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Highlights  Abstract  

▪ Process, mean function and parameter 

uncertainties are considered simultaneously. 

▪ IG and Gamma processes are cooperated with 

ANN. 

▪ BMA method is introduced to estimate the 

model parameters and probabilities. 

 Focusing on nonmonotonic degradation processes, we have cooperated 

artificial neural network (ANN) with Wiener process to utilize its 

powerful ability on curve fitting. While, the degradation processes of 

some actual products are determined as monotonic. Furthermore, the 

process uncertainty issue is also neglected, which is inevitable in 

engineering practice. Hence, focusing on monotonic degradation 

dataset, this research introduces ANN-based stochastic process for 

reliability analysis under multiple uncertainties, including random 

effects, process uncertainty and mean function uncertainty. The ANN-

supported inverse Gaussian and Gamma process models subject to 

random effects are built. The related parameter estimation and updating 

methods are also constructed by utilizing moment estimation (ME), 

Akaike information criterion (AIC) and fully Bayesian inference 

methods. According to the simulation experiment and actual case study, 

the proposed method provides higher accuracies on population 

degradation modeling and monitoring individual degradation prediction. 
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1. Introduction 

Reliability plays a significant role in the design of modern 

industrial products, and a number of reliability analysis methods 

have been proposed in the literatures, including the hardware 

systems and the related software.1,2 The reliabilities of the key 

components are basics for analyzing the system reliability. 

Namely, the system would have high reliability when the key 

components are high reliable. Two types of methods have been 

constructed and applied to estimate the reliabilities of the 

components in the system for making sure them are reliable 

enough during the usage period. The data-driven methods are 

suitable for the easily monitoring components, such as the 

power MOSFETs, Li-Ion Battery, reactor protection system, 

etc.3-7 Generally, the accuracies of the data-driven methods 

highly depend on the quality of the degradation data, but it may 

be difficult to get enough high-quality data for some 

engineering applications. Hence, the other type of methods, 

model-based methods, are widely applied. Moreover, the 

stochastic processes are one kind of the most practical 
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approaches when applying the model-based methods. The 

stochastic processes are normally divided into two categories, 

including the non-monotonic processes and monotonic 

processes.8 According to the previous published researches, the 

Wiener processes are suitable for the on-monotonic degradation 

dataset, such as the degradation of the bridge beams due to 

chloride ion ingression9, degradation of LED lamps10 and 

degradation of rail tracks11. For some applications, the 

degradation of the research object is identified as monotonic. 

Inverse Gaussian (IG) and Gamma processes are commonly 

used to analyze the degradation datasets with monotonic 

characteristics.12 Ye et al. have investigated the IG process as an 

effective degradation model and proposed several IG process 

degradation models, including random drift model, random 

volatility model and random drift-volatility model.13 Ye et al. 

have also employed the IG process to plan the accelerated 

degradation test.14 Some similar researches focusing on 

applying IG process in reliability estimation can also be found 

in Refs. 15,16. While, the Gamma process may be more suitable 

for some other applications than the Wiener and IG processes, 

when estimating the reliability and planning accelerated 

degradation test.17,18 Namely, the process uncertainty issue is 

inevitable, even though the monotonic degradation datasets are 

focused in this research. However, the above-mentioned 

researches neglect the process uncertainty issue. Normally, one 

specific process is selected before model one degradation 

dataset. 

In other words, when using stochastic process, the 

degradation processes should be determined to describe the 

degradation model and estimate the reliability. Some criterions 

are utilized to select the best fitting model, such as Bayesian 

information criterion (BIC) and AIC.19-21 While, more than one 

model might be plausible to describe one specific degradation 

dataset, so selecting one model is not suitable. To handle the 

process uncertainty issue, several researches have been 

performed. Liu et al. have applied Bayesian model averaging 

method (BMA) in accelerated degradation testing analysis.22 

The Wiener, IG and Gamma processes are used to analyze the 

accelerated degradation dataset. The authors argue that the 

BMA method performs better than the model selection method. 

Furthermore, we have combined the Gamma and IG processes 

by using BMA method considering the model uncertainty issue 

in monotonic degradation dataset analysis.23 It is concluded that 

the IG and Gamma processes are suitable and the BMA method 

is applicable in monotonic degradation dataset analysis 

considering the process uncertainty. We have also successfully 

applied the above method in rotary lip seal degradation 

modeling and reliability estimation.24 In this paper, the 

monotonic degradation process is focused, so the Gamma and 

IG processes are used. Besides, the BMA method is applied 

considering the powerful ability on process combination and 

parameter estimation. However, beside the degradation process, 

the mean function also needs to be determined. Most of the 

above-mentioned researches focus on the linear degradation 

processes, while most of industrial products may not linearly 

degenerate. Namely, besides the process uncertainty issue, the 

mean function uncertainty issue needs to be discussed further. 

A number of researches have been performed to model the 

nonlinear degradation processes. Peng et al. have constructed  

a reliability analysis method for the degradation process subject 

to the time-varying operating missions.25 Based on several IG 

process models with variable degradation rates, they have also 

presented Bayesian degradation analysis.26 The constant, 

monotonic, and S-shaped degradation rates are considered.  

A Bayesian framework is constructed and verified by several 

actual case studies to utilize the presented models. Furthermore, 

considering the multi-phase features of some applications,  

a number of researches have been performed to model and 

analyze the multi-phase deteriorating processes.27-29 However, 

the degradation mean function of one specific application may 

be not within the above known mean functions. Hence, 

benefiting from the approximation ability of ANN, we have 

carried out a series of studies to handle the mean function 

uncertain issue.30 The Wiener process model based on ANN has 

been proposed. The individual difference and measurement 

error are taken into account. Both accelerated degradation and 

life testing datasets are used for the reliability estimation of the 

products. But, it is a pity that the above-mentioned works only 

focus on the non-monotonic degradation processes and neglect 

the process uncertainty issue. Namely, we have cooperated 

ANN with Wiener process to utilize its powerful ability on 

curve fitting, but process uncertainty issue is neglected. 

The last one factor needs to be determined is the model 

parameters. Due to the individual difference among the product 
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population, random effects should be considered in the 

stochastic process degradation model.31,32 Several methods have 

been presented to handle the above parameter uncertainty issue. 

For instance, Li et al have cooperated random fuzzy theory with 

the Wiener process to analyze the accelerated degradation 

data.33 To estimate the reliability of the products focusing on 

small sample conditions, we have also adapted the evidence 

theory to the Wiener process.34 Beside the above mentioned 

methods, the Bayesian approaches are the most commonly used 

kind of parameter estimation and updating methods due to its 

powerful ability on data and model fusion, as well as the solid 

theoretical foundation. A number of researches have been 

performed to utilize Bayesian method in parameters estimation. 

For instance, Peng et al have presented a Bayesian method to 

analyze the system reliability with multilevel pass-fail, lifetime 

and degradation datasets.35 They have also given several 

Bayesian inference methods to apply the stochastic process 

models during the degradation analysis.36 Additional similar 

works can be also found in Refs. 37,38. The related researchers 

argue that the Bayesian method shows superiority in parameter 

estimation by fusing data. Hence, the Bayesian method is 

employed in this paper considering its powerful ability on data 

and model fusion. However, all the above-mentioned researches 

neglect the mean function uncertainty issue.  

In summary, the process uncertainty, mean function 

uncertainty and random effects should be considered 

simultaneously when using stochastic process in engineering 

practices. Although we have cooperated ANN with Wiener 

process to utilize its powerful ability on curve fitting, process 

uncertainty issue is neglected. Namely, only one or two issues 

are considered in the previously published researches. Hence, to 

handle the multi-uncertainties issue simultaneously, this paper 

presents an ANN stochastic process-based reliability analysis 

approach focusing on monotonic degradation. The new 

contributions of this research are given below. The process 

uncertainty, mean function uncertainty and random effects are 

considered simultaneously. To describe the monotonic 

degradation processes and handle the mean function uncertainty 

issue, the IG and Gamma processes are cooperated with ANN, 

respectively. BMA approach is incorporated to estimate the 

model parameters and handle the process uncertainty issue.  

The remainder of this article is organized as follows. Section 

2 illustrates the motivation and methodology. The ANN-

supported monotone stochastic processes with random effects 

are constructed in Section 3. Section 4 and Section 5 present the 

population reliability modeling and individual reliability 

prediction methods, respectively. In Section 6, the proposed 

framework is illustrated. Section 7 verifies the proposed method 

by actual case studies. Section 8 concludes the paper. 

2. Motivation and methodology 

Consider a stochastic degradation process Y(t), the initial 

degradation Y(0)=0 and probability is equal to 1. Furthermore, 

Y(t) has independent increments and the degradation increments 

ΔY(t) can be given by Eq.(1). 

Δ𝑌(𝑡)~𝑓(ΔΛ(𝑡)|θ)   (1) 

where ΔY(t)=Y(t+Δt)-Y(t) means the degradation increments, Δt 

means the time increments. ΔΛ(t)=Λ(t+Δt)-Λ(t) indicates the 

mean function Λ(t) increment during time increment Δt. f 

represents a probability density function (PDF). θ means the 

corresponding model parameters. 

