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Highlights  Abstract  

▪ Two-stage optimization manages P2P energy 

sharing, ensuring fair benefit distribution. 

▪ Nash bargaining theory ensures fairness in 

energy trading between prosumers and 

consumers. 

▪ Real-time pricing adapts to demand, improving 

economic efficiency and energy management. 

▪ Consumer-side storage optimizes trading and 

storage based on load and renewable energy. 

▪ System reduces external power use by 

optimizing local renewable energy during peak 

times. 

 The power system landscape has evolved from isolated end-users to 

interactive communities due to advances in information and 

communication technologies. This paper explores peer-to-peer energy 

(P2PE) trading and sharing within a community, where customer 

incentives for energy exchange enhance collective profits. A two-stage 

optimization (TSO) framework is proposed: the first stage determines 

customer participation in P2PE, balancing individual and collective 

benefits, while the second stage optimizes economic aspects of P2P 

trading using a payment bargaining model. A case study demonstrates 

significant cost reductions and improved renewable energy utilization, 

with notable profit increments for participants. The study highlights the 

effectiveness of Nash bargaining theory and privacy-preserving 

algorithms in optimizing social welfare and economic interactions. 

Limitations include a focus on wind energy and simplified assumptions 

about energy storage. Future research should incorporate diverse 

renewable sources, dynamic modeling, and multi-community 

interactions. 
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1. Introduction 

1.1. Background and motivations 

The energy sector is undergoing a transformative shift from 

centralized systems, which traditionally rely on large-scale 

power plants and extensive transmission networks, to 

decentralized models that emphasize local generation and 

consumption [1]. This shift is driven by the growing need for 

sustainable energy solutions, increased energy efficiency, and 

the resilience of power systems [2]. Peer-to-Peer Energy 

Sharing (P2PES) systems have emerged as a promising 

approach to address these needs by enabling direct energy 

exchanges between individuals within a community, thereby 

reducing reliance on centralized utilities and enhancing local 

energy security [3]. Wind energy has become a focal point in 

this transition due to its substantial potential as a renewable 

resource. With advancements in wind turbine technology and 

the decreasing costs of wind energy production, wind power has 

demonstrated significant potential for contributing to 

sustainable energy systems [4]. Its integration into decentralized 

energy networks offers several advantages, including the 

reduction of greenhouse gas emissions, the mitigation of energy 

 

Eksploatacja i Niezawodnosc – Maintenance and Reliability 
Volume 27 (2025), Issue 2 

journal homepage: http://www.ein.org.pl 
 

 

Article citation info: 
Li C,. Xie P, Dynamic Modeling and Optimization of Energy Storage in Peer-to-Peer Energy Trading Systems, Eksploatacja i 
Niezawodnosc – Maintenance and Reliability 2025: 27(2) http://doi.org/10.17531/ein/195761 

(*) Corresponding author. 
E-mail addresses: 

 
P. Xie (ORCID: 0009-0002-4246-7234) hnzyjsxydswlxy@126.com, C. Li, (ORCID: 0009-0009-9242-2780) lichunzhongli@126.com,  



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

supply vulnerabilities, and the promotion of energy 

independence for local communities [5]. The motivation for 

focusing on wind energy within the context of P2PES systems 

is multifaceted. Wind power is not only a well-established and 

reliable technology but also aligns with the broader goals of 

reducing carbon emissions and fostering the use of renewable 

resources [6]. Its variability and intermittent nature present both 

challenges and opportunities for energy management, making it 

a critical component for exploring and optimizing decentralized 

energy systems [7]. By integrating wind energy into P2PES 

frameworks, researchers and practitioners can address these 

challenges and leverage the benefits of distributed renewable 

resources to create more resilient, efficient, and sustainable 

energy systems [8]. 

1.2. Literature review 

The shift towards decentralized energy systems, driven by 

sustainability and efficiency goals, is transforming energy 

generation and consumption. Peer-to-Peer Energy Sharing 

(P2PES) is a key innovation in this transition, enabling local 

energy exchanges and reducing reliance on traditional utilities. 

This review examines recent advancements and challenges in 

decentralized energy systems and P2PES, offering insights into 

current research and future directions. In [9] presented  

a decentralized energy trading model that integrates blockchain 

technology to enhance the security and transparency of Peer-to-

Peer (P2P) energy transactions. Their approach ensures 

immutability in transaction records, thereby minimizing 

potential errors and improving trust between participants in 

decentralized energy systems. In [10] developed an 

optimization framework for P2P energy management, focusing 

on real-time balancing of energy supply and demand among 

distributed entities. Their model incorporates dynamic 

adjustments based on real-time consumption data and 

renewable energy generation. This work provides insights into 

the application of adaptive optimization techniques, offering 

improvements in system performance and energy distribution 

efficiency under fluctuating conditions. In [11] explored  

a hybrid pricing model for P2P energy markets, combining 

dynamic pricing with fixed tariffs. Their analysis demonstrates 

how this hybrid approach can mitigate price volatility and 

provide equitable compensation for both energy producers and 

consumers. The research contributes to the field by offering an 

effective mechanism to manage price fluctuations while 

maintaining market stability, particularly in systems with 

diverse energy contributors. In [12] investigated the role of 

energy storage systems in P2P energy exchanges, specifically 

examining how batteries can stabilize energy supply and 

improve distribution efficiency. Their model evaluates the 

interplay between storage management and energy trading, 

revealing strategies to optimize storage utilization and reduce 

costs. This study enhances the understanding of energy storage's 

potential to support distributed energy networks, particularly 

under varying demand and supply conditions. 

In [13] conducted a comprehensive analysis of renewable 

energy sources, focusing on solar and wind power in the context 

of P2P energy markets. Their simulation framework evaluates 

the influence of different renewable energy profiles on market 

dynamics and participant outcomes. The study sheds light on 

the interaction between renewable energy variability and the 

economic stability of P2P energy trading, offering valuable 

insights for systems with high renewable energy penetration. In 

[14] developed a decentralized control strategy for managing 

P2P energy systems, utilizing machine learning algorithms to 

predict fluctuations in energy demand and supply. Their 

integration of predictive analytics enhances the accuracy of 

energy distribution, reducing the system's dependency on 

external energy sources. The research demonstrates how 

advanced computational techniques can improve the 

adaptability and efficiency of decentralized energy systems. In 

[15] proposed a multi-agent system for P2P energy exchanges, 

where each participant operates as an autonomous agent capable 

of making decentralized decisions. Their work highlights the 

advantages of agent-based models in terms of system scalability 

and resilience. By focusing on decentralized decision-making 

processes, the study provides a framework that can 

accommodate a growing number of participants while 

maintaining system flexibility and efficiency. 

Erol and Filik [1]studied energy sharing management in  

a microgrid with photovoltaic and wind turbine prosumers, 

energy storage systems, and EV charging stations. They used  

a single-leader, multi-follower Stackelberg game model, with 

the microgrid operator (MGO) as the leader and prosumers and 

charging stations as followers. Unlike previous approaches 
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where prosumer roles were fixed, their model allowed 

prosumers to dynamically switch between buyers and sellers 

based on the MGO's pricing policy. Prosumers could also shape 

their energy consumption strategies using specified decision 

parameters. A real-like microgrid simulation showed that this 

method nearly doubled the MGO's total profit compared to 

utility grid prices and reduced the microgrid's dependency on 

the utility grid by enhancing prosumer flexibility. Shen et al. [2] 

studied the strategic behavior of distributed energy resources 

(DERs) aggregators in electricity markets, focusing on their 

impact on distribution system security. They used a single-

leader, multi-follower Stackelberg game model, with the DER 

aggregator as the leader and the system operators as followers. 

To ensure operational security, they addressed security check 

problems in three scenarios, linearized using a mixed-integer 

linear power flow model. The model was converted into a bi-

level mixed-integer linear programming (BMILP) model using 

the strong duality theorem. An accelerated relaxation-based bi-

level reformulation and decomposition algorithm was proposed 

to solve the BMILP problem. Case studies on constructed and 

practical integrated transmission and distribution (T&D) 

systems verified the model's effectiveness. Results showed that 

the DER aggregator's available downward reserve decreased 

with distribution system security limitations. Kosucki et al. 

conducted a numerical investigation of an overhead crane's 

energy consumption using a hybrid model of drive mechanisms 

and experimentally measured power consumption. The model 

was verified on a real crane. The study analyzed energy 

consumption relative to traveled distance and lifting/lowering 

heights, focusing on the hoist for energy efficiency 

improvements. Various transported mass magnitudes were 

assessed. Mahdavi-Meymand et al. [3], [4] developed and 

employed integrative machine learning models with the firefly 

algorithm (FA) to predict energy dissipation on block ramps. 

Models included MLPNN, adaptive network-based fuzzy 

inference system (ANFIS), GMDH, SVR, LE, and NE. The 

study showed that machine learning models and NE 

outperformed LE, and FA improved all models' performance. 

ANFIS-FA was the most stable integrative model, while GMDH 

and SVR were the most stable techniques overall. LE-FA had 

relatively low accuracy (RMSE=0.091), while SVR-FA had the 

highest accuracy (RMSE=0.034). Świder and Zbilski 

[5]investigated power losses as a factor affecting the energy 

effectiveness of production processes. They focused on low 

working conditions of a robot electric motor, examining how 

power losses changed from driving mode to stand-still mode. 

This study not only determined power map components but also 

addressed managing technical limitations in measuring 

industrial robot electrical states under conditions of high 

disturbances, noise, and limited robot axis angle range. Belgana 

et al. [6] introduced an approach leveraging microsources to 

reduce carbon emissions and exploit renewable energy sources 

to meet growing global electrical demand. Despite potential 

benefits, challenges, such as optimizing the tradeoff between 

renewable and nonrenewable energy sources for affordable, 

low-carbon power, persisted. Game theoretic approaches and 

evolutionary paradigms have been extensively applied to smart 

grids. Belgana et al. combined these methods within open 

energy markets, developing an analytic model using  

a multileader and multifollower Stackelberg game approach. 

