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 In the context of Power Systems, scheduling maintenance activities is a 

recognized Non-deterministic Polynomial-Time (NP) hard optimization 

problem. This complexity stems from the dynamic nature of Power 

Systems and the varied conditions within them. When wind energy is 

integrated into the system through offshore wind farms and is composed 

of a large volume of small units, the challenges become even more 

remarkable due to the uncertainties introduced by wind variability and 

the need to coordinate a high volume of maintenance activities. This 

paper tackles this complex optimization issue using a probabilistic-

focused twin model that addresses uncertainties and enumeration with 

scenario analysis based on simulations. The proposed solution quantifies 

and optimizes a probabilistic indicator estimated using the Monte Carlo 

method, and demonstrates feasible heuristic optimization algorithms that 

balance computation time and accuracy. IEEE-RTS is used to benchmark 

the proposed solution and to discriminate the best feasible heuristic 

optimization algorithm. 
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1. Introduction 

There is interest, especially in Europe, to increase wind energy 

capacity to meet the 2030 Climate and Energy goals. Reports on 

the area [12] show 255 GW of wind capacity, 225 GW onshore 

and 30 GW offshore. Studies and research also search to see 

where the perspective is heading, and among green energy 

alternatives, wind farms (onshore and then offshore) appear to 

be the focus from a capacity point of view [6]. Specifically, the 

nature of wind is fundamental to achieving the desired result, 

and studies in the area evaluate the potential of Europe from this 

perspective [17]. In Europe, the need to introduce wind energy 

aligns with climate change and becomes more relevant every 

day [13]. However, the increasing integration of these 

renewable energy sources, particularly offshore wind farms, 

into Power Systems, has introduced new complexities in 

operation, management, and maintenance. Offshore wind farms 

consist of numerous small generating units spread across 

oceanic areas, each subject to the stochastic nature of wind 

conditions. This variability introduces significant uncertainties, 

complicating the already challenging task of scheduling 

maintenance activities, which, in addition, must be coordinated 
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with the interconnected Power System. Furthermore, given 

oceanic environmental conditions, wind turbine generators 

suffer from accelerated degradation, making it relevant to 

introduce the reliability of their operating performance [11] in 

the design of the maintenance schedule. 

Maintenance scheduling in Power Systems is recognized as 

a nondeterministic polynomial-time (NP) hard optimization 

problem. The complexity of this problem arises from the 

dynamic nature of Power Systems, the need to maintain  

a balance between supply and demand, and the requirement to 

ensure system reliability amidst varying operational conditions. 

When wind energy is incorporated, these challenges increase 

due to the unpredictable nature of the wind and the need to 

coordinate many maintenance tasks for all individual units in  

a precise manner. 

In response to these challenges, this paper presents  

a reliability-oriented twin model designed to optimize 

maintenance scheduling for offshore wind farms integrated into 

a Power System. The model employs a probabilistic approach, 

using Monte Carlo simulations to estimate a continuous 

probability distribution function. This function is used to 

quantify and optimize a probabilistic indicator, specifically the 

well-defined expected-energy-not-supplied (EENS). The Monte 

Carlo method allows for the aggregation of multiple 

uncertainties and provides a clear, measurable target for 

optimization. In this paper, we contribute with a solution, where 

the probabilistic approach is essential to optimize the 

underlying modeled process. Within the reliability field, there 

are well-established standard methodologies; however, not all 

are recycled in the probabilistic model proposed in this 

contribution. Specifically, in our proposed solution, we use the 

Reliability Block Diagram (RBD) model [20] to address the 

Power System's functional structure, composed of many 

generator units, and the Markov model [30] to simulate the 

stochastic transitions between failures and repair times of each 

component considered in the system, which at the same time is 

convoluted with the planning maintenance process to recreate 

all the potential states of the element modeled. This organic 

connection allows for the simulation and coordination of 

planned and unexpected events. 

The probabilistic approach proposed to solve the underlined 

optimization problem has weaknesses from the optimization 

perspective. Since we estimate a risk indicator (EENS) via the 

Monte Carlo method, the function to be optimized ends as  

a black box, where the optimization algorithm manages the 

inputs and outputs, but the functional relationship inside is not 

an explicit equation. This condition forces us to discard 

traditional optimization algorithms and use heuristics. As we 

know, heuristics do not provide a guarantee of finding a global 

minimum. However, there is an extensive family of heuristic 

optimization algorithms that increase in applicability and 

improve precision [8], and it is a usual practice to test more than 

one algorithm for a specific problem. Furthermore, when the 

optimization problem is well known, specific heuristics are 

designed to solve it [26]. 

The design of heuristics to solve specific problems and the 

benchmark between them is a common practice [27] and [28]. 

When complexity and singularities merge into a unique problem, 

optimization algorithms must be adapted to address the 

interactions of several layers to be optimized, leaving open the 

conclusion of which algorithm is the best to be used. The 

comparison between heuristic strategies is usually addressed 

with metrics. Mainly using the best, worst, mean, and standard 

deviation [7]. Certainly, for the same scenario to be evaluated, 

the same conditions must be met. 

In our case, the proposed model integrates advanced 

heuristic optimization algorithms to balance computation time 

and accuracy, ensuring the delivery of reliable performance 

within given scenarios. These algorithms [23], including 

Particle Swarm Optimization (PSO), Nonuniform Pattern 

Search (NUPS), Surrogate Optimization, and Genetic 

Algorithm (GA), are evaluated for their effectiveness in 

minimizing the EENS, demonstrating their applicability to the 

complex optimization landscape of Power Systems 

maintenance. We decided to benchmark these algorithms using 

the best evaluation as the metric to select the most appropriate 

option to solve the underline optimization problem. 

Furthermore, even when we focus specifically in this paper 

on the optimization module, the model introduces and 

incorporates a digital twin framework, enhancing real-time 

monitoring and performance optimization by creating virtual 

representations of physical assets. This practice has recently 

been applied to the maintenance modeling process [29]. This 

point is briefly described in the architecture of the solution. This 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

framework enables continuous updates of system status, 

optimizing maintenance schedules based on current conditions 

and historical data. By focusing on the probabilistic modeling 

and simulation aspects, this study lays the groundwork for 

future research to refine model parameters and explore 

additional optimization algorithms. 

Specifically, twin models are widely applied for 

maintenance purposes in various industries. Maintenance-

focused digital twins create virtual representations of physical 

assets, such as machinery, equipment, or infrastructure, to 

monitor their condition, analyze performance, and optimize 

maintenance activities. Using digital twins for maintenance 

offers several benefits, including increased efficiency, reduced 

downtime, system resilience, and improved asset reliability. 

Among many areas of application in the field, in our 

proposal, we use the data generated from the system's operation 

to continuously update the system's status by calibrating all the 

model parameters and variables time-dependent every time  

a scenario is loaded. Certainly, the system becomes more 

resilient because the virtual counterpart model reflects the status 

of the modeled physical system. Essentially, we elaborate and 

apply Condition Monitoring [4]. In addition, we also use 

Performance Optimization [10], where maintenance teams 

(technology users) can identify ways to optimize asset 

performance and efficiency by simulating different operating 

conditions and scenarios on the digital twin. These simulations 

allow them to experiment with varying maintenance strategies 

and assess the impact on asset reliability, availability, and 

productivity. This point is crucial in our proposed solution. We 

are modeling an existing process, so using scenarios of potential 

maintenance outcomes and the historical data related to the 

system operation, we optimize the process using a holistic 

probabilistic indicator, which integrates through a convolution 

product, the system functional capacity, and the system 

functional requirements. 

The application of digital twins for maintenance is attracting 

attention in all industries, including Manufacturing [16], 

Aerospace [25], Transportation [5], and Energy [24]. As 

technology advances and data integration becomes seamless, 

the use of digital twins for maintenance purposes is expected to 

become even more prevalent, transforming how maintenance is 

performed and enhancing overall asset management strategies. 

In our proposed idea, we improve the use of Data-Driven 

Reliability (DDR) [15] to calibrate the parameters and variables 

of the model, keeping them up-to-date and improving the 

system's resilience. Usually, almost all model parameters and 

variables depend on data in a specific period (time-dependent), 

so merging the online connection through technology 

integration and implementing comprehensive logical decision-

making flow diagrams with the help of Machine Learning (ML) 

makes it possible to address model self-calibration. 