Intuitively, when modeling the degradation process of  

a specific type of products based on stochastic processes, the 

following three factors need to be defined. First, the form of the 

PDF, f, is decided by the applying process. The monotonic 

degradation processes are focused in this paper, so the Gamma 

and IG processes are introduced. Second, the mean function Λ(t) 

indicates the degradation law of one specific kind of products 

and depends on the failure physics of the products. Finally, the 

model parameters θ are always evaluated based on the measured 

degradation data. Generally, the model parameters should vary 

with the different individuals. As a results, the parameter 

uncertainty issue is inevitable when modeling the degradation 

of the product population. Furthermore, the process and mean 

function uncertainty issues are also inevitable, due to lack of the 

failure theory of the products. 

As a result, the process uncertainty, mean function 

uncertainty and random effects should be considered 

simultaneously when using stochastic process in engineering 

practices. Hence, in order to deal with the above uncertainties 

simultaneously, an ANN supported stochastic process-based 

reliability analysis method is constructed, as shown in Fig. 1. 

ΛGa and ΔΛGa indicate the mean function and the corresponding 

increments of the degradation mean function under Gamma 
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process. Ga(·,·) denotes the Gamma distribution. 𝜃Ga  are the 

model parameters and 𝜃Ga
𝐻   are the corresponding hyper 

parameters. ΛIG and ΔΛIG indicate the mean function and the 

corresponding increments of the degradation mean function 

under IG process. IG(·,·) represents the IG distribution. 𝜃IG are 

the model parameters and 𝜃IG
𝐻   are the corresponding hyper 

parameters. 

The main idea is as follows. First, the Gamma and IG 

processes are introduced as candidates to model the monotonic 

degradation process considering the process uncertainty issue. 

Second, inspired by the ANN’s powerful ability on the curve 

fitting, the ANN supported mean function is constructed to 

handle the uncertain mean function. Third, the ANN-based 

monotone stochastic processes with random effects are 

constructed by assuming the model parameters to be randomly 

distributed, including the IG and Gamma process models. 

Furthermore, this paper has also built the corresponding 

parameters estimation method by employing ME, AIC and fully 

Bayesian inference methods to apply the proposed stochastic 

processes.

 

Fig. 1. Schematic of the method. 

3. ANN supported monotone stochastic process models 

with random effects 

First, an ANN-supported mean function is proposed, see Section 

3.1. Then, the ANN-supported Gamma and IG process models 

with random effects are constructed based on the mean function, 

see Section 3.2 and Section 3.3, respectively. 

3.1. ANN-supported mean function 

The mean function is generally not complicated. Furthermore, 

using the simple and small ANN can result in small amount of 

data is enough to train the ANN. Hence, the mean function is 

described by using a three-layer single input single output 

(SISO) ANN, as shown in Fig. 2.  

 

Fig. 2. Schematic of the ANN supported mean function. 

Namely, the mean function Λ(t) can be approximated as  

Λ(𝑡) = 𝜇 ∑ 𝑤𝑘𝑆(𝑣𝑘𝛼𝑡 + 𝑏𝑘)
𝑛
𝑘=1    (2) 

where n denotes the neuron size in the hidden layer. μ is used to 

reflect the changing rate of the function. α is called the shape 

parameter. vk and wk mean the k-th weights of the input and 

output layers, respectively. bk means the bias of k-th hidden 
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neuron. Furthermore, S(.) means the activation function and the 

sigmoid function is applied. Namely, 

𝑆(𝑥) =
1

1+𝑒−𝑥
     (3) 

The parameters, α and μ, are varied with the different 

individuals. To simplify the expression, the mean function is 

expressed as 

Λ(𝑡) = 𝜇𝐴𝑁𝑁(𝛼𝑡)    (4) 

where ANN(·) means the SISO ANN. In the presented work, the 

ANN is different from the parameters, α and μ, it is independent 

from the individuals, because it indicates the failure mechanism. 

3.2. ANN-supported Gamma process model with random 

effects 

The ANN-supported Gamma process model is constructed on 

the basis of the above mentioned mean function. For the Gamma 

process model, the increments are independent and given by Ref. 

38. 

Δ𝑌~𝐺𝑎 (
1

𝜆Ga
ΔΛGa, 𝜆Ga)   (5) 

where ΛGa and ΔΛGa indicate the mean function and the 

corresponding increments of the degradation mean function 

under Gamma process. Ga(·,·) denotes the Gamma distribution 

and the corresponding PDF is 𝑓Ga(𝑥|𝑎, 𝑏) =
1

𝛤(𝑎)𝑏𝑎
𝑥𝑎−1𝑒−

𝑥

𝑏 , 

x>0. Hence, for the above Gamma process model, the 

degradation mean and variant are ΔΛGa and 𝜆Ga
2 𝛥𝛬Ga . 

Furthermore, the PDF of the increment distribution is given by 

𝑓Ga (Δ𝑦 |
1

𝜆Ga
ΔΛGa, 𝜆Ga) = 𝑓Ga(Δ𝑦|𝜇GaΔ𝐴𝑁𝑁Ga, 𝜆Ga) =

1

Γ(
1

𝜆Ga
𝜇GaΔ𝐴𝑁𝑁Ga)𝜆Ga

1
𝜆Ga

𝜇GaΔ𝐴𝑁𝑁Ga
Δ𝑦

1

𝜆Ga
𝜇GaΔ𝐴𝑁𝑁Ga−1

𝑒
−
Δ𝑦

𝜆Ga             (6) 

where Γ(·) indicates the Gamma function, αGa, μGa and λGa are 

the Gamma process model parameters. 

The first-passage-time (FPT) distribution is given by 

𝑓Ga
𝐿 (𝑡|𝐴𝑁𝑁Ga, θGa, 𝐷) =

𝑑

𝑑𝑡

Γ(𝜇
Ga𝐴𝑁𝑁(𝛼Ga𝑡)

𝜆Ga
,𝜆Ga𝐷)

Γ(𝜇
Ga𝐴𝑁𝑁(𝛼Ga𝑡)

𝜆Ga
)
       (7) 

where 𝜃Ga = [𝛼Ga, 𝜇Ga, 𝜆Ga] and D means the pre-defined failure 

threshold. 

The reliability function can be derived as  

𝑅Ga(𝑡|𝐴𝑁𝑁Ga, θGa, 𝐷) = 1 −
Γ(𝜇Ga𝐴𝑁𝑁(𝛼Ga𝑡),

𝐷

𝜆Ga
)

Γ(𝜇Ga𝐴𝑁𝑁(𝛼Ga𝑡))
       (8) 

Moreover, the random effects are introduced to handle 

parameter uncertainty issue caused by individual difference 

when analyzing the population degradation and reliability. 

Hence, the model parameters are assumed to be randomly 

distributed with hyper-parameters, as 

{

𝜇Ga~𝑓𝜇Ga(𝛿𝜇Ga , 𝛾𝜇Ga)

𝛼Ga~𝑓𝛼Ga(𝛿𝜇Ga, 𝛾𝜇Ga)

𝜆Ga~𝑓𝜆Ga(𝛿𝜇Ga , 𝛾𝜇Ga)

    (9) 

where 𝑓𝜇Ga(⋅,⋅), 𝑓𝛼Ga(⋅,⋅) and 𝑓𝜆Ga(⋅,⋅) are the distributions for the 

model parameters, respectively. 𝛿𝜇Ga , 𝛾𝜇Ga , 𝛿𝜇Ga , 𝛾𝜇Ga , 𝛿𝜇Ga , 

 𝑎𝑛𝑑  𝛾𝜇Ga  are the corresponding hyper-parameters. 

Furthermore, 𝜃Ga = [𝜇Ga, 𝛼Ga, 𝜆Ga]  are the model parameters 

and 𝜃Ga
𝐻 = [𝛿𝜇Ga , 𝛾𝜇Ga , 𝛿𝛼Ga, 𝛾𝛼Ga , 𝛿𝜆Ga, 𝛾𝜆Ga]  are the 

corresponding hyper-parameters. Similar as Ref. 30, Gamma, 

lognormal and Gaussian distributions are introduced as the 

candidate distributions for the model parameters. The 

corresponding PDFs are shown in Eq.(10). Furthermore, the 

best fitting distributions can be selected based on AIC for each 

model parameters. 

The PDFs of lognormal, Gaussian and Gamma distributions 

are given by 

{
  
 

  
 𝑓LN(𝑥|𝛿, 𝛾) = {

1

𝑥𝛾√2𝜋
𝑒
−
(𝑙𝑛𝑥−𝛿)2

2𝛾2     0 < 𝑥

0                other

𝑓𝑁(𝑦|𝛿, 𝛾
2) =

1

𝛾√2𝜋
𝑒𝑥𝑝 [−

(𝑦−𝛿)2

2𝛾2
]

𝑓Ga(𝑥|𝛿, 𝛾) =
𝑥𝛿−1

Γ(𝛿)𝛾𝛿
𝑒𝑥𝑝 (−

𝑥

𝛾
)

  (10) 

3.3. ANN-supported IG process model with random 

effects 

The ANN-supported IG process model is also constructed using 

the above mentioned mean function. For the IG process model, 

the increments are independent and given by Ref. 38. 

