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Abstract

When the hydraulic motor fault occurs, it is not easy to be detected,
and the leakage degree will gradually increase. In order to avoid bigger
accidents caused by the hydraulic motor fault, the accident is excluded
in the embryonic stage, and the hydraulic motor fault prediction
method based on fuzzy neural network is used to predict the hydraulic
motor fault. The feature vector is output in the global mean pooling
layer, and the feature vector matrix between the health state feature
vector library and the samples to be measured is constructed. The
dynamic cluster graph is obtained by fuzzy clustering, so as to realize
the fault diagnosis of the hydraulic motor. The results show that the
accuracy of training set, verification set and test set is higher than
99.8%. The accuracy of diagnosis classification is 99.00%, which is
better than other comparison models. In this study, the number of
training samples can be appropriately increased or decreased according
to the curve complexity of the detection target, so as to improve the
feature extraction capability of the convolutional layer and increase the
classification accuracy.

hydraulic motor faults.

= The feature vector is output in the global
mean pooling layer.

= The dynamic cluster graph is obtained by

fuzzy clustering.
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1. Introduction

Hydraulic motor is the key power component of hydraulic
system. Once an internal leakage fault occurs, it is difficult to
accurately diagnose the cause of the fault without certain
experience and fault diagnosis technology [1]. Therefore, for
the failure caused by the leakage of the hydraulic system, the
maintenance personnel can only blindly disassemble the
hydraulic system if they cannot determine the cause of the
fault, and even cause deformation or damage to the parts in
the blind disassembly process, resulting in greater economic
losses. The application of transfer learning and continuous

learning in hydraulic motor fault diagnosis mainly involves
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using existing knowledge and data to solve new problems and
improve the accuracy and efficiency of fault diagnosis.
Transfer learning transforms and aligns the features extracted
under different processes through domain adaptive methods,
so that the process distributions of source domain and target
domain are similar, thus improving the model's diagnostic
capability in target domain [2]. Faced with the problem of
reduced fault identification accuracy and small sample size
caused by motor parameter changes, continuous learning can
help the model adapt to these changes [3]. However, to make

the prediction results more accurate for the existing model, it
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is necessary to build a good model or have enough experience
[4]. Transfer learning and continuous learning can predict the
state of a device with enough data. However, the difference
between healthy and sub-healthy states was small. There are
few data about sub-health and faults, which cannot meet the
parameter training requirements of general diagnostic models
and the difficulty of sub-health identification [5-6]. In this
paper, the advantages of fuzzy recognition that can complete
classification without training and convolutional neural
network (CNN) that can extract tiny features are used to
collect the performance parameters of hydraulic system under
the condition of hydraulic motor leakage fault, which provides
data support for fault prediction research. Finally, based on
fuzzy clustering, fuzzy logic theory and improved residual
network, the hydraulic motor fault prediction and diagnosis
model is constructed, and the hydraulic motor fault diagnosis
and prediction can be completed with only a few data samples.

The novelty of this research is shown as follows: (1) The
fault prediction model based on T-S fuzzy neural network is
established by using fuzzy model recognition algorithm. The
fault diagnosis is realized. (2) The feature vector standard
model library is established, which can complete the
classification without data training, solving the less training
data. It has strong adaptability and small sample size. (3)
Global Average Pooling (GAP) layer is used to replace the
fully connected network in improved residual network
(Resnet). The fuzzy clustering is used to replace the
classification layer of the Resnet. A small amount of data is
used to train the parameters of GAP layer, which improves the
feature extraction ability of the model. (4) The fully connected
layer and classification layer are improved. The classification
accuracy is increased by appropriately adding training
samples.

The contributions of this research are shown as follows: (1)
The fault diagnosis of hydraulic motor can be completed
without data training, which solves the less training data. It
has strong adaptability and small sample size. (2) The
performance monitoring and fault warning of hydraulic
motors have been completed, saving maintenance resources
and reducing lifecycle costs. They can also be used for fault
research of other hydraulic components.

The research is divided into four parts in total. The first

part analyzes the current research on hydraulic motor fault
prediction and diagnosis. The second part constructs a fault
prediction and diagnosis model for hydraulic motors. The
third part is to verify the performance of the predictive
diagnostic model. The fourth part summarize the research.

2. Related Works

Information technology and artificial intelligence technology
have driven the development of intelligent and advanced
hydraulic motor fault prediction and diagnosis. In recent years,
scholars at home and abroad have conducted extensive
research on the working principle and fault prediction and
diagnosis methods of hydraulic pumps. However, research on
fault prediction and diagnosis of hydraulic motors is scarce
[7-9]. Aiming at the difficulty of extracting representative
fault features from mixed vibration signals in industrial
applications, Long et al. applied visual word package and
pyramid histogram cross kernel support vector machine to
complete fault diagnosis and state recognition of related
motors, thus effectively improving the fault diagnosis
accuracy [10]. Lu et al. proposed a heterogeneous computing
framework. An integrated embedded system was designed,
aiming at the problems related to processing off-line signals in
motor fault diagnosis. It provides a solution for on-site motor
fault diagnosis on small, flexible, and convenient handheld
devices [11]. For the analysis and processing of bearing fault
signals, Ke et al. optimized the white noise amplitude in the
comprehensive empirical mode decomposition using the
global optimality of genetic algorithm, thus providing data
theoretical support for improving the accuracy of hydraulic
motor fault prediction [12]. The motor fault diagnosis method
is easily affected by different working conditions. Therefore,
Long et al. obtained fault states through statistical analysis of
matching points and dictionary templates generated by normal
and abnormal motor signals. This solves the changes in
machine operating conditions and improves the accuracy of
fault diagnosis [13].

