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Highlights  Abstract  

▪ The prediction model combines wavelet packet 

decomposition and graph attention network. 

▪ Long-term and short-term features obtained by 

WPD of temperature series data. 

▪ GAT can automatically capture features and 

assign the appropriate weights. 

▪ The feasibility of the model is verified using 

belt conveyor motor temperature data. 

 The electromechanical equipment in open-pit coal mines is influenced 

by perturbing factors such as load, ambient temperature, and frequent 

startups and shutdowns, which result in low accuracy and poor 

generalization performance of the prediction model for its operating 

state. This paper considers both long-term temperature fluctuations and 

episodic changes caused by these perturbing factors. Additionally, 

multidimensional time and spatial data are integrated to propose a 

temperature prediction model for mining electromechanical equipment 

based on wavelet packet decomposition and a graph attention network 

(WPD-GAT). Experimental validation is conducted using temperature 

data from electromechanical equipment in an open-pit coal mine in 

Xinjiang, with comparisons made to four other models. The results 

demonstrate that the proposed model outperforms the others to varying 

degrees, highlighting its feasibility and superiority for predicting the 

temperature of electromechanical equipment under complex working 

conditions. 
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1. Introduction 

Coal is a critical energy source and industrial raw material 

in China, playing an essential role in the national 

economy[1]. Open-pit mines are fundamental to China's 

coal industry and contribute significantly to national energy 

security[2]. By the end of 2022, China's open-pit coal mines 

produced approximately 1,057 million tons of coal, with 

around 30,000 mining and transportation units in operation 

daily[3]. 

In open-pit mining and transportation, the health of 

electromechanical equipment is directly linked to the safety 

and economic performance of coal mines. To evaluate 

equipment health, scholars commonly use various data types, 

such as vibration[4], current[5] and temperature[6]. 

Temperature data plays a critical role in equipment condition 

monitoring and health assessment due to its intuitive, real-

time, and easily accessible nature. However, extended 

operation and external perturbations can lead to temperature 

fluctuations in electromechanical equipment, potentially 
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impacting performance and safety. Therefore, accurately 

predicting the temperature of electromechanical equipment 

in open-pit mines is essential. 

Current temperature prediction methods for 

electromechanical equipment primarily rely on traditional 

statistical models or machine learning techniques. Zhang 

Yufei et al.[7] proposed an enhanced temperature prediction 

method for electrical equipment using Long Short-Term 

Memory (LSTM) neural networks, which utilizes  

a recurrent recursive layer based on LSTM loops to capture 

long-term features and deliver accurate temperature 

predictions. Teng Wei et al.[8] developed a combined model 

of extreme gradient boosting trees and a weighted fusion of 

LSTM networks for wind turbine temperature prediction. 

Kirchgässner et al.[9] introduced deep recurrent and 

convolutional neural networks with residual connections to 

forecast temperature changes in permanent magnet 

synchronous motors. Ma Xiaoyu et al.[10] designed  

a variable weight combination forecasting model that 

integrates feedback neural networks, grey models, and 

differential autoregressive moving average models to 

address low prediction accuracy in individual models. 

However, these approaches focus only on the long-term 

characteristics of temperature variations and do not account 

for temperature changes due to long-term operational trends 

and working condition disturbances. 

Traditional methods, such as time series analysis, 

struggle to ensure prediction reliability and cannot handle 

predictions in complex environments[11][12]. Some 

scholars have attempted to improve the processing of time 

series data by extracting features from either temporal or 

spatial dimensions. Zhang Lei et al.[13] proposed 

preprocessing industrial data using mutual information 

theory to select the most relevant features as inputs, 

followed by a gated recurrent unit network for temperature 

prediction. This approach seeks to address the challenges of 

accurately detecting temperature anomalies in real-time. 

Zhai Naiju et al.[14] developed a temperature prediction 

model using a temporal convolutional network and 

generative adversarial loss for domain adaptation. Their 

model accurately forecasts the temperature of all heating 

zones within a furnace and, by incorporating a distillation 

network in a multi-task learning framework, mitigates the 

high delay in deep transfer networks. Qu et al.[15] 

introduced a stochastic vectorial function chain neural 

network with a sliding time window technique, improving 

prediction accuracy. Zou et al.[16] proposed constructing an 

ARIMA model using historical temperature data to forecast 

future temperatures of electrical equipment, allowing for 

effective and precise prediction of temperature trends. While 

these methods improve the accuracy and stability of 

temperature prediction to some extent, they still extract 

features from either the temporal or spatial dimension, 

neglecting the integration of both dimensions. As a result, 

the processed time series features are underutilized. 