They proposed a bi-level hybrid multiobjective evolutionary 

algorithm to maximize utility profits and minimize carbon 

emissions among interconnected microsources. Tushar et al. [7] 

investigated a three-party energy management problem in  

a smart community with residential units (RUs) having 

distributed energy resources (DERs), a shared facility controller 

(SFC), and the main grid. They formulated a Stackelberg game 

benefiting both the SFC and RUs in terms of cost and utility 

from energy trading. The study demonstrated the existence of  

a unique Stackelberg equilibrium (SE) and proposed a novel 

algorithm for RUs and the SFC to reach the SE in a distributed 

manner. The algorithm's convergence was proven, and 

numerical examples validated the scheme's properties and 

effectiveness. Wang et al. [8] examined the use of renewable 

energy resources (RESs) in microgrids, proposing a heuristic 

method for load demand management based on produced power 

and forecasted market clearing prices. They considered 

uncertainties in resources and load demand, with a forecasting 

unit informing operators of power levels for the next 24 hours. 

They added an energy storage system (ESS) to manage 

operation costs. Using a new decision-making criterion and 

particle swarm optimization (PSO), they optimized the 

generation schedule and economic dispatch to reduce consumer 

costs. The model ensured voltage stability and basic load 
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support. Simulations with and without price-based demand 

response showed that demand management reduced system 

costs by 20–30%, improved voltage dip (max 1.4%), and power 

deviation (max 1.25%). Huang and Abedinia [9] addressed the 

increasing use of renewable resources, such as wind turbines 

(WT) and photovoltaic (PV) systems, in microgrids (MG). They 

proposed a planning model considering renewable energy 

uncertainty, demand response, and electric vehicles (EVs) to 

minimize electricity market costs. To manage power flow and 

ensure load support and voltage stability, they employed energy 

storage systems (ESS) and time-of-use (TOU) demand response 

programs. Price-based demand response (DR) for various loads 

was also considered. A modified virus colony search (VCS) 

algorithm based on chaos theory solved the optimization 

problem. Their approach, tested on an MG system with various 

scenarios, showed that DR significantly reduced total costs by 

20–26%, improved voltage dip (max 1.4%), and enhanced 

power deviation (max 1.2%). Liu et al. [10] investigated energy 

policies that promote local PV energy consumption, finding 

energy sharing among neighboring PV prosumers more 

effective than independent operations. To facilitate this sharing, 

they proposed an energy storage-equipped energy-sharing 

provider (ESP). The ESP enabled PV prosumers to form  

a network, allowing direct and buffered energy sharing. Liu et 

al. created a day-ahead scheduling model for the ESP to boost 

profits and improve the net power profile, taking into account 

uncertainties in PV energy, electricity prices, and prosumer load. 

They also introduced a real-time demand response model based 

on a Stackelberg game to coordinate energy consumption using 

internal prices. A practical case study verified the method's 

effectiveness, showing significant improvements in economic 

benefits and PV energy sharing. Fan et al. [11] looked into how 

flexible demand response aggregators (DRAs) and  

a distribution company (Disco) with its own generators trade 

energy. They suggested a bargaining-based cooperative model 

instead of the usual non-cooperative game approach. In this 

model, Disco and DRAs collaboratively decided on energy 

trade amounts and payments, benefiting both by reducing peak 

demand and increasing cost savings. Benefits were fairly 

allocated using Nash's bargaining theory. The decentralized 

solution addressed privacy and autonomy concerns with 

minimal information exchange. Numerical studies 

demonstrated the framework's effectiveness, revealing 

significant improvements in system benefits. Devi et al. [12] 

propose a model for energy trading in smart grids using a game-

theory-based multi-stage Nash Bargaining Solution (NBS). The 

model enables participants, including utilities, private parties, 

and prosumers, to negotiate mutually acceptable prices, 

promoting participation and reducing greenhouse gas emissions. 

By balancing the benefits for consumers and producers, the 

model ensures fairness in the final agreed price. Comparative 

analysis with feed-in-tariff (FiT) techniques shows that the 

proposed model reduces consumers' energy bills by an average 

of 32.8% and increases producers' revenue by 64.83%. 

Additionally, the model demonstrates superior performance 

with an increase in the number of participants. Carbon emission 

reduction analysis indicates significant reductions, with 

approximately 28.48 kg/kWh for 10 participants and 342.397 

kg/kWh for 100 participants. Alizadeh et al. [13] introduce  

a Prosumer-Based Multi-Carrier Energy System (PB-MCES) 

framework for scheduling Multi-Carrier Energy Systems 

(MCESs) and forming an Energy Hub (EH) with Transactive 

Energy Control (TEC). Addressing challenges such as network 

constraints and uncertainty of Renewable Energy Sources 

(RESs), they employ Nash Bargaining Game Theory to develop 

a cooperative TEC prioritizing peer-to-peer (P2P) energy trade. 

PB-MCESs estimate uncertainty using stochastic programming, 

allocating reserve capacity for managing uncertainty through 

P2P reserve trading and internal reserves. Risk control is 

facilitated by adjusting the risk-taking factor based on the 

Conditional Value-at-Risk (CVAR) index. Implementation 

results demonstrate a 17.14% reduction in total costs with the 

cooperative TEC and a 16.32% reduction with P2P reserve 

trading.  In a power distribution system made up of many 

microgrids, some agent-based hierarchical power management 

models were proposed to solve the power management issues 

[14], [15], [16], [17]. A fair cost-sharing mechanism based on 

Nash bargaining was created by [18] to encourage cooperative 

planning amongst several microgrids. References [11], [19] 

focused on energy trading among aggregators, exploring 

economic interactions between distribution companies and 

aggregators, while not considering buyers in their models. 
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1.3. Literature Gap and Research Contribution 

A detailed review of the literature has revealed several research 

gaps that merit further exploration. As consumer-side renewable 

energy technologies, particularly solar and wind, continue to 

evolve, their adoption is expected to rise significantly. However, 

many studies currently focus on the interactions between 

distribution operators and aggregators, often overlooking the 

critical role of individual purchasers in decentralized energy 

markets. While much attention has been given to peer-to-peer 

energy sharing (P2PES) price mechanisms, the potential of 

these pricing strategies to optimize social welfare remains 

uncertain. Various methods, including the average market rate 

mechanism, supply-demand ratio mechanism, and supply-

demand ratio with compensatory pricing, have been proposed, 

yet their ability to ensure optimal outcomes is still under 

scrutiny. Nash bargaining theory, which stems from cooperative 

game theory, has been frequently employed to model economic 

interactions between energy buyers and sellers due to its 

emphasis on collective rationality. This research addresses the 

complexities of supply-demand dynamics in P2PES by 

introducing an incentive-based system to improve economic 

exchanges between community members. Through this 

framework, participants collaboratively plan energy exchanges, 

accounting for fluctuating electricity demand and renewable 

energy generation. By encouraging consumers to trade energy 

directly, the system aims to enhance overall satisfaction and 

create more efficient and economically beneficial energy-

sharing environments. 

This paper addresses the identified research gaps by 

introducing a comprehensive framework that enhances peer-to-

peer energy sharing (P2PES) through an innovative two-stage 

optimization process. Unlike previous studies that often 

overlook the role of purchasers or focus narrowly on pricing 

mechanisms, this work directly incorporates the dynamics of 

both prosumers and consumers into the decision-making 

process. By using a combination of Nash bargaining theory and 

advanced distributed algorithms, the paper ensures that 

participants' energy exchanges are optimized for both social 

welfare and individual benefits. The main contributions and key 

innovations of this paper can be summarized as follows: 

1. A novel two-stage optimization approach is proposed 

to manage peer-to-peer energy sharing (P2PES), 

enabling both efficient energy exchange and equitable 

benefit distribution among community members. 

2. The study leverages Nash bargaining theory to address 

energy trading interactions between prosumers and 

consumers, ensuring fairness in energy distribution 

and maximizing community-wide social welfare. 

3. A flexible, real-time pricing mechanism is introduced, 

which adapts to fluctuations in electricity demand and 

renewable energy output, improving both economic 

efficiency and energy management within the 

community. 

4. The framework takes into account the role of 

consumer-side energy storage systems, optimizing 

energy trading and storage decisions in response to 

changing load profiles and renewable energy 

availability. 

5. The proposed system significantly reduces reliance on 

external power sources, especially during peak periods, 

by optimizing the use of locally generated renewable 

energy within the community. 

6. An incentive mechanism is developed to enhance 

economic interactions between buyers and sellers in 

the energy-sharing network, encouraging active 

participation and increasing the overall profitability of 

energy trading. 

7. The framework is validated through detailed case 

studies that demonstrate its effectiveness in improving 

community-level energy sharing, with clear benefits 

for both prosumers and consumers. 

2. Problem modeling  

2.1. Recommended  system  

The Peer-to-Peer (P2P) sharing community is divided into two 

distinct groups: Customers and Prosumers. Customers are 

individuals or entities that exclusively use electricity within the 

community, without generating their own. In contrast, 

Prosumers are distinguished by owning their personal 

renewable energy systems, allowing them to both produce and 

consume electricity. For this study, we specifically focus on 

wind energy as the primary renewable resource. This focus can 

be due to the advantages that wind energy has. 