For complex systems, it is often difficult to correctly
describe the dynamics of the system due to many variables.
Dai et al. analyzed the main technologies used in intelligent
fault diagnosis and the research status of hydraulic system

fault diagnosis. The important application prospects of deep
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learning in intelligent fault diagnosis were proposed. The
main ideas, methods, and principles of several typical deep
neural networks were described [14]. Sun et al. proposed
a fault diagnosis method for asynchronous motors based on
deep neural networks. It used sparse auto-encoders to learn
features and added partial damage to the input to improve the
robustness of feature representation. To prevent over-fitting
during training, the regularization method dropout was
adopted to achieve better results in feature learning and
classification in the induction motor fault diagnosis [15]. Soni
et al. adopted a new method combining fuzzy logic controller
with fuzzy clustering method. The expert system combined
with key parameters such as dissolved gas analysis, water
content, interfacial tension and polymerization degree to
diagnose and predict early faults of power transformers,
providing basis for asset management decisions [16]. Soni et
al. introduced a new adaptive neural fuzzy inference system
model. This model was based on the moisture content, IFT,
harmonics, and temperature rise data within the insulation
layer to analyze the insulation degradation of oil and paper.
The newly proposed model was validated using various real
data collected from industries and literature, with an
efficiency of over 90% and an error of less than 1% [17].
From the research of domestic and foreign scholars, the
current methods for diagnosing hydraulic motor faults are
difficult to meet practical requirements in small samples.
However, model fault diagnosis technology overly relies on
the digitization of diagnostic objects, making it difficult to
establish accurate digital models in practical applications due
to the complexity of diagnostic objects. In addition, model
fault prediction technology hassome limitations in practical
engineering  applications. It is difficult to form
a comprehensive expert knowledge base in practical work
using knowledge based fault prediction techniques. Especially
when new fault phenomena occur, it is hard for existing expert
knowledge bases to find corresponding rules. There may even
be situations where there is no expert knowledge base for
similar fault phenomena. Meanwhile, no research on hydraulic
motor fault experiments and intelligent prediction diagnosis
methods has been found. There is no method to combine the
two for analysis. Moreover, the corresponding relationship

between various types of hydraulic motor faults and vibration

signals has not been explored. The effective training sample
library is relatively insufficient. Based on this, the hydraulic
motor fault prediction and diagnosis model based on the fuzzy
clustering, fuzzy logic theory, and improved residual network
is innovative. It innovatively implements the full life cycle
state evaluation and analysis of hydraulic motors in theory,
and solves the enterprise hydraulic motor testing relying too
much on human experience in practice. It lays the data and
method foundation for promoting the intelligent prediction
and diagnosis of hydraulic motor faults.

3. Full life cycle state assessment analysis of pre-fault
prediction and post fault diagnosis for hydraulic
motors

Currently, the troubleshooting hydraulic motors in important
hydraulic systems on airplanes mainly focuses on fault
prediction and diagnosis, without a combined analysis for the
two. Therefore, this section mainly uses fuzzy logic theory
and improved Resnet to achieve full life cycle state evaluation
of hydraulic motors.

3.1. Pre-fault prediction and feature extraction analysis
of hydraulic motors

Simply diagnosing faults in hydraulic motors cannot obtain
complete accuracy. There are malfunctions that cannot be
diagnosed. The actual analysis of research focuses on fault
diagnosis. However, to achieve a more comprehensive fault
diagnosis effect for hydraulic motors, the fault prediction is
carried out before fault diagnosis to evaluate the full life cycle
operation status of hydraulic motors. Generally speaking, the
fault prediction method based on models is more accurate than
the fault prediction method using knowledge and data.
However, the data fault prediction only requires sufficient
data to achieve the equipment status prediction through data
analysis. Therefore, considering the actual experimental
environment and subsequent fault diagnosis needs, a hydraulic
motor fault prediction method based on data is studied.
Among them, in intelligent technology, fuzzy theory can only
provide uncertain descriptions in known information. The
results obtained by fuzzy methods are much better than those
obtained by traditional quantitative analysis. Therefore, the
fuzzy inference model in fuzzy theory is chosen as the basic
algorithm for predicting hydraulic motor faults [18-19].
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The fuzzy reasoning model is proposed by Takagi and
Sugeno, which is also known as the T-S model. For T-S type
fuzzy systems, they are generally defined in the "if then"
format. The fuzzy reasoning expression is shown in equation
Q).

Gf:prli'sB],plzisBJ,---,pmisB,],l )
qj = X+ x{py + -+ XD

In equation (1), GJ represents the rule. j is the number of
fuzzy subsets, with a maximum value of o. p represents the
input variable. B represents a fuzzy set. q represents the
output variable. i represents the actual number of input
parameters, with a maximum value of m. The membership,
ambiguity, and output values of the input variables are
expressed in equation (2).

When the known information can only be described with
uncertainty, the results obtained by fuzzy methods are much
better than those obtained by traditional quantitative analysis.
The characteristics of phenomena usually described by fuzzy
sets are relatively fuzzy. Fuzzy sets are a generalization of
classical sets. A real number between 0 and 1 can be used to
represent the membership degree, rather than just the 0 or 1
that represents membership in classical sets. Equation (2)
represents any mapping u, from X to the closed interval [0,1].

{uA:X - [0, 1]
1= s
A is a fuzzy subset of X. u, is called the membership

2)

Output

variables

function of the fuzzy subset. u,(u) is called the membership
degree of uto A. When the membership function is used to
represent a fuzzy description, its essence is to eliminate the
fuzziness of the fuzzy description. When the object to be
measured is determined, for each category in domain X, only
the membership function of the category needs to be used to
find the membership degree with the object to be measured.
There are n fuzzy subsets on domain X = (x;, x5, *,%,). 41,
A,, ..., A, constitutes the standard data model library. For any
x0€X , ke{l, 2,---,n} satisfies formula A, (x,) =V
{A1(xg), Ay(xg), ==+, Ap(xg)}. Then the x, is considered
relative to A,.