To address the aforementioned challenges, this paper 

presents a temperature prediction model that integrates 

wavelet packet decomposition and a graph attention network, 

aiming to more accurately predict temperature trends in 

electromechanical equipment in open-pit coal mines. 

Wavelet packet decomposition, with its finer division of the 

signal, offers higher resolution for the signal's high-

frequency components, allowing for effective handling of 

non-stationary signals. It extracts both long-term features 

and short-term fluctuations caused by operational conditions 

from the temperature data[17]. Furthermore, these long-

term and short-term features are fused through a graph 

structure, and the graph attention network's attention 

mechanism is employed to automatically capture complex 

relationships within the data, thereby improving prediction 

accuracy[18]. By combining these two methods, the 

limitations of single-model temperature prediction in motor 

systems are overcome, providing a more accurate basis for 

preventive maintenance of motors in open-pit coal mines. To 

validate the model's feasibility, a case study on temperature 

prediction for belt conveyor motors in large-scale open-pit 

mines is presented. The key innovations of this paper are 

outlined as follows: 

(1) The proposed prediction model, which integrates 

wavelet packet decomposition and a graph attention network, 

addresses the limitations of single temperature prediction 

models. 
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(2) The temperature sequence is decomposed using 

wavelet packet decomposition to extract both long-term 

trends and short-term disturbances in equipment 

temperature, accounting for the operational trends of 

electromechanical equipment and temperature fluctuations 

caused by working condition disturbances. 

(3) By fusing features from the temporal and spatial 

dimensions, the graph attention network automatically 

identifies the features with the most significant impact on 

temperature changes and assigns corresponding weights, 

thereby improving the model's prediction accuracy. 

(4) A case study of a belt conveyor motor in a large-scale 

open-pit coal mine demonstrates the feasibility and 

effectiveness of the proposed prediction model. 

2. Relevant Theory 

2.1. Wavelet packet decomposition 

Wavelet packet decomposition provides a more 

comprehensive approach than traditional wavelet 

decomposition. It divides the signal without redundancy, 

distinguishing between low-frequency approximation 

coefficients and high-frequency details within each sub-

band, enabling more detailed signal analysis[19]. 

Additionally, wavelet packet decomposition introduces the 

concept of optimal basis functions into wavelet analysis. By 

selecting the optimal basis function based on the 

characteristics of the analyzed signal, the precision of the 

signal analysis is further enhanced.  

S

A1 D1

AA2 DA2 AD2 DD2

AAA3 DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3
 

Fig.1. Schematic diagram of wavelet packet decomposition 

hierarchy. 

Figure 1 illustrates a schematic diagram of a three-layer 

wavelet packet decomposition hierarchy. S denotes the 

analyzed signal, A represents the low-frequency component 

after decomposition, and D represents the high-frequency 

component. The numbers appended to A and D indicate the 

decomposition layers, starting from 1. 

The low-frequency subsequence is characterized by  

a larger amplitude and shorter wavelength, effectively 

representing the long-term trends in the equipment 

temperature time series. In contrast, the high-frequency 

subsequence, with its gradually decreasing amplitude and 

longer wavelength, is better suited to capturing the subtle 

changes caused by working condition perturbations in the 

equipment temperature time series[20]. 

(1) Wavelet packet decomposition of the original 

signal[21]: 

{
𝜔(𝑡) = √2 ∑ ℎ(𝑛)𝜔(2𝑡 − 𝑛)𝑛

𝜑(𝑡) = √2 ∑ 𝑔(𝑛)𝜑(2𝑡 − 𝑛)𝑛

       (1) 

Here, 𝜔(𝑡)  represents the orthogonal scale function, 

𝜑(𝑡) represents the orthogonal wavelet function, and ℎ(𝑛) 

and 𝑔(𝑛)  denote the filter coefficients in the multiscale 

function. 

(2) The recursive equation for the wavelet packet 

decomposition is: 

 

{
𝑑𝑖+1

2𝑘 = ∑ ℎ(𝑛 − 2𝑡)𝑑𝑖
𝑘(𝑛)𝑛

𝑑𝑖+1
2𝑘+1 = ∑ 𝑔(𝑛 − 2𝑡)𝑑𝑖

𝑘(𝑛)𝑛

  (2) 

2.2. Graph Structure Data Construction 

After wavelet packet decomposition, the equipment 

temperature data is separated into a low-frequency sequence 

that captures the overall temperature trend and a high-

frequency sequence that reflects detailed temperature 

fluctuations. These sub-sequences can then form a network. 