The validation of the proposed model is conducted using the 

IEEE Reliability Test System (IEEE-RTS) described in [9], 

ensuring its accuracy and applicability. Counting with a test 

system, allows us to benchmark the features of the proposed 

model. Within the literature consulted on this matter, shown in 

Table 1, the preference in approach appears to be risk-oriented, 

since the reference using a cost-oriented approach at the end 

applies risk constraints. In the case of methods, since we aim to 

apply this solution in real Power Systems, the Monte Carlo 

simulation method seems to be the best choice from the 

scalability point of view, allowing also the hourly resolution 

window that better represents the system load requirements. The 

proposal presented here is in line with the trends and in addition 

offers error control accuracy and ingest the maintenance 

dispersion scenario, a set of wind farms in this case, and 

potentially can be adaptable to consider other green sources of 

energy. In this paper, various scenarios are assessed, including 

the dispersion of maintenance activities and the integration of 

offshore wind farms, showcasing the model's adaptability to 

different conditions. The introduction of dispersed maintenance 

activities reflects a more realistic representation of actual 

operations, while the integration of offshore wind farms 

highlights the model's capability to enhance system resilience 

and reliability.
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Table 1. Maintenance Scheduling solutions for IEEE-RTS. 

Dimensions 

Reference Approach Algorithm Methods 
Resolution 

window 
Error Control Scalability 

Maintenance 

dispersion 

Wind 

Farms 

[3] Risk Recursive technique 

Risk 

leveling 

technique 

Weekly 

Uncertain, the 

enumeration is 

truncated 

Hard, based on 

enumeration 
No No 

[18] Risk 
Dynamic Programming 

Optimization Algorithm 

Risk 

leveling 

technique 

Weekly 

Uncertain, the 

enumeration is 

truncated 

Hard, based on 

enumeration 
No No 

[19] 

Mainly 

cost, with 

risk 

constraints 

Genetic Algorithm (GA) 
Monte Carlo 

simulation 
Weekly Fix sample Easy No No 

[21] Risk 

Particle Swarn 

Optimization (PSO) and 

Genetic Algorithm (GA) 

Monte Carlo 

simulation 
Hourly Fix sample Easy No No 

This 

proposal 
Risk 

Particle Swarm 

Optimization (PSO), 

Nonuniform Pattern 

Search (NUPS), 

Surrogate Optimization, 

and Genetic Algorithm 

(GA) 

Monte Carlo 

simulation 
Hourly Less than 5% Easy Yes Yes 

 

Once we have introduced all dimensions of the discussion, 

we can state that reliability-oriented twin models can be used to 

integrate offshore wind farm maintenance activities, and the 

remaining sections of the paper are as follows. First, the section 

Materials and Methods conceptualizes and formalizes the 

proposed model. Here, we list indices, parameters, and variables, 

we show the architecture of the solution, and we define the 

pseudo-logic of the Monte Carlo method and its connection with 

the optimization problem. Then, in the section Results and 

Discussion, we introduce the parameterization used as a starting 

point for validation, and then we change the base scenario to 

reflect the objectives of this research, aiming to challenge the 

applicability of the proposed solution. Finally, the section 

Conclusions summarizes the efforts of this contribution and 

future work. 

2. Materials and Methods 

This section describes the probabilistic-oriented optimization 

model to coordinate maintenance activities scheduling. Here, 

we present the conceptualization and definition of the model of 

each index, parameter, and variable. The model aims to 

minimize a probabilistic indicator defined as the expected value 

E[Z] of a probability distribution estimated using the Monte 

Carlo method. We list below all indexes, parameters, and 

variables, followed by the conceptualization, which includes 

mainly the architecture diagram illustrating the connections 

between different model layers, and then the formalization, with 

the pseudo-logic algorithm proposed to address the maintenance 

scheduling optimization problem. 

Indices 

i   index of the generator unit 

t   index of time 

k   index of maintenance or failures 

m, n   sub-indexes to denote variation 

N   index of simulation 

S   index of iteration in the optimization 

algorithm 

Parameters 

β   error criterion 

T   simulation time window 

NRNi   number of random numbers generated in the 

i-th generator unit 

NMTi   number of maintenance in the i-th generator 

unit 

C̅i   nominal generator unit capacity 

MTTFi   Mean-Time-To-Failure in the i-th 
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generator unit 

MTTRi   Mean-Time-To-Repair in the i-th 

generator unit 

Mi,k   k-th Time-To-Maintenance of the i-th 

generator unit 

Di,k   k-th Time-Duration-Maintenance of the i-th 

generator unit 

Variables 

�̃�𝑖,𝑘   k-th random Time-To-Failure in the i-th 

generator unit 

�̃�𝑖,𝑘   k-th random Time-To-Repair in the i-th 

generator unit 

Mi,1  the start times for the first maintenance of the 

i-th generator unit 

Ci   stochastic capacity in the i-th generator unit 

zN   risk estimation (Energy-Not-Supplied) at the 

simulation N 

X   stochastic capacity of the generator unit 

system 

Y   forecasted system load 

Z   risk probability distribution function 

E[Z]   conditional expected value (Expected-

Energy-Not-Supplied) of the Z probability distribution function 

V[Z]   variance of the Z probability distribution 

function 

Conceptualization: Architecture Diagram to Solve the 

Optimization Problem 

In this paper, we focus on addressing complex and dynamic 

scheduling challenges of maintenance activities inherent in 

Power Systems, particularly when integrating wind energy 

sources using offshore wind farms and consequently managing 

large volumes of activities in a precise manner. Since we 

recognize the inherent complexity of scheduling maintenance 

activities within Power Systems (NP-hard optimization 

problem), we handle and approach the complexity using 

probabilistic-oriented assessment and the Monte Carlo method. 

The use of the Monte Carlo method to estimate the continuous 

probability distribution function and consequently the 

probabilistic indicator E[Z], which is the corresponding 

expected value, allows the aggregation of multiple uncertainties 

and probabilistic complexity into a single and quantifiable 

probabilistic metric that can be optimized, offering a clear and 

measurable target. Also, the proposed solution involves 

heuristic optimization, since we address the problem with 

Monte Carlo simulations. In other words, the measurable target 

to be used as an optimization reference is the result of  

a simulation. 

This paper includes a demonstration of the feasibility of the 

solution and its performance in given scenarios. This step is 

critical to validating the applicability of the solution in real-

world settings and ensuring reliable results within operational 

constraints. This approach is illustrated in Figure 1, where the 

functional connections described in the modeling stage are 

shown. 

In addition, to understand how the Monte Carlo method is 

applied, Figure 2 illustrates the logic flow of the simulation, 

which is a reshaped view of Figure 1. The process of estimating 

the best maintenance scheduling is simple, and only two 

conditional statements are implemented. The first condition 

aims to guarantee the accuracy of the estimation of the 

probability indicator E[Z] by setting a convergence error for 

each scenario, in this case, a 5% tolerance error. Then, the 

second conditional statement is related to optimization 

algorithm convergence, where the process of optimization ends 

when the difference between consecutive evaluations in the 

objective function is less than 1.0E-06. 

As we can see, the simulation of each potential scenario to 

be evaluated is independent. Given this singularity, the 

optimization algorithm can also propose independent 

maintenance schedules to be implemented. That said, using 

parallel computing is a feature to be explored, and in our case, 

we use this property to speed up the estimation of the solution. 

Figures 1 and 2 illustrate this feature in the connection between 

the optimization algorithm and the objective function. 

Once the starting point of the Mi,1 maintenance scheduling 

chain is known, a simulation is built to estimate the risk 

indicator E[Z] from a probability distribution estimated via the 

Monte Carlo method. This indicator is used to discriminate the 

best maintenance scheduling, since all the other parameters and 

variables in the scenario remain unchanged, and the only 

variable changing is the starting point of the scheduling chain 

under the constraints of the scenario. Knowing that we use  

a simulation approach, to always have comparable simulations, 
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the pseudo-random seed generator is controlled. In this 

implementation, the Mersenne Twister random generator is used 

and restarted at the initial stage of the simulation, ensuring the 

uniform reproducibility of the results. 

In the following conceptualization section, a detailed 

description of the simulation is illustrated and formalized.

 

Figure 1. Architecture diagram to solve the optimization problem. 
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Figure 2. Flow diagram to solve the optimization problem. 