Δ𝑌~𝐼𝐺(ΔΛIG, ΔΛIG
2 𝜆IG)   (11) 

where ΛIG and ΔΛIG indicate the mean function and the 

corresponding increments of the degradation mean function 

under IG process. IG(·,·) represents the IG distribution and the 

corresponding PDF is 𝑓IG(𝑥|𝑎, 𝑏) = (
𝑏

2𝜋𝑥3
)
0.5

𝑒𝑥𝑝 [−
𝑏(𝑥−𝑎)2

2𝑎2𝑥
] , 

x>0. Hence, for the above IG process model, the degradation 

mean and variance are ΔΛIG and ΔΛIG/λIG. Furthermore, the 

PDF of the increment distribution is given by 
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𝑓IG(Δ𝑦|ΔΛIG, 𝜆IG) = 𝑓IG(Δ𝑦|𝜇IGΔ𝐴𝑁𝑁IG, 𝜆IG) =

(
𝜆IG𝜇IG

2Δ𝐴𝑁𝑁IG
2

2𝜋Δ𝑦3
)
0.5

𝑒𝑥𝑝 [−
𝜆IG𝜇IGΔ𝐴𝑁𝑁IG(Δ𝑦−𝜇IGΔ𝐴𝑁𝑁IG)

2

2𝜇IG
2Δ𝐴𝑁𝑁IG

2Δ𝑦
]        (12) 

The distribution of FPT is given by  

𝑓IG
𝐿(𝑡|𝐴𝑁𝑁IG, θIG, 𝐷) = 2√

𝜆IG

𝐷
𝜙 [√

𝜆IG

𝐷
(𝜇IG𝐴𝑁𝑁IG(𝛼IG𝑡) − 𝐷)] −

2𝜆IG 𝑒𝑥𝑝(2𝜆IG𝜇IG𝐴𝑁𝑁IG(𝛼IG𝑡))Φ [−√
𝜆IG

𝐷
(𝜇IG𝐴𝑁𝑁IG(𝛼IG𝑡) + 𝐷)]           

(13) 

where Ф(·) and ɸ(·) mean the cumulative probability function 

(CDP) and PDF of the standard normal distribution. Moreover, 

𝜃IG = [𝛼IG, 𝜇IG, 𝜆IG]. 

The corresponding reliability function can be calculated as 

𝑅IG(𝑡|𝐴𝑁𝑁IG, θIG, 𝐷) = 1 − Φ[√
𝜆IG

𝐷
(𝜇IG𝐴𝑁𝑁IG(𝛼IG𝑡) − 𝐷)] +

𝑒𝑥𝑝(2𝜆IG𝜇IG𝐴𝑁𝑁IG(𝛼IG𝑡))Φ [−√
𝜆IG

𝐷
(𝜇IG𝐴𝑁𝑁IG(𝛼IG𝑡) − 𝐷)]      

(14) 

As discussed in Section 3.2, assuming the model parameters 

to be randomly distributed, as 

{

𝜇IG~𝑓𝜇IG(𝛿𝜇IG , 𝛾𝜇IG)

𝛼IG~𝑓𝛼IG(𝛿𝛼IG , 𝛾𝛼IG)

𝜆IG~𝑓𝜆IG(𝛿𝜆IG , 𝛾𝜆IG)

    (15) 

where 𝑓𝜇IG(⋅,⋅), 𝑓𝛼IG(⋅,⋅) and 𝑓𝜆IG(⋅,⋅) are the distributions for the 

model parameters. 𝜃IG = [𝜇IG, 𝛼IG, 𝜆IG]  are the model 

parameters and 𝜃IG
𝐻 = [𝛿𝜇IG , 𝛾𝜇IG , 𝛿𝜇IG , 𝛾𝜇IG , 𝛿𝜇IG , 𝛾𝜇IG]  are the 

corresponding hyper parameters. 

4. Population degradation modeling 

The degradation dataset includes the degradation observations 

𝑌1:𝑛𝑑 = [𝑌1, 𝑌2, . . . , 𝑌𝑛𝑑]  and the corresponding measurement 

time 𝑇1:𝑛𝑑 = [𝑇1, 𝑇2, . . . , 𝑇𝑛𝑑], where nd means the sample size. 

The degradation observations of i-th sample Yi and the 

corresponding time Ti are given by  

 𝑌𝑖 = [𝑦𝑖1, 𝑦𝑖2 , ⋯ , 𝑦𝑖𝑁𝑖]    (16) 

 𝑇𝑖 = [𝑡𝑖1, 𝑡𝑖2, ⋯ , 𝑡𝑖𝑁𝑖]    (17) 

where yij and tij are j-th observation and the corresponding time 

of i-th sample, the observation size of i-th sample is denoted as 

Ni. 

4.1. Training approach of ANN-supported mean function  

4.1.1. Gamma process model 

Given the degradation dataset, for the Gamma process model, 

the related log-likelihood function is given by

𝐿Ga(Y1:𝑛𝑑|T1:𝑛𝑑 , θGa1:𝑛𝑑 , 𝐴𝑁𝑁Ga) =∏∏ 𝑓Ga(Δ𝑦𝑖𝑗|𝜇Ga𝑖Δ𝐴𝑁𝑁Ga𝑖𝑗 , 𝜆Ga𝑖)

𝑁𝑖−1

𝑗=1

𝑛𝑑

𝑖=1

 

= ∏ ∏
1

Γ(
1

𝜆Ga𝑖
𝜇Ga𝑖Δ𝐴𝑁𝑁Ga𝑖𝑗)𝜆Ga𝑖

1
𝜆Ga𝑖

𝜇Ga𝑖Δ𝐴𝑁𝑁Ga𝑖𝑗
Δ𝑦𝑖𝑗

1

𝜆Ga𝑖
𝜇Ga𝑖Δ𝐴𝑁𝑁Ga𝑖𝑗−1

𝑒
−
Δ𝑦𝑖𝑗

𝜆Ga𝑖
𝑁𝑖−1
𝑗=1

𝑛𝑑
𝑖=1     (18) 

 

where 𝜃Ga1:𝑛𝑑 = [𝛼Ga1:𝑛𝑑; 𝜇Ga1:𝑛𝑑; 𝜆Ga1:𝑛𝑑] , 𝛼Ga1:𝑛𝑑 =

[𝑎Ga1, 𝑎Ga2, . . . , 𝑎Ga𝑛𝑑] , 𝜇Ga1:𝑛𝑑 = [𝜇Ga1, 𝜇Ga2, . . . , 𝜇Ga𝑛𝑑]  and 

𝜆Ga1:𝑛𝑑 = [𝜆Ga1, 𝜆Ga2, . . . , 𝜆Ga𝑛𝑑]  are the model parameters for 

different samples. 𝛥𝐴𝑁𝑁Ga𝑖𝑗   means the increments of i-th 

sample between (j-1)-th to j-th observation time. 𝛥𝑦𝑖𝑗  means the 

degradation increments of i-th sample between (j-1)-th to j-th 

observations. 

The related minus log-likelihood function can be written as 

𝑙Ga(Y1:𝑛𝑑|T1:𝑛𝑑, θGa1:𝑛𝑑 , 𝐴𝑁𝑁Ga) =

             − 𝑙𝑛 𝐿Ga (Y1:𝑛𝑑|T1:𝑛𝑑 , θGa1:𝑛𝑑 , 𝐴𝑁𝑁Ga)        (19) 

A larger value of likelihood means the better fitting 

performance of the model to the dataset. In order words, the 

corresponding minus log-likelihood function is smaller, the 

goodness-of-fit is better. Hence, based on the likelihood 

function, the loss function is defined as 

𝐸𝐺𝑎 = 𝑙𝐺𝑎(𝑌1:𝑛𝑑|𝑇1:𝑛𝑑 , 𝜃𝐺𝑎1:𝑛𝑑, 𝐴𝑁𝑁𝐺𝑎)   (20) 

Furthermore, the mean function and process parameters 

should be monotonic increasing and nonnegative considering 

their physical meanings. Hence, the ANN supported Gamma 

process based model can be trained by minimizing the loss 

function with inequality constraints, as shown in Eq.(21). 

𝑚𝑖𝑛  𝐸Ga = 𝑙Ga(Y1:𝑛𝑑|T1:𝑛𝑑 , θGa1:𝑛𝑑 , 𝐴𝑁𝑁Ga)s.t. 
𝑑𝐴𝑁𝑁Ga(𝑡)

𝑑𝑡
>

0        ∀𝑖, 𝜇Ga𝑖 > 0, 𝛼Ga𝑖 > 0, 𝜆Ga𝑖 > 0  (21) 

Genetic algorithm is introduced to train the ANN supported 

mean function and handled by utilizing ga function in Matlab 

software. The main configuration parameters for the presented 
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simulation and case studies are: the constraint tolerance is set to 

be 0.001, the crossover fraction is set to be 0.8, the population 

size is set to be 200, the function tolerance is set to be 0.000001. 

