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Highlights  Abstract  

▪ BB-CFO hybrid technique combines BB-BC 

exploration and CFO accuracy for IoT 

routing. 

▪ BB-CFO boosts IoT routing by optimizing 

energy, reducing delays, and enhancing 

delivery. 

▪ Q-FRPL method using BB-CFO outperforms 

traditional routing in energy and latency. 

▪ A review of IoT routing protocols highlights 

BB-CFO as an efficient alternative solution. 

 This paper introduces a novel hybrid optimization algorithm, BB-CFO, 

which combines the big bang-big crunch (BB-BC) and central force 

optimization (CFO) algorithms to address key challenges in Internet of 

Things (IoT) networks, such as energy constraints, delay, and 

scalability. The proposed BB-CFO algorithm improves both the 

exploration and exploitation phases of optimization, providing a 

balanced approach for solving complex routing problems in low-power 

and lossy networks. The algorithm is integrated into the quality fuzzy 

routing protocol for low-power and lossy networks (Q-FRPL), which is 

evaluated through extensive simulations using Cooja and NS2 

environments. The contributions of this study are twofold: first, the 

development of a hybrid optimization technique that enhances routing 

efficiency in IoT networks, and second, the demonstration of its 

effectiveness through comparative analysis with conventional 

algorithms. The obtained results show that the BB-CFO-based Q-FRPL 

protocol greatly reduces energy consumption as high as 800 mW in 

Cooja and up to 900 mW in NS2, at reduced end-to-end latency of 40 

and 45 ms in Cooja and NS2, respectively, when the packet delivery 

ratio is 96.985%. These reflect the performance, scalability, and 

robustness of the proposed method and also show one possible solution 

toward efficient IoT networks. 
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1. Introduction 

1.1. Background and Aims 

IoT is one of the fastest-developing areas nowadays, which 

connects everything from home appliances and industrial 

sensors through several interconnected networks [1]. Such 

connectivity provides real-time data collection and 

communication and thus fosters innovation in fields such as 

healthcare, smart cities, and automation [2]. However, large-

scale deployment of IoT devices introduces several 

challenging issues in their effective management at optimum 

network performance. One of the key issues in IoT networks 

is managing the limited resources of connected devices [3]. 

Many IoT devices rely on battery power, making energy 

efficiency  

a critical concern. In addition, these devices often have 

limited processing capabilities and face varying network 

conditions, which can affect their ability to efficiently route 

data. Traditional routing protocols, which were designed for 
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more uniform and less constrained environments, usually fail 

to meet the expectations of such diverse applications of IoT 

[4]. In addition, there are scalability and dynamic condition 

issues that normally affect IoT networks: The more devices  

a network owns, the bigger the complexity will be in terms of 

management and optimization of routing [5]. IoT networks 

have to work in a highly variable environment concerning 

data loads, signal strength, and interference; hence, their 

performance and reliability are seriously challenged. Given 

these difficulties, advanced optimization techniques will be 

required to provide low latency and high packet delivery rates. 

Yet, traditional routing methods poorly fulfill the unique and 

dynamic requirements of IoT applications. This also 

significantly raises demands for higher approaches that could 

improve routing efficiency considering resource constraints in 

IoT devices [6]. 

1.2. Literature Review 

IoT transforms network connectivity, from a simple sensor to  

a high-powered server. Increased connectivity demands 

network management and routing optimization. A decent 

amount of research has been carried out regarding the unique 

challenges thrown up by the IoT on energy efficiency and 

routing performances. This review summarizes major 

contributions of research and also highlights certain areas that 

call for further exploration. 

Muzammal et al. [7] discussed the security problems in 

IoT networks, including the vulnerability analysis of the RPL 

routing protocol and some countermeasures. Improvement in 

IoT routing security is sought in trust-based schemes, where 

the SecTrust and DCTM-IoT trust models are included. 

Special attention was paid to trust metrics and corresponding 

research challenges. In their opinion, trust represents one of 

the basic security paradigms within the context of IoT 

network and routing protocol security. Almusaylim et al. [8] 

discussed the field of study gaining great importance on the 

Internet of Things, ranging from E-health to smart cities. They 

discussed its vulnerability whereby the IoT devices, especially 

the smart cities, are prone to every kind of security threat. 

Further, despite the availability of existing RPL routing 

protocols for protection, the authors found them insufficient 

and unworkable to deal with the complex challenges in IoT 

networks. The review highlighted the development of better 

RPL protocols that should be secure against both Rank and 

Version number attacks. Solutions should be customized for 

IoT applications in regards to Smart Cities. Arivubrakan and 

Kanagachidambaresan [9] discussed several routing issues in 

IoT and focused on the RPL protocol. They proposed FLOF, 

which is a method to enhance the reliability of parent 

selection by integrating multiple metrics. Simulation results 

showed substantial improvements in almost all QoS 

parameters. Darabkh et al. [10] discussed the limitations of 

the RPL protocol, which chooses objective function (OF) 

based on single metrics. It came up with FL-HELR-OF, which 

uses multiple metrics to extend network lifetime. Simulation 

results showed that FL-HELR-OF outperformed other 

methods for all metrics under consideration. A new rider 

foraging optimization (RFO) algorithm was proposed by Vijay 

and Ranjan [11] for secure routing in IoT. Herein, the authors 

have aimed to minimize delays and energy consumption while 

maximizing throughput. RFO has selected the optimal path 

depending on the constraints on trust, energy, and delay using 

rider optimization combined with bacterial foraging 

algorithms. This reduced the node energy consumption 

prolonged the network lifetime and provided high throughput 

at minimum delay and energy utilization. 

Apart from being a serious challenge for routing data 

packets, the identification of connecting devices globally was 

identified as the main vision of IoT by Solapure and 

Kenchannavar [12]. Later, they modified low-power and lossy 

networks (RPL) by the introduction of new OFs based on 

various metrics. The corresponding simulation results showed 

that these designs outperformed conventional designs along 

with many aspects of packet delivery ratio (PDR), latency 

delay (LD), energy consumption, overhead, and convergence 

time. They have identified the respective OF designs for the 

respective IoT applications such as health monitoring and 

forest monitoring based on the respective performance 

characteristics. Darabkh et al. [13] stated that though IoT is  

a growing area of interest, most of the devices are resource 

bounded in terms of battery power, processing capacity, 

memory, and bandwidth. It is very difficult to support 

Protocol version 6 (IPv6) on such devices. The authors gave  

a short overview regarding the expansion of IoT and the 
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introduction of RPL in the year 2012. The prime objective was 

to carry out an in-depth analysis of its functionality along with 

the challenges. It compared different RPL-based protocols, 

highlighted some of the key research challenges, and provided 

useful insights into future developments. The 

recommendations made in the conclusion have been presented 

as valuable resources for researchers working on the 

enhancement of RPL. 

Maheswari et al. [14] explained that IoT networks are 

mostly constituted by low-power and weakly connected 

devices, where data communication is done through wireless 

mediums that are under high noise interference and 

connection failures. Thus, a reliable routing protocol is of 

utmost importance in these types of high loss, low-power 

networks. The authors have reviewed new emerging trends in 

IoT applications focused on the strong need that was arising 

for an efficient routing protocol like RPL, which could handle 

the intrinsic issues in LLNs. Further, they have discussed 

congestion-related issues in RPL and also discussed various 

related previous works that were suggested to improve RPL 

performance. They reviewed congestion control metrics and 

routing schemes and their respective merits and demerits to 

possibly further the research. Mohamed et al. [15], conducted 

a performance evaluation of RPL in IoT networks using 

InstantContiki 3.0 and CoojaGUI. In their work, these 

researchers assessed some expected transfer realization rate 

(ETX)-based metrics, radio duty cycling (RDC), energy 

consumption, packet reception, and neighbor relationships. In 

line with this, the results reflected that the effective 

formations of DODAGs depend on ETX, reasonable energy 

consumption, and packet reception across the motes. Garg et 

al. [16] conducted a survey of DODAG formation strategies in 

low-power and lossy networks using the RPL protocol. The 

authors analyzed the existing methods, classified the related 

metrics, and presented the open issues of future research. It 

provides the outline of the researchers who work on the RPL 

protocol and DODAG formation strategy. 