Formalization: Maintenance scheduling optimization 

problem modeling 

I. Knowing the definition (1) of the optimization problem. 

𝑚𝑖𝑛  𝐸[𝑍] = 𝑓(𝑀𝑖,1|𝜃) 

subject to: 

 0 ≤ 𝑀𝑖,1 ≤ 𝑇 − (∑ 𝑀𝑖,𝑘

𝑁𝑀𝑇𝑖
𝑘=2 + ∑ 𝐷𝑖,𝑘

𝑁𝑀𝑇𝑖
𝑘=1 ) 𝑀𝑖,𝑘 ≥ 0 𝐷𝑖,𝑘 ≥ 0(1) 

where: 

Z is a conditional random variable, defined in (2), and it is 

the convolution product of probability distribution functions X 

and Y. 

𝑍 = {
∑ 𝑌𝑡 − 𝑋𝑡
𝑇
𝑡=1 if 𝑋𝑡 < 𝑌𝑡

0 if 𝑋𝑡 ≥ 𝑌𝑡
  (2) 

X is the capacity of the stochastic generation unit system, 

defined in (3), and it is defined as a probability distribution 

function. 

𝑋 = (||)𝑖=1
𝐼 𝐶𝑖    (3) 

Y is the forecast system load and is defined as a probability 

distribution function. The system load is the result of a forecast 

model, either weekly, daily, or hourly resolution. 

E[Z] is the conditional expected value of the Z probability 

distribution function and the optimization target. 

Mi,1 is the start time for the first maintenance of the i-th 

generator unit. 

θ is a set of indexes, parameters, and variables defined later 

coherently in this section. 

T is the simulation time window. 

Mi,k is the k-th Time-To-Maintenance of the i-th generator 

unit, representing the moment in the simulation window when a 

maintenance activity k will be conducted in the generator unit i. 

Di,k is the k-th Time-Duration-Maintenance of the i-th 

generator unit, representing the duration time of the 

maintenance activity k in the generator unit i. 

NMTi is the number of maintenance in the i-th generator unit. 

k is the index of maintenance. 

Note that in the context of Power Systems, if X and Y are 

expressed in Megawatts (MW), t is expressed in hours (h), and 

T is a (one-year) time horizon, then Z represents the expected 

energy not supplied over one year due to the unavailability of 

the generation unit system to supply the system load and is 

expressed in (MWh/year). 

II. An heuristic optimization algorithm proposes a set of xi = 
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Mi,1 starting maintenance time for each generator unit 

considered in the system, given the constraints of the simulation 

window defined in (4). 

0 ≤ 𝑀𝑖,1 ≤ 𝑇 − (∑ 𝑀𝑖,𝑘

𝑁𝑀𝑇𝑖
𝑘=2 + ∑ 𝐷𝑖,𝑘

𝑁𝑀𝑇𝑖
𝑘=1 ) (4) 

Then N Monte Carlo simulations are computed to estimate 

N conditional random values (z1, z2, …, zN), in this context, 

Energy-Not-Supplied (ENS), as follows. 

A. N values of ENS (z1, z2, …, zN) are determined as  

a convolution product between X and Y, given the set of Mi,1 

provided by the optimization algorithm and completing the Mi,k 

chain for each generator unit, where X is the stochastic capacity 

of the generator unit system, and Y is the forecasted system load. 

The convolution product Z is achieved as follows. 

1. For N values of ENS (z1, z2, …, zN) computed by Monte 

Carlo simulations, 

a. First, the capacity distribution function of the generator 

unit system X is computed as follows: 

i. For each generator unit i, 

(1). Given the simulation window T constraint, k-th 

independent random numbers are simulated sequentially �̃�𝑖,𝑘 

and �̃�𝑖,𝑘 , from probability distribution functions that simulate 

the most likely degradation process, i.e., concatenations of 

Time-To-Failure and Time-To-Repair random values. In this 

paper, since we use data from the IEEE Reliability Test System 

(RTS) described in [9] to validate the implementation of the 

optimization algorithm, only exponential distributions are used. 

This sequential simulation and then concatenation is conducted 

until the constraint (5) is achieved. 

∑ �̃�𝑖,𝑘
𝑚
𝑘=1 +∑ �̃�𝑖,𝑘

𝑚
𝑘=1 ≥ 𝑇   (5) 

Knowing that m = 1, …, NRNi, which is the number of 

random numbers generated. Note that NRNi is a dynamic number 

because each i-th generator unit may differ. Since we use the 

Monte Carlo method, the variables �̃�  and �̃�  are randomly 

generated �̃�  = {f1, f2, …, fk}, �̃�  = {r1, r2, …, rk} from the 

probability distribution describing the underlying phenomenon, 

where fk and rk represent the values in each sequence generated 

randomly. Usually, exponential distributions when only 

historical mean values are known. However, if the historical 

degradation data due to the operation are available, the usual 

process is to fit a set of probability distributions and assess 

which one is more closely related to the data by applying 

Maximum Likelihood Estimation (MLE) and Bayesian 

Information Criterion (BIC). 

(2). Then apply the following function defined in (6), 

𝐶𝑖
𝐷(𝑡|𝜃) =

{
𝐶𝑖 if 𝑡 < ∑ �̃�𝑖,𝑘

𝑚
𝑘=1 +∑ �̃�𝑖,𝑘

𝑚−1
𝑘=1

0 if ∑ �̃�𝑖,𝑘
𝑚
𝑘=1 +∑ �̃�𝑖,𝑘

𝑚−1
𝑘=1 ≤ 𝑡 < ∑ �̃�𝑖,𝑘

𝑚
𝑘=1 +∑ �̃�𝑖,𝑘

𝑚
𝑘=1

       (6) 

which is a simulated stochastic or probabilistic vector CD
i that 

describes the most likely degradation process due to the 

operation (the superscript D denotes the degradation component 

contribution), where t is the time, and θ is the set of variables 

and parameters of the function. Specifically, 𝐶𝑖 is the nominal 

capacity of the generator unit (which is an operational parameter 

related to the generator unit), �̃�𝑖,𝑘 is the k-th random Time-To-

Failure sequence in the i-th generator unit, and �̃�𝑖,𝑘 is the k-th 

random Time-To-Repair sequence in the i-th generator unit. 

Note that, F is the Time-To-Failure, a random variable 

representing the unexpected failures k associated with 

component degradation due to system operation in the generator 

unit i, and R is the Time-To-Repair, a random variable 

representing the magnitude of the failure k, translated on 

duration time, which also represents the expertise of the workers 

who repair the failure, and the logistics behind it, in the 

generator unit i. 

(a). In this paper, we consider a wide range of generator unit 

types. Precisely, Oil/Stream, Oil/CT, Hydro, Nuclear, and Wind. 

All types of generator units, in addition to wind turbines, have 

a constant nominal capacity 𝐶𝑖 , i.e., the primary source of 

energy is always assumed to be available. Therefore, in the case 

of wind energy, knowing that the primary source of energy is 

the wind, first is necessary to simulate the wind and then using 

the characteristic function of the wind turbine, translate the 

wind speed into energy. In our case, we simulate the most likely 

wind speed v with a Weibull model [1], defined in (7), 

𝑓(𝑣) =
𝛽

𝛿
(
𝑣

𝛿
)
𝛽−1

𝑒𝑥𝑝 [− (
𝑣

𝛿
)
𝛽

]   (7) 

estimating the shape (8) and scale (9) parameters of the 

probability distribution function with the mean and standard 

deviation of the historical wind µsw and σsw. 

𝛽 = (
𝜎𝑆𝑊

𝜇𝑆𝑊
)
−1.086

   (8)  

𝛿 =
𝜇𝑆𝑊

Γ(1+
1

𝑘
)
    (9) 

Once the Weibull distribution is parameterized, with the 
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inverse cumulative distribution function defined in (10), 

𝐹(𝑣) = 1 − 𝑒
[−(

𝑣

𝛿
)
𝛽
]
   (10) 

it is possible to simulate v wind values by generating 

uniform random numbers u with (11), 

𝑣 = 𝛿(− 𝑙𝑛(𝑢))1/𝛽   (11) 

As we can see, the number of random numbers u to be 

generated depends on t = 1, 2, … T, which is the simulation 

window. 

Then, the power capacity of each wind turbine is estimated 

with the following model [14], defined in (12). 

𝑃(𝑣) =

{
 

 
0 if 0 ≤ 𝑣 < 𝑣𝑐𝑖

(𝐴 + 𝐵 × (𝑣) + 𝐶 × (𝑣)2) × 𝑃𝑟 if 𝑣𝑐𝑖 ≤ 𝑣 < 𝑣𝑟
𝑃𝑟 if 𝑣𝑟 ≤ 𝑣 < 𝑣𝑐𝑜
0 if 𝑣 ≥ 𝑣𝑐𝑜

     (12) 

where Pr, vci, vr, and vco are nominal output power, wind speed 

necessary for start-up, wind speed corresponding to the wind 

turbine nominal power, and cutting wind speed per wind turbine 

safety reasons respectively. The constants A, B, and C depend 

on vci, vr and vco and are defined in (13). 

