irregular, 

as imbalanced gear meshing causes irregular impacts, almost 

eliminating periodicity. In the cracked state, a fuzzy gridline 

structure emerges, indicating gear operation instability. In the 

worn state, the overall structure becomes relatively chaotic, 

with the introduction of low-frequency vibration components 

disrupting signal stability and enhancing nonlinearity.  

After expanding the original samples using CVAE-MGAN, 

the generated samples show a high degree of structural 

similarity to the original samples. The generated healthy state 

samples retain a regular and uniform grid-like structure. In the 

chipped state, while the distribution of points in the diagonal 

area of the generated samples is not as clear as that in the 

original, it still reserves a somewhat grid-like pattern 

resembling the original state. In the missing state, the generated 

samples exhibit earlier concentrated vertical and horizontal line 

densities, maintaining an irregular point distribution. The 

generated cracked state samples reflect the same fuzzy network-

like structure as the original samples. Similarly, the generated 

worn state samples preserve the chaotic structure seen in the 

original, especially in the upper left region of the diagonal. 

Overall, the CVAE-MGAN model demonstrates strong 

performance in sample feature extraction. The generated 

samples maintain the essential structure and key features of the 

original samples with only minor differences in certain states. 

This fully confirms the effectiveness of the CVAE-MGAN 

model in expanding gear samples under small sample imbalance 

conditions, ensuring high similarity and accuracy. 

c) Analysis under imbalanced and small sample conditions 

The DViT parameters are configured as follows: batch size 

is sixteen, learning rate is 0.001, and weight decay is zero. The 

optimizer used is SGD, with 50 epochs. Patch Size is 16×16, 

while the Layers parameter is 12. The Hidden size is 768. MLP 

size is 3072, and the number of attention heads is 12. 

Additionally, the multi-head attention mechanism incorporates 

a novel Dropkey regularization technique for the first time. 

Based on imbalanced sample sets detailed in Table 1, the 

CVAE-MGAN is trained on seven sample sets to address the 

imbalanced and small sample issues, splitting the dataset into  

a 7:2:1 ratio for training, validation, and testing. The accuracy 

of the DViT diagnosis model is evaluated using an adequate 

number of samples, as illustrated in Fig.7. 

 

           (a)                            (b)                           (c) 

 

        (d)                             (e)                             (f) 
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(g) 

Fig.7. Accuracy in identifying faults under imbalanced sample 

sets and small sets based on case 1. (a) Set1. (b) Set2. (c) Set3. 

(d) Set4. (e) Set5. (f) Set6. (g) Set7. 

d) Comparative analysis with other data generation methods 

The performance of the proposed CVAE-MGAN is also 

evaluated using five indicators: Root Mean Squared Error 

(RMSE), Structural Similarity (SSIM) [45], Peak Signal-to-

Noise Ratio (PSNR) [46], Fréchet Inception Distance (FID), 

Inception Score (IS) [47]. Several widely used, representative, 

and closely related generative models are used as comparative 

methods including CVAE-GAN (which adds conditional 

variables to the combination of VAE and GAN), VAE-GAN 

(which is the combination of VAE and GAN), VAE, GAN, and 

CGAN (which introduces conditional variables into GAN) [48-

51]. These models have demonstrated strong performance in 

data generation and have been successfully applied to solve gear 

fault diagnosis problems under imbalanced and small sample 

conditions. The mean results for the five indicators between the 

original and the generated images are summarized in Table 2. 

Table 2. The comparison results for different generation 

methods based on Case1.  

Methods RMSE SSIM PSNR FID IS 

The proposed method 2.9344 0.9410 38.7803 0.0008 3.0140 

CVAE-GAN 3.1467 0.9341 35.7896 0.0103 2.7895 

VAE-GAN 3.2678 0.9067 30.8970 0.1090 2.2345 

VAE 4.7896 0.9134 20.9809 0.1134 0.8890 

GAN 3.5689 0.8990 22.3423 0.1506 0.9998 

CGAN 3.4896 0.9209 33.4576 0.0388 2.5689 

From Table 2, it is evident that the samples generated by the 

CVAE-MGAN model outperform those produced by the CVAE-

GAN, VAE-GAN, VAE, GAN, and CGAN models across all 

five evaluation indicators. The generated samples from the 

CVAE-MGAN contain less noise, convey more useful 

information, and exhibit higher quality and diversity. They also 

show a closer distribution to the original images, with greater 

similarity. The effectiveness of introducing conditional 

variables and the mean feature difference function into VAE and 

GAN, as well as combining VAE and GAN, is fully verified. 