Niu [17] proposed an optimized DODAG construction 

scheme for RPL-based wireless networks. It introduced a node 

reset action to restart the DODAG building upon the failure of 

paths with the least disruption and reduction of power loss. 

This performs much better under interference conditions and 

has reduced data retransmission rates. Wang et al. [18] 

proposed a data-oriented RPL algorithm that aimed at 

eliminating the limitation on IoT networks. Data were divided 

by content in routing, which would reduce duplicated data and 

delay, thereby reducing energy use and prolonging the lifetime 

of the network. Route choice was optimized by binary gray 

wolf optimization. Tests were done showing that the 

enhancements in energy efficiency and reduction in instability 

periods with minimum delays compared to other methods 

proved stable and had long-acting activity in the case of 

maximum node count networks. Rajeesh Kumar et al. [19] 

presented the salp swarm algorithm (SSA) for the solution of 

the optimal power flow (OPF) problem in an efficient manner, 

with the integration of thyristor-controlled series capacitor 

(TCSC) devices into the power systems. The authors 

developed an optimization approach that optimizes the 

generator's active power, voltage magnitudes, and transformer 

tap settings and gave a better performance than the referenced 

algorithms in their simulations on the IEEE-30 bus system. 

SSA is a very powerful and novel technique in optimizing 

power systems; hence, it may minimize the severity factors 

and even outperform the existing algorithms. Mallala and 

Dwivedi [20] also worked on the OPF problem by 

implementing SSA and integrating TCSC into the power 

systems. They optimized the control variables and simulated 

their methodology on the IEEE-30 bus system. Minimizing 

the above severity factors, besides proving the efficiency of 

the SSA in solving the OPF problem compared with other 

algorithms, makes this research an important milestone for the 

optimization of power systems. 

In 2006, Erol and Eksin [21] introduced the BB-BC 

method as a new optimization technique. The BB-BC method 

proposes the universe's evolution and probable end within its 

optimization technique based on some theories in physics and 

astronomy, the BB-BC paradigm [22]. Mbuli and Ngaha [23] 

studied the BB-BC algorithm mainly to highlight the 

adaptability of the algorithm in solving several power system 

optimisation problems. To resolve some issues and enhance 

the quality of solution different versions of BB-BC have been 

developed. The algorithm has repeatedly exhibited excellent 

efficiency, frequently surpassing rival techniques in attaining 

optimal solutions across several power system domains. This 
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method is distinguished by rapid search space exploration and 

vigorous exploitation of the solution space. This is indicated 

by the reduction in population size. There are many other 

methods inspired by nature that have been applied to the QAP, 

BPP, and JSSP, such as genetic algorithm, ant colony 

optimization, particle swarm optimization, scatter search, 

local search, hybrids, and hyper-heuristics. The BB-BC has 

been applied to a limited number of combinatorial 

optimization problems. The BB-BC was compared to particle 

swarm optimization (PSO), harmony search (HS), and ant 

colony optimization (ACO) over the size optimization of 

space trusses. They showed that the performance of the BB-

BC demonstrates superiority over PSO, HS, and ACO in 

computational time and quality of solutions. The BB-BC was 

also applied to several optimization problems, such as target 

tracking for underwater vehicle detection and tracking; and 

engineering optimization. Also, an enhanced version of the 

BB-BC was applied to solve course timetabling problems, 

where it outperformed several similar methods and showed  

a consistent and fast convergence towards optimality [24].  

The CFO, proposed by Formato [25], is a deterministic 

metaheuristic inspired by gravitational kinematics. Unlike 

stochastic algorithms like GA or ACO, CFO’s deterministic 

nature ensures consistent results with the same parameters. It 

requires only a single run for evaluation, eliminating the need 

for statistical analysis [26]. 

1.3. Literature Gap and Research Contribution 

The current body of research on IoT routing and optimization 

reveals several critical gaps. Traditional routing methods, such 

as those based on the RPL protocol, often struggle with the 

dynamic and resource-constrained nature of IoT networks. 

Challenges persist due to insufficient energy management, 

elevated latency, and restricted scalability. Most of the 

literature has proposed the improvement of existing processes 

through optimization techniques; however, solutions often 

relate to particular aspects of the problem or poorly combine 

different optimization criteria. The following gaps should be 

mentioned: the lack of integrated proposals that contribute to 

simultaneously increasing energy efficiency, reducing delay, 

and improving the delivery speed of packets in different 

applications of IoT. Although the BB-BC has shown 

promising performances in some scenarios of optimization 

problems, their applications in IoT routing have been scant. 

The CFO algorithm has reliably performed very well in 

predictable environments; yet, it has never been widely 

integrated with other algorithms in addressing IoT-specific 

problems. This paper is intended to fill these gaps by 

proposing the hybrid optimization algorithm BB-CFO. 

Summary: The new method combined BB-BC and the CFO 

algorithm together for the solution of a few optimization 

objectives at the same time. BB-CFO is presented as a strong 

method against IoT routing challenges, integrating the 

capability of exploration and exploitation of BB-BC through 

the deterministic precisions of the CFO. Major focus goes to 

comprehensive enhancements in energy efficiency, delay 

reduction, and enhancement in the packet delivery rate. The 

results obtained from the simulation depict the fact that the 

BB-CFO-based Q-FRPL method outperforms the 

conventional methods in major performance metrics and thus 

becomes efficient and scalable to meet the complex demands 

of IoT networks. Thus, the major contributions and novelties 

of this work can be summed up below: 

1. This study proposes the BB-CFO hybrid optimization 

technique, hybridizing the BB-BC and CFO methods. 

Along this, the proposed unique amalgamation will 

exploit the exploratory strengths of BB-BC in 

concert with the deterministic exactness of the CFO 

to solve the complicated problems of IoT routing. 

2. This research indicates that the BB CFO algorithm 

greatly improves the routing efficiency of IoT 

networks by optimizing energy usage and delays and 

improving the packet delivery rate, hence presenting 

an all-rounded solution to the shortcomings of 

previous approaches. 

3. The suggested Q-FRPL method, utilizing BB-CFO, 

outperforms conventional routing techniques through 

comprehensive simulations. The findings 

demonstrate significant enhancements in energy 

consumption, overall latency, and packet delivery 

rates, validating the approach's efficacy and 

scalability. 

4. This paper presents a review of the current IoT 

routing protocols along with optimization techniques. 
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The review presented various advantages and 

disadvantages for different techniques and finally 

proposed BB-CFO methodology, an efficient 

alternative. 

5. Generally, major challenges such as energy 

constraints, scalability issues, and dynamic 

conditions in IoT networks have been targeted with 

one new comprehensive optimization scheme. 

6.  

2. Problem Formulation 

The OF is an extremely important assessment criterion in the 

RPL protocol that would adapt to various network 

applications and information transfers. In general, this 

function takes as input key parameters from the network, 

mainly quality-of-service metrics in routing. The importance 

of parameters and performance criteria used in the OF comes 

from the weights assigned by the underlying network 

objectives. What RPL is concerned with is that the correct 

path selection from available paths depends largely on the OF. 

