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Highlights  Abstract  

▪ Innovative post-fault strategy with matrix rank 

constraints simplifies outage management. 

▪ Optimized DER planning ensures efficient 

resource use and power supply during crises. 

▪ Matrix rank-based topology boosts power 

system flexibility with uneven resources. 

 This research introduces a novel outage management strategy (OMS) 

designed to enhance the resilience of distribution systems (DiSs) 

during severe weather-induced power outages. The approach 

incorporates an innovative network restructuring technique that utilizes 

an updated matrix to efficiently identify and reconfigure the radial 

network's topology following line faults. This restructuring optimizes 

the use of distributed energy resources (DERs) by strategically 

replacing connection and cross-section lines, formulated as an 

optimization problem solved through the social spider optimization 

algorithm. The key contributions include a unique matrix rank-based 

topology modeling method that avoids traditional empirical topological 

searches, proving effective in N-1, N-2, and N-3 scenarios. 

Comprehensive planning of DERs, encompassing both dispatchable 

and non-dispatchable resources, ensures optimal power supply during 

crises, even in systems with low to moderate DER penetration. 

Extensive simulations on IEEE 69-bus and IEEE 123-bus systems 

show that the method can sustain up to 85% of the load after line 

failures, significantly outperforming traditional microgrid techniques. 

Additionally, the strategy reduces energy resource exploitation costs by 

over 20% compared to conventional approaches, offering a robust 

solution for enhancing DiS resilience. 
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1. Introduction 

1.1. Background and Aims 

The growing integration of renewable energy sources (RES) 

and distributed energy resources (DERs) in power distribution 

systems presents both opportunities and challenges. As the 

penetration of renewable energy increases, the traditional 

operation and design of distribution networks, which have 

been largely static and radial, must evolve to accommodate 

the intermittent and distributed nature of these new energy 

sources [1]. This evolution requires enhanced flexibility in 

network operations to ensure reliable and efficient power 

delivery, even in the face of line faults and other disturbances. 

Traditional distribution systems, characterized by limited 
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flexibility and rigid structures, are often inadequate in 

addressing the complexities introduced by high levels of DER 

integration [2]. Recent advances in network restructuring, 

such as dynamic reconfiguration and the strategic placement 

of DERs, have shown promise in enhancing the resilience and 

flexibility of distribution systems. These methods enable the 

network to adapt to changing conditions, such as fluctuating 

power generation from renewables or unexpected line faults, 

thereby improving overall system reliability [3]. However, the 

existing techniques still face significant challenges, 

particularly in optimizing the balance between network 

flexibility and stability, and in minimizing the impact of faults 

without compromising the economic operation of the grid [4]. 

This study aims to develop a comprehensive framework that 

addresses these challenges by integrating network 

restructuring with advanced planning of DERs. The proposed 

approach focuses on enhancing the operational flexibility of 

distribution systems, enabling them to better handle the 

variability of renewable energy and the occurrence of line 

faults. This study seeks to identify the optimal configuration 

of the distribution network and the strategic deployment of 

DERs to improve system resilience, reduce outage durations, 

and maintain stable power supply under diverse fault 

conditions [5]. 

1.2. Literature Review 

There is a substantial body of research dedicated to enhancing 

the flexibility of distribution systems through network 

restructuring and the strategic planning of distributed energy 

resources (DERs), particularly in the context of managing line 

faults and integrating renewable energy. Numerous studies 

have explored various methodologies, techniques, and 

frameworks to address the challenges posed by the increasing 

penetration of DERs in distribution networks. The following 

sections provide a comprehensive review of key contributions 

in this field, highlighting the diverse approaches and 

innovations proposed by various researchers. 

Candas et al. [6] explored the role of network 

reconfiguration in enhancing the flexibility of distribution 

systems. Their study highlighted that traditional radial 

network structures limit flexibility, and dynamic 

reconfiguration could significantly improve system reliability 

and fault tolerance. They proposed a method that leverages 

real-time data to reconfigure the network, reducing the impact 

of line faults. Shi et al. [7] focused on the integration of 

distributed energy resources (DERs) to enhance distribution 

system resilience. The authors emphasized that the strategic 

placement of DERs within the network could mitigate the 

effects of line faults by providing localized power during 

outages. Gantayet et al. [8] investigated the combined effect 

of network restructuring and DER planning on the operational 

flexibility of distribution systems. They introduced a multi-

objective optimization framework that considers both network 

reconfiguration and DER deployment to minimize system 

losses and improve fault tolerance. Mahdavi et al. [9] 

presented a method for improving distribution system 

flexibility through adaptive network reconfiguration. The 

method dynamically adjusts the network topology in response 

to real-time fault conditions, ensuring continued power supply. 

Liu et al. [10] examined the impact of DERs on the flexibility 

and reliability of distribution systems. The study found that 

integrating DERs into the network, particularly renewable 

sources, could enhance system resilience to faults. However, 

the authors noted that the variability of renewable sources 

posed challenges, necessitating robust planning and control 

strategies.  

Igder et al. [11] explored the role of microgrids in 

increasing the flexibility of distribution systems. They 

proposed a hybrid network structure that combines traditional 

grid operations with microgrids, enabling rapid isolation and 

recovery from faults. The study demonstrated that microgrids 

could significantly reduce outage times. Mahdavi et al. [12] 

developed a novel approach for distribution network 

reconfiguration that considers the stochastic nature of faults 

and renewable energy sources. Their probabilistic model 

allowed for real-time adjustments to the network structure, 

improving fault response. Ahrari et al. [13] investigated the 

role of energy storage systems (ESS) in enhancing distribution 

system flexibility and fault tolerance. The authors proposed an 

optimal ESS placement strategy that supports network 

reconfiguration during outages. Their findings indicated that 

strategically placed ESS could reduce the impact of line faults 

by providing temporary power, leading to a reduction in 

outage duration. Javadi et al. [14] proposed a comprehensive 
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framework for integrating DERs into distribution systems to 

improve flexibility and resilience. Their approach combined 

network reconfiguration with DER planning to create a more 

robust system capable of handling multiple fault scenarios. 

Kahouli et al. [15] analyzed the benefits of automated network 

reconfiguration in modern distribution systems. The authors 

highlighted that automation could significantly improve the 

speed and accuracy of network adjustments during fault 

conditions. Their simulations demonstrated that automated 

reconfiguration could reduce outage impacts. Caballero-Pena 

et al. [16] explored the impact of DER integration on the 

stability and flexibility of distribution networks. They 

proposed a control strategy that balances power flows 

between the grid and DERs during faults, ensuring stability 

and continuity of service. Their results indicated that the 

proposed strategy could reduce voltage deviations during line 

faults, enhancing overall system performance. 

Jangdoost et al. [17] revisited the classic problem of 

distribution network reconfiguration to improve reliability and 

flexibility. They introduced an updated heuristic algorithm 

that rapidly identifies optimal reconfiguration strategies in 

response to faults. The study showed that the algorithm could 

reduce the time required for network reconfiguration 

significantly enhancing system resilience. Zakaryaseraji and 

Ghasemi-Marzbali [18] addressed the challenge of optimizing 

and securing power system operations amid rising energy 

demand. It introduces a technique for the strategic 

implementation of demand response programs (DRPs), 

optimal placement of distributed generation (DG), and 

application of DC dynamic load flow. The model optimizes 

DRP timing and wind unit placement, reducing congestion 

and significantly improving available transfer capability (ATC) 

rates. Ortiz-Matos et al. [19] developed a fault-tolerant control 

strategy for distribution systems that integrates DERs and 

network reconfiguration. The strategy dynamically adjusts the 

network topology and DER output in response to real-time 

fault conditions. Their study showed that this approach could 

reduce the number of customers affected by faults 

highlighting the importance of flexibility in modern 

distribution systems. Home-Ortiz et al. [20] investigated the 

potential of flexible network operation strategies in enhancing 

distribution system resilience. They proposed a dynamic 

reconfiguration method that adapts to changing fault 

conditions, supported by DER integration. The study found 

that this approach could reduce outage durations 

demonstrating the value of flexibility in fault management. 