𝐴 =
1

(𝑣𝑐𝑖 − 𝑣𝑟)
2
{𝑣𝑐𝑖(𝑣𝑐𝑖 + 𝑣𝑟) − 4𝑣𝑐𝑖𝑣𝑟 [

𝑣𝑐𝑖 + 𝑣𝑟
2𝑣𝑟

]
3

} 

𝐵 =
1

(𝑣𝑐𝑖 − 𝑣𝑟)
2
{4(𝑣𝑐𝑖 + 𝑣𝑟) [

𝑣𝑐𝑖 + 𝑣𝑟
2𝑣𝑟

]
3

− (3𝑣𝑐𝑖 + 𝑣𝑟)} 

𝐶 =
1

(𝑣𝑐𝑖−𝑣𝑟)
2  {2 − 4 [

𝑣𝑐𝑖+𝑣𝑟

2𝑣𝑟
]
3

}  (13) 

Consequently, for wind turbines, the parameter 𝐶𝑖 defined in 

(6), is replaced by the variable Pi(v), which represents the power 

wind capacity of the i-th generator unit (specifically, wind 

turbine). 

(3). Following the same process, but now considering 

maintenance scheduling activities, given the chain of Mi,k and 

Di,k and applying the definition (14), we estimate a deterministic 

vector CM
i that describes the maintenance lifecycle for each 

component considered (the superscript M denotes the 

maintenance component contribution), where n = 1, …, NMTi is 

the number of maintenance activities, and also is a dynamic 

number for each generator unit i. 

𝐶𝑖
𝑀(𝑡|𝜃) =

{
𝐶𝑖 if 𝑡 < ∑ 𝑀𝑖,𝑘

𝑛
𝑘=1 + ∑ 𝐷𝑖,𝑘

𝑛−1
𝑘=1

0 if ∑ 𝑀𝑖,𝑘
𝑛
𝑘=1 + ∑ 𝐷𝑖,𝑘

𝑛−1
𝑘=1 ≤ 𝑡 < ∑ 𝑀𝑖,𝑘

𝑛
𝑘=1 + ∑ 𝐷𝑖,𝑘

𝑛
𝑘=1

     (14) 

(4). Combining both processes Ci = CD
i & CM

i, (junction 

symbol & refers to AND logic) the stochastic capacity due to 

the operation considering the scheduling maintenance activities 

is achieved, which is a vector that overlaps the contribution of 

the degradation and maintenance components. 

ii. Then, knowing that all generator units are in parallel and 

the given independent Ci vector for each generator unit  

i (Oil/Stream, Oil/CT, Hydro, Nuclear, and Wind), by 

aggregating all generator units using the junction symbol || 

(junction symbol || refers to OR logic), the capacity of the 

generator unit system X is obtained applying the notation (15). 

𝑋 = (||)𝑖=1
𝐼 𝐶𝑖   (15) 

where I is the number of generator units considered in the 

system. 

b. Second, the system load Y is estimated. Usually, the 

system load is the result of a forecast model, either daily or 

hourly, and typically addressed using Auto-Regressive 

Integrated Moving Average (ARIMA) regression models. 

However, in this contribution, since we need to validate the 

applicability of the optimization problem, the Hourly Load 

Duration Curve (LDC) is sourced as well from the reference 

IEEE RTS [9]. 

c. Taking both vectors X and Y and applying the convolution 

defined in (2), it is possible to estimate the conditional value of 

ENS, where t = 1, …, T. Since t is expressed in hours (h), Ci, 

and consequently X and Y are expressed in Megawatts (MW), 

and T is usually (one-year), then the value of ENS is expressed 

in (MWh/year). In this context, Z measures the Energy-Not-

Supplied (ENS) in the simulated window. 

2. Since we estimate the probability distribution function  

Z using the Monte Carlo method, then the sequence, (Step 1.) 

up to this point, is repeated until the conditional expected value 

E[Z] has an error less than β (0.05 in our case), which is 

determined as follows, 

𝐸[𝑍] ± 𝛽𝐸[𝑍] = 𝐸[𝑍] ±
𝜎[𝑍]

𝐸[𝑍]⋅√𝑁
𝐸[𝑍] = 𝐸[𝑍] ±

𝜎[𝑍]

√𝑁
        (16) 

where the convergence depends on the standard deviation of the 

estimated ENS values and the square root number of Monte 

Carlo simulations N performed. 

3. The conditional expected value E[Z] is the estimated 

probabilistic indicator once the desired error is achieved. In this 

context, Expected-Energy-Not-Supplied (EENS). 

4. End of the Monte Carlo simulation method. 

B. In each iteration of the optimization algorithm, for the 

updated values of the estimated ENS until zN, for N ≠ 1, the 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

mean E[Z] and variance V[Z] are determined from the sample 

generated, and the error criterion β is checked. If the desired 

error is not achieved (in our case, 0.05), N is increased and the 

Monte Carlo simulations continue looping for the same set of 

Mi,1 until the desired error is achieved, as illustrated in Figures 

1 and 2. 

III. Once the desired error is achieved, depending on the 

optimization algorithm strategy, the result of the probabilistic 

indicator EENS is saved (for comparison purposes with others), 

and the process is repeated for another set of Mi,1. Knowing that 

the process of evaluating in the objecting function each set of 

Mi,1 is independent, we use the parallel computing reassure to 

speed up the solution, as also illustrated in Figures 1 and 2. 

IV. This process is performed continuously (1, 2, 3, …, S) 

determining the estimated decreasing values of the probabilistic 

indicator E[Z1], E[Z2], …, E[ZS], in this context EENS1, 

EENS2, …, EENSS. 

V. In our case, the optimization process ends (stop criterion) 

when the difference E[ZS] – E[ZS – 1] is less than 1.0E-06, which 

is the second conditional statement in the flow diagram of the 

simulation (see Figure 2). 

VI. The set of Mi,1 (start times for the first maintenance of 

each generator unit considered in the system) with the lowest 

probabilistic indicator (E[ZS]) is the solution. In this context, the 

maintenance scheduling with the lowest Expected-Energy-Not-

Supplied (EENS). 

VII. End of the optimization algorithm. 

In this contribution, we use different optimization 

algorithms, specifically four options, as it is uncertain which 

heuristic algorithm is the best for this specific problem. 

3. Result and Discussion 

This section outlines all the parameters required to execute  

a scenario. Following this, the scenario is assessed and 

discussed using the proposed solution. The interim results are 

then benchmarked against the reference data to validate the 

initial scenario under equivalent conditions. Finally, 

modifications are made to the initial scenarios to incorporate 

elements such as dispersion in maintenance activities in  

a precise manner, and then, in addition to, wind energy 

integration using offshore wind farms, which enforces the 

coordination of a large volume of maintenance activities—two 

typical conditions in a real Power System with the presence of 

offshore wind farms. 

Parameterization 

To validate the proposed solution, the initial scenario used the 

IEEE Reliability Test System (IEEE-RTS) suggested by the 

Subcommittee on Applications of Probabilistic Methods. This 

system was designed to offer a uniform testing environment and 

is particularly suitable for implementing planning maintenance 

solutions. 

First, we summarize general settings, and then we list the 

information from the reference paper [9]. Table 2 shows the 

parameters necessary to model the capacity of the X generator 

unit system. In this scenario, the system has 32 generators, 

where individual unit capacities vary from 12 to 400 MW, and 

the maintenance durations range from two to six weeks. The 

total generating capacity of the system is 3405 MW. 

- β = 5% (error criterion). 

- T = 8760 hours (simulation time window) 

- NMTi (number of maintenances in the i-th generator 

unit); C̅i  (nominal generator unit capacity); MTTFi 

(Mean-Time-To-Failure in the i-th generator unit); 

MTTRi (Mean-Time-To-Repair in the i-th generator 

unit); Mi,k (k-th Time-To-Maintenance of the i-th 

generator unit); and Di,k (k-th Time-Duration-

Maintenance of the i-th generator unit) are shown in 

Table 2.

 

Table 2. Parameterization of the scenario. 