𝐺 = {𝑋, 𝐸, 𝐴} represents the undirected graph formed by the 

subsequences, where denotes the feature matrix of the nodes, 

denotes the set of edges, and represents the graph's 

adjacency matrix[22]. Thus, all decomposed time 

subsequences can be structured as graph data. 

The wavelet packet decomposition of the subsequence 

data is denoted as 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑛], where n represents 

the number of sub-band data after wavelet packet 
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decomposition. First, each subsequence is treated as a node, 

forming a graph with multiple nodes. Next, cosine similarity 

is used to calculate the Euclidean distance between each pair 

of subsequences. Finally, the cosine similarity is compared 

to a predefined threshold, and if it exceeds this threshold, an 

edge is established between the corresponding nodes[23]. 

Thus, the presence of an edge between node 𝑥𝑖 and node 𝑥𝑗 

can be determined by the following equation: 

𝑁𝑒(𝑥𝑖) = {
1, 𝑖𝑓 𝑟𝑎𝑑𝑖𝑢𝑠(𝑥𝑖 , 𝑥𝑗) > 𝜀

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3) 

Here, 𝑟𝑎𝑑𝑖𝑢𝑠(𝑥𝑖 , 𝑥𝑗)  represents the cosine similarity 

between nodes 𝑥𝑖 and 𝑥𝑗, and 𝜀 denotes the threshold value. 

Cosine similarity measures the similarity between items on 

a scale from -1 to 1, where -1 indicates complete 

dissimilarity, 1 indicates perfect similarity, and higher 

values represent greater similarity. 

X2 X3

X5X4

X1 X1'

w12 w13

w14 w15

avg

 

Fig.2. Diagram illustrating the working principle of the 

graph attention mechanism. 

2.3. Graph Attention Networks 

For the graph attention layer[24], the input to the GAT is 

𝑋 = {𝑥1, … , 𝑥𝑛}, 𝑋 ∈ ℝ𝑁×𝐹, where 𝑁 represents the number 

of nodes and 𝐹  denotes the number of features associated 

with each node. During feature extraction, the network 

linearly transforms the data based on the output size. For 

node 𝑥𝑖, attention is computed, and the attention coefficient 

is calculated as follows: 

𝑒𝑖𝑗 = 𝐴𝑡𝑡𝑛 (𝑊𝑥𝑖
, 𝑊𝑥𝑗

) = 𝜎(𝑎𝑇 ⋅ [𝑊𝑐𝑋𝑖‖𝑊𝑐𝑋𝑗])      (4) 

Here, W represents the weight matrix, Attn() denotes the 

shared weights of the nodes parameterized by 𝑎 ∈ ℝ𝐷 and 

𝑊𝑐 = ℝ
𝐷𝑐

2
×𝐹

  within a neural network, 𝐷𝑐   represents the 

number of neurons in Attn(), || denotes the concatenation 

operation, and 𝜎(⋅)  represents the activation function. 

Formula (4) calculates the importance level between node 

𝑥𝑖  and node 𝑥𝑗 . In a single layer of the graph attention 

network, this operation is performed for all neighboring 

nodes of a given node. Finally, the relationships between 

nodes are aggregated, and the formula is calculated as 

follows[25]: 

𝑎𝑖𝑗 = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥(𝑒𝑖𝑗) =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑒𝑖𝑘)𝑘∈𝑁𝑖

  (5) 

𝑥𝑖
′ = 𝜎 (∑ 𝑎𝑖𝑗𝑊𝑥𝑖𝑗𝑗∈𝑁𝑖

)  (6) 

Here, 𝑥𝑖
′ denotes the output of node feature 𝑥𝑖 after passing 

through the graph attention layer and 𝜎  represents a non-

linear activation function. The computed node feature is an 

aggregated representation of the correlation features of the 

node and its neighboring nodes. The operational mechanism 

of the graph attention layer is illustrated in Figure 2. 