Aziz et al. [21] explored the use of network reconfiguration as 

a tool for enhancing the fault tolerance of distribution systems 

with high DER penetration. They proposed a strategy that 

optimizes reconfiguration actions based on DER availability 

and fault locations. Their simulations indicated that this 

method could reduce power loss during fault conditions, 

improving overall system efficiency. 

Strezoski et al. [22] examined the impact of advanced 

distribution management systems (ADMS) on the flexibility 

and resilience of distribution networks. The study highlighted 

that ADMS could enhance fault detection and response times 

through better integration with DERs and network 

reconfiguration capabilities. Ji et al. [23] proposed a novel 

framework for real-time network reconfiguration in 

distribution systems with high levels of renewable energy. 

Their method used a real-time optimization algorithm that 

considers both the stochastic nature of renewable sources and 

the network's fault conditions. Nawaz et al. [24] investigated 

the role of demand response in enhancing the flexibility of 

distribution systems during line faults. The authors proposed  

a demand response strategy that works in conjunction with 

network reconfiguration to minimize the impact of faults on 

system operation. Schneider et al. [25] explored the potential 

of hybrid AC/DC microgrids in increasing the flexibility of 

distribution systems. They proposed a network 

reconfiguration strategy that leverages the advantages of both 

AC and DC networks to improve fault tolerance. Their study 

showed that hybrid microgrids could reduce the impact of line 

faults offering a promising solution for enhancing distribution 

system resilience.  

Finally, Table 1 summarizes the key advantages and 

disadvantages of each reference, providing a clear comparison 

for understanding the strengths and weaknesses of various 

approaches in the field of distribution system flexibility and 

resilience 

 

.
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Table 1. A comparison based on the advantages and disadvantages of each reference. 

Ref Advantages Disadvantages 

[6] 

Dynamic network reconfiguration enhances system 

reliability and fault tolerance by leveraging real-time 

data. 

Limited flexibility in traditional radial network 

structures. 

[7] 
Strategic placement of DERs enhances resilience by 

providing localized power during outages. 

Does not address challenges related to the 

variability of renewable DERs. 

[8] 

Multi-objective optimization minimizes system 

losses and improves fault tolerance by combining 

network restructuring and DER planning. 

Complexity in balancing multiple objectives and 

implementation in real-world scenarios. 

[9] 

Adaptive network reconfiguration ensures 

continuous power supply by dynamically adjusting 

topology in real-time. 

Requires sophisticated real-time monitoring and 

control systems. 

[10] 
Integration of renewable DERs enhances system 

resilience and fault tolerance. 

Variability of renewable energy sources introduces 

challenges in planning and control. 

[11] 
Hybrid network structure with microgrids reduces 

outage times and enhances fault recovery. 

Implementation complexity due to the need for 

coordination between microgrids and traditional 

networks. 

[12] 

Probabilistic model accounts for the stochastic 

nature of faults and renewable energy, improving fault 

response. 

Increased computational complexity and real-time 

data requirements. 

[13] 

Optimal ESS placement reduces outage duration 

and enhances fault tolerance by providing temporary 

power. 

High initial cost and maintenance requirements for 

energy storage systems. 

[14] 

Comprehensive framework combining DER 

integration and network reconfiguration improves 

system flexibility and resilience. 

Potential challenges in coordinating DER 

operations with network reconfiguration. 

[15] 
Automated network reconfiguration improves speed 

and accuracy of adjustments during faults. 

High dependency on automation technologies, 

which may be costly or complex to implement. 

[16] 

Control strategy balances power flows during 

faults, reducing voltage deviations and enhancing 

stability. 

May require advanced control systems and real-

time monitoring capabilities. 

[17] 
Heuristic algorithm rapidly identifies optimal 

reconfiguration strategies, enhancing system resilience. 

May not always find the global optimal solution, 

potentially leading to suboptimal configurations. 

[18] 
Optimizes DRP timing and wind unit placement, 

reducing congestion and improving ATC rates. 

May require significant adjustments in existing 

infrastructure to implement effectively. 

[19] 

Fault-tolerant control strategy reduces customer 

impact by dynamically adjusting network topology and 

DER output. 

Implementation complexity due to the need for 

real-time adjustments and monitoring. 

[20] 

Dynamic reconfiguration method reduces outage 

durations and enhances fault management with DER 

support. 

High reliance on real-time data and optimization 

algorithms, which may be computationally intensive. 

[21] 
Optimizes reconfiguration actions based on DER 

availability and fault locations, reducing power loss. 

Challenges in predicting and modeling DER 

availability and fault impacts accurately. 

[22] 

ADMS enhances fault detection and response 

through better integration with DERs and 

reconfiguration capabilities. 

Requires significant investment in advanced 

management systems and training. 

[23] 

Real-time optimization framework enhances fault 

tolerance in systems with high renewable energy 

penetration. 

Stochastic nature of renewable energy sources adds 

complexity to the optimization process. 

[24] 
Demand response strategy minimizes fault impact 

in conjunction with network reconfiguration. 

Effectiveness depends on customer participation 

and responsiveness. 

[25] 

Hybrid AC/DC microgrids reduce the impact of line 

faults, offering a promising solution for system 

resilience. 

Integration of AC and DC systems can be complex 

and costly, requiring advanced control strategies. 
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1.3. Previous Scientific Gaps and Paper Contributions 

Despite significant advancements in enhancing distribution 

system flexibility and resilience through network restructuring 

and the integration of distributed energy resources (DERs), 

several scientific gaps remain.  

I. Many existing methods lack effective real-time 

adaptability in dynamic operating conditions. While some 

approaches propose network reconfiguration and DER 

integration, they often fall short in handling sudden fault 

conditions or fluctuating renewable energy sources 

without extensive computational overhead. 

II. Previous studies frequently address network 

reconfiguration and DER deployment in isolation, rather 

than integrating them into a unified optimization 

framework. This fragmentation limits the ability to achieve 

optimal performance across both network operations and 

DER management simultaneously. 

III. The scalability of existing solutions is often constrained by 

their complexity or computational requirements. As 

distribution systems grow in size and complexity, methods 

that were effective on smaller scales may become 

impractical or inefficient when applied to larger networks. 

IV. Many proposed models emphasize technical performance 

improvements but overlook practical and economic 

aspects such as cost-effectiveness, ease of implementation, 

and the economic impact on end-users.  

V. The integration of emerging technologies, such as hybrid 

AC/DC microgrids and advanced distribution management 

systems (ADMS), is often not fully explored in the context 

of enhancing fault tolerance and system flexibility. 

Therefore, this paper addresses these scientific gaps 

through several key contributions: 

I. It introduces a novel unified optimization framework that 

integrates network reconfiguration and DER planning into  

a cohesive model. This approach aims to simultaneously 

optimize both aspects, enhancing overall system 

performance and flexibility. 

II. The paper develops a real-time adaptive network 

reconfiguration method that dynamically adjusts to fault 

conditions and fluctuating energy sources. This method 

enhances the system’s ability to maintain stability and 

reliability under varying operational scenarios. 

III. A focus on scalable algorithms ensures that the proposed 

solutions remain effective as distribution systems expand. 

The paper employs efficient computational techniques to 

handle larger networks without compromising 

performance. 

IV. The proposed models include practical and economic 

considerations, evaluating cost-effectiveness and ease of 

implementation. This holistic approach ensures that the 

solutions are not only technically sound but also feasible 

for real-world application. 

V. The research explores the potential of integrating hybrid 

AC/DC microgrids and ADMS within the proposed 

framework. This integration aims to leverage the benefits 

of these emerging technologies to further enhance fault 

tolerance and system flexibility. 

By addressing these gaps, the paper provides a more 

comprehensive approach to improving the flexibility and 

resilience of distribution systems, paving the way for more 

effective and practical solutions in the field. 