However, the T-S model is constructed based on fuzzy
logic. Therefore, it lacks adaptive learning ability and requires
massive manual operations in the logical reasoning, resulting
in slow inference speed and relatively low accuracy [20-22].
Neural networks perform calculations through parallel
connections between multiple neurons, resulting in high fault
tolerance and strong self-learning ability. However, neural
networks have high accuracy for the required input
information, which also cannot explain the learning process
for uncertain objects. It is not suitable for processing rule-
based expert experience knowledge [23-24]. Therefore, the
study combines the two and fully absorbs their advantages to
construct a T-S fuzzy neural network model, as shown in
Figure 1.

Output layer

>

Blurring

Fuzzy rule computation layer >

Fuzzification layer >

Input variables

Input layer

>

”

/

Figure 1. Schematic diagram of the hierarchical architecture of T-S fuzzy neural network model.

From Figure 1, the T-S fuzzy neural network model
constructed in the study is divided into four levels, namely the
input layer, blurring layer, fuzzy rule calculation layer, and

output layer. The input layer passes the input variable p =
[p1, P2, -+, px] 1o the blurring layer. The number of input

nodes inside it is equal to the number of dimensions of the
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input variable. The fuzzy layer performs corresponding fuzzy
processing on the actual values transmitted by the input layer.
Specifically, the fuzzy membership value is obtained from
equation (3).

V(Bij) =exp(—@),j= 1,2 .,k i=12, ...t (3)
In equation (3), a represents the center of the membership
function. d represents the width of membership function. The
fuzzy rule calculation layer mainly adopts the fuzzy
continuous multiplication in equation (4) to calculate the
fuzzy degree. Each node in it is a fuzzy rule.
@) =y @) V) @) * - YEmPm), i=1, 2, ., t (4)
In equation (4), y indicates membership degree. w
indicates the membership product of input parameters. The
final output layer mainly outputs the actual predicted output
value of the fuzzy neural network.

_ ZQ=1 @’ (q])
U= ©)

The core of fuzzy clustering algorithm lies in calculating
membership degree, which divides each data point into
different clusters. Each data point is assigned a membership
value, indicating the degree to which the point belongs to each
cluster. In general, the membership value is a real number that
ranges from [0,1]. In the fuzzy clustering algorithm, each data
point is assigned to a different cluster and assigned
a membership value that describes the similarity between the
point and the cluster. If the membership value is high, the
point is closer to the cluster center, which belongs more to the
cluster. The Gaussian membership function is used for
analysis, considering the interference degree F; of i input and
the preceding fuzzy set ug,(x;) in the fuzzy rule. The

membership function shown in equation (5) is provided.

ZUFiz

(6)

In equation (6), o is the extension of the fuzzy set. If the

e, (x;) = exp [—

value is large, the noise contained in the data will be even
greater. Among them, the parameters that the T-S fuzzy neural
network model actually needs to learn include the center and
width of the membership function. They are calculated based
on three steps, error calculation, neural network coefficient
correction, and parameter correction. The error calculation is

shown in equation (7).

w=2(h—hy)’ 7)

In equation (7), w represents the error value between the
expected output and the actual output. h, and 4, represent the
expected and actual output of the network. The network
coefficient regularization corrects various parameters in the
network based on the deviation between the expected output
and the actual output, as expressed in equation (8).

sij(m) = sij(m— 1)—3%
S
L
ow _ (hen)al (8)
os]  ITL,@lp;
In equation (8), sij represents the neural network

coefficient. 3 represents the network learning rate. Finally, the

parameter correction is shown in equation (9).
J— odm — 1) — o 2%

a,=a;(m—-1) -« o

J— i m — 1) — o 2%

d =d/(im-1)—«a ad{

)

In equation (9), a represents a hyper-parameter. Based on
the hydraulic motor fault pre-diagnosis, the main body and
fault diagnosis in the entire lifecycle state assessment process
are analyzed.

Among the classical CNNSs, there are mainly LeNet-5,
AlexNet, VGGNet and ResNet. Compared with other network
structures, the residual structure of ResNet can directly
connect the input data information and transmit it to the
output, which solves the gradient disappearing and accuracy
decreasing with the increase of layers. The architecture of
ResNet-18 artificial neural network is shown in Figure 2.
ResNet-18 has been trained on millions of images, which has
rich feature representation capabilities. Figure 2 shows 4
residual blocks, each of which has two layers, each containing
two 3*3 convolution layers. In addition to Convl and fully
connected classification layers, there are a total of 18 layers.
The explicit list of input and output parameters for ResNet-18
is shown in Table 1. In the figure, the residual structure has
two layers. The input is learned by residual to form residual
function. When the number of channels changes from 64 to
128, it is a dashed connection. At this time, the shortcut makes
a linear change to x to adjust the dimension of the channel.
From the residual network structure, the first 17 layers are
feature extraction layers, and the 18th layer is classification

layer. The fuzzy set defined for a single parameter includes N
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types.
The theory domain of the classified object is X =

[x1,%5,--,x,]. Each object has an index ato represent its
properties, which is X; = (x4, x;2, -+, x;;), i = (1,2, t).
| 18-layers resnet |

| Image |

| 7*7, conv, 64/2 |

| Maxpool,/2

!

| *
i 3*3, conv, 64 | :
| 2. v |
I 2 3*3, conv, 64 ||
| |
l = !
RS 3*3, conv, 64 ||
o { |

H
! 3*3, conv, 64 |:
L= =—== —===Z
T R
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'3 v |
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: S e |
!
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Figure 2. Resnet network structure.

The corresponding fuzzy set matrix is shown in equation
(10).