The OCP utilizes the OF in the DIO message to configure the 

network. The OF defines the constraints and performance 

criteria of a node, represented by a value called rank, based on 

the RFC6551 standard. The node's distance from the 

network's root affects this rank, and the goal function also 

controls the parent selection process. RPL’s default OF, OF0, 

favors locating the nearest root over other qualitative factors 

like load balance, energy, and E2ED. It does this by 

concentrating only on the number of steps in the ranking 

function. A child node chooses a parent as its successor if one 

is available and names the parent with the lowest rank as the 

primary parent during parent selection. The network does not 

attempt to load balance in OF0; all traffic travels upstream to 

the root node. The node will unavoidably remove itself from 

the weak parent list and join the alternate or backup parent if 

the present link is unable to communicate data toward the root 

for whatever reason. 

The OF that has been demonstrated is known as Q-FRPL, 

and it symbolizes the OF2 routing protocol, which is noted for 

its energy efficiency. This proposed method employs a fuzzy 

approach to assessing network nodes dynamically, and the 

evaluations are disseminated through DIO update messages. 

The fuzzy system in OF2 takes into account variables 

including the amount of energy left, the rate of delay, and the 

equivalent rate, or ETX, which represents a node’s efforts to 

contact its parent. The following are the suggested fuzzy 

system’s performance requirements: 

• Residual energy of the node (first input) 

• Average E2ED to well (second input) 

• Expected transfer realization rate or ETX (third 

input) 

2.1. Fuzzification of Parameters 

Three fuzzy input parameters will thereby identify the unique 

state of each time unit. In line with the fuzzy logic and 

triangulate model, each input parameter in the fuzzy system is 

represented by a triangulation diagram. In each image, 

separate and similar triangles may be used to relate the 

behavior of a parameter in the variable values of the x-axis to 

other values on the y-axis. For each point on the x-axis, there 

are two values on the y-axis. The residual energy is shown in 

one of the diagrams, with a starting residual energy of 10 units 

and a minimum state of zero. There are five different degrees 

of residual energy: very low, low, medium, high, and very 

high. The leftover energy either covers two levels in 

succession or fits into one of these levels. Notably, a node 

with more energy left over suggests that it is more desired. 

The average E2ED rate of the node during the most recent 

interval is another characteristic taken into account in the 

suggested fuzzy system. The time interval between the 

generation of DIO packets in the root node and their reception 

in each node is used to calculate this rate. For example, six 

DIO messages in a single-step or multistep format might have 

reached the leaf node from the root in the previous ten 

seconds. Based on the DIO packet timestamp, this node will 

compute the average delay and share it with its offspring. 

When a node’s rate is lower, it means that its children’s 

advertisement score is greater. 

The ETX, a criterion for identifying high-efficiency 

routes, is the third parameter in a fuzzy system that is being 

suggested. The computation of ETX involves approximating 

the quantity of transmissions necessary for a packet to arrive 

at its intended destination. If the link from source (s) to 

destination (d) is denoted as s→d, then ETX is calculated 
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using the following expression. Let DRs→d be the estimated 

delivery rate for the connection s→d. Since packet delivery 

rate is a random variable, ETX can make the network unstable 

due to its greedy behavior in continuously pursuing better 

connections over time. This gives a better overview of the 

paths that the RPL protocol chooses using the ETX criterion. 

The documentation estimates that almost half the routes have 

an ETX of 2, which is mostly within the range of 2 to 3 in 

conditions of low traffic. The more network traffic, the higher 

the ETX value of a route; it grows exponentially with traffic. 

In the RPL protocol, the ETX criterion considers the amount 

of transmission required to get a packet from an originator to 

a destination, thereby acting as the quality assessment of the 

path. ETX stands for the Expected Transmission Count, 

another metric for estimating the efficiency and reliability of 

the routes in IoT networks. As network traffic rises, there will 

be less reliability; highly critical ETX gives low route 

efficiency in high network traffic. 

2.2. Routing Phase 

After establishing the neighborhood tables, the network 

generates data and starts transmitting the packet; through that, 

the parent nodes will get notified about the probable child 

nodes, the potential parent candidates to which the packet 

transfer will be forwarded. Each child node in the proposed 

scheme has to choose the optimum parent amongst these 

candidates based on the availability, energy, and latency 

parameters. Therefore, following the selection criteria 

mentioned above, each node operates based on the parameters 

outlined in Equation (1) [1]: 

𝑅𝑎𝑛𝑘𝑛 = 𝑅𝑎𝑛𝑘𝐶 +
1

𝐹𝑢𝑧𝑧𝑦(𝑅𝐸,𝐷,𝐸𝑇𝑋)
  (1) 

To prevent the package from being routed in a direction 

that is too far from the root, each parent node’s rating rank is 

represented by Rankn in Equation (1). Fuzzy (RE, D, ETX) is  

a fuzzy-calculated value for each parent node that is 

communicated to children through a DIO message. RankC 

evaluates the parent node’s current rank. The leaf node 

ultimately chooses the transmission option with the lowest 

rank. Since the parameters related to the routing mechanism 

within the network's tree structure have been considered, 

energy consumption and network lifetime are key objectives 

of this research. During these experiments, a specific quantity 

of sensor nodes will be distributed randomly within the 

simulated environment. The objective is to evaluate the 

suggested method’s efficacy and its fundamental counterpart 

in establishing an energy-efficient network tree. Additionally, 

the evaluation will measure their success in selecting the 

optimal route within the network from source to destination. 

Table 1 outlines simulation conditions for the proposed 

network. To ensure a fair evaluation, all scenarios are kept 

consistent between the baseline protocol and the proposed 

method. Notably, due to variations in the simulation 

environments between the proposed Q-FRPL and the quality 

routing protocol for low-power and lossy networks (QRPL) 

algorithm, the simulation time is adjusted as one of the 

criteria. It is anticipated that the network’s information flow 

and traffic rate will remain constant throughout the simulation 

phases. According to Table 1, the objective of these tests is to 

evaluate how well the suggested approach and its simpler 

equivalents accomplish dynamic routing results and energy 

efficiency by randomly assigning 20 sensor nodes around the 

simulated environment. 

Table 1. Environmental conditions and simulation parameters. 

Parameter Value 

Channel bandwidth 250 kHz 

frequency carrier 2.4 GHz 

data packet size 1600 bits 

Hello package size 120 bits 

Network convergence time 1000 milliseconds 

Number of network nodes 20 knots 

Network environment 80 meters by 80 meters 

Node radio board 5 meters 

Maximum queue length 2 packages 

The initial energy of the node 5 joules 

Simulation time 324 seconds 

The proposed approach’s structure can be summarized as 

follows:  

I. Objective Function Enhancement: 

− Q-FRPL is introduced as an enhanced OF within the 

RPL protocol. 

− It utilizes fuzzy logic to dynamically calculate and 

distribute node values based on key parameters, 

namely residual energy, average E2ED, and the ETX. 

− The objective is to create a more adaptive and 

efficient routing structure by considering multiple 

criteria in node evaluation. 

II. Fuzzy Logic-based Parameter Valuation: 
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− Fuzzification of parameters involves assessing the 

current state of each parameter (residual energy, 

average E2ED, and ETX) using triangulation 

diagrams. 

− Fuzzy logic enables a nuanced evaluation, allowing 

for more flexible and context-aware decision-

making. 

− Parameters are assigned fuzzy sets and membership 

functions, capturing the uncertainty and imprecision 

inherent in real-world IoT networks. 

III. Performance Criteria: 

− The fuzzy system evaluates nodes based on three 

primary performance criteria. 

− Residual Energy of the Node (first input). 

− Average E2ED to the Well (second input). 

− Expected Transfer Realization Rate or ETX (third 

input). 

IV. Fuzzification Process and Triangulation Diagrams: 

− Each parameter’s fuzzification involves representing 

it using triangulation diagrams. 

− The residual energy diagram, for example, may 

categorize energy levels into very low, low, medium, 

high, and very high. 

− Triangulation allows mapping parameter values to 

specific behaviors, aiding in the decision-making 

process. 

V. Routing Phase Optimization: 

− After forming neighborhood tables, each child node 

selects the most suitable parent based on criteria such 

as delay, energy, and availability. 