2. Problem Modeling 

2.1. Proposed restructuring strategy  

In contemporary outage management systems (OMS) for 

distribution systems (DiSs), several critical challenges persist, 

particularly when severe weather conditions lead to 

widespread power outages. Existing microgrid techniques, 

while offering localized solutions, often fall short of 

addressing the following limitations: 

1. Limited Network Reconfiguration: Traditional 

microgrid approaches primarily focus on local islanding, 

which may not be sufficient in complex, large-scale 

distribution networks. These techniques cannot 

dynamically reconfigure the entire distribution network 

topology in response to multiple line failures (N-1, N-2, 

N-3 scenarios), leading to suboptimal restoration 

outcomes. 

2. Inadequate Utilization of Distributed Energy 

Resources (DERs): Current OMS methods often fail to 

fully leverage the potential of DERs during outages. This 

underutilization is exacerbated in scenarios with low to 

moderate DER penetration, where the strategic 
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deployment of DERs is crucial for maintaining power 

supply continuity. Existing approaches typically focus on 

either dispatchable or non-dispatchable resources, rather 

than an integrated approach that considers both. 

3. High Costs and Inefficiencies: Traditional outage 

management techniques can be cost-intensive and 

inefficient, particularly when it comes to resource 

allocation and system recovery. Microgrid techniques 

often involve complex empirical topological searches, 

which can be computationally expensive and time-

consuming, leading to delays in restoring power and 

higher overall costs. 

The proposed OMS method directly addresses these 

challenges by introducing a matrix rank-based topology 

modeling approach that avoids empirical searches, 

significantly reducing computational complexity and cost. 

Additionally, it offers a comprehensive DER planning strategy 

that maximizes resource utilization, ensuring optimal power 

supply and resilience even in systems with varying levels of 

DER penetration. As shown in Figure (1), the proposed 

network restructuring method consists of three main steps: 

• Step 1: The entire network is divided into several zones; 

each zone is defined starting from the bus post and 

moving downstream. If a bus, such as bus 2 in Figure (1), 

has several sub-bass (for example, busses 3 and 15), 

each sub-bass until it reaches the end bus of its feeder 

(for example, bus 14 and bus 22) is visited. All sub-bass 

between the previous subbass and last bass, such as sub-

bass 3 to 14 or sub-bass 15 to 22, are considered as  

a zone.  

• Step 2: Connection switches (TS) and segmentation 

switches (SS) are changed to build a list of 

reconfiguration topologies in the event of a single-line 

fault in the region. Typically, there are one or two remote 

control zoning switches per zone. For each topology, at 

least one connection switch connected to the fault zone 

is closed. However, to avoid loops, if two connecting 

switches (eg, TS2 and TS4) are closed for a single-line 

fault, a segmentation switch (eg, SS3 or SS5) in that loop 

is opened. If TS2 and TS4 are closed, there are two 

possible topologies. 

• Step 3: A process akin to Step 2 is undertaken to 

produce a list of reconfigurable topologies in the event 

that a two-line fault manifests in both areas. The same 

method can be applied to three-line faults, although the 

details are omitted here. 

As seen in Figure (2), the fault indicator notifies the 

system operator of the fault and specifies the damaged region 

as soon as the line fault is identified. Next, the user searches 

the database for the topology list. Topologies that do not meet 

the defined constraints are discarded and the remaining 

options are considered for optimal distribution of energy 

resources planning and cost analysis. 

 

Figure 1. An example of a feeder with conventional open branches. 
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Figure 2. how the proposed restructuring strategy works 

2.2. The objective function  

In the light of the presented analysis, as stated in equation (1), 

our objective function includes the critical factors in 

optimizing the performance of an energy management system. 

This function considers the total operating cost of the energy 

management system. In this relation, i represents the index 

assigned to the sub-bass, while t represents the index related 

to hourly time intervals. This equation integrates elements 

such as fuel cost associated with microgrid operation (𝑐𝐺 ), 

payment of compensation for load shedding (𝑐𝐿), grid output 

power ( 𝑝𝐺 ) and the amount of load shedding ( ∆𝑝𝐿 ). In 

addition, it considers parameters such as planning period for 

distributed energy sources or power outage duration (Ω(T)), 

microgrid bus set (Ω(G)), and bus set of loads (Ω(L)). 

Equation (1) includes the two main terms of microgrid 

operation cost and load reduction compensation. Although 

cost minimization is essential, the cost component of the 

equation prioritizes uninterruptible power supply by taking 

into account the variable importance of different load types, 

ensuring that power remains reliably available even in adverse 

conditions [4]: 

(1) 𝐶(𝐺(𝑘)) = 𝑀𝑖𝑛 ∑ ∆𝑡 ∙ (∑ 𝑐𝐿(𝑖) ∙ ∆𝑝𝐿(𝑖, 𝑡)𝑖∈Ω(𝐿) + ∑ 𝑐𝐺 ∙ 𝑝𝐺(𝑖, 𝑡)𝑖∈Ω(𝐺) )𝑡∈Ω(𝑇)    

 

where 𝑐𝐺   represents the fuel cost associated with microgrid 

operation. 

2.3. Radial network structure limitations  

In an electrical distribution network represented as a directed 

graph model G(Ω(N), Ω(B)), consisting of nodes (Ω(N)) and 

branches (Ω(B)). The system operator numbers each branch 

and node using a search technique. Under typical operating 

conditions, the energy flow is thought to be flowing in the 

positive direction in Ω(B). For the graph (G), a node-branch 

incidence matrix (E) is produced. The components in E, which 

represent the connection between nodes and branches, can 

have values of 0, 1, or -1. When line failures happen, the 

operator has to figure out the best reorganization topology to 

minimize load shedding and microturbine production costs 

while maintaining the network's radial structure. This is 

achieved by selectively closing the connection switches and 

opening the segmentation switches to connect isolated feeders 

with other feeders. Equations (5) through (2) specify the 

precise circumstances needed to preserve this radial structure. 

For each line, the switching state variable s(l) is crucial, with 

values of 1 denoting closure and 0 open. This condition 

ensures that the protective relays appropriately open the faulty 

lines and that the total number of closed lines (minus the 

source node) equals the number of nodes. The ultimate goal is 

to maintain a connected graph [4]: 

(2) ∑ 𝑠(𝑙)

𝑙∈Ω(𝐵)

= 𝑁 − 1 

(3) 𝑠(𝑙) = 0        ∀𝑙 ∈ Ω(𝐵, 𝐹𝑎𝑢) 

(4) 𝑒́(𝑙) = 𝑒(𝑙). 𝑠(𝑙) ∀𝑙 ∈ Ω(𝐵) , 𝑒́(𝑙) ∈ 𝐸́ , e(𝑙) ∈ 𝐸 

(5) 𝑅𝑎𝑛𝑘(𝐸́) = 𝑁 − 1 

3. Estimating the probability of error  

The operation management system (OMS) serves as a vital 

tool in reducing economic losses and energy supply 

disruptions caused by potential N-K incidents, especially in 

the face of extreme weather phenomena such as typhoons. 

Evaluating the likelihood of N-K occurrence is required to 

identify the ideal value of K which requires further research. 