1. Abundant and Sustainable Resource: Wind energy is 
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pure and endless, hence forming a very key component 

in driving sustainable energy solutions. In turn, this has 

allowed wind energy to be integrated into a study that 

tries to leverage a renewable source in order to meet 

global goals with regard to low dependence on fossil 

fuels and reduction of greenhouse gas emissions. 

2. Cost-Effectiveness: The production of wind energy is 

much cheaper by comparison, at least in the longer 

term, considering the advancement in the field of 

turbine technology. This could even be economically 

feasible for communities that needed to generate and 

share renewable energy locally. Lower production 

costs mean higher economic viability of wind energy 

in decentralized systems. 

3. Energy Independence: Wind energy enables  

a community to produce energy on their own instead 

of relying on centralized power grids and external 

supplies. This turns out to be particularly important in 

the P2PES system described in this paper, in which 

energy will be traded directly between community 

members. In this way, by generating excess energy via 

wind turbines, prosumers can contribute to and be 

actively involved in the local energy market. 

4. Environmental Impact: In a wider perspective of zero 

carbon dioxide emission or any other sort of polluting 

material released, wind energy production presents an 

active means towards eradicating the carbon footprint 

from energy production. This may be important in the 

context of decentralized energy systems that promote 

clean energy practices with minimum environmental 

impact of energy use. 

5. Variability and Flexibility: Wind energy is an 

intermittent energy source that may be a challenge but 

also a great opportunity regarding energy management. 

Management of the intermittent nature of wind power 

in the P2PES system is helpful for optimizing energy 

distribution or storage. Indeed, by balancing wind 

energy production against the ESS, communities can 

better cope with fluctuations in power generation and 

demand, raising overall system resilience and 

efficiency.

 

Fig. 1. The overview of peer-to-peer energy sharing system. 
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In a P2P Energy Sharing (P2PES) community, buyers, or 

Customers, have the ability to share their wind-generated 

electricity with other community members. This sharing is 

facilitated by Prosumers who often have a surplus of generated 

electricity. Prosumers need to procure additional electricity to 

meet their needs due to variations in electricity demand and the 

status of their Energy Storage Systems (ESSs). The power 

output of wind turbines within the community may show 

similarities, but the net energy needs of Prosumers differ. These 

differences arise from varying electricity demands and the 

operational status of their ESSs. Typically, the extra electricity 

generated by renewable energy sources is first used to power 

nearby high-energy buildings. Any remaining surplus energy 

can then be stored in batteries or sold to the electricity provider. 

P2PES provides a platform for Customers to engage in the local 

energy market, which is a crucial component of the community 

energy system. This system not only enhances the efficient use 

of distributed energy resources but also promotes local energy 

trading among community members, ensuring that surplus 

energy is effectively utilized within the community. This 

collaborative approach supports the viability of the local 

economy by retaining financial activities within the community 

and enhancing overall energy efficiency. This process supports 

the viability of the local economy by ensuring that financial 

activities continue within the community [20]. In this work, we 

envision a peer-to-peer (P2P) sharing community of subscribers 

who can trade and exchange energy resources with one another, 

as depicted in Fig. 1. A two-way communication and energy 

flow system connects these consumers, facilitating efficient and 

sustainable energy distribution within the community. 

2.2. Energy storage  

Every member of the P2PES community has batteries, as was 

stated in the introductory section. We make the assumption that 

throughout time, the charge and discharge power won't change. 

Assume that at the conclusion of each period, a subscriber's 

energy storage status vector, 𝑆(𝑖) = {𝑆(𝑖,1), … , 𝑆(𝑖,𝑡), … , 𝑆(𝑖,𝑇)} , 

displays i. Therefore, electricity level in common ESS i can be 

expressed as shown in Eq. (1), where 𝜂(𝑖)
𝐿𝑜𝑠𝑠  represents its 

discharge rate in a time interval gives, while 𝜂(𝑖)
𝐶  and 𝜂(𝑖)

𝐷  related 

to the efficiency of charging and discharging (CDC) in each 

cycle and 𝑅(𝑖,𝑡)
𝐶  and 𝑅(𝑖,𝑡)

𝐷  represent the CDC rates of electricity 

in period t. In this study, Δt is set equal to 1 [5]: 

(1) 𝑆(𝑖,𝑡) = 𝑆(𝑖,𝑡−∆𝑡)(1 − 𝜂(𝑖)
𝐿𝑜𝑠𝑠) + ∆𝑡 (𝑅(𝑖,𝑡)

𝐶 ∙ 𝜂(𝑖)
𝐶 −

𝑅(𝑖,𝑡)
𝐷

𝜂(𝑖)
𝐷 ) 

Because the depth of discharge has a significant impact on 

battery life, in practical applications, the energy level in the 

battery is often controlled to prevent overcharging and 

overdischarging. Let 𝐶(𝑖)
𝑀𝑖𝑛  and 𝐶(𝑖)

𝑀𝑎𝑥  represent each battery's 

min/max capacity for storage. Eq. (2) thus sets a limit on the 

battery's energy level. Furthermore, the CDC power in the 

period t must also meet Eq. (3) and Eq. (4) since the rate of CDC, 

which is restricted by the size of the inverter, also affects the 

battery's lifetime, where 𝑅(𝑖)
𝐶−𝑀𝑖𝑛 and 𝑅(𝑖)

𝐶−𝑀𝑎𝑥 are the minimum 

and maximum charging rates in each period and 𝑅(𝑖)
𝐷−𝑀𝑖𝑛  and 

𝑅(𝑖)
𝐷−𝑀𝑎𝑥  show the minimum and maximum discharge rate in 

each period [5]: 

(2) 𝐶(𝑖)
𝑀𝑖𝑛 ≤ 𝑆(𝑖,𝑡) ≤ 𝐶(𝑖)

𝑀𝑎𝑥 

(3) 𝑅(𝑖)
𝐶−𝑀𝑖𝑛 ≤ 𝑅(𝑖,𝑡)

𝐶 ≤ 𝑅(𝑖)
𝐶−𝑀𝑎𝑥 

(4) 𝑅(𝑖)
𝐷−𝑀𝑖𝑛 ≤ 𝑅(𝑖,𝑡)

𝐷 ≤ 𝑅(𝑖)
𝐷−𝑀𝑎𝑥 

In addition, each subscriber must consider the costs 

associated with the destruction of energy storage. We use the 

method in Eq. (5) to determine the deterioration that occurs 

while charging or discharging an energy unit, and we include a 

cost parameter υ to account for this degradation as repeated 

cycles of charging and discharging might cause some degree of 

degradation in the storage device. The number of CDC cycles 

and the battery price p define the amount of υ, which is the cost 

suffered by each customer due to storage deterioration [21]. 

(5) 

𝐶(𝑖)
𝐶𝐷(𝑅(𝑖,𝑡)

𝐶 , 𝑅(𝑖,𝑡)
𝐷 ) = 𝜐 (∑𝑅(𝑖,𝑡)

𝐶 ∙ ∆𝑡

𝑇

𝑡=1

+∑𝑅(𝑖,𝑡)
𝐷 ∙ ∆𝑡

𝑇

𝑡=1

) ,     𝑖 ∈ 𝑁 

2.3. Energy interaction  

The shared power source i represents a combination of wind 

energy and electricity provided by the power company. We 

show the actual use of wind energy by subscribers as 𝑊(𝑖) =

{𝑊(𝑖,1), … ,𝑊(𝑖,𝑡), … ,𝑊(𝑖,𝑇)}  we give, a set that satisfies the 

constraint (6). In this case, 𝑊(𝑖,𝑡)
𝑀𝑎𝑥   denotes the wind turbine's 

maximum allowable output power for period t. Eq. (7) explains 

the use of renewable energy data to estimate the power produced 

by a wind turbine. The air density and wind speed that 

subscriber i experienced in period t are represented by 𝐷(𝑖,𝑡) and 

𝑉(𝑖,𝑡) respectively, in this equation. A denotes the turbine's swept 
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area, while K stands for the turbine's power factor. It is worth 

noting that subscribers who have no wind energy sources and 

only have ESSs show zero actual wind energy output [22]. 

(6) 0 ≤ 𝑊(𝑖,𝑡) ≤ 𝑊(𝑖,𝑡)
𝑀𝑎𝑥  

(7) 𝑊(𝑖,𝑡)
𝑀𝑎𝑥 =

1

2
. 𝐴. 𝐾. 𝐷(𝑖,𝑡). (𝑉(𝑖,𝑡))

3
 

When a customer's demands exceed the amount of renewable 

energy available, the client may require power from the utility 

in addition to renewable energy. Conversely, customers who 

have excess electricity have the opportunity to sell it to the 

utility. We show the amounts of energy that subscribers may buy 

and sell to the power company in different periods as relations 

(8) and (9), respectively. The selling price of electricity 𝑃(𝑖)
𝑆  and 

the purchase price 𝑃(𝑖)
𝑃   provided by the electricity company 

during each time interval can be described as Eq. (10) and Eq. 

(11). As a result, the costs incurred by each subscriber i to 

receive electricity from the power company are calculated as 

shown in Eq.  (12) [22]. 