2.4. Temperature prediction model based on WPD-

GAT 

Wavelet packet decomposition offers multi-scale 

decomposition capabilities, allowing the original equipment 

temperature data to be broken down into various frequency 

sub-sequences. This process effectively extracts long-term 

features and short-term subtle fluctuations hidden in the 

temperature data, reduces the non-stationarity of the data, 

and mitigates its complexity. The graph attention network 

autonomously learns the importance of each neighboring 

node and flexibly captures relationships between nodes, 

enhancing the model's ability to mine original and 

associated features from the subsequences while fully 

utilizing the information contained in the temperature data. 

Therefore, this paper proposes a temperature prediction 

model based on wavelet packet decomposition and a graph 

attention network (WPD-GAT), with the model's principle 

illustrated in Figure 3. The detailed steps are as follows: 

1) Decompose the original equipment temperature data 

into eight sub-sequences, including four low-frequency and 

four high-frequency sub-sequences, using wavelet packet 

decomposition; 

2) Use the radius composition method to convert the 
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eight sub-sequences into graph-structured data; 

3) Input the graph-structured data into the graph 

attention network for prediction to obtain the equipment 

temperature prediction results. 

Wavelet packet decomposition 

GAT Layer

Pooling Layer

GAT Layer

Pooling Layer FC Layer

Graph Attention Network
Radius Graph

Original equipment temperature

Wavelet packet decomposition

...

... ...

Equipment temperature 

prediction results

I1 I2 I8

 

Fig.3. WPD-GAT prediction model. 

3. Experimental study 

In this paper, the actual equipment production data from  

a 10-million-ton open-pit coal mine in Xinjiang is used as  

a case study to verify the effectiveness of the proposed 

model. Furthermore, the proposed model is compared 

against existing mainstream models, including the 

Convolutional Neural Network (CNN)[26], Long Short-

Term Memory (LSTM)[27] and Graph Convolutional 

Neural Network (GCN)[28]. 

3.1. Data description 

This paper examines the drive motors of the belt conveyor 

at a large open-pit coal mine. The belt conveyor is powered 

by three YXKK-400-4W model motors, as illustrated in 

Figure 4. In this paper, temperature monitoring data from the 

No. 1 motor of the belt conveyor, collected between 

February and December 2021, is selected for analysis. The 

data was sampled at a frequency of 1 sample per second, 

resulting in a total of 27,513,222 samples 

Front bearing temperature sensor;

Rear bearing temperature sensor;

Motor case temperature sensor

 

Fig.4 Belt conveyor drive motor. 

The temperature changes of the equipment are illustrated 

in Figure 5. As shown in Figure 5, significant drops in motor 

temperature can be observed during extended downtime, 

such as the substantial decrease around 20:00 on April 16, 

2021, due to a shutdown. Cyclical temperature changes are 

also evident, caused by frequent starts and stops, as seen 

between August 17 and August 31, 2021. Additionally, 

sensor failures led to anomalies, such as the instantaneous 

drop to -75°C near November 21, 2021. Therefore, data 

preprocessing is necessary before using this dataset to 

validate the predictive model. 
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Fig.5. Raw Motor Temperature Data for February through December 2021.  

3.2. Data processing 

Data collected during actual production may contain 

missing values, duplicates, or anomalies, necessitating data 

cleaning before analysis. This includes removing duplicate 

temperature data and excluding downtime periods. After 

data cleaning, 15,133,240 data points remained. The 

temperature data was collected at a frequency of 1 sample 

per second, which exceeds the accuracy required for 

practical applications. At this frequency, temperature 

changes are typically gradual, especially in industrial 

settings, where instantaneous fluctuations are minimal, as 

shown in Figure 6. For most environmental and industrial 

applications, temperature data sampled per second shows 

little variation over a 10-minute interval. This allows for 

data dilution using 10-minute intervals, reducing the amount 

of data to be processed and improving processing efficiency. 

Additionally, averaging over this interval helps remove 

short-term noise while preserving the underlying 

temperature trend. This approach maintains key 

characteristics of the data, such as short-term fluctuations 

and cyclical patterns, while preventing overfitting due to 

excessive detail. For long-term trend prediction models, 

frequent sampling may introduce unnecessary complexity 

and hinder the model's ability to identify long-term trends. 

Therefore, using 10-minute averages simplifies the input 

features while retaining essential information, making it 

easier for the model to capture long-term temperature trends 

and improving prediction accuracy. 