Locate the faulted lines and their 

area
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In practical scenarios, storm damage to overhead distribution 

lines occurs primarily through two mechanisms: 1) fallen tree 

branches striking power lines, and; 2) direct collapse due to 

high winds. Historical data is necessary to establish  

a correlation between the probability of line faults and wind 

speed. This paper uses a probabilistic error model that is based 

on the UK's NaFIRS database [26], which contains wind data 

values from 2003 to 2010 that recorded mean and maximum 

hourly wind speeds. As shown in the relation, in hurricanes, 

where the maximum hourly wind speed can reach 30 – 38 m/s, 

line error probability (Pr (i, j) as A power function is modeled 

by the wind speed (𝑣𝑤). Remarkably, this relation shows that 

the line fault probability is directly proportional to the line 

length (l (i, j)). For urban DiSs, α = 2 × 10−17 and β = 9.92 is 

estimated. The probability of a specific scenario in the 

framework is calculated using equation (7) and subsequently, 

the cumulative probability of all scenarios with N-K possible 

cases is calculated using equation (8) is determined. In 

addition, in the case where the error probability is the same 

for each line, denoted as Pr (i, j) = Pr (0), equations (8) to (9) 

become simple [4]: 

(6) 𝑃𝑟(𝑖, 𝑗) = α. 𝑙(𝑖, 𝑗). (𝑣𝑤)𝛽 

(7) 𝑃𝑟(𝑠) = ∏ 𝑃𝑟 (𝑖, 𝑗)

𝑖𝑗∈𝛺(𝐵,𝐹𝑎𝑢)

∏ (1 − 𝑃𝑟(𝑖, 𝑗))

𝑖𝑗∈𝛺(𝐵) 𝛺(𝐵,𝐹𝑎𝑢)⁄

 

(8) 

𝑃𝑟{(𝑁 − 𝐾)𝐶𝑜𝑛𝑡. }

= ∑ | ∏ 𝑃𝑟 (𝑖, 𝑗)

𝑖𝑗∈𝛺(𝐵,𝐹𝑎𝑢)

∏ (1

𝑖𝑗∈𝛺(𝐵) 𝛺(𝐵,𝐹𝑎𝑢)⁄|𝛺(𝐵,𝐹𝑎𝑢)|=𝐾

− 𝑃𝑟(𝑖, 𝑗))| 

(9) 𝑃𝑟{(𝑁 − 𝑘)𝐶𝑜𝑛𝑡. } = (1 − 𝑃𝑟(0))𝑁−𝐾 ∙ 𝐶𝐾(𝑁) ∙ (𝑃𝑟 (0))𝐾 

3.1. Limitations of exploitation of DERs  

As indicated by Equations (27) to (10), utilization 

management systems are central to ensuring the efficient 

operation of DERs while adhering to load-spreading 

constraints. In this context, distributed energy sources include 

micro-turbines and photovoltaic systems, which are subject to 

limitations such as output power limitations and ramp rate 

limitations, which are necessary to maintain grid stability. The 

mentioned restrictions are shown in relations (12) - (10). In 

addition, load shedding constraints are applied to ensure that 

load shedding does not exceed predefined limits, which are 

controlled by demand response contracts, as stated in 

Equation 

(10) 𝑝𝐺(𝑖) ≤ 𝑝𝐺(𝑖, 𝑡) ≤ 𝑝𝐺(𝑖) 

(11) 𝑝𝐺(𝑖, 𝑡) − 𝑝𝐺(𝑖, 𝑡 − 1) ≤ 𝑈𝑅(𝑖) 

(12) 𝑝𝐺(𝑖, 𝑡 − 1) − 𝑝𝐺(𝑖, 𝑡) ≤ 𝐷𝑅(𝑖) 

(13) 0 ≤ ∆𝑝𝐿(𝑖, 𝑡) ≤ ∆𝑝𝐿(𝑖, 𝑡) 

The system operator has the flexibility to manage 

thermostatic loads, optimizing their performance by adjusting 

settings such as water heaters and air conditioners. As stated 

in relation (14), constant power coefficients and conversion 

coefficients of reactive power variables to active power 

variables contribute more to network control. As shown in 

equation (15), in the case of photovoltaic systems, they are 

considered distributed non-distributable energy sources that 

work at their maximum power point in response to solar 

radiation. Limitations of AC load distribution included in 

equations (16) and (17) are used for accurate calculation of 

voltage and phase angle [27]. Also, the admittance between 

the sub-bass can be calculated using relations (18) and (19). 

(14) ∆𝑞𝐿(𝑖, 𝑡) = φ(i). ∆𝑝𝐿(𝑖, 𝑡) 

(15) 𝑝𝑃𝑉𝑚𝑝(𝑖, 𝑡) = 𝑀𝑖𝑛 (𝐼𝑟𝑟(𝑡) ∙ 𝑝𝑃𝑉,𝑅𝑎𝑡𝑒𝑑(𝑖), 𝑝𝑃𝑉,𝑅𝑎𝑡𝑒𝑑(𝑖)) 

(16) 

𝑃(𝑖, 𝑡) = ∑ 𝑃(𝑖, 𝑗, 𝑡)

𝑁𝐵

𝑗=1,𝑗≠𝑖

= ∑ [𝐵1(𝑖, 𝑗) ∙ (𝑉(𝑖, 𝑡) − 𝑉(𝑗, 𝑡)) + 𝐵2(𝑖, 𝑗)

𝑁𝐵

𝑗=1,𝑗≠𝑖

∙ (𝛿(𝑖, 𝑡) − 𝛿(𝑗, 𝑡))] 

(17) 

𝑄(𝑖, 𝑡) = ∑ 𝑄(𝑖, 𝑗, 𝑡)

𝑁𝐵

𝑗=1,𝑗≠𝑖

= ∑ [𝐵2(𝑖, 𝑗) ∙ (𝑉(𝑖, 𝑡) − 𝑉(𝑗, 𝑡)) − 𝐵1(𝑖, 𝑗)

𝑁𝐵

𝑗=1,𝑗≠𝑖

∙ (𝛿(𝑖, 𝑡) − 𝛿(𝑗, 𝑡))] 

(18) 𝐵1(𝑖𝑗) =
𝑟(𝑖, 𝑗)

(𝑥(𝑖, 𝑗))2 + (𝑟(𝑖, 𝑗))2
 

(19) 𝐵2(𝑖𝑗) =
𝑥(𝑖, 𝑗)

(𝑥(𝑖, 𝑗))2 + (𝑟(𝑖, 𝑗))2
 

These limits, along with the voltage and thermal limits 

specified in equations (20) and (21), respectively, guarantee 

the reliable operation of the distribution network in different 

conditions. Also, in relations (22) and (23), the limits related 

to the active power and reactive power of buses are shown 

[28]. Finally, by placing relations (16) and (17) in relations 

(22) and (23), comprehensive relations (24) and (25) can be 

obtained. 

(20) 𝑉(𝑖) ≤ 𝑉(𝑖, 𝑡) ≤ 𝑉(𝑖) 

(21) (𝑃(𝑖, 𝑗, 𝑡))2 + (𝑄(𝑖, 𝑗, 𝑡))2 ≤ (𝑆(𝑖, 𝑗))
2
 

(22) −0.95 × 𝑆(𝑖, 𝑗) ≤ 𝑃(𝑖, 𝑗, 𝑡) ≤ 0.95 × 𝑆(𝑖, 𝑗) 
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(23) −0.5 × 𝑆(𝑖, 𝑗) ≤ 𝑄(𝑖, 𝑗, 𝑡) ≤ 0.5 × 𝑆(𝑖, 𝑗) 

(24) −0.95 × 𝑆(𝑖, 𝑗) ≤ 𝐵1(𝑖, 𝑗) ∙ (𝑉(𝑖, 𝑡) − 𝑉(𝑗, 𝑡))

+ 𝐵2(𝑖, 𝑗) ∙ (𝛿(𝑖, 𝑡) − 𝛿(𝑗, 𝑡))

≤ 0.95 × 𝑆(𝑖, 𝑗) 

(25) −0.5 × 𝑆(𝑖, 𝑗) ≤ 𝐵2(𝑖, 𝑗) ∙ (𝑉(𝑖, 𝑡) − 𝑉(𝑗, 𝑡))

− 𝐵1(𝑖, 𝑗) ∙ (𝛿(𝑖, 𝑡) − 𝛿(𝑗, 𝑡))

≤ 0.5 × 𝑆(𝑖, 𝑗) 

Also, as shown in relations (26) and (27), power balance is 

mandatory for both active power and reactive power in each 

system bus. 

(26) 𝑃(𝑖, 𝑡) = 𝑝𝑃𝑉𝑚𝑝(𝑖, 𝑡) + 𝑝𝐺(𝑖, 𝑡)

− (𝑝𝐿(𝑖, 𝑡) − ∆𝑝𝐿(𝑖, 𝑡)) 

(27) 𝑄(𝑖, 𝑡) = 𝑞𝐶(𝑖, 𝑡) − (𝑞𝐿(𝑖, 𝑡) − ∆𝑞𝐿(𝑖, 𝑡)) 

3.2. Network Connectivity Constraint 

Ensure that the network remains connected after 

reconfiguration: ∑ 𝑥𝑖𝑖∈Active Switches ≥ 𝑁connected,    where, xi is  

a binary variable indicating whether switch i is active. 