(8) 𝐵(𝑖)
𝑃 = {𝐵(𝑖,1)

𝑃 , … , 𝐵(𝑖,𝑡)
𝑃 , … , 𝐵(𝑖,𝑇)

𝑃 } 

(9) 𝐵(𝑖)
𝑆 = {𝐵(𝑖,1)

𝑆 , … , 𝐵(𝑖,𝑡)
𝑆 , … , 𝐵(𝑖,𝑇)

𝑆 } 

(10) 𝑃(𝑖)
𝑆 = {𝑃(𝑖,1)

𝑆 , … , 𝑃(𝑖,𝑡)
𝑆 , … , 𝑃(𝑖,𝑇)

𝑆 } 

(11) 𝑃(𝑖)
𝑃 = {𝑃(𝑖,1)

𝑃 , … , 𝑃(𝑖,𝑡)
𝑃 , … , 𝑃(𝑖,𝑇)

𝑃 } 

(12) 
𝐶(𝑖)
𝐺𝑟𝑖𝑑(𝐵(𝑖,𝑡)

𝑃 , 𝐵(𝑖,𝑡)
𝑆 ) =∑(𝑃(𝑖,𝑡)

𝑆 ∙ 𝐵(𝑖,𝑡)
𝑃 − 𝑃(𝑖,𝑡)

𝑃 ∙ 𝐵(𝑖,𝑡)
𝑆 )

𝑇

𝑡=1

     ∀𝑖

∈ 𝑁 

Fixed loads and detachable loads are the two general 

categories into which electric load profiles for subscribers may 

be divided [22]. In our analysis, a certain percentage of 

detachable loads are made up of both consumers and customers. 

Customers can modify service durations or power usage with 

switchable loads in response to variable factors like energy 

pricing, informational signals, or individual preferences. These 

removable power load profiles for subscriber i in fixed duration 

𝑑(𝑖) can be shown as Eq. (13). For each 𝑑(𝑖,𝑡), the system loads 

must obey the conditions expressed in Eq. (14) and Eq. (15), 

where 𝑑(𝑖,𝑡)
𝑀𝑖𝑛  and 𝑑(𝑖,𝑡)

𝑀𝑎𝑥  represents min/max bounds for 

electricity of subscriber i at time t and 𝐷(𝑖,𝑡)
𝑀𝑖𝑛  represents the 

minimum cumulative demand [22]. 

(13) 𝑑(𝑖) = {𝑑(𝑖,1), … , 𝑑(𝑖,𝑡), … , 𝑑(𝑖,𝑇)} 

(14) 𝑑(𝑖,𝑡)
𝑀𝑖𝑛 ≤ 𝑑(𝑖,𝑡) ≤ 𝑑(𝑖,𝑡)

𝑀𝑎𝑥  

(15) ∑𝑑(𝑖,𝑡)

24

𝑡=1

≥ 𝐷(𝑖,𝑡)
𝑀𝑖𝑛 

To provide more clarity, consider that the ideal demand 

profile for subscriber i at time t is represented by 𝑑(𝑖)
𝐼𝐷𝐸 in Eq.  

(16). Eq.  (17) may be used to calculate the cost of discontent 

incurred by each subscriber using sources [11], [19]. In this case, 

the priority coefficient given to each subscriber i in the 

subscriber set N is denoted by 𝛽(𝑖) . A larger value of 

𝛽(𝑖) indicates a stronger joint aversion to deviation from ideal 

power demand levels. To ensure joint comfort, it becomes 

necessary to adhere to the relation between 𝑑(𝑖,𝑡) and 𝑑(𝑖,𝑡)
𝐼𝐷𝐸  , as 

defined in Eq. (18) [11], [19]. 

(16) 𝑑(𝑖)
𝐼𝐷𝐸 = {𝑑(𝑖,1)

𝐼𝐷𝐸 , … , 𝑑(𝑖,𝑡)
𝐼𝐷𝐸 , … , 𝑑(𝑖,𝑇)

𝐼𝐷𝐸 } 

(17) 𝐶(𝑖)
𝐷𝑖𝑠(𝑑(𝑖,𝑡)) = 𝑑(𝑖,𝑡)

𝐼𝐷𝐸 ∙ 𝛽(𝑖) ∙ 𝑙𝑛

[
 
 
 
 𝑠𝑖𝑛 (

𝑑(𝑖,𝑡)
𝑑(𝑖,𝑡)
𝐼𝑑𝑒 − 2 +

𝜋
2
)

𝑠𝑖𝑛 (−1 +
𝜋
2
)

]
 
 
 
 

 

(18) 0.5 ≤
𝑑(𝑖,𝑡)

𝑑(𝑖,𝑡)
𝐼𝐷𝐸 ≤ 2 

Considering those subscribers, especially in commercial and 

industrial areas, get tangible benefits from energy consumption 

instead of just billing, our optimal performance takes this into 

account. The utility achieved by subscriber i through energy 

consumption 𝑑(𝑖,𝑡)  is enclosed in Eq. (19). Here, 𝑘(𝑖,𝑡) 

represents a composite expression that integrates weight 

coefficients and preference parameters [10], and as a reflection 

of the importance attributed to the utility of energy consumption 

and the preferences of subscribers regarding energy 

consumption. it works [10]. 

(19) 𝑈(𝑖)(𝑑(𝑖,𝑡)) = 𝑘(𝑖,𝑡). 𝑙𝑛(1 + 𝑑(𝑖,𝑡)) 

3. Cooperative bargaining 

In this section, we provide a brief overview of the basic tenets 

of Nash bargaining game theory to set the stage for investigating 

cooperative interactions between customers in a society. In the 

framework of cooperative bargaining games, participants 

representing customers in the community provide incentives to 

each other to encourage cooperation. Members of the 

community can work together to maximize their advantages to 

one another. The simulation of situations in which players 

coordinate their activities to arrive at a win-win solution is the 

fundamental component of cooperative game theory in attaining 

an ideal social result. 

Within the framework of the game, N = {1, 2, …, i, …, n} 

is the set of players, with i standing for each participant. Every 

player has a utility, referred to as UI, and if an agreement cannot 

be reached, the player is awarded a disagreement point. Players 

are obligated by the terms of any agreements once they are 
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struck. If not, they behave irrationally. The formulation of the 

Nash bargaining model is given in reference [23]. The Nash 

bargaining model's solution complies with the following five 

essential requirements: Pareto optimality, independence from 

unrelated alternatives, independence from dependent 

transformations, and individual rationality [23]. 

(20) 𝑀𝑎𝑥∏[𝑢(𝑖) − 𝐷(𝑖)]

𝑛

𝑖=1

 

(21) 𝑢(𝑖) ≥ 𝐷(𝑖) 

As mentioned earlier, subscribers are willing to provide 

incentives to encourage energy exchange in the P2PES 

community and explore collaborative relationships to maximize 

their benefits. This begs the following questions: What is the 

best choice for the subscriber, in terms of the ideal quantity of 

energy exchanged? What constitutes the ideal profit margin for 

a subscriber engaged in a P2PES business? These questions will 

be investigated in the next section through a TSO approach. 

3.1. First level optimization  

Considering the analysis above, a subscriber's ability to raise the 

total social utility determines whether or not they are eligible to 

play the bargaining game. The advantage that all members of 

society receive collectively is referred to in this study as social 

utility.  

I. Social desirability model  

𝑃(𝑖𝑗,𝑡)
𝐸   represents the energy received by subscriber i from 

subscriber j in a certain period, and 𝑃(𝑗𝑖,𝑡)
𝐸   represents the 

electricity sold by subscriber j to subscriber i in the same period 

is when they must satisfy the constraint (22), which leads to an 

energy balance constraint described in Eq. (23). Specifically, 

∑ 𝑃(𝑖𝑗,𝑡)
𝐸

𝑗∈𝑁,𝑗≠𝑖    represents the net electricity traded between 

subscriber i and other subscribers in a certain time interval. 

When ∑ 𝑃(𝑖𝑗,𝑡)
𝐸

𝑗∈𝑁,𝑗≠𝑖 > 0 , it means that subscriber i is receiving 

energy from other subscribers to meet its electricity demand and 

vice versa. , when ∑ 𝑃(𝑖𝑗,𝑡)
𝐸

𝑗∈𝑁,𝑗≠𝑖 < 0 , it means that subscriber 

i is supplying energy to other subscribers in the community.  

As mentioned earlier, joint competence to participate in the 

bargaining game is conditional on their ability to increase social 

welfare. As shown in Eq. (24), to illustrate this, we define the 

social welfare maximization model, where 𝑈𝑠𝑤  represents the 

collective utility of all subscribers in the society. Also, at this 

stage of optimization, our objective function is in the form of 

Eq. (25) [5]:

(22) 𝑃(𝑖𝑗,𝑡)
𝐸 = −𝑃(𝑗𝑖,𝑡)

𝐸           ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑗 ≠ 𝑖 

(23) 𝐵(𝑖,𝑡)
𝑃 +𝑊(𝑖,𝑡) + ∑ 𝑃(𝑖𝑗,𝑡)

𝐸

𝑗∈𝑁,𝑗≠𝑖

+ 𝑅(𝑖,𝑡)
𝐷 = 𝑑(𝑖,𝑡) + 𝑅(𝑖,𝑡)

𝐶 + 𝐵(𝑖,𝑡)
𝑆         ∀𝑡 ∈ 𝑇𝐼𝑚𝑒 , ∀𝑖 ∈ 𝑁 

(24) 

𝑈𝑠𝑤 =∑∑{𝑘(𝑖,𝑡). 𝑙𝑛(1 + 𝑑(𝑖,𝑡))}

24

𝑡=1

𝑛

𝑖=1

+ 𝑣∑{∑𝑅(𝑖,𝑡)
𝐶 ∙ ∆𝑡

𝑇

𝑡=1

+∑𝑅(𝑖,𝑡)
𝐷 ∙ ∆𝑡

𝑇

𝑡=1

}

𝑛

𝑖=1

−∑∑{𝑃(𝑖,𝑡)
𝑆 ∙ 𝐵(𝑖,𝑡)

𝑃 − 𝑃(𝑖,𝑡)
𝑃 ∙ 𝐵(𝑖,𝑡)

𝑆 }

24

𝑡=1

𝑛

𝑖=1

−∑∑

{
 
 

 
 

𝑑(𝑖,𝑡)
𝐼𝐷𝐸 ∙ 𝛽(𝑖) ∙ 𝑙𝑛

[
 
 
 