The processed data, shown in Figure 7, consists of 

24,508 temperature samples. The temperature trend aligns 

with that of the original dataset, with a minimum of -12°C 

recorded on February 7, 2021, at 23:20, and a maximum of 

73°C on September 8, 2021, at 08:42. Additionally, the 

significant variability observed in the original data is 

retained in the processed data. 
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Fig.6. Motor temperature change on February 23, 2021 after cleaning. 
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Fig.7. Preprocessed motor temperature data from February to December 2021. 

3.3. Evaluation indicators 

In this paper, three evaluation metrics are used to assess the 

prediction model: the coefficient of determination (R2), the 

mean absolute error (MAE), and the root mean square error 

(RMSE)[28]. These metrics are calculated as follows: 

 𝑅2 = 1 −
∑ (𝑌𝑖−�̂�𝑖)2𝑁

𝑖=1

∑ (𝑌𝑖−�̄�)2𝑁
𝑖=1

   (7) 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑖 − �̂�𝑖|𝑁

𝑖=1    (8) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑖 − �̂�𝑖)

2𝑁
𝑖=1   (9) 

Where 𝑁 denotes the number of samples, �̂�𝑖 represents the 

predicted temperature value of the i-th sample, 𝑌𝑖 represents 

the true temperature value of the i-th sample, and �̄� 

represents the average of the true temperature values across 

all samples. 

The RMSE represents the square root of the mean 

squared deviation between the predicted and actual 

temperature values, divided by the total number of samples. 

It is used to assess the error between predicted and actual 

temperatures, where smaller RMSE values indicate higher 

prediction accuracy. The MAE calculates the average 

absolute difference between the predicted and actual 

temperature values. It computes the absolute difference 

between each predicted value and its corresponding true 

value, then averages these differences. Lower MAE values 

indicate fewer prediction errors in the model. The R2 

measures the correlation between the predicted and actual 

temperature values, with higher R2 values signifying  

a stronger correlation and better prediction accuracy. 

Table 1. Output shapes of the WPD-GAT model. 

Name of the model layer Output shape 

Input layer [1024, 8] 

GAT_1 [1024, 64] 

BatchNorm_1 [1024, 64] 

ReLU_1 [1024, 64] 

Pooling_1 [825, 64] 

GAT_2 [825, 128] 

BatchNorm_2 [825, 128] 

ReLU_2 [825, 128] 

Pooling_2 [763, 128] 

Linear_1 [128, 256] 

Dropout [128, 256] 

Output [128, 1] 

3.4. Model training 

Through several model parameter comparison experiments, 

the proposed WPD-GAT prediction model consists of two 

graph attention layers that weight and sum node features 

while learning associations between nodes via the attention 

mechanism. These graph attention layers are immediately 

followed by a batch normalization layer, which accelerates 

training and improves model stability. Additionally, the 

model includes an edge pooling layer to reduce the number 

of edges, thereby lowering the model's complexity. Finally, 

the model contains two fully connected layers, with  

a Dropout layer following the first fully connected layer to 

prevent overfitting. These fully connected layers are used to 

make predictions about the nodes. The shape of the output 

for each layer of the WPD-GAT prediction model is 
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presented in Table 1. 

3.5. Analysis of Factors Influencing Wavelet Packet 

Decomposition 

In signal processing, wavelet packet decomposition is  

a powerful multi-scale analysis tool, with its performance 

largely influenced by the choice of wavelet basis functions 

and the selection of decomposition levels. These two factors 

significantly affect the model's predictive accuracy and 

practical applicability. 

3.5.1. Choosing Optimal Wavelet Basis Functions 

The selection of wavelet basis functions is a crucial step in 

constructing a wavelet packet decomposition model. Ideally, 

the wavelet basis should possess mathematical properties 

such as orthogonality, compact support, and good regularity 

to ensure efficient and accurate signal analysis[29]. 

However, relying solely on mathematical attributes often 

fails to meet the diverse requirements of complex 

engineering applications. To address this, we systematically 

evaluate a range of commonly used wavelet basis functions, 

including the Haar wavelet and the Daubechies series 

(specifically, db2, db3, db4, and db5). Using ten-fold cross-

validation and metrics such as RMSE, MAE, and R², we aim 

to identify the most suitable wavelet basis for the current 

analysis.  
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Fig.8 Comparison of experimental results using different 

wavelet basis functions 

As shown in Figure 8, the db3 wavelet basis achieves the 

lowest MAE and RMSE values while obtaining the highest  

R² value, indicating its optimal performance for this signal 

analysis task. Therefore, the db3 wavelet basis is selected as 

the final wavelet basis function for wavelet packet 

decomposition. 