Nconnected is the number of connections required to maintain 

a connected network topology. 

Maintain node voltages within acceptable limits: 𝑉min ≤

𝑉𝑖 ≤ 𝑉max  where Vi is the voltage at node i. Vmin and Vmax 

are the allowable minimum and maximum voltage limits. 

Additionally, during fault conditions: |𝑉𝑖 − 𝑉nominal| ≤

𝛥𝑉max  where, Vnominal is the nominal voltage. ΔVmax is the 

maximum permissible deviation from the nominal voltage. 

Ensure that the network can effectively handle faults and 

maintain service: ∑ Loadserved𝑗∈Faulted Lines ≥ Loadcritical  where, 

Loadserved is the load that can be supplied during a fault. 

Loadcritical is the minimum load requirement for critical 

services. 

Manage DER capacity and dispatch to meet demand: 0 ≤

𝑃DER,𝑖 ≤ 𝑃DER,𝑖,max  and ∑ 𝑃DER,𝑖𝑖∈DER ≥ Load Demand  where, 

PDER,i is the power output from DER i. PDER,i,max is the 

maximum capacity of DER i. 

Regulate the state of charge (SOC) of storage systems to 

ensure operational efficiency: SOCmin ≤ SOCcurrent ≤ SOCmax 

and SOCcurrent = SOCprevious + Charging − Discharging  where, 

SOCmin and SOCmax are the minimum and maximum SOC 

levels. Charging and Discharging refer to the rates of energy 

input and output from storage systems. 

Minimize load shedding while ensuring system stability: 

Loadshed ≤ Loadmax_shed , Restoration Time ≤

Max Restoration Time where Loadshed is the load that is shed 

during fault conditions. Loadmax_shed is the maximum 

allowable load to be shed. Restoration Time is the time 

required to restore the shed load. Max Restoration Time is the 

maximum allowable time for load restoration. This constraint 

ensures that the total load reduction due to demand response 

programs does not exceed the maximum allowable reduction: 

∑ 𝛥𝑖∈DR 𝐿𝑖 ≤ 𝐿max_reduction 

Where ΔLi is the load reduction for demand response 

program i. Lmax_reduction is the maximum allowable load 

reduction from all DRPs. This constraint ensures that the 

demand response programs are activated within the specified 

time slots: DR𝑖,𝑗 ⋅ Duration𝑗 ≤ 𝑇available,𝑖 

where, DRi,j is a binary variable indicating whether 

demand response program i is activated during time slot j. 

Durationj is the duration of time slot j. Tavailable,i is the total 

available time for program i. This constraint ensures that the 

load shifted due to DRPs does not exceed the maximum 

allowed shift: ∑ 𝛥𝑖∈DR 𝐿𝑖,𝑡 ≤ 𝐿max_shift,𝑡 

where, ΔLi,t is the amount of load shifted for demand 

response program i at time t. Lmax_shift,t is the maximum 

allowed load shift at time t. 

4. Optimization Algorithm  

Within the optimization community, the Social Spider 

Optimization (SSO) Algorithm provides a compelling method 

for solving complex optimization problems. In the SSO, the 

optimization search space is conceptualized as  

a multidimensional, intricate spider web. Each point within 

this web represents a potential solution to the optimization 

problem, with each solution occupying a distinct position. 

This web not only holds these solutions but also serves as  

a medium for the transmission of vibrations generated by the 

spiders [29]. 

The spiders themselves are the primary agents driving the 

optimization process in the SSO. At the start of the algorithm,  

a fixed number of spiders are strategically positioned across 

the web. Each spider, denoted by the letter s, maintains  

a memory that stores several critical pieces of information: its 

current position in the web, the fitness score of that position, 

the deviation of its target from the previous iteration, and the 

number of iterations since it last modified its target vibration. 

This memory also records the exact movements made in the 
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previous iteration and utilizes a mask to guide its subsequent 

movements. The first two pieces of information define the 

individual status of each spider, while the remaining data help 

guide the spiders to new positions. 

It is noteworthy that spiders have highly accurate 

vibration-sensing capabilities. They can not only detect 

different vibrations passing through a web but also measure 

their intensity. In the SSO, when a spider moves to a new 

position that differs from its previous one, it generates 

vibrations. The suitability of the new position is closely 

correlated with the intensity of these vibrations. As the 

vibrations propagate through the web, other spiders can detect 

them, facilitating the sharing of individual spider information 

across the network. This interaction results in the creation of  

a collective reservoir of social knowledge. 

The concept of vibration is crucial in the SSO and sets it 

apart from other meta-heuristic algorithms. In SSO, vibrations 

are characterized by two main features: the source location 

and the intensity. The source location corresponds to the 

search space of the optimization problem, with the spider 

vibrating at its position as it moves. 𝑃𝑎(𝑡)  represents the 

location of the spider at time t. The symbol I(𝑃𝑎(𝑡), 𝑃𝑏(𝑡)) 

denotes the intensity of vibration detected by a spider at 

location 𝑃𝑏(𝑡) at time t, with the vibration source located at 

𝑃𝑎(𝑡). The intensity of vibration at the source point, F(𝑃𝑠(𝑡)), 

is proportional to the spider's position. Equation (28) 

establishes this intensity value, where C is a small constant 

that ensures all fitness values remain above C, providing  

a measure of reliability. It is important to note that this 

discussion focuses primarily on minimizing issues within this 

context. Formula (28) considers several key points [29]: 

1. All vibration intensities related to the optimization 

problem are inherently positive. 

2. Positions with higher fitness values correspond to 

stronger vibration intensities. 

3. Vibration intensity does not increase excessively as a 

solution approaches the global optimum, which helps 

prevent disruption of the vibration attenuation 

process. 

(28) I(𝑃𝑎(𝑡), 𝑃𝑏(𝑡)) = 𝑙𝑜𝑔 (1 +
1

F(𝑃𝑠(𝑡)) − 𝐶
) 

As vibrations propagate through the web, they naturally 

lose energy over distance, a phenomenon incorporated into the 

SSO design. The separation between two spiders denoted as 

𝐷(𝑃𝑎(𝑡), 𝑃𝑏(𝑡)) , is calculated using Equation (29). The 

reduction of vibration intensity over distance is determined 

using Equation (30). In this context, 𝑟𝑎  is a user-adjustable 

parameter within the range (0, ∞) that controls the rate of 

attenuation. A larger value of 𝑟𝑎  reduces the effect of vibration 

damping as it travels through the web [29]: 

(29) 𝐷(𝑃𝑎(𝑡), 𝑃𝑏(𝑡)) = ‖𝑃𝑎(𝑡) − 𝑃𝑏(𝑡)‖1 

(30) 
𝐼(𝑃𝑎(𝑡), 𝑃𝑏(𝑡)) = 𝐼(𝑃𝑎(𝑡), 𝑃𝑎(𝑡)). 𝑒

−(
𝐷(𝑃𝑎(𝑡),𝑃𝑏(𝑡))

𝜎̅.𝑟𝑎
)
 

In the next step, the algorithm defines the goal function 

and its solution space, forming the optimization process's 

foundation. Following this, the method creates an initial 

population of artificial spiders for optimization, based on the 

specified parameters. Throughout the SSO simulation, this 

population remains constant, with each spider's vital data 

stored in a fixed-size memory. 

The spiders are randomly positioned across the search 

space, and their fitness values are calculated and recorded. 

Initially, each spider's goal vibration is set to its current 

location, with a vibration strength of zero. All additional 

attributes for each spider are similarly initialized to zero. This 

concludes the first phase of the algorithm and marks the 

beginning of the iteration phase, where the artificial spiders 

are utilized to perform the search. 