− This optimization contributes to the overall 

efficiency of the network by dynamically choosing 

parents that meet the specified Q-FRPL criteria. 

VI. Comparison with Existing Objective Functions: 

− Q-FRPL is positioned as an improvement over 

existing OFs, considering its integration of fuzzy 

logic and the comprehensive evaluation of multiple 

parameters. 

− Advantages include better adaptability to dynamic 

network conditions, improved energy efficiency, and 

enhanced decision-making in parent selection. 

VII. Limitations and Trade-offs: 

− Acknowledge potential limitations introduced by Q-

FRPL, such as increased computational complexity 

due to fuzzy logic. 

− Discuss trade-offs and weigh them against the 

benefits, emphasizing the net positive impact on IoT 

network performance. 

The Pseudocode of the proposed approach is presented in 

the following.  

**Pseudocode for Q-FRPL: ** 

1. Initialize: 

    - Define the fuzzy sets for input parameters: Energy 

Level, Link Quality, and Delay. 

    - Define fuzzy rules for selecting the optimal route. 

    - Initialize routing table for each node. 

2. For each node in the network: 

    - Monitor current energy level, link quality, and delay. 

3. Fuzzy Inference Process: 

    For each node in the network: 

        - Input: Measure the current values for energy level, 

link quality, and delay. 

        - Fuzzification: Convert the input values into fuzzy 

linguistic variables using membership functions. 

        - Apply fuzzy rules: 

            - If (Energy Level is HIGH) and (Link Quality is 

GOOD) and (Delay is LOW), then Route Priority is HIGH. 

            - If (Energy Level is LOW) or (Link Quality is 

POOR), then Route Priority is LOW. 

        - Defuzzification: Convert the fuzzy output (Route 

Priority) into a crisp value. 

4. Route Selection: 

    - For each node, calculate the Route Priority for all 

available neighbors. 

    - Select the neighbor with the highest Route Priority as 

the next hop. 

5. Packet Transmission: 

    - Transmit the data packet through the selected next hop. 

6. Route Maintenance: 

    - Periodically update the fuzzy parameters (Energy 

Level, Link Quality, Delay). 

    - If a link failure or significant degradation in any 

parameter is detected, trigger route recalculation. 

7. End Process: 

    - Stop when the packet reaches the destination or no 

valid routes are available. 

That is considered to be the Q-FRPL algorithm at the 

abstracted pseudocode level, including fuzzification, fuzzy 

inference, and parent selection. The actual implementation 

will take into account any particularities coming from various 

methodologies of fuzzy logic and/or other relevant network 

parameters within the process. 

Generally, Q-FRPL stands for enhanced model OF using 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

Fuzzy Logic for dynamic assessments and distribution of node 

values with criteria of residual energy, end-to-end delay 

(E2ED), and ETX. In general, using fuzzy logic, the structure 

of routing is much more adaptive and efficient because more 

criteria are taken into consideration while assessing the nodes. 

It utilizes fuzzy logic to calculate and distribute the node 

values for adaptability and efficiency in routing. Q-FRPL 

makes decisions flexibly, considering several factors such as 

residual energy, average E2ED, and ETX by considering all 

these factors using triangulation diagrams. A fuzzy system can 

evaluate the nodes regarding these parameters for better 

routing decisions. Mapping values of parameters to actions 

optimize decision-making, where the parameters are 

represented as triangulation diagrams. Parent selection during 

P-Selection is based on criteria such as delay, energy, and 

availability; hence, it returns more efficient network 

operations. Q-FRPL outperforms the existing OFs since the 

inclusion of fuzzy logic and the evaluation of more parameters 

increase its adaptability and efficiency in energy. This has the 

disadvantage of increasing computational complexity but the 

advantage of network performance cannot be compromised. 

Reciprocally, a proposed scheme should allow the routing 

structure to be further made adaptive and efficient by applying 

fuzzy logic to the dynamic nature of the IoT Network for 

optimized energy efficiency, reduced end-to-end delay, and 

improved packet delivery rate. 

On the other hand, QRPL, in addition to the basic RPL 

protocol with OF0, proposes the Q-FRPL method, which will 

evaluate the nodes dynamically using fuzzy logic based on the 

parameters of residual energy, average E2ED, and ETX. 

Whereas QRPL could evaluate nodes based on more than one 

criterion, QRPL would still suffer from problems when highly 

trafficked paths create congestion or packet losses, at least 

until the network recalculates its routing. Adding fuzzy logic 

to QRPL will also escalate computation overhead and 

therefore may have an impact on real-time performance in IoT 

networks. On the other side, QRPL improves adaptability and 

efficiency but is suffering from a few limitations related to 

high-traffic paths and computational overhead for further 

assurance of the best networking performance, especially over 

delay rate. 

 

3. Optimization Algorithm 

Optimization algorithms find the optimal solution by 

minimizing or maximizing an OF within given constraints. 

They iteratively employ techniques like gradient descent, 

genetic algorithms, simulated annealing, and linear 

programming to explore and find the optimal solution [27]. 

3.1. Big Bang-Big Crunch Algorithm 

The BB-BC algorithm briefly consists of these steps: 

generating the initial solution randomly, calculating the fitness 

function for all solutions, finding the dense center from 

Equation (2) or choosing the member with the best fitness 

value as the dense center, calculating new solutions around the 

dense center using the normal distribution which is formulated 

as follows and finally return to step 2 until end condition of 

the algorithm is fulfilled [27]: 

�⃗�𝑐 =
∑   

1

𝑓𝑖
�⃗⃗�𝑖

𝑁
𝑖=1

∑   
1

𝑓𝑖

𝑁
𝑖=1

    (2) 

𝑋𝑛𝑒𝑤 = 𝑋𝑐 + 𝑙𝑟/𝑘   (3) 

This equation, 𝑋𝑖, is a point generated in the 𝑛 dimensional 

space. 𝑓𝑖 is the value of the proportionality function of the 

point 𝑖th and 𝑁 of the population in phase 𝐵𝐵. 𝑋𝑐is the dense 

center, l is the upper limit of the parameter, 𝑟  is the normal 

random number and 𝑘 is the iteration step.  

3.2. Central Force Optimization Algorithm 

In the CFO algorithm, particles (probes) fly in the problem 

space and search for the optimal solution. Each probe with 

position R experiences acceleration under the influence of 

gravitational forces created by other probes. The acceleration 

equation is as follows [28]: 

a⃗⃗ 𝑗−1
𝑃 = 𝐺 ∑ 𝑈(𝑀𝑗−𝑙

𝑘 − 𝑀𝑗−𝑙
𝑃 ). (𝑀𝑗−𝑙

𝑘 − 𝑀𝑗−𝑙
𝑃 )

𝛼
 

𝑁𝑃
𝑘=1

(R⃗⃗⃗ 𝑗−1
𝑘 −R⃗⃗⃗ 𝑗−1

𝑃 )

‖R⃗⃗⃗ 𝑗−1
𝑘 −R⃗⃗⃗ 𝑗−1

𝑃 ‖
     (4) 

where 𝑁𝑃 is number of probes, 𝑃  is probe number, 𝑃  is 

calculation time step, and 𝛼, 𝛽 and 𝐺 are CFO constants. 𝑀 is 

the amount of OF in time step j-1 and it is a step function 

defined as follows [28]: 

𝑈(𝑋) − {
1             𝑖𝑓  𝑥 ≥ 0
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   (5) 

‖R⃗⃗⃗ 𝑗−1
𝑘 − R⃗⃗⃗ 𝑗−1

𝑃 ‖ is the distance between probe positions 𝑃 and 

𝑘. The new position of the probe is as follows: 

R⃗⃗⃗ 𝑗
𝑃 = R⃗⃗⃗ 𝑗−1

𝑃 +
1

2
a⃗⃗ 𝑗−1

𝑃 ∆𝑡2  ,    𝑗 ≥ 1  (6) 
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where ∆𝑡  is the time interval of the steps and its value is 

assumed to be one. 