Additionally, the sample generation capability of the CVAE-

MGAN model demonstrates a clear advantage over other 

Conditional Generative Adversarial Networks (CGAN) 

methods. The experiment confirms that the CVAE-MGAN 

model effectively addresses the challenges posed by imbalanced 

and small samples. 

e) Comparison with other diagnosis models 

The comparison includes the ViT before improvement, 

MLP-Mixer, AlexNet, and ResNet, which are referenced as 

Method 1, 2, 3, and 4, respectively [52-54]. The samples are 

divided into training, validation, and testing sets following  

a 7:2:1 ratio across all seven sets (Set1 to Set7). The average 

diagnostic accuracy of each model is shown in Fig.8. 

Set1 Set2 Set3 Set4 Set5 Set6 Set7

0.88
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Method 3             0.9670      0.9560      0.9340      0.9470     0.9280      0.9100 
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0.9908 0.9834 0.9784 

 

Fig.8. The diagnosis accuracy from different models. 

From Fig.8, the proposed method consistently maintains 

high accuracy, achieving at least 97.84%, even under conditions 

of extreme imbalance or scarcity of samples. Compared to the 

original ViT, DViT captures more fault information in limited 

sample conditions, resulting in a 1.784% improvement in 

diagnostic accuracy. The highest improvement, relative to other 

methods, reaches 7.84%. In contrast, the diagnostic 

performance of other methods is heavily influenced by sample 

conditions. Even when additional samples are generated, these 

models overly rely on the original data, limiting their fault-

detection capabilities. As a result, their accuracy remains around 

90% under extremely small and imbalanced conditions. 

Five evaluation indicators—Accuracy, Precision, Recall, 

and F1-score—are used to further compare the method's 

performance with those approaches [55]. Fig. 9 presents the 

final comparative results. 
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Fig.9. The performance comparison results for all methods. 

From Fig.9, the DViT exhibits the highest accuracy, 

precision, recall, and F1 score among all methods, fully 

validating the model’s diagnosis performance. For example, 

Precision improves by 0.4% compared to the original ViT 

model and by up to 6% compared to other methods. The 

effectiveness of the proposed diagnosis model has been 

thoroughly confirmed. 

f) Ablation Studies 

Table 3 The experiment results of ablation studies 

Method Accuracy/(%) 

WT-CVAE-MGAN-DVit 97.23 

URP-VAE-MGAN-DVit 97.86 

URP-CVAE-GAN-DVit 98.02 

URP-CVAE-MGAN-Vit 97.70 

URP-CVAE-MGAN-Dvit 99.08 

To verify the contribution of each component in the 

proposed method, ablation experiments are conducted, with 

results shown in Table 3: 

(1) WT-CVAE-WGAN-DVit: Converts 1D gear signals into 

common time-frequency maps based on wavelet transform 

(2) URP-VAE-WGAN-DVit: Omits conditional variables in 

the autoencoder 

(3) URP-CVAE-GAN-Dvit: Retains the original GAN loss 

function without switching to the mean feature difference 

function. 

(4) URP-CVAE-WGAN-Vit: Retains Dropout instead of the 

Dropkey regularization method in Vision Transformer. 

(5) URP-CVAE-WGAN-Dvit: The method proposed in this 

article 

As shown in Table 3, traditional time-frequency maps 

derived from WT capture only local features in time and 

frequency, leading to a 1.85% reduction in classification 

accuracy. This demonstrates the importance of URP in 

extracting the nonlinear features from gear fault signals. When 

conditional variables are excluded from CVAE-MGAN, the 

generator fails to associate specific fault types with conditional 

information, reducing the diversity of generated samples and 

their correlation with specific fault types, ultimately resulting in 

a 1.22% decrease in diagnostic accuracy. This indicates the 

necessity of conditional variables in maintaining the correlation 

between generated samples and actual fault conditions. The 

removal of the mean average feature difference loss function 

further increases the discrepancy between some generated 

samples and actual fault samples, reducing sample quality and 

decreasing diagnostic accuracy by 1.06%. Retaining the original 

Dropout regularization method weakens the model's ability to 

capture comprehensive fault features, resulting in a 1.38% 

decrease in accuracy. These findings demonstrate that Dropkey 

regularization is more effective than traditional Dropout for 

representing global information. 

The ablation experiments confirm that each component of 

the proposed method plays a critical role in enhancing 

performance. URP improves nonlinear feature extraction, 

conditional variables ensure sample specificity, the mean 

feature difference loss maintains sample quality, and Dropkey 

improves global feature representation. 

4.2. Case2: analysis of the SUT datasets 

1) The experiment’s detail and the dataset preprocessing 

The Shenyang University of Technology (SUT) datasets are 

obtained from a gear fault experiment conducted on the model 

LY-SCL-04 experiment bench, as illustrated in Fig.10. 

 

                      (a)                                              (b) 

Fig.10. The specific setup for the experiment about planetary 

parallel axis gearbox faults. (a) Basic structure (b) Details. 