 𝑠𝑖𝑛 (

𝑑(𝑖,𝑡)
𝑑(𝑖,𝑡)
𝐼𝑑𝑒 − 2 +

𝜋
2
)

𝑠𝑖𝑛 (−1 +
𝜋
2
)

]
 
 
 
 

}
 
 

 
 24

𝑡=1

𝑛

𝑖=1

 

(25) 𝑀𝑎𝑥 ∑𝑈(𝑖)
𝐶𝑜𝑛(𝑊(𝑖,𝑡), 𝑑(𝑖,𝑡), 𝐵(𝑖,𝑡)

𝑆 , 𝐵(𝑖,𝑡)
𝑃 , 𝑅(𝑖,𝑡)

𝐶 , 𝑅(𝑖,𝑡)
𝐷 )

𝑛

𝑖=1

 

 

II. Distributed solution of social utility 

To solve the issue indicated in relations (26) and (27), we 

provide in this part a distributed algorithm based on the 

approach of alternating direction of coefficients. Convex 

optimization issues can be solved by breaking them down into 

smaller, more manageable components using the method of 

alternating direction of coefficients. Auxiliary variables are 

introduced as shown in Eq. (26) and Eq. (27). 𝑃(𝑖𝑗,𝑡)
𝐸   in these 

relationships denotes the energy transferred in a given time 

interval between joint i and joint j, while �̂�(𝑖𝑗,𝑡)
𝐸   for each 

auxiliary variable denotes the recommended quantity of 

electricity. Eq. (28) expresses the augmented Lagrangian 

function for the issue in Eq. (25) where ρ > 0 is a penalty 

parameter connected to constraints (26) and (27). 𝜆(𝑖𝑗,𝑡)   is 

introduced as the Lagrangian coefficient. Relationships between 

optimization problems with fixed dual variables and auxiliary 

variables are provided in relation (29) [5]:
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(26) �̂�(𝑖𝑗,𝑡)
𝐸 = 𝑃(𝑖𝑗,𝑡)

𝐸  

(27) �̂�(𝑖𝑗,𝑡)
𝐸 = −�̂�(𝑗𝑖,𝑡)

𝐸  

(28) 

𝐿 =∑∑[𝑈(𝑖)(𝑑(𝑖,𝑡)) − 𝐶(𝑖)
𝐺𝑟𝑖𝑑(𝐵(𝑖,𝑡)

𝑃 , 𝐵(𝑖,𝑡)
𝑆 ) − 𝐶(𝑖)

𝐷𝑖𝑠(𝑑(𝑖,𝑡))]

𝑇

𝑡=1

𝑛

𝑖=1

−∑𝐶(𝑖)
𝐶𝐷(𝑅(𝑖,𝑡)

𝐶 , 𝑅(𝑖,𝑡)
𝐷 )

𝑛

𝑖=1

+
𝜌1
2
∑ ∑(�̂�(𝑖𝑗,𝑡)

𝐸 − 𝑃(𝑖𝑗,𝑡)
𝐸 )

2
𝑇

𝑡=1𝑗∈𝑁 𝑖⁄

+ ∑ ∑𝜆(𝑖𝑗,𝑡)(�̂�(𝑖𝑗,𝑡)
𝐸 − 𝑃(𝑖𝑗,𝑡)

𝐸 )

𝑇

𝑡=1𝑗∈𝑁 𝑖⁄

 

(29) 

𝑀𝑎𝑥∑[𝑈(𝑖)(𝑑(𝑖,𝑡)) − 𝐶(𝑖)
𝐺𝑟𝑖𝑑(𝐵(𝑖,𝑡)

𝑃 , 𝐵(𝑖,𝑡)
𝑆 ) − 𝐶(𝑖)

𝐷𝑖𝑠(𝑑(𝑖,𝑡))]

𝑇

𝑡=1

− 𝐶(𝑖)
𝐶𝐷(𝑅(𝑖,𝑡)

𝐶 , 𝑅(𝑖,𝑡)
𝐷 ) +

𝜌1
2
∑ ∑(�̂�(𝑖𝑗,𝑡)

𝐸 − 𝑃(𝑖𝑗,𝑡)
𝐸 )

2
𝑇

𝑡=1𝑗∈𝑁 𝑖⁄

+ ∑ ∑𝜆(𝑖𝑗,𝑡)(�̂�(𝑖𝑗,𝑡)
𝐸 − 𝑃(𝑖𝑗,𝑡)

𝐸 )

𝑇

𝑡=1𝑗∈𝑁 𝑖⁄

 

 

III. Iterative algorithm for solving social utility 

problem  

As the name suggests, the basic concept of alternating 

direction of coefficients method involves modifying one 

variable, updating another variable, and repeating this process 

repeatedly until a predefined level of accuracy is reached. At 

first, the optimization problem is solved in relation (30) to get 

the optimal solution. Subsequently, based on the values of 

𝑃(𝑖𝑗,𝑡)
𝐸 (𝑘 + 1) and 𝑃(𝑗𝑖,𝑡)

𝐸 (𝑘 + 1) , auxiliary variables and binary 

variables according to expressions (32) - (30) are updated [5].

(30) �̂�(𝑖𝑗,𝑡)
𝐸 (𝑘 + 1) = [𝜌1 ∙ 𝑃(𝑖𝑗,𝑡)

𝐸 (𝑘 + 1) − 𝑃(𝑖𝑗,𝑡)
𝐸 (𝑘 + 1) + 𝜆(𝑗𝑖,𝑡)(𝑘) − 𝜆(𝑖𝑗,𝑡)(𝑘)] (2 ∙ 𝜌1)⁄  

(31) 𝜆(𝑗𝑖,𝑡)(𝑘 + 1) = 𝜆(𝑗𝑖,𝑡)(𝑘) + 𝜌1 ∙ 𝑃(𝑖𝑗,𝑡)
𝐸 (𝑘 + 1) − 𝑃(𝑖𝑗,𝑡)

𝐸 (𝑘 + 1) 

(32) �̂�(𝑖𝑗,𝑡)
𝐸 (𝑘) = −�̂�(𝑗𝑖,𝑡)

𝐸 (𝑘) 

 

3.2. Second level optimization  

Herein, applying principles derived from Nash Bargaining 

Theory, we address the dynamics of the customer segment in 

P2PET. To establish the context of our exploration, it begins by 

examining the utility of individual subscribers in society, which 

is called the point of difference in bargaining theory.  

I. The point of difference in the bargaining model  

In order to guarantee that the overall power supply during a 

period is equal to the total consumption, each subscriber must 

first abide by the energy relationship, which is outlined in Eq.  

(33). Furthermore, the power company's purchase of electricity 

during time t must to meet the inequality (34). The difference 

between the wind turbine's maximum allowed output power in 

period t and the actual wind energy consumption is taken into 

account by this inequality, where 𝑊(𝑖,𝑡)
𝑀𝑎𝑥  represents the surplus 

wind energy in period t and 𝑆(𝑖,𝑡) represents the battery level. 

The objective utility function of the subscribers in the instances 

illustrated in connection (35) comprises elements like utility 

from energy usage, discontent costs, power purchase costs, and 

storage costs [5]. 

(33) 

𝐵(𝑖,𝑡)
𝑃 +𝑊(𝑖,𝑡) + 𝑅(𝑖,𝑡)

𝐷

= 𝑑(𝑖,𝑡) + 𝑅(𝑖,𝑡)
𝐶 + 𝐵(𝑖,𝑡)

𝑆         ∀𝑡

∈ 𝑇𝐼𝑚𝑒 , ∀𝑖 ∈ 𝑁 

(34) 𝐵(𝑖,𝑡)
𝑆 ≤ 𝑊(𝑖,𝑡)

𝑀𝑎𝑥 −𝑊(𝑖,𝑡) + 𝑆(𝑖,𝑡) 

(35) 

𝑀𝑎𝑥∑[𝑈(𝑖)(𝑑(𝑖,𝑡)) − 𝐶(𝑖)
𝐷𝑖𝑠(𝑑(𝑖,𝑡))

𝑇

𝑡=1

− 𝐶(𝑖)
𝐺𝑟𝑖𝑑(𝐵(𝑖,𝑡)

𝑃 , 𝐵(𝑖,𝑡)
𝑆 )]

− 𝐶(𝑖)
𝐶𝐷(𝑅(𝑖,𝑡)

𝐶 , 𝑅(𝑖,𝑡)
𝐷 ) 

I. Payment bargaining problem for P2PES business  

With Eq. (25), we identify the set of subscribers in the 

amount of P2PES. For each subscriber i ∈ M, the energy trade-

off 𝑃(𝑖𝑗,𝑡)
𝐸   can be determined. 𝑃(𝑖𝑗,𝑡)

𝐸  is considered a specific 

parameter in the bargaining issue, and 𝑓(𝑖𝑗,𝑡)
𝐸   represents the 

corresponding payoff. A positive value indicates that subscriber 

i receives a payment from subscriber j, while a negative value 

indicates that subscriber i provides a payment to subscriber j. 

Payments among all subscribers in set M must obey constraint 

(36). In practice, the subscriber in set M engages in P2PET and 

bargaining game only when the total utility (𝑈(𝑖)
𝐶𝑜𝑛 + 𝑈(𝑖)

𝑓
) of the 

otherwise optimized profit subscription (𝑈(𝑖)
𝑁𝑜𝑛 ) exceeds. As  

a result, for each subscriber participating in the P2PES trade, 

bound (37) must be calculated. Therefore, the payment 
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bargaining problem for subscribers involved in P2PE can be 

formulated in detail in Eq. (38). In Eq. (38), the term −𝑈(𝑖)
𝑁𝑜𝑛 +

𝑈(𝑖)
𝐶𝑜𝑛 + 𝑈(𝑖)

𝑓
 represents the improved utility that the subscriber 

receives when participating in the P2PES trade. The peer 

bargains using theoretical experience. The utility value when 

participating in P2PES business (𝑈(𝑖)
𝐶𝑜𝑛) and the desirable value 

individually (𝑈(𝑖)
𝑁𝑜𝑛 ) are among the influential items in this 

equation [5]. 