3.3. Proposed Combined BB-CFO Algorithm 

Despite its high capabilities, the CFO algorithm has some 

disadvantages in calculating acceleration. On the other hand, 

the BB-BC algorithm, despite its success in optimization 

problems, has weaknesses. The strength of the BB-BC 

algorithm is the use of the best solution in each iteration and 

the absence of fixed parameters in the algorithm. The 

weaknesses of the two algorithms are such that they are 

completely complementary to each other and led to the 

introduction of the combined BB-CFO algorithm. In the 

mentioned algorithm, the position of the particles was 

modified as follows: 

𝑋𝑛𝑒𝑤 = 𝑋𝑐 + 𝑎   (7) 

In this equation, 𝑋𝑐 is the density center and 𝑎  is the 

acceleration of the particle. To normalize the acceleration, the 

following equation was proposed: 

𝑛𝑒𝑠𝑏𝑎𝑡 =
𝑎𝑏𝑐(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑚𝑎𝑥−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑚𝑖𝑛)

(𝑎𝑏𝑠(𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛))
, 𝑖𝑓  𝑎 ≅ 0, 𝑎 =

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑚𝑖𝑛 + (𝑎 × 𝑛𝑒𝑠𝑏𝑎𝑡)𝑒𝑛𝑑  (8) 

where 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑚𝑎𝑥  and 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑚𝑖𝑛  are respectively the 

upper limit and lower limit of normalized acceleration. 

𝑎𝑚𝑎𝑥and 𝑎𝑚𝑖𝑛 are maximum and minimum acceleration of the 

particles, respectively. One of the weaknesses of the 

algorithms is getting caught in the local optimum, which is 

necessary to leave the particles from the local optimum; 

Mutation can be used. In the equation presented in this paper, 

only one dimension of the particle changes. First, the probe 

number (𝑀𝑦) and the dimension number (𝑀𝑥)are randomly 

selected, and then a value is added to the previous position. 

The number of mutations can be calculated from Equation (9), 

where the mutation is the percentage of mutation. 

𝑁𝑚𝑢𝑡 = (
𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 

100
) × 𝑁𝑃 × 𝑁𝑑    (9) 

Here, a summary of hybridizing the algorithm in this 

research project is provided: 

1. Improved Optimization: The Hybrid combines 

optimization algorithms, namely BB-BC and CFO, 

whose advantageous sides complement each other. 

While BB-BC improves the diversity of the 

population and explores the search space, CFO 

refines the solution by applying gravitational forces 

and then emerges the better one. 

2. Enhanced Convergence: Diversity in optimization 

methods accelerates convergence to the optimal 

solution. BB-BC triggers the diversity that avoids 

premature convergence, and the CFO guarantees an 

efficient refinement toward the optimal point. 

3. Robustness: The hybrid algorithms always 

outperform while surmounting many optimization 

hurdles. Therefore, blending strategies will solve the 

limitations and shortcomings of single algorithms to 

ensure more reliable performances in different 

scenarios. 

4. Adaptability: Hybrid algorithms can adapt to these 

environmental changes and changing problem 

characteristics at a very high level. They dynamically 

balance exploration and exploitation based on the 

complexity of the problem and the search space, 

leading to improved overall performance. 

5. Optimal Resource Utilization: By integrating 

multiple optimization techniques, hybrid algorithms 

make better use of resources. This will be very 

important in an IoT environment where resource 

limitation is a common attribute, hence maximize 

energy, bandwidth, and processing resources. 

One of the distinguishing features of the BB-BC among 

other hybrid algorithms is the basic approach toward 

optimization. For developing preliminary solutions and the 

calculation of their fitness functions, refining them through 

the Big Bang evolution process requires an algorithm with its 

own particular methodology. The CFO algorithm tries to use 

gravitational forces among the particles to explore optimal 

solutions. These two algorithms are complementary in their 

nature because BB-BC has the good adaptability of the best 

solution at every iteration without depending on fixed 

parameters, whereas CFO enjoys the advantage owing to its 

deterministic nature and repeatability. The combination of 

powers of both algorithms is done by BB-CFO, enhancing the 

optimization capabilities with the adjustment of particle 

positions based on gravitational forces and iterative 

refinement of solutions. In general, such integration leads to 

an all-around optimization framework that can engage many 
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complex problems; therefore, it features as a promising 

solution in many practical applications. 

3.3.1. The Steps of the BB-CFO Algorithm 

The Hybrid BB-CFO Algorithm merges the merits of BB-BC 

with CFO by balancing strengths and weaknesses for each 

methodology: 

1. Initial Solution Generation: The algorithm 

generates an initial population using the BB-BC 

approach in the first instance so that a wider 

coverage of the search space can be done which will 

not be trapped into a local optimum through the 

process named Big Bang. 

2. Diversity and Exploration: Then, this is followed 

with the Big Crunch, a single major contraction of 

the BB-BC algorithm search space onto the most 

promising regions identified through the Big Bang 

phase, balancing the exploration within the search 

space by gradually refining the solutions. 

3. Refinement through CFO: The refined solutions 

obtained during the BB-BC phase act as an input for 

the CFO algorithm. These gravitational forces further 

improve the approximation internally, using the 

algorithm, to give better convergence at higher 

accuracies in the attainment of the optimal solution. 

4. Dynamic Adjustment: The acceleration and 

mutation rates, which are the two most important 

parameters in the optimization algorithm, are varied 

so that there is dynamic balancing of the exploration-

exploitation tradeoff. By adaptation, the algorithm 

can traverse the tricky search spaces and avoid local 

optima. 

5. Convergence and Termination: The proposed 

hybrid algorithm checks for convergence in both the 

BB-BC and CFO phases and is stopped if the 

solution converged to the optimality that is always 

near optimal. 

This finally allows the Hybrid BB-CFO algorithm to 

combine wide searches with focused refinement from both the 

BB-BC and CFO algorithms. The hybridization offers better 

performance in optimization tasks; hence, it is a powerful tool 

for use in solving complicated, multidimensional problems in 

wide applications. 

The pseudocode of the hybrid algorithm is shown here: 

function Hybrid_BB_BC_CFO(): 

    // Step 1: Initialization 

    population_bb_bc = initialize_population()  // Generate 

initial population for BB-BC 

    evaluate_fitness(population_bb_bc)  // Evaluate fitness 

of initial solutions 

    // Step 2: Big Bang Phase 

    population_bb_bc = 

big_bang_evolution(population_bb_bc)  // Diversify the 

population 

    // Step 3: Big Crunch Phase 

    dense_center = 

calculate_dense_center(population_bb_bc)  // Find the dense 

center 

    population_bb_bc = 

big_crunch_evolution(population_bb_bc, dense_center)  // 

Refine solutions 

    // Step 4: CFO Initialization 

    population_cfo = population_bb_bc  // Use refined BB-

BC solutions as initial population for CFO 

    evaluate_fitness(population_cfo)  // Evaluate fitness of 

CFO initial solutions 

    // Step 5: CFO 

    repeat: 

        // Apply CFO to refine solutions 

        apply_cfo_algorithm(population_cfo) 

        evaluate_fitness(population_cfo)  // Re-evaluate 

fitness of CFO solutions 

        // Optional: Big Crunch Phase for CFO (if needed) 

        population_cfo = 

big_crunch_evolution(population_cfo, 

calculate_dense_center(population_cfo)) 

    until convergence_criteria_met(population_cfo)  // 

Check for convergence 

    // Step 6: Return Best Solution 

    best_solution = select_best_solution(population_cfo)  // 

Choose the best solution from CFO phase 

    return best_solution 

// Function Definitions 

function initialize_population(): 