The different fault types and severities, including cracked 

faults of 3mm and 6mm and light and severe corrosion, are 

labeled as 2, 3, 4, and 5, respectively. Health is labeled as 1. The 

faults occur in the sun gear of the ZLS120-5-S planetary 

gearbox. The motor speed is controlled by the HZXT-008 

system, ranging in [2000, 4000]rpm with increments of 100rpm, 

and loads are set at 0%, 20%, and 50%. The faulty vibrational 

signals from x and y direction of faulty gear are collected using 

the Jiangsu DonghHua DHDAS dynamic system and two CA-
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YD-182 piezoelectric acceleration sensors. Based on prior 

experience, a sampling frequency of 5120 Hz is used to capture 

fault characteristics effectively adhere to the sampling theorem, 

and prevent signal distortion. To avoid external influences, the 

experiment is conducted in a soundproof and shockproof 

environment. Similarly, the second channel signal is applied in 

this part. The vibrational signals are normalized based on 

784000 sampling points for each gear state. 

3）Sample generation based on the URP-CVAE-MGAN 

a) The setting of the imbalanced and small sample and the 

parameter setting of the proposed generated model 

In this part, small and imbalanced samples occur not only 

with different faulty types but also with different faulty 

severities. Given the same number of labels as in Case 1, the 

same sample sets are employed. To ensure accuracy, and 

repeatability and to more comprehensively evaluate the 

method’s performance, the same parameters are used as in case 

1. Finally, URP images are shown in Fig.11 for original and 

generated samples after obtaining the best-generation model 

under different faulty types and severities. 

From Fig.11, distinct structural patterns are observed for 

different gear fault types, while similar structures appear across 

varying fault severities. In the healthy state, a very regular and 

uniform grid-like structure is displayed, which is replicated in 

the generated sample. In the cracked state, the 3mm crack shows 

an uneven distribution between the stripes, while the 6mm crack 

exhibits denser, more blurred horizontal and vertical lines. The 

generated samples accurately reflect the fuzzy point distribution 

and capture the periodic disturbances caused by varying degrees 

of crack faults. In the corrosion state, the structure remains 

mostly uniform, except for a blurred region above the center of 

the symmetrical point. As the corrosion deepens, the grid-like 

structure becomes more indistinct. The generated samples of the 

lightly corroded state maintain a relatively regular grid-like 

structure, with the concentration of blurring in the lower right 

corner of the diagonal. In the heavy corrosion state, the grid 

structure in the generated samples deteriorates significantly, 

indicating the increased complexity of the fault. Although subtle 

differences exist, overall, the generated samples still preserve 

the key structural features and patterns of the original samples, 

demonstrating the generative mode’s high effectiveness in 

sample generation. 

   

            (a)                          (b)                           (c) 

   

             (d)                         (e)                           (f) 

    

                          (g)                              (h) 

    

                            (i)                             (j) 

Fig.11. URP diagrams for five types and degrees of gear faults. 

(a)-(c) Label 1, 2, 3 from the original samples. (d)-(f) Label 1, 

2, 3 from the generated samples. (g)-(h) Label 4,5 from the 

original samples. (i)-(j) Label 4,5 from the generated samples. 

b) Analysis under imbalanced and small sample conditions 

Based on the imbalanced sample sets details in Table Ⅰ, the 

trained CVAE-MGAN model is applied to supplement 

imbalanced samples. Sufficient samples are input to the 

Dropkey-ViT diagnosis model to assess the accuracy of fault 

diagnosis, using the same parameters, training, validation, and 

testing sets as Case1. The final diagnosis accuracy across seven 

sample sets is shown in Fig.12. 
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(a)                          (b)                          (c) 

 

(d)                         (e)                         (f) 

 

(g) 

Fig.12. Fault identification accuracy of imbalanced sample sets 

and small sets based on case 2. (a) Set1. (b) Set2. (c) Set3. (d) 

Set4. (e) Set5. (f) Set6. (g) Set7. 

From Fig.12, Label 1 consistently achieves 100% accuracy. 

While the diagnosis accuracy remains high across all data states, 

a slight decrease is observed as the sample set becomes 

increasingly imbalanced and reduced. Nevertheless, the 

diagnostic accuracy remains at or above 96%. 

c) Comparison with other data generation methods 

The average results for five indicators RMSE, SSIM, PSNR, 

FID, and IS are shown in Table 4 between the original images 

and the generated images. These results are based on the 

ablation experiments and comparison models. 

Table 4. The comparison results for different generation 

methods based on Case2. 