The model parameters’ training results are expressed as �̃�Ga1:𝑛𝑑, 

�̃�Ga1:𝑛𝑑
 and �̃�Ga1:𝑛𝑑 . 𝐴𝑁�̃�Ga  means the trained ANN of the 

Gamma process model. �̃�Ga𝑖 = [�̃�Ga𝑖 , �̃�Ga𝑖 , �̃�Ga𝑖]  and �̃�Ga1:𝑛𝑑 =

[�̃�Ga1; �̃�Ga2; . . . ; �̃�Ga𝑛𝑑]. 

4.1.2. IG process model 

Given the degradation dataset, for the IG process model, the 

related log-likelihood function is given by

𝐿IG(Y1:𝑛𝑑|T1:𝑛𝑑 , θIG1:𝑛𝑑 , 𝐴𝑁𝑁IG) = ∏ ∏ 𝑓IG(Δ𝑦𝑖𝑗|𝜇IG𝑖Δ𝐴𝑁𝑁IG𝑖𝑗 , 𝜆IG𝑖)
𝑁𝑖−1
𝑗=1

𝑛𝑑
𝑖=1 =

∏ ∏ (
𝜆IG𝑖𝜇IG𝑖

2Δ𝐴𝑁𝑁IG𝑖𝑗
2

2𝜋Δ𝑦𝑖𝑗
3 )

0.5

𝑒𝑥𝑝 [−
𝜆IG𝑖𝜇IG𝑖Δ𝐴𝑁𝑁IG𝑖𝑗(Δ𝑦𝑖𝑗−𝜇IG𝑖Δ𝐴𝑁𝑁IG𝑖𝑗)

2

2𝜇IG𝑖
2Δ𝐴𝑁𝑁IG𝑖𝑗

2Δ𝑦𝑖𝑗
]

𝑁𝑖−1
𝑗=1

𝑛𝑑
𝑖=1    (22) 

 

where 𝜃IG1:𝑛𝑑 = [𝛼IG1:𝑛𝑑; 𝜇IG1:𝑛𝑑; 𝜆IG1:𝑛𝑑] . 𝛼IG1:𝑛𝑑 =

[𝑎IG1, 𝑎IG2 , . . . , 𝑎IG𝑛𝑑] , 𝜇IG1:𝑛𝑑 = [𝜇IG1, 𝜇IG2, . . . , 𝜇IG𝑛𝑑]  and 

𝜆IG1:𝑛𝑑 = [𝜆IG1, 𝜆IG2, . . . , 𝜆IG𝑛𝑑]  are the model parameters for 

different samples. 𝛥𝐴𝑁𝑁IG𝑖𝑗   means the increments of i-th 

sample between (j-1)-th to j-th observation time. 

The related minus log-likelihood function can be written as 

𝑙IG(Y1:𝑛𝑑|T1:𝑛𝑑, θIG1:𝑛𝑑 , 𝐴𝑁𝑁IG) =

                                         − 𝑙𝑛 𝐿IG (Y1:𝑛𝑑|θIG1:𝑛𝑑 , 𝐴𝑁𝑁IG)         (23) 

Similarly, a larger value of likelihood means the better 

fitting performance of the model to the dataset. Furthermore, the 

model parameters should be nonnegative and the mean function 

should increase in a monotonical manner. Hence, the IG process 

model can be trained by Eq.(24). 

𝑚𝑖𝑛  𝐸IG = 𝑙IG(Y1:𝑛𝑑|T1:𝑛𝑑, θIG1:𝑛𝑑 , 𝐴𝑁𝑁IG)s.t. 
𝑑𝐴𝑁𝑁IG(𝑡)

𝑑𝑡
>

0       ∀𝑖, 𝜇IG𝑖 > 0, 𝛼IG𝑖 > 0, 𝜆IG𝑖 > 0  (24) 

Similarly, Eq.(24) is handled by genetic algorithm. The main 

configuration parameters for the presented simulation and case 

studies are as Section 4.1.1. The model parameters’ training 

results are expressed as �̃�IG1:𝑛𝑑 , �̃�IG1:𝑛𝑑 , �̃�IG1:𝑛𝑑  and �̃�IG1:𝑛𝑑 . 

𝐴𝑁�̃�IG means the trained ANN of the Gamma process model. 

�̃�IG𝑖 = [�̃�IG𝑖 , �̃�IG𝑖 , �̃�IG𝑖] and �̃�IG1:𝑛𝑑 = [�̃�IG1; �̃�IG2; . . . ; �̃�IG𝑛𝑑]. 

4.2 Model probabilities 

According to Bayesian inference, the model probabilities 

pGai and pIGi for i-th sample can be calculated as 

{
  
 

  
 
𝑝Ga𝑖 = 𝑃(𝑀Ga𝑖|Y𝑖 , T𝑖 , θ̃Ga𝑖 , θ̃IG𝑖 , 𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG)

=
𝜋(𝑀Ga𝑖)𝐿Ga𝑖(Y𝑖|T𝑖,θ̃Ga𝑖,𝐴𝑁�̃�Ga)

𝜋(𝑀IG𝑖)𝐿IG𝑖(Y𝑖|T𝑖,θ̃IG𝑖,𝐴𝑁�̃�IG)+𝜋(𝑀Ga𝑖)𝐿Ga𝑖(Y𝑖|T𝑖,θ̃Ga𝑖,𝐴𝑁�̃�Ga)

𝑝IG𝑖 = 𝑃(𝑀IG𝑖|Y𝑖 , T𝑖 , θ̃Ga𝑖 , θ̃IG𝑖 , 𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG)

=
𝜋(𝑀IG𝑖)𝐿IG𝑖(Y𝑖|T𝑖,θ̃IG𝑖,𝐴𝑁�̃�IG)

𝜋(𝑀IG𝑖)𝐿IG𝑖(Y𝑖|T𝑖,θ̃IG𝑖,𝐴𝑁�̃�IG)+𝜋(𝑀Ga𝑖)𝐿Ga𝑖(Y𝑖|T𝑖,θ̃Ga𝑖,𝐴𝑁�̃�Ga)

    (25) 

where 𝑃(𝑀Ga𝑖|𝑌𝑖 , 𝑇𝑖 , �̃�Ga𝑖 , �̃�IG𝑖 , 𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG)  and 

𝑃(𝑀IG𝑖|𝑌𝑖 , 𝑇𝑖 , �̃�Ga𝑖 , �̃�IG𝑖 , 𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG)  are the posterior 

probabilities of the candidate models for i-th sample. 𝜋(𝑀Ga𝑖) 

and 𝜋(𝑀IG𝑖) are the prior probabilities of the candidate models. 

Moreover, the non-informative prior is applied here, namely 

𝜋(𝑀Ga𝑖) =𝜋(𝑀IG𝑖) =0.5, for i=1,2,…,nd. 𝐿IG𝑖(𝑌𝑖|𝑇𝑖 , �̃�IG𝑖 , 𝐴𝑁�̃�IG) 

and 𝐿Ga𝑖(𝑌𝑖|𝑇𝑖 , �̃�Ga𝑖 , 𝐴𝑁�̃�Ga)  are the likelihood function of the 

candidate models for i-th sample, when the ANN are 𝐴𝑁�̃�IG and 

𝐴𝑁�̃�Ga , as well as the model parameters are �̃�IG𝑖  and �̃�Ga𝑖 , as 

given by

{
 
 

 
 𝐿Ga𝑖(Y𝑖|T𝑖 , θ̃Ga𝑖 , 𝐴𝑁�̃�Ga) = ∏

1

Γ(
1

𝜆Ga𝑖
𝜇Ga𝑖Δ𝐴𝑁𝑁Ga𝑖𝑗)𝜆Ga𝑖

1
𝜆Ga𝑖

𝜇Ga𝑖Δ𝐴𝑁𝑁Ga𝑖𝑗
Δ𝑦𝑖𝑗

1

𝜆Ga𝑖
𝜇Ga𝑖Δ𝐴𝑁𝑁Ga𝑖𝑗−1

𝑒
−
Δ𝑦𝑖𝑗

𝜆Ga𝑖
𝑁𝑖−1
𝑗=1

𝐿IG𝑖(Y𝑖|T𝑖 , θ̃IG𝑖 , 𝐴𝑁�̃�IG) = ∏ (
𝜆IG𝑖𝜇IG𝑖

2Δ𝐴𝑁𝑁IG𝑖𝑗
2

2𝜋Δ𝑦𝑖𝑗
3 )

0.5

𝑒𝑥𝑝 [−
𝜆IG𝑖𝜇IG𝑖Δ𝐴𝑁𝑁IG𝑖𝑗(Δ𝑦𝑖𝑗−𝜇IG𝑖Δ𝐴𝑁𝑁IG𝑖𝑗)

2

2𝜇IG𝑖
2Δ𝐴𝑁𝑁IG𝑖𝑗

2Δ𝑦𝑖𝑗
]

𝑁𝑖−1
𝑗=1

  (26) 

 

Furthermore, concerning the random effects of the model 

probabilities, the probabilities are also assumed to be randomly 

distributed, as  

{
𝑝Ga~𝑓𝑝Ga(𝛿𝑝Ga, 𝛾𝑝Ga)

𝑝IG = 1 − 𝑝Ga
    (27) 

where 𝑓𝑝Ga(⋅,⋅)  indicates the PDF of one of the candidate 

distributions. 𝛿𝑝Ga  and 𝛾𝑝Ga  are the corresponding hyper-

parameters. 