(36) 
𝑓(𝑖𝑗,𝑡)
𝐸 = −𝑓(𝑗𝑖,𝑡)

𝐸              ∀𝑡 ∈ 𝑇𝐼𝑚𝑒 , ∀𝑖 ∈ 𝑀, 𝑗

∈ 𝑀, 𝑗 ≠ 𝑖 

(37) 𝑈(𝑖)
𝑁𝑜𝑛 ≤ 𝑈(𝑖)

𝐶𝑜𝑛 + 𝑈(𝑖)
𝑓

 

(38) 𝑀𝑎𝑥∏[−𝑈(𝑖)
𝑁𝑜𝑛 + 𝑈(𝑖)

𝐶𝑜𝑛 + 𝑈(𝑖)
𝑓
]

𝑛

𝑖=1

 

II. An iterative algorithm for solving the payment 

bargaining problem  

Similar to Eq. (25), Eq. (38) includes a distributed algorithm. 

Auxiliary variables presented in Eq. (39) and Eq. (40) are 

introduced. The variation 𝑓(𝑖𝑗,𝑡)
𝐸  represents the payment related 

to the energy trade between subscriber i and subscriber j in  

a certain time interval, while each contribution 𝑓(𝑖𝑗,𝑡)
𝐸  represents 

the cost issued by the subscriber. We introduce 𝛼(𝑗𝑖,𝑡)  to 

represent the Lagrange coefficients, which is the full Lagrange 

equation of the second level of optimization shown in Eq. (41). 

Further updates for covariates and binomial variables can be 

done according to equationss (42) - (44) [5]:

(39) 𝑓(𝑖𝑗,𝑡)
𝐸 = 𝑓(𝑖𝑗,𝑡)

𝐸              ∀𝑡 ∈ 𝑇𝐼𝑚𝑒 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀, 𝑗 ≠ 𝑖 

(40) 𝑓(𝑖𝑗,𝑡)
𝐸 = −𝑓(𝑗𝑖,𝑡)

𝐸              ∀𝑡 ∈ 𝑇𝐼𝑚𝑒 , ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀, 𝑗 ≠ 𝑖 

(41) �̇� = −∑𝑙𝑛(𝑢(𝑖)
𝐶𝑜𝑛 + 𝑢(𝑖)

𝐹 − 𝑢(𝑖)
𝑁𝑜𝑛)

𝑖∈𝑀

+
𝜌2
2
∑ ∑(𝑓(𝑖𝑗,𝑡)

𝐸 − 𝑓(𝑖𝑗,𝑡)
𝐸 )

2
𝑇

𝑡=1𝑗∈𝑀 𝑖⁄

+ ∑ ∑𝛼(𝑖𝑗,𝑡)(𝑓(𝑖𝑗,𝑡)
𝐸 − 𝑓(𝑖𝑗,𝑡)

𝐸 )

𝑇

𝑡=1𝑗∈𝑀 𝑖⁄

 

(42) 𝑓(𝑖𝑗,𝑡)
𝐸 (𝑘 + 1) = [𝜌2 ∙ 𝑓(𝑖𝑗,𝑡)

𝐸 (𝑘 + 1) − 𝑓(𝑖𝑗,𝑡)
𝐸 (𝑘 + 1) + 𝛼(𝑗𝑖,𝑡)(𝑘) − 𝛼(𝑖𝑗,𝑡)(𝑘)] (2 ∙ 𝜌2)⁄  

(43) 𝑓(𝑖𝑗,𝑡)
𝐸 (𝑘) = −𝑓(𝑗𝑖,𝑡)

𝐸 (𝑘) 

(44) 𝛼(𝑗𝑖,𝑡)(𝑘 + 1) = 𝛼(𝑗𝑖,𝑡)(𝑘) + 𝜌2 ∙ 𝑓(𝑖𝑗,𝑡)
𝐸 (𝑘 + 1) − 𝑓(𝑖𝑗,𝑡)

𝐸 (𝑘 + 1) 

 

III. Incorporating Dynamic Pricing for Energy 

Exchange 

The model can be updated to account for dynamic pricing 

based on real-time supply-demand conditions within the P2P 

community. This helps to reflect market conditions better, and 

participants will benefit from more flexible trading prices [24]: 

Minimize ∑(∑𝐶𝑖

𝑁

𝑖=1

(𝑡) ⋅ (𝑃import(𝑡) + 𝑃export(𝑡)))

𝑇

𝑡=1

 (45) 

where, Ci(t) is the cost coefficient for participant i at time t, 

Pimport(t) and Pexport(t) are the power imported from and exported 

to the grid, respectively, N is the number of participants, and T 

is the total time period. The dynamic price Ci(t) can be 

calculated based on [24]: 

𝐶𝑖(𝑡) = 𝐶base(𝑡) ⋅ 𝑓 (
𝑃total, demand(𝑡)

𝑃total, supply(𝑡)
) (46) 

where, Cbase(t) is the base price at time t, Ptotal, demand(t) is the total 

demand in the community at time t, Ptotal, supply(t) is the total 

supply from Prosumers at time t. The original formulation can 

be enhanced by considering battery degradation costs over time. 

This would add realism to the model, as batteries are not 

infinitely durable [24]: 

Minimize ∑(𝐶battery(𝑖) ⋅ (𝐸stored(𝑖, 𝑡) − 𝐸discharged(𝑖, 𝑡)))

𝑁

𝑖=1

 (47) 

where, Cbattery(i) is the degradation cost coefficient for the 

ESS of participant i, Estored(i,t) and Edischarged(i,t) are the 

energy stored and discharged from the battery for participant i 

at time t. In other side, Demand Response (DR) allows 

prosumers and consumers to adjust their electricity usage in 

response to external signals (like price or grid conditions). The 

total demand, Pdemand(i,t), for prosumer/consumer i at time t 

is split into two parts: base demand and flexible demand [24]: 

𝑃demand(𝑖, 𝑡) = 𝑃base(𝑖, 𝑡)

+ 𝑃flex(𝑖, 𝑡) 
(48) 

where, Pbase(i,t) is the base (non-flexible) demand. Pflex(i,t) is 

the flexible portion of the demand that can be adjusted in 

response to DR signals. 

The flexible demand can be shifted or reduced. Let, Pshift

(i,t) represent the amount of demand shifted to another time 

period. Preduced(i,t) represent the amount of demand reduced. 
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The flexible demand is thus [24]: 

𝑃flex(𝑖, 𝑡) = 𝑃shift(𝑖, 𝑡) + 𝑃reduced(𝑖, 𝑡) (49) 

Additionally, limits are imposed on the amount of demand 

that can be shifted or reduced [24]: 

0 ≤ 𝑃shift(𝑖, 𝑡) ≤ 𝑃shift, max(𝑖) (50) 

0 ≤ 𝑃reduced(𝑖, 𝑡) ≤ 𝑃reduced, max(𝑖) (51) 

where, Pshift, max(i) is the maximum amount of demand that 

can be shifted. Preduced, max(i) is the maximum amount of 

demand that can be reduced. Incentives are provided to 

consumers for participating in DR. The incentive function, 

DR(i,t), rewards consumers for reducing or shifting their 

demand [24]: 

𝐷𝑅(𝑖, 𝑡) = 𝛼𝑖 ⋅ 𝑃reduced(𝑖, 𝑡) + 𝛽𝑖 ⋅ 𝑃shift(𝑖, 𝑡) (52) 

where, αi is the reward per unit of reduced demand. βi is the 

reward per unit of shifted demand. 

IV. Optimizing Energy Storage with Battery 

Degradation Considerations 

In practical scenarios, battery degradation is not only 

influenced by the charge and discharge rates but also by the 

cumulative number of charge-discharge cycles. This 

degradation can impact the overall efficiency and capacity of 

the battery, which in turn affects the operational costs and 

performance of the energy storage system. To capture the effect 

of cumulative degradation over multiple periods, consider the 

following equation [25]: 

Degradation𝑖(𝑡) = Degradation𝑖(𝑡 − 1) +

(
𝑅𝑖,𝑡
𝐶 +𝑅𝑖,𝑡

𝐷

Cycle Capacity𝑖
) ⋅ 𝛥𝑡 ⋅ Degradation Rate𝑖   

(53) 

where, Degradationi(t) represents the cumulative degradation of 

the battery for subscriber i at time t. Degradationi(t−1) is the 

cumulative degradation at the previous period. 𝑅𝑖,𝑡
𝐶  and 𝑅𝑖,𝑡

𝐷  are 

the charging and discharging rates of the battery at time t, 

respectively. Cycle Capacityi is the maximum number of cycles 

the battery can handle before significant degradation occurs. Δt 

is the time interval (which is set to 1 in your case). Degradation 

Ratei is a parameter representing the rate at which the battery 

degrades per cycle. Modify the existing equation (1) to account 

for the effects of degradation [25]: 

𝑆𝑖,𝑡 = 𝑆𝑖,𝑡−𝛥𝑡 ⋅ (1 − 𝜂𝑖
Loss) + 𝛥𝑡 ⋅ (

𝑅𝑖,𝑡
𝐶 ⋅ 𝜂𝑖

𝐶 − 𝑅𝑖,𝑡
𝐷

Capacity Factor𝑖
) 

(54) 

where, Capacity Factori adjusts the effective capacity of the 

battery based on the cumulative degradation. Incorporate 

degradation into the cost function [25]: 

𝐶𝑖
CD(𝑅𝑖,𝑡

𝐶 , 𝑅𝑖,𝑡
𝐷 ) = 𝜈 (∑(𝑅𝑖,𝑡

𝐶 + 𝑅𝑖,𝑡
𝐷 )

𝑇

𝑡=1

⋅ 𝛥𝑡)

+ Degradation Cost𝑖(𝑡) 

(55) 

where, Degradation Cost(i)(t) is calculated based on the 

cumulative degradation. 