Number of Units Unit Capacity (MW) C̅i Unit Type MTTF (hours) MTTR (hours) Mi,k (hours/year) 
Scheduled Maintenance 

(hours/year) Di,k 
NMTi 

5 12 Oil/Stream 2940 60 0 336 1 

4 20 Oil/CT 450 50 0 336 1 

6 50 Hydro 1980 20 0 336 1 

4 76 Coal/Stream 1960 40 0 504 1 

3 100 Oil/Stream 1200 50 0 504 1 

4 155 Coal/Stream 960 40 0 672 1 
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Number of 

Units 

Unit Capacity (MW) C̅i Unit Type MTTF 

(hours) 

MTTR (hours) Mi,k 

(hours/year) 

Scheduled Maintenance 

(hours/year) Di,k 

NMTi 

3 197 Oil/Stream 950 50 0 672 1 

1 350 Coal/Stream 1150 100 0 840 1 

2 400 Nuclear 1100 150 0 1008 1 

 

Second, the peak demand reaches 2850 MW. Using the cited 

paper [9], it is feasible to construct hourly load profiles in 

proportion to peak demand. Figure 3 shows the System Load 

shape denoted as Y.

 

Figure 3. System Load. 

 

Figure 4. Optimization problem functional dependency analysis, specifically Particle Swarm Optimization (PSO).  
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Implementation 

Implementing the proposed model in a programming language 

is relevant for several reasons, particularly regarding simulation 

tasks. We decided to implement the model in MATLAB since 

the tool is designed to handle computation-intensive tasks, and 

it is well-accepted in the academy. The code implemented is 

saved in [22], a public GitHub repository. 

As we pointed out above, the implemented optimization 

routine is a heuristic method. However, thanks to parallel 

computing, the candidate scenarios are evaluated independently, 

and the time to reach the final solution is also relatively fast for 

this type of algorithm, knowing that it depends on the computer 

power. Figure 4 shows the dependency analysis of the 

optimization problem and, in some sense, indicates the 

connection between functions. The solution to the optimization 

problem is addressed with four heuristic algorithms, specifically, 

Particle Swarm Optimization (PSO), Nonuniform Pattern 

Search (NUPS), Surrogate Optimization, and Genetic 

Algorithm (GA). Figure 4 shows the dependency diagram for 

the PSO algorithm. Changing the algorithm only impacts the 

umbrella function; the rest remain the same. 

As we can observe in Figure 4, the optimization algorithm 

function has three dependencies. Two dependencies are related 

to saving the results, and the other is the simulation function. In 

the case of the simulation function, two dependencies were 

implemented to visualize the performance of the scenario, a user 

interface summarizing key information, and the third 

dependency is the risk estimation function in charge of 

estimating the convolution between the stochastic system 

capacity and the system load, specifically a distribution function 

describing the energy-not-supplied (ENS) in the scenario 

evaluated. Then the expected value of the distribution function 

is the EENS risk indicator. The stochastic system capacity is 

composed of the contribution of each component capacity, 

generator units in this case. While the thermal units (Oil/Stream, 

Oil/CT, Coal/Stream, Nuclear) and Hydro units are considered 

with primary source of energy always available, wind energy 

depends on the wind speed and the characteristic function of the 

wind turbine. Therefore, the function of the wind power unit has 

two dependencies, the wind speed model and the characteristic 

function of the wind turbine. 

Resolution and Validation 

Given the parameterization and knowing the structure of the 

implementation, we aim to solve and validate the results 

obtained by the proposed model. First, we compare the 

probabilistic indicator E[Z], in this context EENS, with another 

reference, when no maintenance activities are performed. This 

scenario is equivalent to ignoring maintenance activities in the 

coming year. Table 3 shows the comparison. 

Table 3. Scenario assessment when no maintenance activities 

are performed. 

Source 
Risk Indicator EENS 

(MWh/year) 

Simulation Time 

(seconds) 

[2] 1,186 N/A 

Proposed 1,184 (β = 5%) [1,125 1,243] 52 

Proposed 1,181 (β = 1%) [1,170 1,193] 1,295 

As we can see in Table 3, the results are comparable, even 

assuming a smaller tolerance error, specifically 1%. This result 

also shows a theoretical reference for the optimization solution. 

The closer the EENS value, when considering the scheduling of 

maintenance activities of the generating units, is to the 

theoretical reference, the better the proposed scheduling will be, 

since the probability of not satisfying the System Load Y is 

lower. 

As we stated, the accuracy of the Monte Carlo method 

depends on the standard deviation of the estimated ENS values, 

and the square root number of simulations N performed. The 

method implemented thus far does not consider variance 

reduction techniques, so the number of simulations is the only 

parameter driving the convergence of the simulation to the 

desired error. Certainly, increasing the number of simulations 

decreases the error but also increases the execution time. Table 

3 presents the simulation time for the same scenario and for two 

tolerance errors. As we can see, while the estimated EENS value 

does not deviate much, the simulation time is significantly 

longer. All simulations performed for this contribution were 

executed on a CPU 12th Gen Intel (R) Core (TM) i5-1240P, and 

given the results in Table 3, we decided to use a 5% tolerance 

error as a good balance between simulation accuracy and 

execution time for all the scenarios evaluated in this 

contribution. 

Once the theoretical reference has been validated, references 

[3], [18], and [21] are selected to compare the proposed 

optimization solutions. All selected references obtain 
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probabilistic-oriented solutions for the IEEE-RTS system. On 

the other hand, in our case, we tested a set of four heuristic 

algorithms. Each of them has different strategies. We used 

MATrix LABoratory (MATLAB) [23] for the proposed model 

implementation. Therefore, we use well-implemented 

algorithms from MathWorks for the model solution. Specifically, 

Particle Swarm Optimization (PSO), Nonuniform Pattern 

Search (NUPS), Surrogate Optimization, and Genetic 

Algorithm (GA) were the cases tested. Regardless of the 

algorithm strategy, we assume that the optimization process 

ends when the difference between two consecutive evaluations 

in the objective function is less than 1.0E-06. 

Table 4 shows the set of Mi,1 provided by each optimization 

algorithm tested and all references used for benchmarking. 

Table 5 shows the results of evaluating each set of Mi,1 (starting 

time-of-maintenance) in the objective function proposed in this 

paper. As we can see, the best scheduling of maintenance 

activities is the solution with the lowest EENS. Also, Table 5 

shows comparable solutions (Ref. [3] versus Surrogate, Ref. [18] 

versus NUPS and GA, and Ref. [21] versus PSO), assuming a 

5% error for each. However, given the nature of the problem, 

even with similar solutions, which means comparable EENS 

(probabilistic indicator), the scheduling of maintenance 

activities is completely different. This phenomenon is 

illustrated in Figures 5, 6, 7, and 8. Regardless of achieving 

comparable solutions, in this paper, we rely on the EENS 

indicator to compare and determine the best solution. 

At this point, we can partially conclude that the proposed 

model has been validated. Knowing this partial conclusion, we 

decided to use all proposed algorithms to evaluate the 

modifications introduced in the scenario, to consider first 

dispersion in maintenance activities, and then the integration of 

wind farms, which imposes the coordination of a large volume 

of maintenance activities.

Table 4. Maintenance scheduling solutions for IEEE-RTS. 

Unit No. 
Unit Capacity 

(MW) 

Start Maintenance (hours) 

Ref. [3] Ref. [18] Ref. [21] PSO NUPS Surrogate GA 

1 12 5,544 5,880 2,527 1,298 242 6,150 1,291 

2 12 5,208 4,032 7,257 2,295 484 1,175 1,906 

3 12 2,184 3,528 7,885 6,936 85 8,384 5,074 

4 12 1,008 7,224 3,317 2,723 952 6,424 4,556 

5 12 1,008 5,208 327 6,243 890 8,377 6,395 

6 20 5,544 3,528 1,809 6,885 940 19 6,147 

7 20 5,208 2,856 4,331 2,295 4,374 4,293 2,076 

8 20 2,856 7,224 7,248 4,341 2,960 8,251 2,018 

9 20 2,184 7,224 1,872 4,962 2,178 7,388 4,817 

10 50 6,384 5,040 4,190 5,047 372 7,818 2,423 

11 50 4,536 3,192 405 6,567 2,662 3,234 3,396 

12 50 3,528 5,208 5,072 6,716 2,904 7 6,186 

13 50 2,184 3,528 4,318 5,679 5,194 6,971 6,108 

14 50 1,344 5,880 4,222 2,423 1,340 3,611 4,476 

15 50 504 3,528 1,849 6,853 6,702 1,140 4,362 

16 76 3,360 504 5,043 3,195 1,824 7,839 4,925 

17 76 6,048 1,176 5,540 5,857 18 6,205 1,983 

18 76 5,712 5,712 5,002 5,750 4,356 4,291 4,031 

19 76 2,688 1,848 7 4,281 406 7,448 1,414 

20 100 1,176 4,536 6,719 5,469 4,840 3,311 1,759 

21 100 5,040 5,880 5,523 1,644 986 4,372 4,423 

22 100 4,536 5,208 5,041 2,335 3,276 2,241 5,638 

23 155 6,720 2,520 6,376 5,875 1,470 5,644 106 

24 155 6,048 4,368 3,006 829 2,224 6,735 6,744 

25 155 4,368 1,008 5,959 5,367 1,506 4,399 5,426 

26 155 1,680 6,720 4,434 1 2,196 2,265 2,746 

27 197 6,552 2,352 1,828 4,206 6,534 1,442 6,082 

28 197 2,352 1,680 1,305 5,004 6,584 6,203 1,033 
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Unit No. 
Unit Capacity 