4.3. Process parameters distributions and population 

evaluation  

In the presented work, the random effects caused by 
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nonhomogeneous within the product population are considered, 

so the model parameters are assumed to satisfy the random 

distribution. The Gamma, lognormal and Gaussian distributions 

are considered as the candidate distributions. The ME method 

is used. According to our previously published research, Ref. 30, 

the hyper-parameters’ ME results of the candidate distributions 

are given as follows. 

The ME estimating results for the Gamma distribution are 

given by  

{
 
 

 
 𝛿𝜒 =

(∑ �̃�𝑖
𝑛𝑑
𝑖=1

)
2

𝑛𝑑∑ (�̃�𝑖−
1

𝑛𝑑
∑ �̃�𝑖
𝑛𝑑
𝑖=1

)
𝑛𝑑
𝑖=1

2

𝛾
𝜒
=

∑ (�̃�𝑖−
1

𝑛𝑑
∑ �̃�𝑖
𝑛𝑑
𝑖=1

)
𝑛𝑑
𝑖=1

2

∑ �̃�𝑖
𝑛𝑑
𝑖=1

   (28) 

where 𝜒𝑖   means the training result of one of the model 

parameters for i-th sample, such as �̃�Ga𝑖 , �̃�Ga𝑖 , �̃�Ga𝑖, �̃�IG𝑖 , �̃�IG𝑖 or 

�̃�IG𝑖 . 𝛿𝜒  and 𝛾
𝜒

  indicate the corresponding hyper-parameters’ 

ME estimating results. 

The ME estimating results for the lognormal distribution are 

given by  

{

𝛿𝜒 =
1

𝑛𝑑
∑ 𝑙𝑛(𝜒𝑖)
𝑛𝑑
𝑖=1

𝛾
𝜒
= √

1

𝑛𝑑
∑ (𝑙𝑛(𝜒𝑖) −

1

𝑛𝑑
∑ 𝑙𝑛(𝜒𝑖)
𝑛𝑑
𝑖=1 )

𝑛𝑑
𝑖=1

2  (29) 

The ME estimating results for the Gaussian distribution are 

given by  

{

𝛿𝜒 =
1

𝑛𝑑
∑ 𝜒𝑖
𝑛𝑑
𝑖=1

𝛾
𝜒
= √

1

𝑛𝑑
∑ (𝜒𝑖 −

1

𝑛𝑑
∑ 𝜒𝑖
𝑛𝑑
𝑖=1 )

𝑛𝑑
𝑖=1

2  (30) 

The model parameters’ best fitting distributions are 

determined based on AIC. The AIC values 𝐴𝐼𝐶 = 2𝑘 −

𝑙 (𝛿𝜒, 𝛾𝜒), where k means the parameter sizes of the candidate 

distributions, 𝛿𝜒, 𝛾𝜒  means the hyper-parameters’ ME 

approximation results, and 𝑙 (𝛿𝜒, 𝛾𝜒)  is the related log-

likelihood.20 Note that a small AIC value represents means 

better goodness-of-fit, so the distributions with the minimum 

AIC values are selected. 

Moreover, the determined model parameter distributions are 

expressed as 

{
 
 

 
 𝜇Ga~𝑓𝜇Ga (𝛿𝜇Ga , 𝛾𝜇Ga) , 𝛼Ga~𝑓𝛼Ga (𝛿𝜇Ga , 𝛾𝜇Ga) , 𝜆Ga~𝑓𝜆Ga (𝛿𝜇Ga , 𝛾𝜇Ga)

𝜇IG~𝑓𝜇IG (𝛿𝜇IG, 𝛾𝜇IG) , 𝛼IG~𝑓𝛼IG (𝛿𝛼IG , 𝛾𝛼IG) , 𝜆IG~𝑓𝜆IG (𝛿𝜆IG , 𝛾𝜆IG)

𝑝𝑎~𝑓𝑝𝑎 (𝛿𝑝𝑎 , 𝛾𝑝𝑎) , 𝑝IG = 1 − 𝑝Ga

    (31) 

The model parameters’ distributions are s-independent, so 

the corresponding joint distributions are given by  

{
𝑓𝜃Ga (θGa

𝐻
) = 𝑓𝜇Ga (𝛿𝜇Ga , 𝛾𝜇Ga)𝑓𝛼Ga (𝛿𝑎Ga , 𝛾𝑎Ga)𝑓𝜆Ga (𝛿𝜆Ga , 𝛾𝜆Ga)

𝑓𝜃IG (θIG
𝐻
) = 𝑓𝜇IG (𝛿𝜇IG , 𝛾𝜇IG) 𝑓𝛼IG (𝛿𝛼IG , 𝛾𝛼IG)𝑓𝜆IG (𝛿𝜆IG , 𝛾𝜆IG)

       (32) 

where 𝜃Ga
𝐻
= [𝛿𝜇Ga , 𝛾𝜇Ga

, 𝛿𝑎Ga , 𝛾𝑎Ga
, 𝛿𝜆Ga, 𝛾𝜆Ga

]  and 𝜃IG
𝐻
=

[𝛿𝜇IG , 𝛾𝜇IG
, 𝛿𝑎IG , 𝛾𝑎IG

, 𝛿𝜆IG , 𝛾𝜆IG
]. 

Finally, the reliability function and FPT distribution of the 

product population are given by 

𝑅𝑝(𝑡|𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG, 𝜃Ga, 𝜃IG, 𝐷) = ∫ ∫ ∫ 𝑓𝑝𝑎 (𝛿𝑝𝑎 , 𝛾𝑝𝑎
) [
𝑝Ga𝑓𝜃Ga (𝛿𝜃Ga , 𝛾𝜃Ga

) 𝑅Ga(𝑡|𝐴𝑁�̃�Ga, 𝜃Ga, 𝐷) +

(1 − 𝑝Ga)𝑓𝜃IG (𝛿𝜃Ga , 𝛾𝜃Ga
)𝑅IG(𝑡|𝐴𝑁�̃�IG, 𝜃IG, 𝐷)

] 𝑑𝜃IG𝑑𝜃Ga𝑑𝑝Ga𝜃IG𝜃Ga𝑝Ga
 (33) 

𝑓𝑝
𝐿(𝑡|𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG, 𝜃Ga, 𝜃IG, 𝐷) = ∫ ∫ ∫ 𝑓𝑝𝑎 (𝛿𝑝𝑎 , 𝛾𝑝𝑎

) [
𝑝Ga𝑓𝜃Ga (𝛿𝜃Ga , 𝛾𝜃Ga

) 𝑓Ga
𝐿 (𝑡|𝐴𝑁�̃�Ga, θGa, 𝐷) +

(1 − 𝑝Ga)𝑓𝜃IG (𝛿𝜃IG , 𝛾𝜃IG
) 𝑓IG

𝐿(𝑡|𝐴𝑁�̃�Ga, θGa, 𝐷)
] 𝑑𝜃IG𝑑𝜃Ga𝑑𝑝Ga𝜃IG𝜃Ga𝑝Ga

 (34) 

5. Individual degradation prediction 

The measured degradation and time of the monitoring 

individual can be express as 

𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑁]    (35) 

𝑇 = [𝑡1, 𝑡2, ⋯ , 𝑡𝑁]    (36) 

where yj and tj are the j-th measured degradation and the 

corresponding measurement time of the monitoring individual. 

N is the measurement size of the monitoring individual. 

5.1. Model parameters and probabilities priors 

To estimate the model probabilities and parameters of the 

monitoring individual, the fully Bayesian inference approach is 

introduced. The priors of the model probabilities and parameters 

are set according to the estimating results of the model 

parameter distributions at population degradation modeling 

stage. Namely,  
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{
 
 

 
 𝜋(𝜃Ga)~𝑓𝜃Ga (𝜃Ga

𝐻
)

𝜋(𝜃IG)~𝑓𝜃IG (𝜃IG
𝐻
)

𝜋(𝑝𝑎)~𝑓𝑝𝑎 (𝛿𝑝, 𝛾𝑝𝑎
) , 𝑝IG = 1 − 𝑝Ga

   (37) 

5.2. Posterior of the model probabilities and parameters 

According to the fully Bayesian inference method, the posterior 

distribution of the model probabilities and parameters is derived 

as

𝑝(𝜃Ga, 𝜃IG, 𝑝Ga|𝑌, 𝑇) =
𝜋(𝜃Ga)𝜋(𝑝Ga)𝑝Ga𝐿Ga(Y|T,𝜃Ga,𝐴𝑁�̃�Ga)+𝜋(𝜃IG)𝜋(𝑝IG)𝐿IG(Y|T,𝜃IG,𝐴𝑁�̃�IG)

∫ ∫ ∫
𝜋(𝜃Ga)𝜋(𝑝Ga)𝑝Ga𝐿Ga(Y|T,𝜃Ga,𝐴𝑁�̃�Ga)

+𝜋(𝜃IG)𝜋(𝑝IG)𝐿IG(Y|T,𝜃IG,𝐴𝑁�̃�IG)𝑑𝜃Ga𝑑𝜃IG𝑑𝑝𝑎
𝜃Ga𝜃IG𝑝𝑎

    (38) 

 

The posterior distribution can be calculated by Eq. (39). 