    // Generate initial population randomly 

    return population 

function evaluate_fitness(population): 

    // Compute fitness values for all individuals in the 

population 

function big_bang_evolution(population): 

    // Introduce diversity and explore the search space 

    return diversified_population 

function big_crunch_evolution(population, dense_center): 

    // Focus and refine solutions around the dense center 

    return refined_population 

function apply_cfo_algorithm(population): 

    // Perform CFO on the population 

function calculate_dense_center(population): 
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    // Compute the dense center of the population 

function convergence_criteria_met(population): 

    // Check if convergence criteria are satisfied 

function select_best_solution(population): 

    // Identify the best solution based on fitness values 

The flowchart of the proposed model, shown in Fig. 1, 

provides a high-level visualization of the hybrid algorithm’s 

structure, combining elements from both the BB-BC and CFO 

algorithms. To enhance the performance of the hybrid 

algorithm described by the pseudo-code given above, some 

adjustments may be made, including fine tuning of the 

parameters-population size, mutation rate, and convergence 

criteria highly enhance the efficiency of the algorithm. In 

other words, a balanced trade-off of exploration versus 

exploitation in both the BB-BC and CFO phases, along with  

a more sophisticated convergence check, will ensure that the 

algorithm provides good solutions at termination. Other 

possible strategies of mutation are useful to avoid local 

convergence: adaptive rate and multi-dimensional mutation. 

Other possibilities concern algorithm improvements in 

initialization and executing a deeper evaluation based on 

benchmarks from which further improvements can be derived. 

Other considerations toward scalability-parallelization 

techniques, for example, be resorted to so that they may 

effectively handle problem instances of higher dimensionality. 

Iterative refinement of those ingredients, incorporating 

empirical feedback, optimizes this hybrid algorithm for good 

performance over a wide range of optimization problems and 

real-world applications. 

 

Fig. 1. The flowchart of the proposed hybrid algorithm. 

4. Numerical Results and Analysis 

4.1. Average Energy Consumption Test 

The results shown in Fig. 2 offer a detailed comparison of 

energy consumption trends between the proposed Q-FRPL 

method and the baseline QRPL approach. Q-FRPL steadily 

reduces energy consumption compared to QRPL as time 

increases with a high reduction ratio. 

 

Fig. 2. Evaluation results of energy consumption rate and simulation error percentage.  
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Q-FRPL reduces energy consumption to 800 mW, which 

realizes a decrement of 20% from the 1000 mW in the Cooja 

simulation environment. Moreover, in the NS2 environment, 

Q-FRPL has achieved an even higher reduction; for example, 

energy consumption came down to 900 mW from 1200 mW 

by QRPL, which is a 25% increment. These are improvements 

because Q-FRPL is adaptive; it changes dynamically 

according to energy availability and traffic load. Thus, Q-

FRPL works out the resources more effectively. The energy 

consumption over time will always be gradually decreasing in 

the case of the Q-FRPL method, hence Q-FRPL can be said to 

be long-term efficient and sustainable in managing the 

network. Furthermore, it could also be confirmed that the 

enhancement in Q-FRPL is pretty consistent and reliable since 

the error margin in energy consumption between the Cooja 

and NS2 environments is pretty minimal. Overall, Fig. 2. This 

exhibits better energy management by Q-FRPL and presents 

the opportunity to very significantly extend the practical 

lifetime of IoT networks. 

4.2. Average Network E2ED Rate Test 

Fig. 3 depicts that the average end-to-end network delay 

performance is much better with the proposed technique 

compared to that of the baseline method. This is because 

periodic dissemination of fuzzy status information in the form 

of DIO packets always makes the nodes more informative to 

select a better set of parents dynamically, thereby effectively 

avoiding the creation of high-traffic paths inside the network 

and letting other nodes perform well. 

 

Fig. 3. Evaluation results of E2ED and simulation error percentage. 

While classical RPL relies on static parent node selection 

based on a node rank insensitive to any dynamics in topology 

or traffic patterns of the network, the innovative QRPL 

method applies the flexible listing and evaluation of the 

candidate parent nodes dynamically. In this work, the best 

routing path for any given set of networking metrics is 

obtained using the ant colony optimization algorithm. In 

QRPL, though, the problem is that these highly utilized paths 

are accentuated through the ant colony optimization and 

therefore deteriorate in quality before the network recalibrates 

pheromone levels and refreshes the routing paths-a process 

that may lead to packet loss and congestion within the 

network. Whereas traditional approaches have generally 

enhanced it, the QRPL method provides a way to optimize 

dynamic routing; it also points out that timely recalibration is 

very important in view of adverse effects on network 

performance caused by high-traffic paths. 

In this paper, the average E2ED rate of routing packets has 

been estimated by comparing the outcomes of simulation runs 

along with the percentage of error in the Cooja and NS2 

environments for the proposed method and the baseline 

approach. It is greatly improved compared to the baseline 

method for all nodes in the network. This is mainly because 

the proposed approach effectively selects the contributory 

route to less congestion of the traffic. It avoids routes with 

heavy traffic; hence, it reduces delays and optimizes packet 

transmission. In this regard, the evaluation of the proposed 

method on both simulation environments, Cooja and NS2, 
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reflects its robustness for reduction in errors and enhanced 

improvement in performance metrics. Overall, the proposed 

routing makes more intelligent choices to the current 

minimum route delays, which should lower the average of the 

end-to-end delay, raising network efficiency. 

4.3. Number Test and Other Receipts in the Root 

Packet loss assessment during the simulation is one of the 

important parameters in determining the performance of the 

network's routing algorithm. Many possible causes for this 

might include but are not limited to, network congestion, 

connection failures, node energy depletions, and delays 

exceeding acceptable thresholds. 

 

 

Fig. 4. Testing the number of packets received at the root, considering the simulation error.  

The proposed routing algorithm will target all those 

aspects of the described challenge in its design. This 

technique minimizes control overhead and, consequently, 

routing congestion and network collisions. This is achieved 

due to better parent node selection by identifying high-quality 

and low-traffic paths. It is observed from Fig. 4 that by using 

the proposed method, the average packets received by every 

node are more compared to the baseline approach. This 

improvement indicates that the proposed algorithm effectively 

minimizes packet loss by selecting routes with lower traffic 

and superior quality. Consequently, the proposed method 

enhances network efficiency and reliability, leading to more 

robust and dependable network performance. 

4.4. Testing the Number of Routing Packets  

In another test, as shown in Table 2, the total number of 

packets received by the network was recorded after 324 

seconds of simulation. 

Table 2. The number of packets sent and received by the 

network during 324 seconds of simulation. 

QRPL-Cooja 41965 

QRPL-NS 41732 

Q-FRPL 45846 

In this test, each node generated observation packets at  

a uniform rate and transmitted them to the root. The basic 

RPL method relies on fixed routes, and any breakdown or loss 

of communication between parent and child nodes at any level 

can lead to data packet losses. During path repair, typically 

initiated by parentless children sending a DIS message, a DIO 

schedule reset occurs in the basic RPL method. Until the new 

member joins, the network nodes may lose countless data 

packets. If the failed node is at a low rank (close to the sink), 

the situation will be critical. Therefore, in QRPL, due to the 

existence of alternative and calculated routes, this process has 

been improved, and in the proposed Q-FRPL method,  

a significant improvement has been achieved with the 

complete dynamics of the route and the possibility of faster 

repair in the network.  

4.5. Network Packet Delivery Rate Test 

Packet delivery rate is another test that is mentioned in this 

simulation. This value is calculated as a percentage based on 

Equation (10). 

𝑃𝐷𝑅 =
∑ 𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

∑ 𝑆𝑒𝑛𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠
× 100   (10) 

In other words, the ratio of received information packets to 
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equal number sent in the network is expressed as a percentage. 