X111 X120 Xyj
X1 X2 v Xpj

X=1. . . (10)
Xn1 Xnz2 7 Xpj

Table 1. Convolution layer input and output parameter details.

Input 3*224*224

64*112*112, k=7,5=2,p=3

/ 64*56*56, k=3,5=2,p=1

64*56*56, k=3,5=1,p=1

64*56*56, k=3,5=1,p=1
64*56*56, k=3,5=1,p=1

Residual block 1

64*56*56, k=3,5=1,p=1

128*28*28, k=3,5=2,p=1

128*28*28, k=3,5=1,p=1
Residual block 2

128*28*28, k=3,5=1,p=1

128*28*28, k=3,5=1,p=1

256*14*14, k=3,5=2,p=1

256*14*14, k=3,5=1,p=1
Residual block 3

256*14*14, k=3,5=1,p=1

256*14*14, k=3,5=1,p=1

512*7*7, k=3,5=2,p=1
512*7*7, k=3,5=1,p=1
512*7*7, k=3,5=1,p=1
512*7*7, k=3,5=1,p=1

Residual block 4

Output 512*1*1

The Resnet network is introduced to carry out the
corresponding extraction to study the whole life cycle
characteristics of hydraulic motors. The main reason is that
the residual structure of Resnet can directly connect the input
data information to the output, solving the gradient
disappearance and accuracy declining with increasing layers.
The actual parameters in the fully connected layer of the
Resnet network account for the majority of the total
parameters in the entire network, which also lead to low
training speed and easy fitting problems [25]. Therefore,
a GAP layer is introduced to replace the fully connected layer,
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thereby improving the Resnet network to obtain Resnet-GAP.
The architecture of GAP and fully connected layer is shown in
Figure 3.

Fully Connected |

Figure 3. Architecture diagram of GAP and fully connected
layer

From Figure 3, GAP can replace the fully connected layer
to output features of any dimension as one-dimensional
features. This enhances the feature extraction ability of the
convolutional layer while retaining the spatial information
extracted by the convolutional and pooling layers. At the same
time, it can also adaptively adjust according to the feature
dimensions and categories of hydraulic motor bearings,
generating feature maps for each category in the classification
after multi-layer perceptrons. Each feature map is globally
averaged. An adaptive matrix is designed on the GAP
structure. The size representation of the input feature map in
the previous convolutional layer is shown in equation (11).

Coue = 2L 11 (11)

stride

In equation (11), C,,; represents the size of the input
feature map for the previous convolutional layer. C;,
represents the size of the input feature map for the
convolutional layer. J represents the size of the convolution
kernel. stride represents the step size. For the feature map
input to GAP in the previous convolutional layer, the pooling
core of GAP is automatically match with the number and
dimension of convolutional cores. By pooling the feature map,
a global mean equivalent to the fuzzy neural network is

obtained, which is used as the feature value output by GAP.

The operation expression of GAP is shown in equation (12).

1
Ztlwg—pool = ;Zz=1 mll:g,l:f,k (12)

In equation (12), Z(lwg—pool represents the actual mean
obtained by the [-th convolutional layer GAP. k represents the
number of neurons. SRllzg,l:f,k represents the pixels in the
actual mapping range of the output feature map corresponding
to the mean pooling kernel, from the first row to the g row,
and from the first column to the f column.

3.2. Post fault diagnosis for hydraulic motors

In this paper, Fuzzy Clustering Algorithm (FCA) is used to
replace Softmax layer classification of Resnet-GAP network.
The overall framework of hydraulic motor fault identification
combining residual network and fuzzy clustering is shown in
Figure 4. The power curve image of the switch machine is
monitored and collected by microcomputer. The acquired
image is input into the pre-trained Resnet-GAP model. The
feature vector is output at the GAP layer to establish the
typical power curve feature vector library of normal, sub-
healthy, faulty and serious faults. FCA is used to replace the
classification of the full connection layer and Softmax layer to
realize fault identification.

Historical microcomputer Microcomputer monitoring
monitoring database database to be tested

{ !

Pre-train the ResNet-GAP model Pre-train the ResNet-GAP model

!

Eigenvectors in different Feature vector of the sample to
operating states be tested

| |
¥

Construct the original
eigenvector matrix

!

Find the fuzzy equivalent matrix
of the original matrix

!

A dynamic cluster graph is
formed

!

Implementation of operational
status assessment

Figure 4. General framework for hydraulic motor fault
identification.
On the basis of Resnet-GAP, the FCA in the fuzzy theory
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used for fusion diagnosis prediction is studied to further
optimize it for training with small sample data. Fuzzy
clustering is an unsupervised learning method. The biggest
advantage is that it does not require "learn™ a large number of
training samples. Similar objects can be gathered together
through fuzzy operations alone [26]. This method introduces
the concept of fuzzy mathematics in cluster analysis. On this
basis, a similarity index is introduced. A fuzzy equivalence
matrix is obtained by correcting the transfer closure method. A
dynamic clustering graph is obtained when the elements in the
transitive closure are from 0 to 1. The specific process is
shown in Figure 5.

Cluster analysis

Establishing Fuzzy
Equivalent Matrix

Establishing Fuzzy
Similarity Matrix

NN

/ Data

standardization

Figure 5. Schematic diagram of the clustering process of

fuzzy clustering algorithm.

From Figure 5, the dynamic clustering process of the FCA
first involves standardizing the data, followed by constructing
a fuzzy similarity matrix, then constructing a fuzzy
equivalence matrix, and finally conducting clustering analysis.
Among them, the data matrix obtained after data
standardization operation is displayed in equation (13).