Normally, the posterior distributions’ mean values are employed 

to estimate the model parameters. 

𝑝(𝜃Ga, 𝜃IG, 𝑝Ga|𝑌, 𝑇) ∝ 𝜋(𝜃Ga)𝜋(𝑝Ga)𝑝Ga𝐿Ga(Y|T, 𝜃Ga, 𝐴𝑁�̃�Ga) +

𝜋(𝜃IG)𝜋(𝑝IG)𝐿IG(Y|T, 𝜃IG, 𝐴𝑁�̃�IG)  (39) 

where

{
 
 

 
 𝐿Ga(𝑌|𝑇, �̃�Ga, 𝐴𝑁�̃�Ga) = ∏

1

𝛤(
1

𝜆Ga
𝜇Ga𝛥𝐴𝑁𝑁Ga𝑗)𝜆Ga

1
𝜆Ga

𝜇Ga𝛥𝐴𝑁𝑁Ga𝑗
𝛥𝑦𝑗

1

𝜆Ga
𝜇Ga𝛥𝐴𝑁𝑁Ga𝑗−1𝑒

−
𝛥𝑦𝑗

𝜆Ga𝑁−1
𝑗=1

𝐿IG(𝑌|𝑇, �̃�IG, 𝐴𝑁�̃�IG) = ∏ (
𝜆IG𝜇IG

2𝛥𝐴𝑁𝑁IG𝑗
2

2𝜋𝛥𝑦𝑗
3 )

0.5

𝑒𝑥𝑝 [−
𝜆IG𝜇IG𝛥𝐴𝑁𝑁IG𝑗(𝛥𝑦𝑗−𝜇IG𝛥𝐴𝑁𝑁IG𝑗)

2

2𝜇IG
2𝛥𝐴𝑁𝑁IG𝑗

2𝛥𝑦𝑗
]𝑁−1

𝑗=1

   (40) 

 

where 𝛥𝑦𝑗 means the degradation increments between (j-1)-th 

to j-th observations of the monitoring individual. 𝛥𝐴𝑁𝑁IG𝑗 and 

𝛥𝐴𝑁𝑁Ga𝑗  are the corresponding ANN function increments. The 

�̂�Ga , �̂�IG  and �̂�Ga  means the inferred model parameters and 

probabilities. 

Finally, for the monitoring individual, the reliability 

function and FPT distribution are given by 

𝑅𝐼(𝑡|𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG, 𝜃Ga, 𝜃IG, �̂�Ga, 𝐷) = �̂�Ga𝑅Ga(𝑡|𝐴𝑁�̃�Ga, 𝜃Ga, 𝐷) +

(1 − �̂�Ga)𝑅IG(𝑡|𝐴𝑁�̃�IG, 𝜃IG, 𝐷)                  (41) 

𝑓𝐼
𝐿(𝑡|𝐴𝑁�̃�Ga, 𝐴𝑁�̃�IG, 𝜃Ga, 𝜃IG, �̂�Ga, 𝐷) = �̂�Ga𝑓Ga

𝐿 (𝑡|𝐴𝑁�̃�Ga, 𝜃Ga, 𝐷) +

(1 − �̂�Ga)𝑓IG
𝐿(𝑡|𝐴𝑁�̃�Ga, 𝜃Ga, 𝐷)                  (42) 

6. The proposed framework 

Fig. 3, indicates the flowchart of the presented framework. 

 

Fig. 3. The flowchart of the presented framework. 
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Three steps are required when analyzing the population 

reliability by applying the proposed method. First, the Gamma 

and IG process models are trained by maximizing the likelihood, 

see Section 4.1. Second, the model probabilities are evaluated 

by Bayesian inference method, see Section 4.2. Third, the 

distributions of model parameters and probabilities are set by 

applying ME and AIC methods, see Section 4.3. Finally, the 

population degradation and reliability are modeled by the 

proposed stochastic process model, Eq.(33) and Eq.(34). 

To predict the reliability and life of the monitoring 

individual in real time, three more steps need to be carried out. 

First, based on the estimated model parameter distributions at 

population degradation modeling stage, the priors of the model 

probabilities and parameters can be determined, see Section 5.1. 

Then, based on the fully Bayesian inference method, the 

posterior distributions of model probabilities and parameters for 

the monitoring individual are obtained, see Section 5.2. Finally, 

the remaining useful life (RUL) and reliability of the monitoring 

individual are predicted by the proposed stochastic process 

model, Eq.(41) and Eq.(42). 

Moreover, Algorithm 1 shows the algorithm of the presented 

framework in detail.  

Algorithm 1 

Algorithm of the presented framework. 

Population reliability analysis 

Set the hidden layer neuron size of the ANN.  

Train the ANN-supported Gamma and IG process models, 

Eq.(21) and Eq.(24). 

Fix the trained ANNs, including 𝐴𝑁�̃�Ga and 𝐴𝑁�̃�IG. 

Estimate the model probabilities for each degradation 

samples, Eq.(25). 

Calculate the ME results of the hyper-parameters under 

different candidate distributions, Eq.(28)-Eq.(30). 

Select the best fitting distributions for the model parameters 

and probabilities by AIC. 

Infer the population reliability and life distribution, Eq.(33) 

and Eq.(34).  

Individual reliability prediction 

Set the model probabilities’ and parameters’ priors, Eq.(37). 

Calculate the model probabilities’ and parameters’ posterior 

distributions, Eq.(39).  

Infer the monitoring individual’s reliability and RUL, 

Eq.(41) and Eq.(42). 

7. Simulation study 

Numerical experiment is performed to demonstrate the 

flexibility of the proposed approach. The true degradation 

model is assumed to within the Gamma and IG process, where 

the related mean functions are assumed to be S-shaped. The true 

model is presented in Table 1. 

Table 1 The true model. 

Candidate 

model 

Model 

probability 
Mean function Model parameters 

Gamma 

process model 
0.5 

𝛬Ga(𝑡)

= 𝜇Ga 𝑒𝑥𝑝(0.05(𝛼Ga𝑡)

− (𝛼Ga𝑡)
−1) 

{

𝜇Ga~𝑓𝑁(2, 0.1)

𝛼Ga~𝑓𝑁(0.5,0.05)

𝜆Ga~𝑓𝑁(0.1,0.01)
 

IG process 

model 
0.5 

𝛬IG(𝑡)

= 𝜇IG 𝑒𝑥𝑝(0.05(𝛼IG𝑡)

− (𝛼IG𝑡)
−1) 

{

𝜇IG~𝑓𝑁(2, 0.1)

𝛼IG~𝑓𝑁(0.5,0.05)

𝜆IG~𝑓𝑁(10,1)
 

Table 2. shows the process parameters are generated from 

the above true model. The proposed method’s superiority on 

population evaluation is verified based on the first five samples. 

The proposed method’s superiority on individual prediction is 

verified by using Sample 6. 

Table 2 The model parameters randomly generated by true 

model. 

Sample 

number 
μGa αGa λGa μIG αIG λIG 

1 1.9316 0.5143 0.0975 1.9863 0.4437 9.3435 

2 1.9761 0.5012 0.0825 2.1417 0.5365 9.4746 

3 1.8210 0.4793 0.1003 2.1076 0.4356 10.3692 

4 2.0215 0.4208 0.0960 2.0633 0.5646 8.8680 

5 2.0989 0.5267 0.0895 2.0375 0.5350 9.3218 

6 2.0250 0.4751 0.0976 2.0589 0.5403 11.3934 

Table 3. shows the six randomly generated samples, on the 

basis of the generated model parameters and the true 

degradation model. time increment Δt=2. The degradation mean 

is generally not complicated, so there are three hidden neurons 

in the presented simulation study. Referring to the degradation 

data of the first five degradation samples, the ANN supported 

Gamma and IG process models are trained by Eq.(21) and 

Eq.(24), respectively. The training results of the ANNs for the 

above two mentioned models are displayed in Table 4. For each 

sample, the model parameters’ training results are displayed in 

Table 5. It should be noted that the randomly generated 

degradation dataset is non-dimensional, because above 

numerically generated degradation process has no real physical 

meaning. 
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Table 3 Generated degradation data. 