4. Case studies and presentation of results  

In this section, we present a series of numerical case studies 

aimed at demonstrating the characteristics and effectiveness of 

the P2PE approach. The simulated P2PES community consists 

of five participants, including two consumers and three 

prosumers equipped with wind turbines. The 24-hour 

simulation is divided into hourly intervals to depict changes in 

electricity demand. To align with established practices and 

reflect real-world dynamics, the day is divided into three 

distinct periods: peak hours (15:00-23:00), mid-peak hours 

(10:00-15:00, 23:00-02:00), and off-peak hours (02:00-10:00). 

The cost of power varies according to these periods, with peak 

load times costing 2.98 ¥/kWh, off-peak times costing 0.83 

¥/kWh, and mid-peak times costing 1.91 ¥/kWh. It is essential 

to note that, as seen in Fig. 1, the current regulations controlling 

surplus electricity in distributed power systems dictate that the 

price at which electricity is purchased is fixed for the entire day. 

Fig. 2 presents the ideal load of customers, creating a daily 

power load profile. We have calculated the expected wind 

turbine output based on the reference [26], providing a realistic 

representation of the contribution of renewable energy. Fig. 3 

depicts individual and cumulative hourly wind energy 

production for consumers with wind turbines. The weight 

coefficient ω varies across different time intervals, with values 

of 1.5, 1.75, and 1.95 for peak load, medium load, and low load 

periods, respectively. Additionally, each of the five customers in 

the community is equipped with a battery with capacities of 12 

kWh, 16 kWh, 4 kWh, 4 kWh, and 8 kWh. 

These case studies will help illustrate the effectiveness of the 

P2PE approach in managing energy distribution and costs 

within the community, taking into account varying demand, 

production, and storage capacities. 
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Fig. 2. The price of buying and selling electric energy of the 

power grid. 

 

Fig. 3. The singular and aggregate hourly wind energy 

production for users with wind turbines. 

 

Fig. 4. The electrical power generated by the wind turbines of 

each User. 

4.1. First level optimization results 

Figure 4 provides an overview of the energy exchange dynamics 

within the community, highlighting the periods of energy trade 

among the five customers. The data reveals distinct patterns that 

underscore the efficiency and operational characteristics of the 

P2PES system. During the early morning hours (01:00 to 07:00), 

as depicted in Figure 4, all five customers exhibit zero traded 

energy. This observation can be attributed to the fact that the 

wind energy produced during these hours is sufficient only to 

meet the customers' own demands. Consequently, there is no 

surplus energy available for trading within the community, 

forcing customers to rely on the utility provider for additional 

energy needs. Figure 5 reinforces this point, as it shows no 

difference in electricity purchase levels between the P2P and 

P2PES systems during this time. This period effectively 

demonstrates the limits of energy availability from renewable 

sources alone and the necessity of relying on external utility 

supplies during low production periods. 

In the late morning (08:00 to 09:00) and evening to night 

hours (18:00 to 23:00), Figure 4 shows that Prosumers begin to 

generate a modest surplus of energy. Despite this, customers 

still need to purchase electricity from the utility provider. Figure 

5 illustrates a marginal reduction in power system purchases 

with the P2PES trading method compared to a scenario without 

P2PES. This reduction, though relatively small, highlights the 

beginning of a more efficient energy distribution system where 

surplus energy can start to contribute to reducing reliance on the 

utility grid. 

A more pronounced shift occurs between 11:00 and 17:00, 

as shown in Figure 4. During this period, Prosumers experience 

a significant increase in energy production, creating a surplus 

despite high local energy consumption. Figure 5 reveals that 

power system purchases decrease substantially when P2PES 

trading is implemented, eventually reaching zero. This finding 

illustrates the effectiveness of the P2PES system in utilizing 

surplus renewable energy to fully meet the local demand, 

thereby eliminating the need for additional power from the 

utility. 

An in-depth analysis reveals that despite the similar ideal 

power loads of Prosumer 1 and Prosumer 2, Prosumer 1 

consistently shows lower ideal power loads during peak periods 

when utility prices are highest. This is evident in Figure 4. In 
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scenarios where Prosumer 1 and Prosumer 3 have different wind 

energy efficiencies but similar ideal electricity usage, Prosumer 

1 is able to outsell Prosumer 3, as illustrated by their higher 

energy sales figures. This results in customers such as Customer 

1 and Customer 2 opting to purchase power at more favorable 

rates from Prosumers 1 and 2 during high load periods. 

Figure 6 provides a comprehensive view of the battery 

storage profiles for each subscriber. The figures illustrate the 

energy levels maintained in Prosumers' and Customers' batteries, 

reflecting the dynamic trends in energy storage and usage 

throughout the day. The data highlights the variability in battery 

storage and its impact on energy availability and trading 

dynamics. Effective battery management allows Prosumers to 

maximize their surplus energy and offers customers the 

flexibility to benefit from energy savings when trading within 

the P2PES system. 

The figures collectively demonstrate that the P2PES system 

enhances energy distribution efficiency by enabling effective 

trading of surplus energy. It reduces reliance on the utility grid 

during periods of high local production, balances energy supply 

and demand, and provides economic benefits to both Prosumers 

and Customers. The observed patterns and financial benefits 

underscore the potential of the P2PES system to optimize 

energy utilization and promote sustainable energy practices 

within the community. 

 

Fig. 5. Electric energy transacted among customers inside the 

system throughout a 24-hour duration . 

 

 

Fig. 6. The influence of the peer-to-peer mechanism on the 

electrical energy acquired by the system throughout a 24-hour 

duration . 

4.2. Second-level optimization results  

Table 1 provides a comprehensive overview of the payments 

and benefits experienced by subscribers within the P2PES 

community. It illustrates that Prosumers consistently record 

positive payoff values, indicating that they receive payments for 

the energy they provide to Customers. This is a direct result of 

their ability to generate surplus energy and sell it within the 

community, highlighting the financial advantages of being  

a Prosumer. Conversely, Customers show negative payoff 

values, reflecting their role as net energy consumers who pay 

Prosumers for the energy they receive. Notably, Prosumer 1 has 

the highest absolute payment value among the Prosumers, 

which aligns with their greater energy production capacity 

compared to others. This significant payoff for Prosumer 1 

underscores their higher production capabilities and the 

economic benefits gained from supplying energy, reinforcing 

the value of participating in the P2PES system. The data 

presented in Table 1 reveals insightful trends regarding the 

financial impacts of the P2PES system on various subscribers. 

The profit increments and associated payments underscore the 

economic dynamics of the peer-to-peer energy trading system. 

Table. 1. Paid cost and profit of subscribers using P2PES 

Profit increment 

(¥) 

Associated payments 

(¥) 
Items 

199.04 -72.54 Costumer 1 

118.87 -61.72 Costumer 2 

73.98 96.89 Prosumer 1 

55.54 34.67 Prosumer 2 

65.36 38.03 Prosumer 3 

510.73 - System 
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Customer 1 and Customer 2 exhibit significant profit 

increments of ¥199.04 and ¥118.87, respectively, while 

incurring associated payments of ¥72.54 and ¥61.72. This 

translates to profit percentages of approximately 73.98% and 

65.00%, respectively. These values highlight that both 

customers benefit substantially from the P2PES system. The 

higher profit for Customer 1 can be attributed to the larger 

volume of energy received from Prosumers, coupled with the 

reduced costs compared to traditional utility purchases. On the 

other hand, the Prosumers show varying profit margins and 

payment structures. Prosumer 1 records a profit increment of 

¥73.98 with an associated payment of ¥96.89, reflecting a net 

gain and a profit margin of approximately 43.22%. Prosumer 2 

and Prosumer 3 follow with profit increments of ¥55.54 and 

¥65.36 and associated payments of ¥34.67 and ¥38.03, 

respectively. Their profit margins are approximately 61.60% 

and 63.12%. These figures illustrate that while Prosumers do 

incur costs related to energy trading, they also benefit 

financially from selling surplus energy. The variance in profit 

margins among Prosumers indicates differing levels of 

efficiency and energy production capacities. Overall, the 

cumulative system benefit amounts to ¥510.73, with the system 

effectively redistributing costs and benefits among participants. 

This collective gain illustrates the overall efficiency and 

attractiveness of the P2PES framework. The system not only 

enhances the profitability for customers and Prosumers but also 

optimizes energy utilization and distribution within the 

community.  

 

Fig. 7. The quantity of energy retained in the battery memory 

for every user throughout a 24-hour duration . 

Fig. 7 outlines the tangible benefits subscribers gain through 

the implementation of the proposed P2PE framework. This 

demonstration highlights the profit differences experienced by 

customers when engaging in P2PE versus scenarios without 

such trading. In the absence of P2PE, Prosumers sell their 

excess energy to the utility, while Customers obtain their 

electricity directly from the utility and do not interact with 

Prosumers. The results in Fig. 8 emphasize the varying degrees 

of benefit improvement experienced by different subscriber 

segments. Prosumer 1, Prosumer 2, and Prosumer 3 show 

relatively small profit increases of 73.98 ¥, 55.54 ¥, and 65.36 

¥, respectively. In contrast, Customer 1 and Customer 2 

experience significantly higher profit increases of 199.04 ¥ and 

118.87 ¥, respectively. This disparity in advantages can be 

attributed to different customer battery capacities, variations in 

Prosumer energy output during the day, and shifts in power 

consumption.  