Ny Nqp 0 Nyy
Ny1 Nz 0 MNyy

N = : : D : (13)
Np1 Mp1 = Npy

In equation (13), N represents the data matrix. n represents
the internal elements of the matrix. b represents the elements
within the domain of the classified object, with a maximum
value of L. v represents the indicator, that is, the behavior.
After transforming the translation standard deviation of
equations (12) and (13), the actual influence of dimensionality

between data can be eliminated, but there are still some n},c

that do not belong to (0,1). Therefore, a translation range
transformation is also performed on them, as expressed in
equation (14).

g~ QL{n;’C]

Jng n{npo}= min fni,c}

np, = (14)

In equation (14), nj, represents the data n after translation
range transformation. After undergoing translation standard
deviation and translation range transformation, all n;,. belong
to (0,1), thus eliminating the influence of dimensionality. In
response to the different dimensions caused by different data
and the data requirements for adapting to fuzzy clustering,
data n is subjected to translation standard deviation and
translation range transformations. The translation standard
deviation transformation is expressed as equation (15).

, Npc—n
Mg = == (15)

In equation (15), n,, represents the result of data n
translation transformation. s, represents the translation
standard deviation transformation result. i, represents the
average value of indicator ¢ in data n.s; and 7i. are shown in

equation (16).

o1 1 2
fig = 7 Xp=1 Mg Sg = \/ZZIL)=1(”bc — i) (16)

In addition, after data standardization, the corresponding
fuzzy matrix can be obtained. However, to achieve further
clustering, the similarity between samples is calculated.
Therefore, the study constructs a fuzzy similarity matrix. The
distance method determines the similarity between samples,
as expressed in equation (17).

Ry, =1 —9C(ny,n,) 17)

In equation (17), R,, represents the similarity between
samples. ¥ represents a definite constant. C(n,, n,) represents
the distance between two samples. z represents the elements
in the domain of the classified object that is not equal to b.
The C(ny, n,) can be determined by Hamming distance and
Euclidean distance, as shown in equations (18) and (19).

C(ny,n,) = Zz;llnbc - nzc' (18)

In equation (18), ¥ represents the number of indicators.

C(nb' le) = \/Z?le(nbg - nzc)z (19)

After comprehensive consideration, the Euclidean distance
method is chosen to determine the similarity between samples.
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Finally, in cluster analysis, the similarity expression between
the element samples in the transitive closure is shown in

equation (20).

In equation (20), 6 represents the element in the transitive
closure. Finally, the entire life cycle state assessment process
of the constructed hydraulic motor is shown in Figure 6.

1L,Ry, =8
R,,(8) = {0 RZZ <d
’ zZ —

(20)

Simulated experimental
platform collects operating
data of hydraulic motors

Pre trained T-S fuzzy neural
network model

Eigenvectors under different
operating states

Historical microcomputer
monitoring database power
curve image data

Pre trained TL-ResNet-GAP
model

Eigenvectors under different
operating states

Power curve image data of the
microcomputer monitoring
database to be tested

Pre trained TL-ResNet-GAP
model

Test sample feature vector

)

Y

\ 4
Build the original+
feature
vector matrix

\ 4
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Figure 6. Process for evaluating the full life cycle status of hydraulic motors.

From Figure 6, real-time monitoring of the hydraulic
through  the
microcomputer monitoring technology in this process. The

motor operation process is achieved
power curve and flow data curve of the hydraulic motor
during operation are obtained. Then it is input into the pre-
trained Resnet-GAP model and T-S fuzzy neural network
model, and output feature vectors in the GAP layer. Feature
vectors under typical working conditions such as normal, sub
healthy, faulty, and severe faults are constructed. The fuzzy
clustering method is used to replace the complete connection
layer and software maximum level classification, evaluating
the hydraulic motor status. On this basis, the identification
under sub healthy conditions is introduced. The parameters of
the GAP layer are trained using small samples to improve the
feature extraction ability, achieving effective operating status
identification for hydraulic motors. In addition, to enhance the
universality of the model, a dense connection network
(Densenet) with a deeper network structure and stronger
feature extraction ability is used for experimental verification.
Pre-trained Fine-Tuning (TL) and GAP are used to replace
fully connected layers. At the same time, FCM is used to
replace the maximum softening classification layer in the
network. An activation function is used when GAP proposes
feature outputs to construct the TL-Densenet-GAP-FCM
model.

To monitor the pressure and flow of the hydraulic motor,
the study adopts computer-aided testing technology to install
pressure sensors and flow sensors in the hydraulic circuit. By
monitoring the pressure and flow of the hydraulic circuit and
the hydraulic motor, the differences between these parameters
in the normal working state and the leakage fault state are
compared. The changes in parameters are recorded. It
provides data support for the training of hydraulic motor
internal leakage fault prediction model. The prediction model
based on fuzzy neural network is established in MATLAB.
The output current of the magnetic powder brake controller is
fixed at 0.1A and the load remains constant. The experimental
data obtained by changing the throttle opening is used for
fault prediction.

4. Performance verification of T-S fuzzy neural
network model and Resnet-GAP-FCM model

To verify the actual effectiveness of the proposed T-S fuzzy
neural network model in pre-fault prediction and the Resnet-
GAP-FCM model in post fault diagnosis, experiments are

conducted in this section.

4.1. Performance verification of T-S fuzzy neural
network model

The operating system used in this experiment is Ubuntu22.04.