Sample 1 

1.4877 1.6396 1.8856 1.9731 2.0047 2.0988 2.1772 2.3276 2.6215 

2.7977 2.8215 2.9249 3.1968 3.4250 3.8054 3.8543 4.3150 4.5271 

4.6620 4.8670 5.0989 5.3243 5.6701 6.0881 6.3715   

Sample 2 

1.5618 1.9479 2.0606 2.1684 2.3598 2.5238 2.5992 2.6793 2.8768 

3.0295 3.1585 3.3523 3.6713 3.8077 4.1519 4.3762 4.5029 4.7638 

4.9710 5.2241 5.3960 5.6910 5.9533 6.6217 7.0312   

Sample 3 

1.8632 2.2946 2.4496 2.5801 2.6991 2.7535 2.8212 2.9726 3.0020 

3.0798 3.1517 3.1987 3.5806 3.6879 4.0069 4.1883 4.3054 4.6784 

4.8750 5.0790 5.2796 5.6850 5.9254 6.0798 6.2610   

Sample 4 

1.8869 2.0946 2.3551 2.7385 2.9479 3.0687 3.1438 3.4180 3.5190 

3.5989 3.7181 3.7932 3.9430 4.0896 4.1576 4.4200 4.6958 4.7993 

4.9617 5.2170 5.4549 5.8435 6.4385 6.8768 7.1055   

Sample 5 

1.6656 2.0201 2.1540 2.2174 2.4391 2.6000 2.6861 2.7672 2.9759 

3.2450 3.4791 3.7957 3.9916 4.1882 4.5071 4.6292 4.8034 4.9622 

5.3575 5.6821 6.1715 6.6432 6.8317 7.2832 7.7977   

Sample 6 

1.4076 1.8481 1.9966 2.1234 2.2097 2.4271 2.4843 2.5436 2.7624 

3.0464 3.3173 3.6679 3.7653 4.1564 4.4175 4.8832 5.1580 5.4341 

5.6018 5.9013 6.1226 6.3647 6.6801 6.9203 7.1411   

 

Table 4 The training results of the ANN under Gamma and IG 

process models. 

  i=1 i=2 i=3 

Gamma process model 

vi 1.8812 2.1011 1.4701 

wi 2.9552 0.0804 2.2935 

bi 7.4186 0.2708 6.1968 

IG process model 

vi 0.5835 0.1038 1.6922 

wi 0.2043 0.0474 0.9063 

bi 1.0148 0.2733 2.3237 

The comparison of the true degradation mean curves and the 

predicting mean curves of the different samples by the candidate 

models are displayed in Fig. 4. It is worth noting that the 

comparison Gamma process model and IG process model are 

also combined with ANN in this simulation study. The root 

mean squared errors (RMSEs) is used to reflect and compare the 

fitting accuracy of the candidate models. As indicated in Table 

6, the proposed model is the best one considering the overall 

fitting accuracy. 

Table 5 The training results of the ANN under Gamma and IG process models. 

  Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Gamma process model 

αi 1.8263 1.7449 1.5272 1.5450 1.8356 

μi 4.2808 4.9081 5.5445 5.8413 5.0825 

λi 0.1011 0.0551 0.1688 0.1693 0.0603 

IG process model 

αi 1.5290 1.4303 1.1689 1.1787 1.5512 

μi 1.2545 1.4519 1.6792 1.8016 1.4796 

λi 0.7631 0.7557 0.7490 0.7092 0.7532 

 pai 0.1919 0.1093 0.3998 0.3813 0.1106 
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Fig. 4. Comparisons of the true degradation mean and the predictions for the individuals. 

Table 6 RMSEs of mean function of the Gamma, IG and 

proposed models. 

 
Gamma process 

model 

IG process 

model 

The proposed 

model 

Sample 1 0.2973 0.2309 0.2389 

Sample 2 0.3832 0.3337 0.3374 

Sample 3 0.2454 0.2593 0.2511 

Sample 4 0.1658 0.2516 0.2169 

Sample 5 0.1602 0.1141 0.1075 

Average 0.2504 0.2379 0.2303 

The hyper-parameters of each candidate distributions are 

evaluated by employing the model parameters’ training results 

and ME method, Eq.(29) and Eq.(30). AIC method is utilized to 

measure the goodness-of-fit of the candidate distributions. The 

ME estimating results and the corresponding AIC values are 

displayed in Table 7. The distributions with the minimum AIC 

values are selected, as Eq.(43) and Eq.(44).

Table 7 The ME results and corresponding AIC values of different distributions. 

  Gamma lognormal Gaussian 

  δ γ AIC δ γ AIC δ γ AIC 

Gamma 

process 

model 

α 159.4905 0.0106 -1.8270 0.5250 0.0802 -1.7909 1.6958 0.1343 -1.8890 

μ 90.7759 0.0565 12.0992 1.6297 0.1073 12.1632 5.1314 0.5386 12.0013 

λ 4.9082 0.0226 -12.2176 -2.3109 0.4820 -12.2168 0.1109 0.0501 -11.7563 

IG process 

model 

α 67.7944 0.0202 0.3495 0.3084 0.1241 0.4029 1.3716 0.1666 0.2669 

μ 65.1250 0.0235 1.5884 0.4197 0.1253 1.6148 1.5334 0.1900 1.5825 

λ 1544.9121 0.000483 -21.3435 -0.2933 0.0259 -21.2893 0.7460 0.0190 -21.4541 

 pGa 3.4856 0.0684 -3.2574 -1.5895 0.5679 -3.3643 0.2386 0.1278 -2.3842 

 

{
𝛼Ga~𝑓𝑁(1.6958,0.1343), 𝜇Ga~𝑓𝑁(5.1314,0.5386)

𝜆Ga~𝑓Ga(4.9082,0.0226), 𝑝Ga~𝑓LN(−1.5895,0.5679)
 (43) 

{
𝛼IG~𝑓𝑁(1.3716,0.1666), 𝜇IG~𝑓𝑁(1.5334,0.1900)

𝜆IG~𝑓𝑁(0.7460,0.0190), 𝑝IG = 1 − 𝑝Ga
       (44) 

The comparison of the true degradation mean curve and the 

predicting mean curve of the population by the candidate 

models are shown in Fig. 5. The RMSEs is used to reflect and 
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compare the fitting accuracy of the candidate models. As 

indicated in Table 6 the proposed model is the best one 

considering the overall fitting accuracy. 

 

Fig. 5. Comparisons of the true degradation mean and the 

predictions for the population. 

Table 8 RMSEs of mean function of the Gamma, IG and 

proposed models. 

 
Gamma process 

model 

IG process 

model 

The proposed 

model 

RMSE 0.0803 0.0936 0.0757 

According to the above estimated distributions of the model 

probabilities and parameters, the life distribution and reliability 

curve are calculated by Eq.(33) and Eq.(34), respectively. Fig. 

6 shows the comparison of the population life distribution and 

the corresponding predictions given by the candidate models. 

Fig. 7 shows the comparisons of the true population reliability 

curve and the corresponding predictions given by the candidate 

models. The proposed model guarantees the highest accuracies 

on population life distribution and population reliability curve 

predictions among the candidate models.

                     

Fig. 6. Comparisons of the population life distribution and the related predictions. 

                     

Fig. 7. Comparisons of the population reliability curve and the related predictions. 

The estimations of the model parameters for sample 6 are 

displayed in Table 9. The comparison of the true degradation 

mean and the predicting mean curve of sample 6 by the 

candidate models are shown in Fig. 8. The RMSEs is used to 

reflect and compare the fitting accuracy of the candidate models. 

As indicated in Table 10, the proposed model is the best one 

considering the overall fitting accuracy. 
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Table 9 Estimated model parameters for sample 6. 

 αGa μGa λGa pGa αIG μIG λIG 

Sample 6 1.699 5.131 0.11 0.1789 1.37 1.538 0.7193 

 

Fig. 8. Comparisons of the true degradation mean and the 

related predictions. 

Table 10 RMSEs of mean function of the Gamma, IG and 

proposed models. 

 
Gamma process 

model 

IGprocess 

model 

The proposed 

model 

RMSE 0.0674 0.0792 0.0625 

Fig. 9 shows the comparison of the life distribution of 

sample 6 and the corresponding predictions given by the 

candidate models. Fig. 10 shows the comparison of the true 

reliability curve of sample 6 and the corresponding predictions 

given by the candidate models. The proposed model maintains 

the highest accuracies on individual life distribution and 

reliability curve predictions among the candidate models. 

 

                     

Fig. 9. Comparisons of the individual life distribution and the related predictions. 

                    

Fig. 10. Comparisons of the individual reliability curve and the related predictions. 

8. Case study 

In order to substantiate the effectiveness of the proposed method, 

an actual degradation dataset related to spindle system’s 

machining accuracy is applied, which is presented in Ref. 26. 

Machining accuracy of five spindle systems using for 

production is monitored. The machining accuracy is measured 

discretely during spare time of the machine tools. The 

degradation dataset is shown in Fig 11. 
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Fig. 11. Field data of machining accuracy. 

The degradation mean is generally not complicated, so there 

are three hidden neurons in the presented case study. According 

to the degradation data of all the five degradation samples, the 

ANN supported Gamma and IG process models are trained by 

Eq.(21) and Eq.(24), respectively. The training results of the 

ANNs for the above two mentioned models are displayed in 

Table 11. For each sample, the model parameters’ training 

results are displayed in Table 12. The model probabilities for 

each samples can be evaluated by Bayesian inference method 

are shown in Eq.(25) and are displayed in Table 12. 

Table 11. The training results of the ANN under Gamma and IG process models. 

  i=1 i=2 i=3 

Gamma process model 

vi 1.3434 -9.9996 1.2090 

wi 2.0395 -4.5451 8.9770 

bi 4.8778 5.0080 6.3195 

IG process model 

vi -1.9463 0.5431 1.3998 

wi -0.4673 1.2425 1.7647 

bi 1.6244 2.7714 4.3418 

Table 12 The training results of the ANN under Gamma and IG process models. 

  Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Gamma process model 

αi 1.8224 2.1856 1.7966 1.8460 2.0930 

μi 3.2221 3.1263 2.4189 3.0940 1.8276 

λi 0.1389 0.1950 0.0763 0.1105 0.0480 

IG process model 

αi 1.9009 1.9701 1.7891 1.7063 1.5149 

μi 1.8412 1.7755 1.4899 1.9523 1.1215 

λi 0.6543 0.5226 0.5861 0.6003 0.6311 

 pai 0.4918 0.4780 0.5695 0.5859 0.4746 

Referring to the training results, the degradation mean 

curves of each samples can be calculated by Eq.(4). The RMSEs 

of the degradation modeling of the Gamma, IG, the proposed 

models and the method presented in Ref. 30 are indicated in 

Table 13. It should be mentioned that the comparison models 

are also means the ANN supported Gamma and IG process 

models. Evidently, the proposed model can provide the highest 

accuracy on the degradation mean prediction among the 

candidate methods. 

Table 13 RMSEs of degradation modeling of the Gamma, IG and proposed models. 

 Gamma process model IG process model The proposed model 
The method presented in Ref. 

[30] 

Sample 1 2.6379 8.6230 2.0143 15.2737 

Sample 2 33.4914 16.5695 16.5734 4.1135 

Sample 3 2.4420 2.6063 1.8884 6.5882 

Sample 4 2.5404 4.1643 7.6094 12.3729 

Sample 5 17.9597 2.2261 5.4903 3.2624 

Average 11.8143 6.8378 6.7152 8.3221 

The hyper-parameters of each candidate distributions are 

evaluated by using the model parameters’ training results and 

ME method, Eq.(29) and Eq.(30). AIC method is employed to 

evaluate the goodness-of-fit of the candidate distributions. 

displays the ME estimating results and the corresponding AIC 

values. The distributions with the minimum AIC values are 

selected, as Eq.(45) and Eq.(46). 
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Table 14 The ME results and corresponding AIC values of different distributions. 

  Gamma lognormal Gaussian 

  δ γ AIC δ γ AIC δ γ AIC 

Gamma process 

model 

α 149.9907 0.0130 -0.3276 0.6639 0.0803 -0.3912 1.9487 0.1591 -0.1918 

μ 25.9782 0.1054 12.5060 0.9851 0.2170 12.7606 2.7378 0.5371 11.9746 

λ 4.9855 0.0228 12.0145 -2.2844 0.4847 11.8964 0.1137 0.0509 11.5833 

IG process 

model 

α 124.7252 0.0142 -0.0549 0.5704 0.0919 0.0239 1.7763 0.1590 -0.1961 

μ 29.8948 0.0547 6.6210 0.4734 0.2007 6.8651 1.6361 0.2992 6.1240 

λ 177.7302 0.0034 -12.6971 -0.5156 0.0769 -12.6208 0.5989 0.0449 -12.8391 

 pGa 118.4385 0.0044 -12.3545 -0.6581 0.0905 -12.4145 0.5200 0.0478 -12.2226 

 

{
𝛼Ga~𝑓LN(0.6639,0.0803), 𝜇Ga~𝑓𝑁(2.7378,0.5371)

𝜆Ga~𝑓𝑁(0.1137,0.0509), 𝑝IG~𝑓LN(−0.6581,0.0905)
 (45) 

{
𝛼IG~𝑓𝑁(1.7763, 0.1590), 𝜇IG~𝑓𝑁(1.6361,0.2992)

𝜆IG~𝑓𝑁(0.5989,0.0449), 𝑝IG = 1 − 𝑝Ga
     (46) 

Referring to the above estimated distributions of the model 

probabilities and parameters, the life distribution and reliability 

curve can be calculated by Eq.(33) and Eq.(34), respectively. 

Them are compared to the life distributions and reliability 

curves calculated by the corresponding Gamma and IG process 

models. According to Fig. 12 and Fig 13, the process uncertainty 

issues should be considered when analyzing the population life 

distribution and reliability, considering the highest accuracy of 

the proposed model among the candidate models and the 

differences of life distributions and reliability curves. 

 

Fig. 12. The population reliability curves given by Gamma 

process model, IG process model and the proposed model. 

To evaluate the effectiveness of the proposed approach on 

individual reliability prediction, another four samples are 

employed to estimate the superiority of the model probabilities 

and parameters when one specific sample is used as the 

monitoring individual. 

 

Fig. 13. The population life distributions given by Gamma 

process model, IG process model and the proposed model. 

For example, sample 1 to sample 4 are used to evaluate the 

priors, when sample 5 is used as the monitoring individual. 

Furthermore, the last three observations are retained for cross 

validations. Namely, the first sixteen observations are used to 

infer the model parameters and probabilities.  

Table 15 Estimated model parameters for different degradation 

samples. 

 αGa μGa λGa pGa αIG μIG λIG 

Sample 1 1.8354 3.1918 0.1456 0.5185 1.8614 1.8963 0.6246 

Sample 2 1.6330 3.6313 0.1743 0.5077 1.8867 1.8631 0.6120 

Sample 3 1.6139 2.8191 0.1070 0.5499 1.7696 1.5287 0.6182 

Sample 4 1.8524 3.0776 0.1294 0.5632 2.0071 1.8179 0.6157 

Sample 5 1.3703 2.7021 0.0870 0.5164 1.6348 1.3565 0.6218 

Table 15 shows the estimated model parameters of the 

proposed model. The boxplots of the degradation predictions 

given by the proposed model are shown in Fig. 14. To 

quantitatively analyze the accuracy of the proposed model, the 

RMSEs of the Gamma process model, IG process model, the 

method presented in Ref. 32 and proposed model are calculated 

and displayed Table 16, Intuitively, when focusing on the 

degradation predicting accuracy, the proposed model is the best 

one.  
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Fig. 14. The degradation predictions given by the proposed 

model. 

Furthermore, the proposed model has also been compared to 

several previous published models for validating its 

effectiveness. The model presented in Ref. [30] neglects process 

uncertainty and random effects. The model presented in Ref. [40] 

neglects process uncertainty. The model presented in Ref. [26] 

neglects mean function uncertainty. Consistent with the above 

mentioned researches, the relative error is defined by Eq.(47). 

The prediction mean squared errors (MSEs) of the degradation 

prediction relative error for the different candidate models are 

shown in Table 17. Obviously, the proposed model is more 

effective than the other candidate models focusing on the 

degradation predicting accuracy, due to considering the multi-

uncertainties simultaneously. 

𝑒𝑟𝑟𝑜𝑟 =
|inferred degradation−observed degradation|

observed degradation
   (47)

Table 16 RMSEs of the degradation predictions for different degradation samples. 

 Gamma process model IG process model The proposed model The method presented in Ref. [30] 

Sample 1 1.5837 2.1592 0.6839 1.1125 

Sample 2 0.9054 3.6708 0.6212 1.2442 

Sample 3 0.8361 0.5493 0.5753 1.2713 

Sample 4 0.7802 1.4264 1.8092 0.7275 

Sample 5 1.1801 0.4924 1.6443 1.8425 

Average 1.2365 1.6596 1.0668 1.2396 

Table 17 MSEs of the degradation predictions of the candidate methods. 

Method The proposed model The previous model in Ref.[30] The previous model in Ref.[40] The model presented in Ref.[26] 

MSE 0.401x10-3 0.455x10-3 2.836x10-3 2.265x10-3 

 

Fig. 15 and Fig. 16 show the individual RUL distributions 

and reliability curves of each monitoring individuals given by 

the proposed method, respectively. 

 

Fig. 15. The individual RUL distributions of different 

degradation samples given by the presented method. 

 

Fig. 16. The individual reliability curves of different 

degradation samples given by the presented method. 

9. Conclusions 

This paper presents an ANN-supported stochastic process for 

reliability analysis with the mean function uncertainty, random 
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effects and process uncertainty simultaneously. The ANN 

supported Gamma and IG process models with random effects 

are constructed and used as the candidate models. The 

corresponding parameters and model probabilities estimation 

method is also built based on ME, AIC and fully Bayesian 

inference methods, such that the proposed stochastic processes 

can be applied to population degradation model and monitor 

individual degradation prediction. 

Simulation experiment is performed to demonstrate the 

flexibility of the proposed method. The simulation results 

indicate that the proposed model provides the highest accuracies 

on life distribution and reliability curve predictions among the 

candidate models. Furthermore, a degradation experimental 

dataset about the machining accuracy is also applied to 

substantiate the performance of the proposed method. The 

proposed method maintains superiorities on the population 

reliability analysis and monitoring individual reliability 

prediction focusing on the degradation modeling and predicting 

accuracies. Furthermore, it can also give the reliability curves 

and life (or RUL) distributions of the monitoring individual and 

evaluating population. Namely, the propose method is more 

workable for some actual applications, especially for analyzing 

the monotonous degradation dataset. 

Further work will focus on handling the multi uncertainty 

issues in accelerating degradation test and accelerated life test 

planning. 
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