Method RMSE SSIM PSNR FID IS 

The proposed method 3.6997 0.8821 36.7676 0.0162 3.4043 

CVAE-GAN 4.0090 0.8090 34.0980 0.0189 3.0908 

VAE-GAN 4.2343 0.7589 33.4454 0.2367 2.7912 

VAE 5.7789 0.7092 30.6733 0.3567 2.5547 

GAN 5.0909 0.7123 31.9998 0.2498 2.0089 

CGAN 3.8003 0.8222 32.0078 0.0879 2.9098 

From Table 4, it is evident that the proposed method 

outperforms other models across all indicators except for FID, 

where the CVAE-MGAN model shows a slightly higher value 

than the CVAE-GAN. This suggests that the introduction of the 

mean feature difference function improves the sample 

distribution for the SUT dataset. Although the SSIM only 

reaches 0.8821, the highest among the compared methods. It 

indicates a discrepancy between the self-made testing system 

dataset and publicly available datasets, likely due to differences 

in experimental environments. Nonetheless, the results confirm 

the proposed strategy effectively generates high-quality 

samples. The CVAE-MGAN model demonstrates strong 

capabilities in addressing issues related to unbalanced samples 

and small samples. 

d) Comparison with other diagnosis models 

The same comparison methods are applied to verify the 

proposed method’s diagnosis performance across various fault 

types, particularly at different fault severities. Using Set3 from 

imbalanced samples and Set6 from small samples as examples, 

the confusion matrices in Fig.13 and Fig.14 illustrate the results. 

The diagnosis accuracy of the proposed method consistently 

surpasses the comparison methods, with only a few 

misclassifications, mostly among different fault severities 

(Fig.13). This may be attributed to limitations in experimental 

equipment and sensor performance in the self-designed 

experiments compared to publicly available datasets. The 

diagnosis results based on DViT show minimal 

misclassifications, highlighting its improved global fault 

information capture and more accurate diagnosis. By contrast, 

the last three methods exhibit more misclassifications. In Fig.14, 

the proposed method achieves the highest accuracy across all 

faulty types and severities, maintaining at least 97.0% accuracy 

even with small sample conditions. The strong diagnostic 

performance of the proposed method under unbalanced and 

small sample conditions has been once again verified. 

 

(a)                           (b)                           (c) 

        

(d)                                  (e) 

Fig.13. Test results from different methods for the imbalanced 

sample set. (a) The proposed method. (b) Method 1. (c) 

Method 2. (d) Method 3. (e) Method 4. 

0.95

0.96

0.97

0.98

0.99

1.00

5

4 3

2

1

0.95

0.96

0.97

0.98

0.99

1.00

5

4 3

2

1

0.95

0.96

0.97

0.98

0.99

1.00

5

4 3

2

1

0.95

0.96

0.97

0.98

0.99

1.00

5

4 3

2

1

0.95

0.96

0.97

0.98

0.99

1.00

5

4 3

2

1

0.95

0.96

0.97

0.98

0.99

1.00

5

4 3

2

1

0.95

0.96

0.97

0.98

0.99

1.00

5

4 3

2

1



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

 

(a)                          (b)                           (c) 

        

(d)                              (e) 

Fig.14. Test results from different methods for a small sample 

set. (a) The proposed method. (b) Method 1. (c) Method 2. (d) 

Method 3. (e) Method 4. 

5. Conclusions 

The URP-CVAE-MGAN-DViT method is introduced in this 

article, and the effectiveness of the proposed method is verified 

with different imbalances and small sample conditions across 

two datasets containing different gear faulty types or severities. 

The main conclusions drawn from the experimental results are 

as follows. 

(1) The proposed method outperforms other generative 

models in terms of the quality and diversity of generated 

samples. The similarity between generated samples and original 

samples, as measured by RMSE, SSIM, PSNR, and FID, is the 

highest level among all methods. Even under extremely 

unbalanced conditions, the proposed method maintains  

a diagnostic accuracy of 97%, fully demonstrating its 

effectiveness in addressing sample imbalance problems. 

(2) The proposed method outperforms the performance than 

other diagnosis models as evidenced by indicators 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒 𝑐 𝑎𝑙𝑙, and 𝐹1, all indicators have improved to 

varying degrees, fully confirming the effectiveness and 

superiority of this method in comprehensively capturing 

features compared to the previous model. 

(3) The ablation studies verify the importance of each 

component of the proposed method. The threshold-free 

recursive graph analysis, conditional variables, and mean 

feature loss function all contribute significantly to the model’s 

performance. These components work together to improve both 

the quality and diversity of sample generation, improving the 

ability to capture fault characteristic information, but also 

enhancing the diagnostic ability of the model when dealing with 

imbalanced samples, demonstrating its potential for practical 

applications. 

The proposal is also applicable to other rotating machines. 

But there are also some limitations in this study, the imbalance 

between different types has not been fully considered yet. Due 

to constraints such as computational resources, existing 

research focus, and experimental conditions, we have only 

chosen a more classical method for comparison. Future work 

will consider the imbalance between different categories and 

explore in depth the applicability and potential of more 

advanced models in this field.
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