(MW) 

Start Maintenance (hours) 

Ref. [3] Ref. [18] Ref. [21] PSO NUPS Surrogate GA 

29 197 1,512 5,208 6,514 2,292 1,162 1,563 1,149 

30 350 5,208 6,384 970 6,223 5,212 6,273 6,290 

31 400 1,680 5,712 5,512 1,497 5,710 4,995 5,033 

32 400 5,880 1,512 2,015 1,227 5,504 1,309 1,766 

Table 5. Probabilistic impact assessment of maintenance scheduling solutions for IEEE-RTS. 

Risk Indicator EENS (MWh/year) 

Ref. [3] Ref. [18] Ref. [21] PSO NUPS Surrogate GA 

2,768 

[2,629; 2,906] 

2,492 

[2,368; 2,617] 

2,143 

[2,036; 2,250] 

2,089 

[1,984; 2,193] 

2,425 

[2,304; 2,546] 

2,840 

[2,698; 2,981] 

2,316 

[2,200; 2,432] 

 

Figure 5. Capacity of the generation system for solutions [3], [18], and [21] versus system load.  

 

Figure 6. Capacity of the generation system for PSO, NUPS, Surrogate, and GA solutions versus system load.  

 

Figure 7. Maintenance scheduling schema for [3], [18], and [21] solutions. 
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Note that: blue (Roy Billinton), red (Mahmud Fotuhi-Firuzabad), and magenta (Yorlandys Salgado Duarte). 

 

Figure 8. Maintenance scheduling schema for PSO, NUPS, Surrogate, and GA solutions. 

Note that the following colors are blue (PSO), red (NUPS), 

magenta (Surrogate), and cyan (GA). 

Dispersion in maintenance activities 

The first modification introduced in the scenario is the 

dispersion of maintenance activities. Table 6 shows the columns 

with the modifications. The rest remain unchanged (see Table 2 

for details). As we can see, the duration of each maintenance 

Di,k is one week, and there is always one month between them, 

which means, the Time-To-Maintenance Mi,k is one month. Note 

that the optimization algorithm always provides the first 

maintenance Mi,1 in the chain. For this example, we use the same 

values for Di,k, and Mi,k in all instances for simplicity; however, 

the parameters Di,k, and Mi,k can adopt any value and certainly 

will depend on the needs of the Power System. At this point, 

even proposing simplicities, the scenario is closer to reality. 

Usually, in a maintenance lifecycle, there are operating time 

constraints between consecutive maintenance activities, and we 

represent this singularity with Mi,k. In a generator unit,  

a maintenance activity Di,2 is performed after a certain operation 

time Mi,2. As we can see, the proposed solution can allocate 

maintenance activities in a precise manner.

Table 6. Parameterization of the scenario with dispersed and distributed maintenance activities.  

Number of Units Unit Capacity (MW) C̅i Mi,k (hours/year) Scheduled Maintenance (hours/year) Di,k NMTi 

5 12 672 [168, 168] 2 

4 20 672 [168, 168] 2 

6 50 672 [168, 168] 2 

4 76 [672, 672] [168, 168, 168] 3 

3 100 [672, 672] [168, 168, 168] 3 

4 155 [672, 672, 672] [168, 168, 168, 168] 4 

3 197 [672, 672, 672] [168, 168, 168, 168] 4 

1 350 [672, 672, 672, 672] [168, 168, 168, 168, 168] 5 

2 400 [672, 672, 672, 672, 672] [168, 168, 168, 168, 168, 168] 6 

 

As we know, the theoretical reference remains unchanged in 

this modified scenario because the generator unit composition 

of the system and the volume of maintenance activities (hours 

of maintenance in one year) are the same. On the other hand, 

since we changed the scenario, there is no external reference to 

compare. In this case, we rely on using the four proposed and 

validated algorithms on the same basis and comparing them, 

specifically, PSO, NUPS, Surrogate Optimization, and GA. 

Table 7 shows the set of Mi,1 provided by each optimization 

algorithm for this modified scenario. Table 8 shows the results 

of evaluating each set of Mi,1 (starting time-of-maintenance) in 

the objective function proposed in this paper. Again, the best 

scheduling of maintenance activities is the solution with the 

lowest EENS. In this case, the PSO achieved the best solution. 

This time, not all solutions are comparable assuming a 5% error 

for each, only PSO and GA. However, we must say that, in this 
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exercise, the computational effort of GA is higher than that of 

PSO. In other words, from the computational effort point of 

view, PSO is less demanding because fewer evaluations in the 

objective function were needed to achieve the solution. Taking 

the best solution, Figures 9 and 10 illustrate the outcome of the 

modified scenario. 

Even knowing that the volume of maintenance activities is 

the same in this modified scenario, that is, the number of hours 

of maintenance in one year, the dispersion introduced is 

restricting the solution area. It makes sense that the probabilistic 

indicator EENS achieved in this modified scenario, specifically 

EENS = 3,311 MWh/year, is higher than the conditions without 

constraints (base scenario, EENS = 2,089 MWh/year), even 

when the optimization algorithm is the same. Figures 9 and 10 

also visualize this perspective. In the base scenario (no 

dispersion), the proposed solution better follows the shape of 

the System Load when aiming to accommodate the maintenance 

activities over the year. 

Table 7. Maintenance scheduling solutions considering 

dispersed maintenance activities for the IEEE-RTS. 

Unit No. Unit Capacity (MW) 
Start Maintenance (hours) 

PSO NUPS Surrogate GA 

1 12 4,704 137 1,527 3,866 

2 12 6,057 274 1,814 411 

3 12 1,403 6,747 4,879 854 

4 12 4,418 4,644 4,305 335 

5 12 2,304 685 3,240 1,404 

6 20 2,347 4,918 6,440 6,865 

7 20 7,394 5,023 1,561 6,206 

Unit No. Unit Capacity (MW) 
Start Maintenance (hours) 

PSO NUPS Surrogate GA 

8 20 7,702 1,096 5,790 439 

9 20 4,693 1,233 6,748 688 

10 50 5,093 1,274 6,516 384 

11 50 6,004 1,507 5,486 1,580 

12 50 4,683 1,132 6,974 5,792 

13 50 7,167 5,669 6,870 6,535 

14 50 1,807 1,870 4,588 717 

15 50 5,776 1,525 1,458 5,696 

16 76 113 5,008 309 5,106 

17 76 5,901 281 5,884 5,558 

18 76 5,524 1,442 143 4,205 

19 76 5,041 687 1,200 5,019 

20 100 676 1,209 6,839 4,979 

21 100 0 5,757 522 4,607 

22 100 470 5,062 5,822 2,537 

23 155 0 4,147 5,303 5,033 

24 155 3,842 5,404 4,987 4,356 

25 155 2,682 5,569 5,557 538 

26 155 5,344 490 2,470 804 

27 197 4,854 3,699 487 3,832 

28 197 4,525 3,868 2,648 5,382 

29 197 508 3,973 3,522 187 

30 350 312 14 863 1,144 

31 400 963 151 356 2,384 

32 400 1,627 4,392 1,476 1,830 

Table 8. Probabilistic impact assessment of dispersed 

maintenance scheduling solutions. 

Risk Indicator EENS (MWh/year) 

PSO NUPS Surrogate GA 

3,311; [3,145; 

3,476] 

3,977; [3,779; 

4,176] 

4,753; [4,516; 

4,990] 

3,407; [3,237; 

3,576] 

 

Figure 9. Generation system capacity (base and modified scenario) for PSO solutions versus system load. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 3, 2025 

 

 

Figure 10. Maintenance scheduling schema (base and modified scenario) for PSO solutions.  