The development language is Python < 3.8.0; The framework
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is Pytorch 1.10.0-+ cuda.11.1, and the CPU is Intel « Xeon
Gold-6138. The GPU is GeForce « RTX -+ 3090(24G).
Memory 220G. The CY14-1B piston pump with rated
pressure of 31.5Mpais selected as the power element of the
simulation test bench. According to the torque that the motor
can provide under the extreme working conditions, the model
FZ100A-1 magnetic powder brake is selected. To ensure that
the flow adjustment range is large enough and the action is
sensitive when adjusting the throttle opening, the throttle
valve model LA-H10L is adopted. To ensure that the
hydraulic pressure does not exceed the maximum allowable
value of 31.5MPa, the simulation test bench uses the direct
acting relief valve model YP-L10H4, the pressure relay model
HJCS-02N produced by Taiwan HDX Company, and the
electromagnetic directional valve model D5-2B60B-D2
produced by RISUNY Company. Finally, the NI USB-6008
Table 2. Standard database sample characteristics.

data acquisition card developed by the National Instruments
Company of the United States is selected for data acquisition,
and the acquisition accuracy is 12 bits.

The open dataset of bearings from Case Western Reserve
University in the United States is used to validate bearing
fault diagnosis under the same model and operating conditions.
7 types of bearing fault data including 12kHZ drive end,
motor speed of 1797r/min, fault diameter of 0.007 and 0.021,
inner ring fault, roller fault and normal state are taken as
examples. There are 20 samples in each group, a total of 140
groups, for experimental verification. The fuzzy logic
controller takes 1000 continuous points from the time domain
signal as samples to establish a standard data vector library, as
shown in Table 2, D1, D2, D3, and D4 are the numbers of the
data to be measured.

Sample to be tested 1 2 3 1919 1920
D1 -2.46 -2.50 8.23 0.43 -0.76
D2 -2.56 -4.62 1.10 0.75 -0.34
D3 -2.60 -9.92 -6.43 -0.78 -0.26
D4 -1.82 0.01 1.44 -0.23 0.64

Based on predictions and true labels, the samples are
divided into four categories: True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN).
The accuracy of hydraulic motor fault identification, recall
rate and F1 value are calculated to verify the performance.
The specific results are shown in Figure 7.

100.0+ Precision F1 _l 1.00
— Recall

99.5¢ 10.99
= 99.0} 0.98
S
- 98.5¢ 097 1
8 98.0+ 0.96
(7))

97.5¢ | 0.95

97.0} {0.94

96.5L - \ - . .

02 4 6 8 10 12 14

Number of experiments

Figure 7. Hydraulic motor fault detection and classification

accuracy analysis.

The hydraulic motor fault identification model has good
performance, which can accurately detect faults. The accuracy
of each test was more than 96%, most of them reached 97%
and 98%, and the highest even was 99.2%. The recall rate was
more than 97%, and the highest was 99.2%. F1 value was
relatively stable in many experiments, with each experiment
above 0.98. The average value of 10 experiments was 0.989.
The specific operation of the experiment is as follows. 14 data
(numbered 1-1~1-14)are randomly selected from 144 actual
data collected in this group to verify the prediction accuracy.
The first 50, 60, 70, 80, 90, 100, 110, 120 and 130 data are
used for the model training to compare the prediction
accuracy under different combinations.

To reduce the complexity of the study, different numbers
of data samples are represented as 50-14, 60-14, ..., 130-14
(represented by 1-9) for training and validating the prediction
model. Among them, the model prediction results and relative

error results are shown in Figure 8.
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Figure 8. Model prediction results and relative error results.(a) Training results for the first 130 data points. (b) Prediction results of
the last 14 sets of data. (c) Relative error of prediction results. (d) Average relative error of each combination data prediction.

From Figure 8 (a), the curve between the training values
and the actual values was basically consistent. The Pearson
correlation coefficient between two values was 0.9995,
indicating a highly correlation between the two. The actual
training effect of the model was good. From Figure 8 (b), the
last 14 sets of predicted results showed that the predicted
values were generally consistent with the actual value curve.
From Figure 8 (c) and (d), the actual prediction error
gradually increased with the increase of prediction
compensation. The relative error was also relatively large in
positions where there were significant fluctuations in the data.
The maximum relative error of the actual prediction was
0.38%. The average relative error of all 14 prediction results
was 0.30%. Overall, after training with a large number of data
samples, the prediction accuracy of the model is high.
However, the accuracy improvement rate decreases
significantly after exceeding 120 samples. Therefore, 120
samples for model training has the best effect, but it also
proves the effectiveness of the T-S fuzzy neural network

model in hydraulic motor fault prediction.

Large fluctuations in data may affect the training and
prediction performance of the model, resulting in a significant
deviation between the predicted results and the true values.
Therefore, this study uses data fitting to smooth the
experimental data, reducing areas with relatively large
fluctuations in the data. In the experiment, the Smoothing
Splines in the matrix laboratory fitting toolbox is used to fit
the relevant parameters. The relevant parameters and the
fitting curve results are shown in Figure 9

From Figure 9 (a), there were 4 fitting parameters, namely
residual sum of squares, determination coefficient, correction
determination coefficient, and root mean square error, with
values of 0.516, 0.877, 0.735, and 0.088, respectively. From
Figure 9 (b), the fitting curve maintained the inlet pressure of
the hydraulic motor between 0.5 and 1.15Mpa at the throttle
threshold opening of 0 to 140, showing a fluctuating
downward trend. Then the training and prediction results of

the fitted model are shown in Figure 10.
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Figure 10. Model training and prediction results after fitting.(2) Model training results after fitting. (b) Model prediction results after
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From Figure 10 (a), the Pearson correlation coefficient of
the fitted model was 0.9999. The correlation between the
fitting training values and the actual values was compared. It
indicated that the actual training effect of the model was better.
From Figure 10 (b), the difference between the predicted and
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(2) Relative error of predicted results

after fitting

actual values in the fitted prediction results did not exceed
0.4%. The difference between inlet pressures was very small.
The predicted relative error and average relative error are
shown in Figure 11.
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Figure 11. Relative error and average relative error predicted after fitting.(a) Relative error of predicted results after fitting. (b)
Predicted average relative error after fitting. (c)Comparison of average relative error before and after fitting.