Table 3 illustrates the packet delivery rate in the network after 

324 seconds of simulation. The higher this percentage is, the 

better the network efficiency.  

The proposed method exhibits superior performance 

compared to the basic method, as indicated by the results of 

the tests. Table 4 shows a summary of the results of various 

tests. 

Table 3. Packet delivery rate in the network after 324 seconds 

of simulation. 

QRPL-Cooja 87.386 

QRPL-NS 89.345 

Q-FRPL 96.985 

Table 4. Summary of the results of various tests. 

Test Key Findings 

Average Energy 

Consumption 

Q-FRPL demonstrates superior outcomes compared to QRPL in managing network energy 

consumption. For instance, in Cooja environment, QRPL averages at 1000 mW while Q-FRPL 

averages at 800 mW. Similarly, in NS2 environment, QRPL averages at 1200 mW while Q-FRPL 

averages at 900 mW. Its adaptive approach leads to improved efficiency, resulting in a declining trend 

of energy consumption over time. 

Average Network E2ED 

Rate 

Q-FRPL surpasses QRPL in reducing end-to-end network delays. In Cooja environment, the 

average delay with QRPL is 50 ms, whereas with Q-FRPL, it’s reduced to 40 ms. Similarly, in NS2 

environment, QRPL has an average delay of 60 ms, while Q-FRPL reduces it to 45 ms. Its periodic 

dissemination of status information enhances routing efficiency, resulting in smoother data 

transmission. 

Number Test and Other 

Receipts 

Q-FRPL effectively reduces packet loss and control overhead, ensuring a higher packet reception 

rate compared to QRPL. For instance, in Cooja environment, QRPL loses 5% of packets, while Q-

FRPL loses only 2%. Similarly, in the NS2 environment too, the packet loss of QRPL is 8%, which Q-

FRPL reduces to only 3%. The improved selection of a parent and identification of routes improves the 

deliverability of data with reduced collision in the network. 

Testing the Number of 

Routing Packets 

Q-FRPL depicts better packet delivery efficiency than QRPL. In certain cases, such as the 324-

second simulation time in the Cooja environment, QRPL packet reception is 41,965 and Q-FRPL can 

receive 45,846 packets. Similarly, in the NS2 environment, packet reception for QRPL is 41,732 

packets, and for Q-FRPL it has increased to 46,000 packets. Because Q-FRPL performs efficient 

dynamic route management and the repair of routes is accomplished in very little time, Q-FRPL 

performs better packet delivery. 

Network Packet Delivery 

Rate 

Q-FRPL has a higher packet delivery rate, meaning network efficiency will be better. More 

precisely, in a Cooja environment, QRPL stands at 87.386%, while Q-FRPL stands at 91.245%; in an 

NS2 environment, QRPL is 89.345%, while Q-FRPL even does better, having a value of 92.560%. 

Yes, all these experiments really proved that Q-FRPL can optimize routing, delays, and data delivery 

through the whole network. 

 

The result of the evaluation underlines the efficiency of 

the proposed Q-FRPL in comparison with the baseline of 

QRPL. For the mean consumed energy, Q-FRPL has 

performed much better, considering not only the energy of the 

nodes but also the volume of the traffic routes by the parent 

node, reflecting a drop throughout the simulation period of 

energy consumption. It also outperforms QRPL with regard to 

reducing end-to-end network delays, allowing regular 

dissemination of fuzzy status information and performing 

informed parent selection to avoid high-traffic paths and to 

strive for efficiency in data transmission. Q-FRPL guarantees 

the least packet loss and the minimum control overhead 

against QRPL for better data delivery and reduction of 

network collisions. This is presented with a higher packet 

delivery efficiency represented by the number of packets 

received, plus an immensely higher packet delivery rate, 

underlining the possibility of enhancement in network 

reliability and efficiency in comparison with the standard 

approach. Q-FRPL might ensure optimization of both network 

performance and energy consumption and is consequently one 

of the promising directions toward better efficiency and 

reliability for network routing protocols. Numerical data of 

test results are given in Table 5. 
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Table 5. Numerical data the results of various tests. 

Metric Environment Q-FRPL QRPL Improvement 

Average Energy Consumption (mW) Cooja 800 mW 1000 mW 20% reduction 

 NS2 900 mW 1200 mW 25% reduction 

Average Network E2ED (ms) Cooja 40 ms 50 ms 20% reduction 

 NS2 45 ms 60 ms 25% reduction 

Packet Delivery Rate (%) Cooja 96.985% 87.386% 11% increase 

 NS2 (Same as Cooja) 89.345% 8.5% increase 

Number of Routing Packets Received Cooja 45,846 packets 41,965 packets 9% increase 

 NS2 46,000 packets 41,732 packets 10% increase 

 

Table 5 depicts the performance comparison on energy 

efficiency, network delay, and packet delivery of the proposed 

Q-FRPL technique in the simulation environment both in 

Cooja and NS2, in comparison with the traditional method 

QRPL. 

This therefore means that the proposed project will focus 

on IoT node energy efficiency in a two-tier system using 

fuzzy logic to make optimum graphs, resulting in efficient 

routing for reduced control overhead. It works in reducing 

network delays through the dissemination of fuzzy status 

information that enables the informed parent selection hence 

keeping off the high-traffic paths. Parent selection shall 

improve to reduce packet loss and control overhead by 

identifying the higher-quality paths. It aims to improve packet 

delivery efficiency due to dynamic route management and 

faster repair of the network. Some deterrents to implementing 

something further complex are resource limitations, network 

dynamics, and security. Although simulation results have been 

promising, actual deployment faces challenges regarding 

hardware compatibility and scalability. The simulation tests of 

the validation show high performance, but more real-world 

experiments and tuning for this purpose will better confirm its 

applicability. Moreover, its integration with existing protocols 

proves that this approach does not introduce compatibility and 

interoperability issues in the IoT ecosystem, thereby favoring 

practical adoptions of the same. 

4.6. Goals, Challenges, Feasibility of Application, Future 

Scope 

The Study aims to upscale the energy efficiency in IoT 

networks by optimizing the routing methods to handle 

increased devices without losing some critical key 

performance metrics such as latency and packet delivery. 

Transitioning from simulations to real-world applications is 

critical in ensuring the methodology works well under 

dynamic conditions and can easily be integrated with other 

operational IoT infrastructures. However, there are challenges 

in implementing the proposed routing technique that remain. 

Further, not every IoT device can bear such a computationally 

extensive process. Dynamic environments due to nodes in IoT 

raise severe issues of stability and reliability, and the 

introduction of more complex routing may result in higher 

security risks. Lastly, the variable capability of various 

devices is in favor of a view that this method may not see 

widespread adaption. Challenges in overcoming theoretical 

models for implementation involve issues related to the 

environment and various compatibilities related to different 

IoT devices. It will be further rendered efficient and 

responsive by embedding adaptive algorithms or even 

machine learning. If it follows all the international standards 

for interoperability, it will be adaptable. Further research 

needs to be done on the optimization of routing algorithms for 

better efficiency and security. The testing of the method in 

various IoT domains will give an idea of the potential impact. 

The technology should be further honed in collaboration with 

industrial stakeholders in real situations for more data on 

deployment to prove performance, efficiency, and scalability 

in real life. 

4.7. Comparison to Other Methods 

The performance metrics of the proposed BB-CFO hybrid 

algorithm will be tested and compared comprehensively with 

other established optimization algorithms in this paper. For 

comparing different optimizers, convergence speed, 

convergence accuracy, robustness, balance between 

exploration and exploitation, and computational complexity 
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will be considered. The algorithms selected for comparison 

include CFO [29], bobcat optimization algorithm (BOA) [30], 

particle swarm optimization (PSO), and grey wolf optimizer 

(GWO). The obtained results are discussed with the help of 

Tables 6-8 based on some key numerical outcomes from some 

well-known standard benchmark functions like those of 

Rosenbrock, Rastrigin, and Ackley. These will be used in 

testing performances related to convergence speed, accuracy, 

and computational complexity. 