3.5.2. Determining the Optimal Decomposition Levels 

The selection of decomposition levels is another critical 

factor influencing the effectiveness of wavelet packet 

decomposition. Excessive decomposition levels can dilute 

essential long-term trend information within the signal while 

significantly increasing computational complexity. 

Conversely, too few decomposition levels may fail to 

adequately distinguish between long-term variations and 

short-term disturbances, thereby reducing the accuracy of 

the analysis. 

Using the selected db3 wavelet basis, this paper further 

investigates the impact of different decomposition levels (2, 

3, 4, and 5) on the model's predictive performance. A ten-

fold cross-validation analysis, combined with the three 

evaluation metrics, yields the experimental results presented 

in Figure 9. When the decomposition level is set to 3, the 

model demonstrates the best predictive performance, 

indicated by the lowest RMSE and MAE values and the 

highest R² value. This suggests that for the dataset used in 

this study, a three-level decomposition strategy effectively 

retains useful signal information while maintaining 

computational efficiency. Consequently, the optimal number 

of decomposition levels for wavelet packet decomposition 

is determined to be 3. 
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Fig.9. Comparison of experimental results for different 

decomposition levels. 
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Fig.10. High and low frequency subsequences after wavelet packet decomposition. 

Therefore, the preprocessed temperature sequence is 

decomposed using a 3-layer wavelet packet decomposition 

with db3 as the wavelet base. The resulting low-frequency 

and high-frequency subsequences are displayed in Figure 10. 

The trend of low-frequency subsequence 1 mirrors that of 

the original motor temperature data, while the high-

frequency subsequence captures the subtle temperature 

fluctuations caused by complex working conditions. After 

each level of wavelet packet decomposition, the size of the 

resulting components is half of the original signal length 

plus two. Therefore, after three levels of decomposition, the 

length of the subsequence temperature data is reduced to 

3,067. 

3.6. Construction of graph-structured data 

Considering the data correlation during the prediction period, 

this paper employs a sliding window approach to divide the 

time series temperature data into training samples. The time 

series data is split into fixed-length training samples, which 

serve as input for predicting the next temperature value. The 

sliding window shifts by removing the first value and 

appending the predicted value to the end, enabling 

continuous rolling predictions. In this paper, the window 

size is set to 30, meaning the temperature data from the past 

5 hours is used to predict the device's average temperature 

for the next 10 minutes. A 3-layer wavelet packet 

decomposition is applied to the 30 temperature samples, 

producing 4 low-frequency subsequences and 4 high-

frequency subsequences, each with a signal length of 8. The 

Radius composition method is then used to construct graph-

structured data from the 8 subsequences, as illustrated in 

Figure 11.  
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Fig.11. Graph structure data constructed from high and low 

frequency signal subsequences. 
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By continuously sliding the window and adding 

temperature values with different time stamps, a sufficient 

number of training samples is generated. 
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Fig.12. Comparison of experimental results for different 

thresholds. 

In constructing graph-structured data using the Radius 

method, the existence of an edge between two nodes is 

determined by comparing their cosine similarity to a preset 

threshold. To systematically investigate the impact of 

different threshold settings on the model's predictive 

performance, a series of experiments were conducted, 

testing various thresholds, including -0.5, -0.4, -0.3, -0.2, -

0.1, 0, 0.1, 0.2, 0.3, 0.4, and 0.5. Each threshold was tested 

through 25 experimental repetitions. The results, shown in 

Figure 12, reveal the variations in predictive performance 

across different thresholds. The findings indicate that when 

the threshold is set to 0, the model achieves optimal 

predictive performance. Both the RMSE and MAE are 

minimized, indicating the smallest deviations between the 

model's predictions and actual values. Additionally, the R² 

value reaches its maximum, further confirming the model's 

strong fit and robust predictive capability. Therefore, the 

optimal cosine similarity threshold is determined to be 0, 

serving as the basis for constructing the graph structure. 

4. Results and discussion 

To evaluate and analyze the predictive performance of the 

proposed motor temperature prediction model, it is 

compared against existing prediction methods, including 

LSTM, CNN, WPD-CNN, and WPD-GCN. Each model 

was tested in 25 repeated experiments, with the average 

results used to minimize the influence of randomness on the 

outcomes. Experimental validation is conducted using 

preprocessed motor temperature data collected from 

February to December 2021. The temperature data from 

February to November 2021 is used as the training set, while 

the data from December 2021 is used as the test set. 
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Fig.13 Comparison of the convergence curves of the loss 

functions of the models. 