From Figures 11 (a) and (b), the maximum relative error
between the predicted value and the actual value was 0.334%.

relative error was 0.257%. There was

The average
a significant decrease compared with before fitting, indicating
an improvement in the prediction accuracy. From Figure 10
(c), compared with before fitting, the fitted model had a lower
average relative error and higher prediction accuracy under
the same training data samples. For the fitted data, the
prediction accuracy of the model was improved by at least 15%

compared to before fitting. Overall, the prediction model

proposed in the study had effectiveness and high accuracy in
predicting hydraulic motor faults. To further verify the results,
CNN, the algorithm that integrates short-time Fourier and
support vector machine, the algorithm that integrates extreme
gradient boosting and long short-term neural network, and fast
recurrent neural network algorithm are introduced for
comparison. The comparison algorithms are represented by A-
D. The comparison results of fault prediction accuracy are
shown in Table 3.

Table 3. Comparison of fault prediction accuracy of hydraulic motors using different algorithms.

- Accuracy (%) Precision (%) Recall (%0) F1 value (%)

A 64.99 65.16 64.99 65.09

B 82.06 82.27 82.06 82.17

C 85.77 85.87 85.76 85.82

D 81.25 81.35 81.24 81.30
Research model 96.15 96.17 96.15 96.16

From Table 3, the accuracy of the research model in
predicting hydraulic motor faults reached 96.15%. The
precision was 96.17%, the recall rate was 86.15%, and the F1
value was 96.16%, all of which were higher than the
comparison models. Overall, the T-S fuzzy neural network
model proposed in the study has high performance in
hydraulic motor fault prediction.

4.2. Performance verification of Resnet-GAP-FCM
model

To verify the diagnostic accuracy of Resnet-GAP-FCM model,
the bearing open data set of Case Western Reserve University
in the United Statesis used in this study. The bearing fault
diagnosis under the same model and working condition is

verified by the algorithm presented in this paper. 7 types of

bearing fault data including 12kHZ drive end, motor speed of
1797r/min, fault diameter of 0.007 and 0.021 are taken as
examples for Taking 1000
continuous points from time domain signal as samples,

experimental verification.
a standard database is established for fault simulation
experiment. To ensure that the key parameters in the
experimental environment are consistent with the real
environment, the key parameters in the hydraulic motor
modeling in the laboratory are consistent with the actual
changes. The phenomenon and process in the experimental
environment are verified by mathematical model and
computer simulation. The experiment mainly evaluates
whether the actual operation of the motor meets the
requirements of rated power, theoretical speed, oil leakage

capacity, vibration noise, etc. Meanwhile, it can simulate
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faults such as wear of hydraulic motor rollers and stator rings,
as well as cracks in rollers and stator rings. Firstly, the time-
domain analysis method is used to draw the vibration signals
of hydraulic motors in different states, providing a basis for
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(a) Signal of roller wear plus wear of stator ring and
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subsequent model diagnosis. When a composite fault occurs,
the vibration signal results of the hydraulic motor are shown

in Figure 12.
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Figure 12. Vibration signals of hydraulic motors during composite faults. (a) Signal of roller wear plus wear of stator ring androller
crack plus cracks in stator ring stator crack. (b) Signal of roller crack plus wear of stator ring and roller wear plus cracks in stator

From Figures 12 (a) and (b), when both the hydraulic
motor roller and stator ring failed simultaneously, the impact
characteristics were more pronounced compared to normal
signals. Among them, the amplitude when both the roller and
stator ring wear faults occurred simultaneously was +0.6g,
significantly higher than the normal signal. When both the
roller and stator ring cracked simultaneously, the amplitude
was +0.6g. However, the actual vibration impact was more

severe. The amplitude when roller wear and stator ring cracks

ring.

occurred simultaneously was +0.4g. When roller cracks and
stator ring wear occurred simultaneously, the amplitude was
+1.5g, and the impact characteristics were most significant.
The vibration signals of hydraulic motors contain rich health
The

quantitatively evaluate the health status of hydraulic motors.

status information. time-domain indicators can

Therefore, after analyzing the kurtosis, peak, and pulse factors,
the health status of hydraulic motors can be further evaluated.
The specific content is shown in Table 4.

Table 4. The kurtosis, peak value, and pulse factor results of normal and fault signals for hydraulic motors.

- E F G H | - F+G H+l H+G F+1
Q 2.87 14.45 471 168.04 84.51 Q 8.59 49.89 100.79 23.54
z 9.29 20.04 12.30 47.28 38.23 z 21.11 36.53 40.17 25.83
M 11.49 29.94 16.01 86.85 69.27 M 28.86 60.35 89.37 38.81

In Table 4, E-I represent normal state, roller wear, stator
ring wear, roller cracks, and stator ring cracks. Q, Z and M
represent Kkurtosis, peak, and pulse factors. From Table 4,
when the hydraulic motor rollers worn or cracked, their
kurtosis coefficient, peak coefficient, and impulse coefficient
all underwent significant changes. The kurtosis coefficient is 5
times higher than the normal value. The peak coefficient was

58 times higher than normal, indicating significant impact

characteristics. In a single fault, the index of rolling crack
fault in the time domain was the largest. The composite fault
time domain index indicated that there was a significant
variation in the time domain index of hydraulic motors with
both roller cracks and stator ring wear, but its amplitude was
much smaller. The proposed Resnet-GAP-FCM model is
applied to the fault diagnosis of hydraulic motors. In this

experiment, the data of each type of fault was integrated into
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a group to expand the total fault samples, with the training set
accounting for 50%, the validation set accounting for 25%,
and the test set accounting for 25%. The content of the

Training set accuracy: 99.86%
Validation set accuracy: 99.85%

~ Test set accuracy: 99.85% Label
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(a) The length and label of different types of faults

hydraulic motor experimental dataset and the confusion
matrix for fault diagnosis are shown in Figure 13.
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Figure 13. Content of hydraulic motor experimental dataset and confusion matrix for fault diagnosis.(a) The length and label of
different types of faults. (b) Confusion Matrix for Hydraulic Motor Fault Diagnosis.