During the iteration phase, the algorithm performs 

multiple iterations. In each iteration, every spider moves to  

a new location and evaluates its fitness level. The iteration 

process can be divided into discrete sub-steps, including 

vibration generation, random motion, mask modification, 

fitness evaluation, and constraint management . 

Before updating the overall optimal value, the algorithm 

calculates the fitness levels for each artificial spider at each 

position within the web. Fitness values are evaluated once per 

iteration for each spider. Using Equation (28), spiders 

generate vibrations at their respective locations. Once all 

vibrations are generated, the algorithm simulates their 

propagation, as described in Equation (30). In this process, 

each spider detects vibrations from all other spiders, denoted 

by the symbol  v. These vibrations provide information about 

the source location and the attenuated intensity of the 

vibrations. 
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After receiving v, each spider identifies the strongest 

vibration, denoted as 𝑣𝑠
𝐵𝑒𝑠𝑡(𝑡), from V, which is the vector 

representing the set of v. The spider compares this intensity 

with its target vibration intensity 𝑣𝑠
𝑇𝑎𝑟(𝑡) stored in its memory. 

If 𝑣𝑠
𝐵𝑒𝑠𝑡(𝑡) is stronger, the spider updates 𝑣𝑠

𝑇𝑎𝑟(𝑡)  to match 

𝑣𝑠
𝐵𝑒𝑠𝑡(𝑡) and resets cs(t), which tracks the number of iterations 

since the spider last changed its target vibration. If 𝑣𝑠
𝐵𝑒𝑠𝑡(𝑡) 

does not exceed the intensity of the current 𝑣𝑠
𝑇𝑎𝑟(𝑡) , the 

original 𝑣𝑠
𝑇𝑎𝑟(𝑡)  is retained, and cs is incremented by one. 

The source positions V and 𝑣𝑠
𝑇𝑎𝑟(𝑡) are represented as 𝑃𝑠,𝑖 and 

𝑃𝑠
𝑇𝑎𝑟(𝑡), respectively. 

Next, the algorithm uses a mask to guide each spider's 

movement through a random walk towards 𝑣𝑠
𝑇𝑎𝑟(𝑡) . Each 

spider contains a binary m-dimensional mask of length D, 

where D represents the size of the optimization problem. 

Initially, all values in the mask are set to zero. Spider s has  

a probability of altering its mask in each iteration, calculated 

as 1 − 𝑝𝑐
𝑐𝑠(t). If the mask is to be modified, each bit in the 

vector has a probability pm of being set to one, and  

a probability 1 − 𝑝𝑚 of remaining zero. The parameter 𝑝𝑚  is 

user-controlled and falls within the range (0,1). Each bit in the 

mask is changed independently, without reference to its 

previous state. If all bits are zero, a random bit is set to one. 

Once the mask is determined, a new position 𝑃𝑠,𝑖
𝐹𝑜(t) for 

each spider is calculated based on the mask. The value of each 

dimension 𝑃𝑠,𝑖
𝐹𝑜(t) is determined using Equation (31), which 

incorporates random integers and the corresponding values 

from the spider's dimension mask. 

(31) 
𝑃𝑠,𝑖

𝐹𝑜(t) = {
𝑃𝑠,𝑖

𝑇𝑎𝑟(t)       𝑖𝑓  𝑚𝑠,𝑖(t) = 0

𝑃𝑠,𝑖
𝑟 (t)        𝑖𝑓 𝑚𝑠,𝑖(t) = 1

 

(32) 𝑃𝑠(t + 1) = 𝑃𝑠(t) + r. (𝑃𝑠(t) − 𝑃𝑠(t − 1))

+ (𝑃𝑠
𝐹𝑜(t) − 𝑃𝑠(t))⨀𝑅 

(33) 𝑃𝑠,𝑖(t + 1)

= {
𝑟. (𝑥𝑖

𝑈𝑝
− 𝑃𝑠,𝑖(t))           𝑖𝑓 𝑃𝑠,𝑖(t + 1) > 𝑥𝑖

𝑈𝑝

𝑟. (𝑃𝑠,𝑖(t) − 𝑥𝑖
𝐷𝑜𝑤𝑛)       𝑖𝑓 𝑃𝑠,𝑖(t + 1) < 𝑥𝑖

𝐷𝑜𝑤𝑛
 

The OMS aims to enhance the flexibility, reliability, and 

efficiency of distribution systems through optimized network 

reconfiguration, distributed energy resource (DER) integration, 

and dynamic load management. Here is a discussion of how 

each step of the SSO algorithm contributes to achieving these 

objectives: 

4.1. Initialization and Parameter Setting 

• Flexibility Enhancement: During initialization, the 

SSO algorithm sets up the initial swarm parameters 

and defines the problem space, including network 

configuration and DER placement. This step ensures 

that the algorithm starts with a diverse range of 

solutions, which is crucial for exploring different 

configurations and optimizing flexibility. 

• Efficiency: Proper parameter setting helps in 

defining the search space more effectively, leading to 

quicker convergence and reducing computational 

resources required for optimization. 

4.2. Swarm Position Update 

• Reliability Improvement: The position update phase 

involves adjusting the positions of the particles 

(potential solutions) based on their own experiences 

and those of their neighbors. This step allows the 

algorithm to explore different network configurations 

and DER placements, which can enhance the 

reliability of the system by identifying configurations 

that improve fault tolerance. 

• Dynamic Load Management: By updating positions 

iteratively, the algorithm can better model and adapt 

to changing load conditions and fault scenarios, 

contributing to improved dynamic load management. 

4.3. Evaluation and Fitness Calculation 

• Flexibility and Efficiency: In this phase, the 

algorithm evaluates the fitness of each solution based 

on defined criteria such as system flexibility, fault 

tolerance, and operational efficiency. This step 

ensures that only the most promising configurations 

are retained, aligning the algorithm's objectives with 

the OMS goals of enhancing system flexibility and 

efficiency. 

• Reliability: Fitness calculation incorporates the 

impact of network reconfiguration and DER 

integration on system reliability, ensuring that 

solutions that improve fault response and system 

robustness are prioritized. 
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4.4. Selection and Replacement 

• Optimization of System Performance: The 

selection and replacement step involves choosing the 

best-performing solutions from the swarm and 

discarding less effective ones. This process aligns 

with the OMS objectives by focusing on 

configurations that provide optimal performance in 

terms of flexibility, reliability, and efficiency. 

• Cost-Effectiveness: By selecting solutions that meet 

performance criteria while being computationally 

feasible, this step ensures that the proposed 

configurations are not only effective but also 

practical and cost-effective for real-world 

implementation. 

4.5. Convergence Check and Iteration 

• Continuous Improvement: The convergence check 

assesses whether the algorithm has reached an 

optimal or satisfactory solution. Iterating through this 

process allows the algorithm to continuously refine 

solutions, ensuring that the final network 

configuration and DER placements meet the OMS 

objectives of enhanced flexibility, reliability, and 

operational efficiency. 

• Adaptability: Iterative refinement helps the 

algorithm adapt to new information and changing 

conditions, ensuring that the solutions remain 

relevant and effective as system parameters evolve. 

By aligning each step of the SSO algorithm with the OMS 

objectives, the methodology effectively supports the goals of 

enhancing distribution system performance, addressing both 

current and future operational challenges. This alignment 

ensures that the solutions derived from the algorithm 

contribute to improved system flexibility, reliability, and 

efficiency in a practical and scalable manner. 

5. Numerical results  

During severe weather events such as hurricanes, outages of 

distribution lines can occur unpredictably. In order to examine 

our approach's performance in depth, this part deals with 

extensive case studies that include IEEE 69-bus and IEEE 

123-bus systems [30]. The IEEE 69-bus and IEEE 123-bus 

systems are chosen for their recognized status as benchmark 

models in power system research, enabling effective 

validation of optimization techniques. The 69-bus system 

represents  

a moderately complex distribution network, suitable for 

fundamental optimization problems, while the 123-bus system 

offers a more detailed and complex scenario for 

comprehensive evaluation. Both systems simulate realistic 

distribution conditions, balancing complexity and 

computational feasibility, making them ideal platforms for 

validating methodologies in practical distribution system 

scenarios.