After several experimental comparisons, the optimizer 

was set to Adam, with the maximum number of iterations set 

to 220, a learning rate of 0.0005, and a batch size of 128. 

The mean-square error function was used as the objective 

function for model training. A comparison of the loss curves 

during the training process for each model is illustrated in 

Figure 13, showing that the WPD-GAT model exhibits  

a rapid convergence rate during the early training stages. As 

training progresses, the model's convergence rate gradually 

decreases, but the trend becomes increasingly smooth with 

no significant fluctuations, demonstrating good stability. 

Additionally, the model achieves a minimized loss value. 
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Fig.14. Comparison of evaluation indicators for models. 
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The detailed results of the 25 repeated experiments for 

each model are presented in Table 2. To clearly demonstrate 

the average predictive performance of the different models, 

the average test results were visualized as a bar chart, shown 

in Figure 14. Based on the obtained prediction results, the 

analysis is as follows:  

(1) As shown in Table 2, the proposed WPD-GAT model 

outperforms all five models, with an average RMSE of 1.504, 

an average MAE of 0.827, and an average coefficient of 

determination (R²) of 0.961. The prediction result curves for 

the test set are shown in Figure 15. Due to the large volume 

of data, a portion of Figure 15 is enlarged in Figure 16, 

demonstrating that the WPD-GAT model provides the best 

fit with the actual values, achieves the highest prediction 

accuracy, and closely follows the temperature trends of the 

real equipment. 

(2) The use of WPD significantly enhances the model's 

predictive performance. As shown in Table 2, the evaluation 

metrics for the WPD-CNN model are superior to those of 

the CNN model, with an average RMSE reduction of 21.11%, 

an average MAE reduction of 19.45%, and an average R² 

improvement of 5.11%. 

(3) In processing graph data, GAT exhibits superior 

feature representation, global feature capture, and graph 

structure adaptation compared to GCN. When Comparing 

the evaluation metrics of the WPD-GAT model with those 

of the WPD-GCN model, the WPD-GAT model achieves an 

average RMSE reduction of 28.58%, an average MAE 

reduction of 42.77%, and an average R² improvement of 

4.22%. Furthermore, as shown in the prediction result 

graphs, the WPD-GAT model's predictions are more closely 

aligned with the actual values than those of the WPD-GCN 

model. 
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Fig. 15. Comparison of prediction results of each model. 
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Fig. 16. Localized enlargement of the prediction results of each model. 
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Table 2. Evaluation indicators for each prediction model. 

Number 

Models and evaluation indicators 

CNN WPD-CNN LSTM WPD-GCN WPD-GAT 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

1 2.683 1.487 0.875 2.042 1.399 0.927 1.841 1.271 0.941 2.124 1.177 0.921 1.505 0.824 0.961 

2 2.728 1.929 0.870 1.915 1.344 0.936 1.615 0.783 0.955 2.115 1.447 0.922 1.452 0.772 0.963 

3 2.745 1.954 0.869 1.756 1.149 0.946 1.842 1.051 0.941 2.328 1.620 0.905 1.512 0.825 0.960 

4 2.683 1.886 0.876 1.820 1.196 0.942 1.741 1.102 0.947 1.920 1.379 0.936 1.530 0.902 0.959 

5 2.900 2.205 0.853 2.088 1.586 0.924 1.722 1.037 0.948 2.375 1.509 0.902 1.457 0.802 0.963 

6 2.525 1.709 0.889 2.036 1.563 0.928 1.790 0.944 0.944 2.262 1.507 0.911 1.484 0.800 0.962 

7 2.898 2.256 0.854 2.221 1.629 0.914 1.924 1.040 0.936 1.753 1.222 0.946 1.479 0.811 0.962 

8 2.423 1.690 0.898 2.021 1.543 0.929 1.700 0.836 0.950 2.243 1.467 0.912 1.534 0.928 0.959 

9 2.451 1.715 0.895 1.859 1.292 0.940 1.861 1.339 0.940 2.285 1.467 0.909 1.496 0.808 0.961 

10 2.494 1.714 0.892 2.228 1.782 0.913 1.821 0.984 0.942 2.181 1.386 0.917 1.499 0.838 0.961 