Note that blue (PSO scenario modified), and red (PSO base 

scenario). 

Dispersion in Maintenance Activities with Integrated 

Offshore Wind Farms 

The second modification introduced in the scenario, in addition 

to the previous, is the integration of offshore wind farms. The 

wind turbine parameters assumed to make up the offshore wind 

farms modeled in this contribution are listed in Table 9. This 

new scenario replaced three Oil/Stream generator units of 100 

MW by offshore wind farms. Specifically, three farms with 50 

wind turbines of 2 MW, adding 300 MW, which is the same 

capacity as the replaced generator units. Table 10 underlines the 

parameterization of the new scenario. Also, the wind turbine 

MTTF and MTTR values are assumed to be 3650 and 55 hours, 

respectively. As before, note that the optimization algorithm 

always provides the first maintenance Mi,1 in the chain. 

In this new scenario, as we introduced three offshore wind 

farms, the number of individual generator units increased from 

32 to 179. This singularity consequently increases the number 

of maintenance activities to be coordinated exponentially. 

Also, since we modified the generator unit composition of 

the system for this scenario, we reassessed the theoretical 

reference. Table 11 shows the results. As mentioned previously, 

the closer the probabilistic indicator EENS value, when 

considering the scheduling of maintenance activities of the 

generating units, to the theoretical reference, the better the 

proposed scheduling will be. 

Table 9. Wind speed and wind turbine parameters. 

Parameter Value considered 

µsw 19.52 km/h 

σsw 10.99 km/h 

Pr 2 MW 

vci 15 km/h 

vr 36 km/h 

vco 80 km/h 

Table 10. Scenario parameters after dispersion and integration of the wind farm. 

Number of 

Units 

Unit Capacity 

(MW) C̅i 
MTTF (hours) MTTR (hours) Mi,k (hours/year) 

Scheduled Maintenance  

(hours/year) Di,k 
NMTi 

5 12 2940 60 672 [168, 168] 2 

4 20 450 50 672 [168, 168] 2 

6 50 1980 20 672 [168, 168] 2 

4 76 1960 40 [672, 672] [168, 168, 168] 3 

4 155 960 40 [672, 672, 672] [168, 168, 168, 168] 4 

3 197 950 50 [672, 672, 672] [168, 168, 168, 168] 4 

1 350 1150 100 [672, 672, 672, 672] [168, 168, 168, 168, 168] 5 

2 400 1100 150 [672, 672, 672, 672, 672] [168, 168, 168, 168, 168, 168] 6 

150 2 3650 55 [672, 672, 672, 672, 672] [168, 168, 168, 168, 168, 168] 6 
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Table 11. Scenario assessment with dispersion and integration 

of the wind farm when no maintenance activities are performed. 

Risk Indicator EENS (MWh/year) 

5,921 (β = 5%) [5,625; 6,217] 

As we have noticed in previous scenarios, the PSO seems to 

be the best algorithm for this specific optimization problem. 

Therefore, for this second scenario, we present all the details of 

convergence of the PSO algorithm. Table 12 shows the set of 

Mi,1 provided by the PSO optimization algorithm. Table 13 

shows the results of evaluating the set of Mi,1 (starting time-of-

maintenance) in the objective function proposed in this paper. 

Figure 11 shows the usual convergency plot of the optimization 

algorithm, Figure 12 shows the capacity of the generator unit 

system considering only the maintenance activities schema, and 

Figure 13 shows the scheduling of maintenance activities, 

which certainly visualizes the complexity of coordination and 

visualization of a large volume of dispersed activities. 

Table 12. Maintenance scheduling solutions for wind farms and 

dispersed maintenance activities. 

Unit No. Capacity 
PSO 

Start Maintenance 

1 12 1126 '16-Feb 22:00:00' 

2 12 1514 '05-Mar 02:00:00' 

3 12 7752 '20-Nov 00:00:00' 

4 12 5627 '23-Aug 11:00:00' 

5 12 4456 '05-Jul 16:00:00' 

6 20 4805 '20-Jul 05:00:00' 

7 20 1431 '01-Mar 15:00:00' 

8 20 7346 '03-Nov 02:00:00' 

9 20 4961 '26-Jul 17:00:00' 

10 50 6489 '28-Sep 09:00:00' 

11 50 5656 '24-Aug 16:00:00' 

12 50 5717 '27-Aug 05:00:00' 

13 50 30 '02-Jan 06:00:00' 

14 50 449 '19-Jan 17:00:00' 

15 50 3799 '08-Jun 07:00:00' 

16 76 0 '01-Jan 00:00:00' 

17 76 3862 '10-Jun 22:00:00' 

18 76 5813 '31-Aug 05:00:00' 

19 76 3784 '07-Jun 16:00:00' 

20 155 5536 '19-Aug 16:00:00' 

21 155 273 '12-Jan 09:00:00' 

22 155 4565 '10-Jul 05:00:00' 

23 155 5355 '12-Aug 03:00:00' 

24 197 2649 '21-Apr 09:00:00' 

25 197 6071 '10-Sep 23:00:00' 

26 197 331 '14-Jan 19:00:00' 

27 350 592 '25-Jan 16:00:00' 

28 400 1640 '10-Mar 08:00:00' 

29 400 1001 '11-Feb 17:00:00' 

30 2 3982 '15-Jun 22:00:00' 

31 2 401 '17-Jan 17:00:00' 

32 2 3792 '08-Jun 00:00:00' 

33 2 2129 '30-Mar 17:00:00' 

34 2 923 '08-Feb 11:00:00' 

35 2 1935 '22-Mar 15:00:00' 

36 2 4128 '22-Jun 00:00:00' 

37 2 4180 '24-Jun 04:00:00' 

38 2 4333 '30-Jun 13:00:00' 

39 2 4392 '03-Jul 00:00:00' 

40 2 931 '08-Feb 19:00:00' 

41 2 1521 '05-Mar 09:00:00' 

42 2 1125 '16-Feb 21:00:00' 

43 2 1771 '15Mar19:00:00' 

44 2 564 '24-Jan 12:00:00' 

45 2 3126 '11-May 06:00:00' 

46 2 4016 '17-Jun 08:00:00' 

47 2 9 '01-Jan 09:00:00' 

48 2 4388 '02-Jul 20:00:00' 

49 2 1008 '12-Feb 00:00:00' 

50 2 3399 '22-May 15:00:00' 

51 2 2465 '13-Apr 17:00:00' 

52 2 837 '04-Feb 21:00:00' 

53 2 4357 '01-Jul 13:00:00' 

54 2 921 '08-Feb 09:00:00' 

55 2 3823 '09-Jun 07:00:00' 

56 2 1641 '10-Mar 09:00:00' 

57 2 4392 '03-Jul 00:00:00' 

58 2 1208 '20-Feb 08:00:00' 

59 2 4192 '24-Jun 16:00:00' 

60 2 1054 '13-Feb 22:00:00' 

61 2 3883 '11-Jun 19:00:00' 

62 2 696 '30-Jan 00:00:00' 

63 2 2335 '08-Apr 07:00:00' 

64 2 3401 '22-May 17:00:00' 

65 2 1117 '16-Feb 13:00:00' 

66 2 108 '05-Jan 12:00:00' 

67 2 2814 '28-Apr 06:00:00' 

68 2 2519 '15-Apr 23:00:00' 

69 2 1973 '24-Mar 05:00:00' 

70 2 4321 '30-Jun 01:00:00' 

71 2 392 '17-Jan 08:00:00' 

72 2 2023 '26-Mar 07:00:00' 

73 2 2087 '28-Mar 23:00:00' 

74 2 1985 '24-Mar 17:00:00' 

75 2 318 '14-Jan 06:00:00' 

76 2 3988 '16-Jun 04:00:00' 

77 2 1506 '04-Mar 18:00:00' 

78 2 2181 '01-Apr 21:00:00' 

79 2 1625 '09-Mar 17:00:00' 

80 2 308 '13-Jan 20:00:00' 

81 2 4119 '21-Jun 15:00:00' 
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82 2 203 '09-Jan 11:00:00' 

83 2 828 '04-Feb 12:00:00' 

84 2 3105 '10-May 09:00:00' 

85 2 2410 '11-Apr 10:00:00' 

86 2 55 '03-Jan 07:00:00' 

87 2 4236 '26-Jun 12:00:00' 