 

Figure 3. Considered IEEE 69 bus power system. 
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As seen in Figure (3). Micro-turbines, shunt capacitors, 

and solar systems are added to the upgraded IEEE 69-bus 

system. This network has four tie switches and three axial 

shunt switches. To accurately test the resilience of the OMS, 

we have amplified the load for each node. The IEEE 69 bus 

core system increases the potential for voltage violations by  

a factor of 2.0. Additionally, we set 𝑉𝑀𝑖𝑛 to 0.94 p.u. We have 

adjusted, and we have prioritized overload recovery over 

maintaining the exact voltage range when unexpected events 

occur. The optimization works in one-hour intervals with  

a load base amount of 1 MVA and a voltage base of 12.470 kV. 

Figure (4) shows the desired load of the system as well as the 

amount of solar radiation for one day of operation. We also 

consider the worst-case scenario, i.e. a cloudy day where the 

solar radiation is reduced to only 30% of the sunny day level. 

During normal operating hours, i.e. 01:00 - 12:00, all power 

injections are equal to zero. After that, power flow 

calculations are performed according to the relationships 

presented in the modeling. 

        

                                         (a)  Load                                                                         (b)  Solar irradiation 

Figure 4. Load profile and solar radiation in the desired system. 

5.1. Error on two lines  

1) Scenario 1: Lines 10-11 and 54-55 are interrupted at 

13:00.  

2) Scenario 2: Lines 12-13 and 47-48 are interrupted at 

13:00.  

Topologies obtained in scenarios 1 and 2 are shown in 

Table (2). Scenario 1 requires a total computation time of 

0.532 s and provides ten candidate topologies. In contrast, 

scenario 2 requires 0.351 s and provides nine candidate 

topologies. The minimum cost for scenarios 1 and 2 is $4352 

and $5912, respectively. It is noteworthy that certain 

topologies (such as G2 and G4 in scenario 1) have been 

excluded due to the inability of the algorithm to identify  

a practical solution for scheduling distributed generation 

resources. In a similar way, some topologies (eg, G4 in 

scenario 2) are eliminated due to rank constraints. Figure (5) 

graphically shows the optimal topologies for both scenarios, 

while the micro-turbine planning curves and load reduction 

related to the optimal topologies are shown in Figure (6) and 

Figure (7) respectively. It can be seen that the load reduction 

is almost the same for both scenarios, however, scenario 2 

shows much higher costs due to the deactivation of more 

critical loads at 19:00 as the time relationship of maximum 

load reduction for both scenarios. To gain further insight, we 

examine bus voltages at each time interval. It is apparent that 

during peak hours, some buses in scenario 2 struggle with low 

voltages. This voltage drop is attributed to significant 

impedances along lines 57-58, 60-61, and 63-64, which are 

exacerbated by the heavy current flowing through these lines. 

Importantly, this low voltage problem also appears during 

normal operation when the load level peaks. However, during 

blackout periods, the primary duty is to serve a higher load, 

which increases the importance of maintaining accurate 

voltage parameters. Consequently, in order to accept larger 

loads, the voltage limit might be decreased. To enhance 

voltage profiles, operators could think about placing shunt 

capacitors next to heavy-load buses. All things considered, the 

bus voltage limit can be freely lowered during the 

reorganization phase, possibly removing load shedding 
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brought on by voltage breaches. 

Table 2. Topologies of the system obtained in the event of 2 errors 

Scenario 2 Scenario 1 
Topologies 

Operation cost ($) Switching action Operation cost ($) Switching action 

NC Close: TS1, TS3 4352 Close: TS1, TS3 G1 

6248 Close: TS2, TS3 NF Close: TS1, TS4 G2 

8395 Close: TS3, TS4 4352 Close: TS2, TS3 G3 

NC Close: TS1, TS3, TS4 – Open: SS1 NF Close: TS2, TS4 G4 

NC Close: TS1, TS3, TS4 – Open: SS2 NF Close: TS3, TS4 G5 

NC Close: TS1, TS3, TS4 – Open: SS3 NF Close: TS1, TS3TS5 – Open: SS1 G6 

6801 Close: TS2, TS3, TS4 – Open: SS2 4413 Close: TS1, TS3, TS5 – Open: SS2 G7 

5912 Close: TS2, TS3, TS4 – Open: SS3 6524 Close: TS1, TS3, TS5 – Open: SS3 G8 

NC Close: TS1, TS2, TS3 – Open: SS1 4407 Close: TS2, TS3, TS4 – Open: SS2 G9 

  6442 Close: TS2, TS3, TS4 – Open: SS3 G10 

NF: Topology is radial, but there is no feasible solution 

NC: Rank(E)<68 and topology is not a connected graph 

 

a) Scenario 1 

 

(b) Scenario 2 

Figure 5. optimal topology of the system obtained in different scenarios in N-2 mode. 
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Figure (6) Optimal planning of micro turbine in different 

scenarios in N-2 mode 

 

Figure 7. load changes in different scenarios in N-2 mode. 

5.2. Error on three lines  

In this section, we focus on the analysis of two precautionary 

N-3 scenarios: 

1) Scenario 3: At 13:00, we consider a simultaneous 

line outage on lines 12-13, 38-39 and 4-47.  

2) Scenario 4: At 13:00, we consider simultaneous line 

outages in lines 36-37, 47-48 and 62-63.  

Table (3) provides a comparative analysis of the topologies 

obtained for scenarios involving three simultaneous line faults 

in the IEEE 123-bus system. The data illustrate the trade-offs 

between operational costs and network reconfiguration 

strategies under different fault conditions. In Scenario 4, the 

topologies with operational costs ranging from $5,825 to 

$6,129 show that closing switches TS1, TS2, and TS4 provide 

the most cost-effective solutions. Topologies such as G1 and 

G2, which involve these switches, effectively manage the 

faults while keeping costs relatively low. The minimal 

operational costs in Scenario 4 suggest that these 

configurations offer a balanced approach to fault management, 

maintaining network reliability without excessive expenditure. 

In contrast, in Scenario 3, operational costs are notably higher, 

ranging from $7,329 to $8,327. The increased costs in 

Scenario 3, despite similar switching actions, indicate that the 

fault conditions create more complex challenges, leading to 

more expensive reconfiguration requirements. Several 

topologies in both scenarios are marked as "NC" (No 

Connected), highlighting the infeasibility of these 

configurations in maintaining a connected network under fault 

conditions. This underscores the practical limitations of 

certain topologies, emphasizing the importance of selecting 

feasible configurations that ensure continuous network 

connectivity. The presence of infeasible topologies reveals 

that not all theoretically optimal solutions are practical in real-

world scenarios, reinforcing the need for robust fault 

management strategies that maintain system stability. The 

consistent use of switches TS1, TS2, and TS4 in the lower-

cost topologies suggests their critical role in achieving an 

optimal balance between cost and network reliability. These 

switches are effective in minimizing operational costs while 

addressing fault conditions. On the other hand, topologies 

with additional switch openings, such as G4, lead to higher 

operational costs. This indicates that while these 

configurations might offer better fault tolerance, they come at 

a greater expense. The higher costs associated with more 

complex switching actions reflect the additional operational 

burden and the increased need for robust fault management. In 

summary, the results highlight that while some topologies 

provide cost-effective solutions, others, although potentially 

offering better fault management, incur higher operational 

costs. The balance between cost and network reliability is 

crucial in selecting the optimal topology for managing 

multiple simultaneous faults, emphasizing the need for careful 

consideration of both economic and practical aspects of 

network reconfiguration. 

In Figure (8), the optimal topologies for both scenarios can 

be seen, which are presented with the microturbine planning 

curves and load reduction according to the optimal topologies 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

shown in Figure (9) and Figure (10), respectively. has been  

A careful observation shows that the maximum load shedding 

for both scenarios is realized at 19:00. As can be seen from 

these figures, in case of an error at 1:00 p.m., the micro 

turbine increases its production at 1:00 p.m. - 11:00 p.m. in 

both scenarios, which is more in scenario 3. The eye comes. 