11 2.607 1.850 0.881 2.212 1.564 0.915 1.675 1.007 0.951 2.360 1.548 0.903 1.520 0.873 0.960 

12 2.490 1.805 0.892 2.080 1.619 0.925 1.692 1.005 0.950 1.601 0.953 0.955 1.522 0.863 0.960 

13 2.475 1.732 0.893 2.054 1.521 0.926 1.682 0.985 0.951 1.936 1.340 0.935 1.508 0.821 0.960 

14 2.750 2.106 0.868 2.105 1.479 0.923 1.780 1.093 0.945 2.110 1.333 0.922 1.489 0.811 0.961 

15 2.452 1.721 0.895 2.471 2.102 0.894 1.906 1.184 0.937 2.283 1.627 0.909 1.509 0.828 0.960 

16 2.599 1.827 0.882 2.031 1.432 0.928 1.734 1.052 0.948 1.985 1.504 0.931 1.521 0.859 0.960 

17 2.738 1.999 0.869 2.206 1.648 0.915 1.850 1.282 0.940 2.169 1.692 0.918 1.515 0.841 0.960 

18 2.602 1.812 0.882 2.234 1.705 0.913 1.831 1.168 0.942 2.125 1.495 0.921 1.552 0.859 0.958 

19 2.541 1.865 0.887 1.962 1.320 0.933 1.761 1.091 0.946 2.002 1.401 0.930 1.499 0.784 0.961 

20 2.438 1.689 0.896 2.193 1.604 0.916 1.783 1.184 0.945 2.186 1.666 0.917 1.534 0.820 0.959 

21 2.551 1.739 0.887 2.073 1.495 0.925 1.724 1.055 0.948 1.997 1.326 0.930 1.478 0.765 0.962 

22 2.640 1.968 0.878 2.019 1.387 0.929 1.690 1.063 0.948 1.975 1.498 0.932 1.498 0.780 0.961 

23 2.684 1.872 0.874 1.943 1.277 0.934 1.638 1.031 0.953 2.049 1.436 0.927 1.515 0.841 0.960 

24 2.682 1.991 0.875 1.947 1.385 0.934 1.624 0.973 0.954 2.226 1.576 0.914 1.550 0.861 0.958 

25 2.602 1.870 0.882 2.048 1.361 0.927 1.790 1.257 0.944 2.065 1.549 0.926 1.432 0.762 0.964 

average 2.615 1.856 0.880 2.063 1.495 0.925 1.761 1.073 0.946 2.106 1.445 0.922 1.504 0.827 0.961 

5. Conclusions 

This paper proposes a temperature prediction model for key 

equipment in open-pit coal mines, based on wavelet packet 

decomposition and graph attention networks (GAT). First, the 

equipment temperature sequence is decomposed using wavelet 

packet decomposition. Cosine similarity is then applied to 

quantify the correlation between each high and low frequency 

subsequence, which is subsequently converted into graph-

structured data using the Radius composition method. Finally, 

the graph-structured data samples are used as inputs for 

prediction in the GAT model. 

To verify the effectiveness of the proposed model, this paper 

constructs four comparative models using historical data from 

electromechanical equipment in a large open-pit coal mine in 

Xinjiang and evaluates them using three performance metrics. 

The experimental results show that, compared to the CNN, 

WPD-CNN, LSTM, and WPD-GCN models, the WPD-GAT 

model improves the R² index by an average of 9.20%, 3.89%, 

1.58%, and 4.23%, respectively. The WPD-GAT model 

accounts for both long-term temperature trends and short-term 

perturbations, performing feature fusion across both temporal 

and spatial dimensions, which enhances the model's prediction 

accuracy and robustness. 

While the WPD-GAT model does not significantly 

outperform other comparative models in terms of training time, 

it does demonstrate a superior level of prediction accuracy. The 

high accuracy of the WPD-GAT model is critical in guiding 

real-world production operations. It provides insight into 

potential equipment failures and enables more proactive, 

targeted maintenance measures, thereby avoiding production 

interruptions and cost increases due to sudden equipment 

failures. This maintenance strategy, based on highly accurate 

predictions, not only improves productivity and equipment 

utilization, but also significantly enhances the overall 

operational stability and competitiveness of the enterprise. 

Therefore, the WPD-GAT model shows great potential and 

value in the field of equipment health management due to its 

excellent predictive performance. 
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