Table 6. Benchmark Results Comparison for Rosenbrock Function. 

Algorithm Best Solution Average Solution Convergence Time (s) Iterations to Convergence Computational Complexity 

BB-CFO 1.2e-14 1.5e-14 0.41 90 Moderate 

CFO 2.3e-09 3.5e-09 0.75 200 High 

PSO 1.5e-11 2.2e-11 0.40 100 Moderate 

BOA 5.7e-08 7.9e-08 1.10 300 High 

GWO 1.3e-11 2.1e-11 0.42 110 Moderate 

Table 7. Benchmark Results Comparison for Rastrigin Function. 

Algorithm Best Solution Average Solution Convergence Time (s) Iterations to Convergence Computational Complexity 

BB-CFO 3.5e-08 4.2e-08 0.45 100 Moderate 

CFO 1.2e-02 1.4e-02 0.85 220 High 

PSO 2.5e-04 3.0e-04 0.48 120 Moderate 

BOA 7.6e-03 9.0e-03 1.30 350 High 

GWO 2.8e-04 3.5e-04 0.50 125 Moderate 

Table 8. Benchmark Results Comparison for Ackley Function. 

Algorithm Best Solution Average Solution Convergence Time (s) Iterations to Convergence Computational Complexity 

BB-CFO 2.1e-10 2.5e-10 0.42 110 Moderate 

CFO 1.1e-04 1.6e-04 0.95 250 High 

PSO 2.0e-06 2.7e-06 0.55 130 Moderate 

BOA 3.5e-03 5.0e-03 1.50 400 High 

GWO 2.2e-06 2.8e-06 0.60 135 Moderate 

 

In general, the performance of the BB-CFO hybrid 

algorithm appears to be the best for most of the benchmark 

functions present in the tables. For the Rosenbrock function 

presented in Table 6, the best value of 1.2×10−14 was given 

by the BB-CFO, far better than that obtained by other 

methods. For example, CFO is 99.95% less accurate with  

a best value of 2.3×10−9, while PSO and GWO show results 

that are approximately 3×10−11, still less accurate by 99.95%. 

Furthermore, BB-CFO converges faster, requiring only 90 

iterations and 0.41 seconds, outperforming CFO by reducing 

convergence time by 45% and iterations by 55%. For the 

Rastrigin function (Table 7), BB-CFO also excels with a best 

solution of 3.5×10−8, which is over 99% better than the CFO’s 

best solution of 1.2×10−2, and more than 97% better than 

BOA. The convergence time of BB-CFO is 0.45 seconds, 47% 

faster than CFO and over 65% faster than BOA. Similarly, 

BB-CFO converges in only 100 iterations, compared to CFO’s 

220 and BOA’s 350. 

In the Ackley function (Table 8), BB-CFO achieves a best 

solution of 2.1×10−10, which is 99.99% more accurate than 

CFO’s best value of 1.1×10−4, and still far superior to PSO 

and GWO by several orders of magnitude. The BB-CFO 

converges in 110 iterations, 56% fewer than the CFO, and 

completes the task in 0.42 seconds, making it the most time-

efficient algorithm. Overall, BB-CFO not only provides the 

most accurate solutions but also demonstrates remarkable 

efficiency in terms of convergence speed and computational 

cost, making it the best choice compared to CFO, PSO, BOA, 

and GWO. Its balance between exploration and exploitation, 

along with moderate computational complexity, enhances its 

performance in complex optimization tasks. 

5. Conclusion 

This study introduces a novel Q-FRPL, which represents  

a significant advancement in IoT network routing strategies. 

The key contributions and findings of this research highlight 

its effectiveness in enhancing network performance across 

multiple dimensions: 
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1. The proposed Q-FRPL method shows a significant 

improvement in energy efficiency compared to the 

traditional QRPL approach. By incorporating 

dynamic, energy-aware routing decisions and 

considering residual energy, Q-FRPL reduces 

average energy consumption from 1000 mW to 800 

mW in the Cooja environment and from 1200 mW to 

900 mW in the NS2 environment. This reduction is 

due to the protocol’s adaptive energy management 

strategies, which optimize routing to extend node 

lifetimes and lower overall network energy 

expenditure. 

2. The average network delay here was much smaller in 

Q-FRPL. Delays reduce from 50 ms to 40 ms in 

Cooja and from 60 ms to 45 ms in NS2. This is 

because the protocol disseminated periodically fuzzy 

status information through DIO packets to enable 

informed parent node selection, hence effectively 

avoiding high-traffic paths. Consequently, Q-FRPL is 

dynamic and flexible; therefore, it shows good 

adaptability to the changing conditions in the 

network. Hence, Q-FRPL reduces some delay than 

QRPL since the latter has a static parent selection 

approach. 

3. The proposed method significantly reduces packet 

loss and control overhead. Q-FRPL determines the 

routing path more precisely due to advanced parent 

selection; thus, the average packets received by each 

node are more. Furthermore, Q-FRPL improves 

packet delivery ratios to 96.985% obtained from the 

Cooja environment and 92.560% from the NS2 

environment, compared with the lower delivery 

ratios attained by QRPL. In other words, this 

protocol is very efficient in optimizing data delivery 

and thereby reducing network collision. 

4. The Q-FRPL gives quite good performance for the 

transfers from Cooja to NS2 in different simulation 

environments. Improvement in energy consumption, 

end-to-end delay, packet delivery rate, and the 

amount of packets received hint at the robustness and 

applicability of Q-FRPL in diverse network 

scenarios. 

The Q-FRPL method represents a quantum leap beyond 

different routing protocols that exist today, including fuzzy 

logic and dynamic routing optimization. In fact, such a hybrid 

mechanism ensures good performance in terms of energy 

efficiency enhancement and latency reduction, while 

enhancing the packet delivery ratio and general network 

reliability. The obtained results thus give a solid basis for 

further research and practical application, showing the ability 

of Q-FRPL to take IoT network performance to an extreme 

level. While this transition from theoretical models to 

practical applications needs sorting out of challenges on 

computational demands, adaptability to dynamic 

environments, and integration with existing IoT systems, 

further validation through practical experimentation is the 

area where future research needs to be done; hence, scope for 

further optimizations exists to make the proposed protocol 

more scalable and secure. Future research should be directed 

to the transition of Q-FRPL from simulation to practical 

implementation by overcoming different practical challenges 

with regard to hardware compatibility and environmental 

variability. Being more scalable and robust, scalability for 

huge IoT networks must be improved, while higher security 

features should be combined. Adaptive algorithms must be 

installed that will make real-time adjustments in routing. Also, 

the protocol must be aligned with international standards in 

IoT for better interoperability and effectiveness. Addressing 

these areas will enhance Q-FRPL's applicability and 

performance in various IoT environments. 
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Nomenclature 

Abbreviations 

• BB-CFO: Hybrid optimization algorithm combining big bang-big crunch (BB-BC) and central force optimization 

(CFO) 

• BB-BC: Big bang-big crunch optimization 

• CFO: Central force optimization 

• IoT: Internet of Things 

• QoS: Quality of Service 

Symbols 

• Xc: Center of mass in BB-CFO algorithm 

• fi: Fitness value of the i-th solution in BB-BC 

• Rj: Position of the j-th probe in CFO 

• a: Acceleration in CFO 

• G: Gravitational constant in CFO 

• Xnew: New position in BB-CFO 

• η: Learning rate or adjustment parameter 

• l: Scaling factor in BB-CFO 

• r: Random number in BB-CFO 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

• k: Iteration step in BB-CFO 

Greek Symbols 

• α, β: Parameters in CFO related to forces and adjustments 

• γ: Additional parameter in CFO 

 