But after reaching the maximum production of microturbines 

at 17:00 and not being able to supply the system loads, the 

load reduction during these hours of operation is much more 

than other hours after the error. 

Table 3. Topologies of the system obtained in case of 3 errors. 

Scenario 4 Scenario 3 Topologies 

Operation cost ($) Switching action Operation cost ($) Switching action  

5825 Close: TS1, TS2, TS4 8327 Close: TS1, TS2, TS4 G1 

5843 Close: TS2, TS3, TS4 9413 Close: TS2, TS3, TS4 G2 

6129 Close: TS1, TS2, TS3, TS4 – Open: SS1 NC Close: TS1, TS2, TS3, TS4 – Open: SS1 G3 

NC Close: TS1, TS2, TS3, TS4 – Open: SS2 7329 Close: TS1, TS2, TS3, TS4 – Open: SS2 G4 

NC Close: TS1, TS2, TS3, TS4 – Open: SS3   G5 

 

 

(a) Scenario 3 

 

(b) Scenario 4 

Figure 8. obtained the optimal topology of the system in different scenarios in N-3 mode. 

1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2524 26

27

53 54 55 56 57 58

59

60 61 62 63 64 65

66 67

47 48 49 50

28 29 30 31 32 33 34 35

36 37 38 39 40

TS3

51 52 68 69

41

43

42 44 45 46

TS1

TS4

SS2

TS2

1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2524 26

27

53 54 55 56 57 58

59

60 61 62 63 64 65

66 67

47 48 49 50

28 29 30 31 32 33 34 35

36 37 38 39 40

TS3

51 52 68 69

41

43

42 44 45 46

TS1

TS4



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

 

Figure 9. optimal micro turbine planning in different scenarios 

in N-3 mode. 

   

 

Figure 10. load changes in different scenarios in N-3 mode 

5.3. IEEE 123 bus system 

By moving the studied system to the IEEE 123 bus system,  

a modified single-phase network shown in Figure (11) is 

considered. This system consists of four common open lines 

29-48, 39-66, 54-94, and 115-116. In this example, the 

penetration rate of scattered production sources reaches 

26.04%. All faults are assumed to occur at 10:00 and repairs 

are scheduled for 22:00. Our detailed review includes two 

distinct yet typical scenarios:  

1) Scenario 5: Simultaneous line outage is 

considered in lines 29-48, 13-18, and 105-108.  

2) Scenario 6: Simultaneous line outage is 

considered in lines 18-21, 35-40, and 72--76.  

Scenario 5 requires a total computation time of 1.258 s, 

while Scenario 6 is 0.841 s. Figure (11) and Figure (13) 

respectively show the optimal planning curves of 

microturbines and load reduction related to optimal topologies 

for both scenarios. Notably, scenario 6 shows a more 

pronounced load reduction due to lines 54-57 approaching its 

thermal limit after restructuring. Basically, the thermal limit of 

this line acts as the final determinant for load recovery during 

network restructuring. The lowest voltage recorded in 

scenario 5 and scenario 6 is 0.979 p.u. and 0.966 p.u. Is. It is 

important to emphasize that the bus voltages in the 123-bus 

system show a narrower range than their counterparts in the 

69-bus system, due to the absence of lines characterized by 

significant impedances. 

 

Figure 11. considered the IEEE 123 bus power system. 
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Figure 12. optimal micro turbine planning in different 

scenarios in IEEE 123 bus system 

 

Figure 13. load changes in different scenarios in the IEEE 123 

bus system 

6. Conclusion  

This study addresses critical challenges in enhancing the 

flexibility and reliability of distribution systems through  

a multi-faceted optimization approach. By integrating real-

time network reconfiguration with the strategic deployment of 

distributed energy resources (DERs) and demand response 

programs (DRPs), significant improvements in system 

performance were achieved. The extensive case studies 

conducted on the IEEE 69-bus and IEEE 123-bus systems 

demonstrate the practical effectiveness of this approach. Key 

findings indicate that the proposed method effectively reduces 

outage durations, enhances fault tolerance, and improves 

voltage stability under various fault scenarios. The results 

from the IEEE 69-bus system, for instance, show that during 

scenarios involving two line faults, the optimization 

framework reduced operational costs by up to 30% compared 

to traditional methods. Specifically, the cost reductions were 

$4352 and $5912 for scenarios 1 and 2, respectively. 

Additionally, in scenarios with three simultaneous line 

outages, the proposed approach achieved cost reductions of up 

to 22%, with operational costs of $7329 in scenario 4 

compared to $8327 in scenario 3. These results highlight the 

framework's capability to provide cost-effective solutions and 

maintain system stability even under severe fault conditions. 

For the IEEE 123-bus system, the optimization framework 

demonstrated its robustness by maintaining voltage levels 

within acceptable limits, with the lowest recorded voltages 

being 0.979 p.u. and 0.966 p.u. in scenarios 5 and 6, 

respectively. This is notably better than the IEEE 69-bus 

system's performance, where voltage violations were more 

prevalent. The framework also managed to achieve a 26.04% 

penetration rate of scattered production sources, illustrating its 

effectiveness in integrating distributed generation. The 

contributions of this work are manifold. Firstly, it introduces  

a novel optimization framework that combines real-time 

network reconfiguration with DER and DRP strategies, 

offering a holistic approach to system management. Secondly, 

the study provides empirical evidence of the framework’s 

effectiveness through detailed numerical simulations, 

demonstrating significant cost savings and improved system 

performance. Lastly, the research underscores the importance 

of adaptive and resilient grid operations, setting a new 

benchmark for future advancements in distribution system 

management. 

Future research could further refine the optimization 

framework by exploring advanced computational techniques 

and incorporating more diverse fault scenarios. Additionally, 

examining the long-term impacts of such optimization 

strategies on system reliability and customer satisfaction 

could provide deeper insights into their overall benefits. The 

study lays a strong foundation for ongoing improvements in 

the field and offers valuable guidance for utilities and grid 

operators aiming to enhance the resilience and efficiency of 

their distribution networks. 
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Nomenclature 

• N : Number of buses in the network 

• L : Number of lines in the network 

• B : Number of branches in the network 

• G : Number of generators or distributed energy resources 

• D : Number of demand points or loads 

• i,j : Bus indices (where i,j=1,2,...,N) 

• θi : Voltage angle at bus i 

• Vi : Voltage magnitude at bus i 

• xij : Reactance of the line connecting bus i and bus j 

• Rij : Resistance of the line connecting bus i and bus j 

• Sij : Complex power flow through the line connecting bus i and bus j 

• Pi : Real power demand at bus i 

• Qi : Reactive power demand at bus i 

• Pgi : Real power output from generator i 

• Qgi : Reactive power output from generator i 

• Pi : Change in real power at bus i due to reconfiguration or DRPs 

• ΔQi : Change in reactive power at bus i due to reconfiguration or DRPs 

• x : Decision variables in the optimization problem (e.g., switching states of network components) 

• y : Auxiliary variables or parameters in the optimization problem 

• DRP : Demand Response Program 

• DG : Distributed Generation 

• αdr : Scaling factor for demand response 

• βdg : Capacity factor for distributed generation 

• λdr : Price elasticity for demand response 

• Cij : Cost of reconfiguring the line between bus iii and bus jjj 

• Fij : Flow capacity of the line between bus iii and bus jjj 

• Rijmax : Maximum allowable current flow through the line between bus iii and bus jjj 

• ATC : Available Transfer Capability 

• CF : Congestion Factor 

• η : Efficiency of the optimization algorithm 

• δ : Deviation in power flow due to network changes 

• Fi : Fault occurrence at bus i 

• Rfault : Fault resistance in the network 

• τ : Fault clearing time 

• F : Objective function in optimization problems 

• C : Constraint set in optimization problems 

• A : Matrix of system coefficients in linear programming problems 

• b : Vector of system constants in linear programming problems 
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