 

Fig. 8. Comparison of subscriber earnings in two scenarios: 

with and without the inclusion of a peer-to-peer energy system. 

These dynamic factors lead to varying levels of desirability 

among different subscriber segments. It is crucial to emphasize 

that the P2PE trading framework is continuously beneficial to 

all subscribers at different times of the day, enhancing 

incentives for active participation in P2PE throughout the 

community. This framework not only ensures a fair distribution 

of energy but also acts as a catalyst for improved consumer 

benefits and increases the attractiveness of P2PE. These results 

indicate that the P2PES system successfully incentivizes energy 

trading, balancing the interests of both energy producers and 

consumers. By allowing Prosumers to profit from their surplus 

energy and Customers to achieve cost savings, the system 
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promotes a more efficient and collaborative energy environment. 

The substantial profit increments for Customers, in particular, 

underscore the system's potential to offer significant financial 

benefits compared to traditional energy procurement methods. 

4.3. Discusion 

The results obtained from the case studies provide valuable 

insights into the practical implications of implementing the 

P2PE approach for energy management in a community setting. 

The analysis highlights several key aspects that are crucial for 

understanding how P2PE can be effectively applied in real-

world scenarios. Firstly, the observation that all five customers 

show zero traded energy between 01:00 and 07:00 underscores 

the limitation of wind energy production during these hours. 

This finding indicates that in practical applications, reliance on 

wind energy alone may not suffice to meet energy demands 

during low production periods. Consequently, incorporating 

additional energy sources or storage solutions could be essential 

to bridge the gap and ensure a consistent energy supply. For 

example, integrating battery storage systems with advanced 

scheduling algorithms could mitigate periods of low renewable 

energy output and enhance overall system reliability. During the 

peak periods (08:00 to 09:00 and 18:00 to 23:00), the results 

reveal a small surplus of energy available for sale by Prosumers, 

yet Customers still purchase electricity from the utility. This 

suggests that the current pricing structure and the fixed rate for 

surplus electricity might not fully incentivize energy trading 

within the community. Adjusting the regulatory framework to 

offer dynamic pricing or incentives for surplus energy could 

further stimulate internal energy trading and reduce dependence 

on external utility providers. The significant increase in energy 

production between 11:00 and 17:00, coupled with a reduction 

in power system purchases, highlights the effectiveness of the 

P2PE system in utilizing local renewable resources. This 

indicates that P2PE can significantly enhance the efficiency of 

energy distribution by leveraging surplus production and 

reducing reliance on external sources. In practical terms, this 

could lead to reduced energy costs and lower carbon footprints 

for both consumers and Prosumers. The ability of the system to 

achieve zero power purchases during this period demonstrates 

the potential for optimizing local energy use and improving 

sustainability. The observed variations in profitability among 

different subscribers, with Prosumers generally recording 

positive payoffs and Customers experiencing negative payoffs, 

reflect the economic dynamics of energy trading. The higher 

profit increments for Customers, particularly those with lower 

battery capacities, suggest that they benefit more from 

participating in the P2PE system compared to Prosumers. This 

disparity emphasizes the need for balanced incentives to 

encourage active participation from all community members. 

For practical implementation, developing a fair and transparent 

pricing mechanism that aligns the benefits of energy trading 

with the contributions of each participant could enhance overall 

system performance and equity. 

5. Conclusion  

This study presents a detailed analysis of the Peer-to-Peer 

Energy Sharing (P2PES) approach within a simulated 

community of five participants, including both consumers and 

prosumers equipped with wind turbines. The findings 

demonstrate the effectiveness of the P2PE approach in 

optimizing energy distribution and minimizing costs within the 

community. 

1. Energy Exchange Dynamics: The analysis reveals 

that during off-peak hours (01:00-07:00), all 

participants rely on the utility provider for energy, as 

the wind energy produced is insufficient to meet the 

demand. During peak periods, Prosumers, particularly 

Prosumers 1 and 2, show a surplus of energy which is 

sold to consumers. However, Prosumers and 

Consumers alike benefit from the P2PES system, as it 

reduces reliance on the utility provider and enables 

more efficient energy use. 

2. Optimization Benefits: The first-level optimization 

results indicate that the P2PES approach leads to 

significant reductions in overall power system 

purchases, particularly between 11:00 and 17:00 when 

local renewable energy production is high. Prosumers 

with higher energy production capacities, such as 

Prosumers 1 and 2, play a crucial role in meeting 

consumer needs during peak periods, demonstrating 

the effectiveness of localized energy trading. 

3. Economic Impact: The second-level optimization 

results, summarized in Table 1, highlight the economic 
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benefits for all participants. Prosumers receive positive 

payments for their energy contributions, while 

consumers experience reduced costs. Notably, 

Consumer 1 and Consumer 2 benefit more 

significantly from the P2PES framework, with 

increased profits compared to scenarios without 

P2PES trading. This disparity underscores the impact 

of varying battery capacities and energy production 

levels on economic outcomes.  

4. Enhanced Community Benefits: The P2PES 

framework not only ensures a fair distribution of 

energy but also enhances overall community benefits. 

The results, illustrated in Fig. 7 and Fig. 8, indicate that 

the implementation of the P2PE approach leads to 

improved consumer satisfaction and incentivizes 

active participation in energy sharing. 

In summary, the P2PES approach proves to be a valuable 

tool for optimizing energy distribution and reducing costs in  

a simulated community. The study’s findings emphasize the 

importance of integrating local energy production with trading 

mechanisms to enhance both economic and operational 

efficiencies. Future work should explore the scalability of this 

approach in larger communities and its potential impact on 

broader energy systems.
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Nomenclature 

Abbreviations D−Max
(i)R Maximum discharging rate of battery i 

ANFIS 
Adaptive Network-based Fuzzy Inference 

System 
(i,t)S Energy storage level of subscriber i at time t 

BMILP Bi-level Mixed-Integer Linear Programming (i,t)W Wind energy produced by subscriber i at time t 

CDC Charging and Discharging Max
(i,t)W 

Maximum allowable wind power output from the turbine 

for subscriber i at time t 

CVAR Conditional Value-at-Risk (i,t)D Air density for subscriber i at time t 
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DER Distributed Energy Resources (i,t)V Wind speed for subscriber i at time t 

DR Demand Response P
(i,t)B Amount of power purchased by subscriber i at time t 

DRA Demand Response Aggregator S
(i,t)B Amount of power sold by subscriber i at time t 

EH Energy Hub S
(i,t)P Selling price of electricity for subscriber i at time t 

ESP Energy-Sharing Provider P
(i,t)P Purchase price of electricity for subscriber i at time t 

ESS Energy Storage System (i)d Load profile of subscriber 

EV Electrical Vehicle (i,t)d Load profile of subscriber i at time t 

MGO Microgrid Operator Min
(i,t)d Minimum load for subscriber i at time t 

NBS Nash Bargaining Solution Max
(i,t)d Maximum load for subscriber i at time t 

P2P Peer-to-Peer Min
(i,t)D Minimum cumulative demand for subscriber i at time t 

P2PES Peer-to-Peer Energy Sharing IDE
i,t)d( Ideal demand profile for subscriber i at time t 

PSO Particle Swarm Optimization )d(i,t)
((i)U Utility of energy consumption for subscriber i at time t 

PV Photovoltaic (i,t)k 
Composite expression of weight coefficients and 

preference parameters for subscriber i at time t 

RU Residential Units C
(i,t)R Charging rate of energy storage system i at time t 

T&D Transmission and Distribution (i)u Utility of player i 

TEC Transactive Energy Control (i)D Disagreement points for player i 

TOU Time-of-Use E
(ij,t)P Energy received by subscriber i from subscriber j at time t 

VCS Virus Colony Search E
(ji,t)P Energy sold by subscriber j to subscriber i at time t 

WT Wind Turbine Usw Collective utility of all subscribers. 

Symbols E
(ij,t)f 

Payoff related to energy trade between subscriber iii and 

subscriber j at time t 

A Swept area of the wind turbine (t)importP Power imported from the grid at time t 

ν 
Cost parameter associated with the 

deterioration of energy storage 
(t)exportP Power exported to the grid at time t 

L Augmented Lagrangian function (t)total, demandP Total demand in the community at time t 

L′ 
Full Lagrange equation of the second level 

of optimization. 

D
(i,t)R Discharging rate of energy storage system i at time t 

N Set of players in the bargaining game Greek Symbols 

p Price of the battery ρ Penalty parameter associated with constraints 

K 
Power factor of the wind turbine 

 

Loss
(i)η Discharge loss efficiency of energy storage system i 

Max
(i)C Maximum storage capacity of battery i D

(i)η Discharging efficiency of energy storage system i 

Min
(i)C Minimum storage capacity of battery i k)((ji,t)α Lagrange coefficient updated at iteration kkk. 

(t)iC Cost coefficient for participant i at time t (ji,t)α Lagrange coefficient for payment bargaining 

(t)baseC Base price at time t C
(i)η Charging efficiency of energy storage system i 

)i,t)(d(Dis
(i)C 

Cost of discontent for subscriber iii due to 

deviation from ideal demand. 
(ij,t)λ 

Lagrangian coefficient for energy trade between subscriber 

iii and subscriber j at time t 

C−Min
(i)R Minimum charging rate of battery i (i)β Priority coefficient for subscriber i 

C−Max
(i)R Maximum charging rate of battery i   

D−Min
(i)R Minimum discharging rate of battery i   
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