88 2 14 '01-Jan 14:00:00' 

89 2 2437 '12-Apr 13:00:00' 

90 2 3248 '16-May 08:00:00' 

91 2 3140 '11-May 20:00:00' 

92 2 437 '19-Jan 05:00:00' 

93 2 1148 '17-Feb 20:00:00' 

94 2 3469 '25-May 13:00:00' 

95 2 4196 '24-Jun 20:00:00' 

96 2 4119 '21-Jun 15:00:00' 

97 2 4296 '29-Jun 00:00:00' 

98 2 3257 '16-May 17:00:00' 

99 2 2403 '11-Apr 03:00:00' 

100 2 3659 '02-Jun 11:00:00' 

101 2 4389 '02-Jul 21:00:00' 

102 2 3631 '01-Jun 07:00:00' 

103 2 3906 '12-Jun 18:00:00' 

104 2 1944 '23-Mar 00:00:00' 

105 2 888 '07-Feb 00:00:00' 

106 2 1072 '14-Feb 16:00:00' 

107 2 965 '10-Feb 05:00:00' 

108 2 1359 '26-Feb 15:00:00' 

109 2 3786 '07-Jun 18:00:00' 

110 2 415 '18-Jan 07:00:00' 

111 2 2134 '30-Mar 22:00:00' 

112 2 23 '01-Jan 23:00:00' 

113 2 1242 '21-Feb 18:00:00' 

114 2 2883 '01-May 03:00:00' 

115 2 3841 '10-Jun 01:00:00' 

116 2 2001 '25-Mar 09:00:00' 

117 2 1014 '12-Feb 06:00:00' 

118 2 3801 '08-Jun 09:00:00' 

119 2 2001 '25-Mar 09:00:00' 

120 2 4377 '02-Jul 09:00:00' 

121 2 85 '04-Jan 13:00:00' 

122 2 1829 '18-Mar 05:00:00' 

123 2 4232 '26-Jun 08:00:00' 

124 2 1535 '05-Mar 23:00:00' 

125 2 3408 '23-May 00:00:00' 

126 2 190 '08-Jan 22:00:00' 

127 2 2140 '31-Mar 04:00:00' 

128 2 3164 '12-May 20:00:00' 

129 2 2167 '01-Apr 07:00:00' 

130 2 3879 '11-Jun 15:00:00' 

131 2 2335 '08-Apr 07:00:00' 

132 2 698 '30-Jan 02:00:00' 

133 2 1479 '03-Mar 15:00:00' 

134 2 1130 '17-Feb 02:00:00' 

135 2 148 '07-Jan 04:00:00' 

136 2 4083 '20-Jun 03:00:00' 

137 2 79 '04-Jan 07:00:00' 

138 2 2405 '11-Apr 05:00:00' 

139 2 794 '03-Feb 02:00:00' 

140 2 21 '01-Jan 21:00:00' 

141 2 1355 '26-Feb 11:00:00' 

142 2 3707 '04-Jun 11:00:00' 

143 2 3210 '14-May 18:00:00' 

144 2 3057 '08-May 09:00:00' 

145 2 194 '09-Jan 02:00:00' 

146 2 3934 '13-Jun 22:00:00' 

147 2 2921 '02-May 17:00:00' 

148 2 450 '19-Jan 18:00:00' 

149 2 979 '10-Feb 19:00:00' 

150 2 4152 '23-Jun 00:00:00' 

151 2 2718 '24-Apr 06:00:00' 

152 2 741 '31-Jan 21:00:00' 

153 2 3202 '14-May 10:00:00' 

154 2 38 '02-Jan 14:00:00' 

155 2 1316 '24-Feb 20:00:00' 

156 2 1433 '01-Mar 17:00:00' 

157 2 2742 '25-Apr 06:00:00' 

158 2 2139 '31-Mar 03:00:00' 

159 2 3723 '05-Jun 03:00:00' 

160 2 1459 '02-Mar 19:00:00' 

161 2 3102 '10-May 06:00:00' 

162 2 6 '01-Jan 06:00:00' 

163 2 2704 '23-Apr 16:00:00' 

164 2 2 '01-Jan 02:00:00' 

165 2 139 '06-Jan 19:00:00' 

166 2 2327 '07-Apr 23:00:00' 

167 2 2126 '30-Mar 14:00:00' 

168 2 2398 '10-Apr 22:00:00' 

169 2 3244 '16-May 04:00:00' 

170 2 1903 '21-Mar 07:00:00' 

171 2 22 '01-Jan 22:00:00' 

172 2 2924 '02-May 20:00:00' 

173 2 4229 '26-Jun 05:00:00' 

174 2 1850 '19-Mar 02:00:00' 

175 2 106 '05-Jan 10:00:00' 

176 2 2480 '14-Apr 08:00:00' 

177 2 3145 '12-May 01:00:00' 

178 2 3309 '18-May 21:00:00' 

179 2 3171 '13-May 03:00:00' 

Table 13. Probabilistic impact assessment of maintenance 

scheduling solutions considering wind farms. 

Risk Indicator 

EENS (MWh/year) 

PSO 

16,357 [15,541; 17,173] 
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Figure 11. PSO convergence. 

 

Figure 12. Generation system capacity considering wind farms and only maintenance activities versus system load. 

 

Figure 13. Maintenance scheduling schema considering wind farms. 
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In all experiments conducted, we have used parallel 

computing to speed up the estimation of the probabilistic 

indicator. Since we use heuristic optimization, this feature is 

fundamental to get results sooner. Certainly, heuristic 

optimization relies on strategically changing the independent 

variables (Mi,1 in our case) and evaluating the objective function 

(EENS in our case) to know through comparisons where to 

move next, and of course in the direction of the minimum, either 

local or global. Knowing that each evaluation is independent, 

even knowing that each algorithm has different strategies, the 

sooner we get the evaluations, the faster the comparison will be. 

Therefore, parallel computing speeds up the optimization 

process by the number of physical cores involved in 

independent evaluations. In our case, we use a CPU 12th Gen 

Intel (R) Core (TM) i5-1240P, which has 12 cores. 

Independently of the CPU frequency, a parallel process here 

will be 12 times faster than a series process. In other words, if 

the elapsed time of a series process is 12 days, a parallel process 

is 1 day. 

4. Conclusions 

This study presents a comprehensive probabilistic-oriented twin 

model to optimize the scheduling of dispersed maintenance 

activities for offshore wind farms within Power Systems. The 

model integrates advanced probabilistic approaches, heuristic 

optimization algorithms, and digital twin frameworks to address 

the inherent complexities of maintenance scheduling in wind-

integrated Power Systems. The proposed model employs  

a probabilistic approach using Monte Carlo simulations to 

estimate the Expected-Energy-Not-Supplied (EENS) due to 

maintenance activities. This approach effectively handles the 

uncertainties and dynamic nature of integrated wind energy 

power systems. 

The model was validated using the IEEE Reliability Test 

System (RTS), which demonstrates its precision. Various 

scenarios, including dispersion in maintenance activities and 

integration of offshore wind farms, were assessed, showing the 

model's adaptability to different conditions. The introduction of 

dispersed maintenance activities and the integration of offshore 

wind farms increased complexity but provided a more realistic 

representation of actual maintenance operations. 

In this contribution, we assume a homogeneous Weibull 

distribution throughout the year to simulate the wind. We plan 

to extend the option of using seasonal parameters for the 

Weibull distribution, and correlated wind simulations using 

copulas, since we believe that the energy delivered in two wind 

turbines closely located would be similar and the wind 

characteristics can change seasonally. The study tested four 

heuristic algorithms: PSO, NUPS, Surrogate, and GA. Among 

these, the PSO algorithm demonstrated the best performance in 

minimizing EENS, as presented in Tables 4 and 7, highlighting 

its effectiveness for maintenance scheduling in complex 

systems. However, when using heuristics, the global minimum 

is uncertain. Therefore, knowing this limitation, we plan 

additional sensitivity analyzes to find the best algorithm, 

certainly, in two directions, testing more heuristics and more 

scenarios under the same conditions, using a formal experiment 

design. 

The proposed probabilistic-oriented twin model offers  

a robust solution to optimize maintenance schedules in Power 

Systems. The integration of probabilistic modeling, simulations, 

digital twin framework, and heuristic optimization provides  

a powerful tool to improve the reliability and performance of 

renewable energy systems. Future work will focus on refining 

the model parameters, exploring additional optimization 

algorithms, and extending the model's applicability to other 

types of renewable energy sources.
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