From Figure 13 (a), the accuracy of the training, validation,
and testing sets of the model after training was higher than
99.8%, indicating that the proposed model had strong feature
extraction and fault diagnosis capabilities. From Figure 13 (b),
he research model had a high accuracy in diagnosing faults in
hydraulic motors. Overall, the research model has high
performance in hydraulic motor fault diagnosis. On this basis,
the fault diagnosis results of hydraulic motors are visualized
to assess the clustering and classification ability of the
research model, as shown in Figure 14.
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Figure 14. Visualization results of hydraulic motor fault
diagnosis.

In visual fault location, fault location can be divided into
two stages. Before the failure stop loss, it is expected that the
information can be quickly obtained for stop loss decision.
The corresponding stop loss operation can be made to restore
the service. After the fault stop loss, it is still necessary to
further find the deep-seated cause of the fault, determine the
root cause of the fault, and restore the online environment to
normal state. From Figure 14, the improved model retained
the feature extraction capability of the convolutional layer.
A deeper level network can be selected based on the
complexity of the detection target curve. Training samples are
added appropriately to improve classification accuracy, so that
the model can quickly detect changes that may cause faults.
To further verify the diagnostic superiority of the proposed
hydraulic motor, the Fusion Algorithm of Radial Basis
Function and Support Vector Machine (FARF-SVM) [27],
CNN and Support Vector Machine (CNN-SVM) [28],
Classification and Regression Tree (CRT) algorithm [29],
Artificial Neural Network algorithm (ANN) [30] and CNN
[31] are introduced to compare the diagnostic classification

accuracy. The results are shown in Table 5.
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Table 5. Comparison of accuracy of different algorithms in diagnosing and classifying hydraulic motors.

- Total number of training samples Iterations Accuracy (%)
FARF-SVM 300.00 - 97.25
CNN-SVM 500.00 140.00 97.51

CRT 300.00 - 93.55
ANN 490.00 1000.00 96.52
CNN 3050.00 - 97.45

- Total number of training samples Iterations Accuracy (%)
Resnet-GAP-FCM 160.00 100.00 99.00
TL-Densenet-GAP-FCM 160.00 100.00 99.05

From Table 5, the diagnostic classification accuracy of the
Resnet-GAP-FCM model proposed in the study was 99.00%,
which was higher than the comparison algorithms. Meanwhile,
to enhance the model universality, the improved TL-Densenet-
GAP-FCM model had a diagnostic classification accuracy of
99.05, proving the certain universality. Overall, out of a total
of 3050 samples, only 160 samples obtained by the research
model were higher than the CNN algorithm, indicating the
superiority of the research model in small samples.

Table 6 summarizes the main test results of the proposed
model. The prediction results of the model are compared with
the remaining experimental data. The results indicated that if
Table 6. Summary of main test results of the proposed model.

there were more data samples used for model training, the
prediction accuracy is higher. Large data fluctuations could
affect the prediction accuracy of the model. The original
experimental data was fitted. Compared with the experimental
data before fitting, and the same experimental data was used
to verify the prediction accuracy before and after fitting to
ensure the credibility of the verification results. After fitting
the experimental data with the fitting method selected in this
paper, if there were more training samples, the prediction
accuracy of the model is higher. The prediction accuracy of
the model was at least 15% higher than that before fitting.

The main test index of the model Result

Maximum relative error of model prediction results 0.38%
Average relative error value 0.30%

The difference between the predicted value and the actual value after fitting <0.4%
The average relative error between the predicted and actual values 0.257%
Improvement of model prediction accuracy >15%

Accuracy 96.15%

Precision 96.17%

Recall 86.15%

F1 96.16%

Diagnostic classification accuracy of ResNet-GAP-FCM model 99.00%

5. Discuss

In recent years, deep learning neural networks have been
widely used in different fields, especially in image recognition,
fault diagnosis, life prediction, etc., due to their strong ability
of self-learning and feature information extraction [32].
Although the deep convolutional neural network can improve
the classification accuracy to a certain extent, it will cause the
gradient to disappear with the increase of the number of layers
and cannot be trained. At the same time, a large amount of
data is needed to train the model parameters during fault
diagnosis. However, the fault data of hydraulic motors are few
and difficult to obtain, which cannot meet the training

requirements. Therefore, there are certain deficiencies in the

fault diagnosis of hydraulic motors in practice [33]. Compared
with the traditional method based on deep convolutional
neural network, the most significant difference between the
hydraulic motor fault diagnosis model built in this paper
based on fuzzy clustering and improved Resnet network is
that GAP layer is used to replace the fully connected network
in Resnet, and fuzzy clustering replaces the classification
layer of Resnet. Using a small amount of data to train the
parameters of GAP layer, the feature extraction ability of the
model is improved. It solves the problem of less training data
and has the advantages of self-adaptation and small sample.
Based on the results of Table 4, 5 and 6, the hydraulic
motor fault diagnosis proposed by the research based on the

improved Resnet network has high detection accuracy, good
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effect on fault signal processing, and high signal and noise
after noise reduction. The fault features and the proposed
automatic feature extraction method are used to extract the
acoustic signal of synchronous hydraulic motor. Finally, the
signal features are trained and classified by fuzzy clustering
algorithm. The accuracy of the proposed fault diagnosis
method based on the diagnosis results can reach more than
99%, and the final fault diagnosis accuracy will be affected to
some extent when the pre-processing noise reduction effect is
not ideal. The improved convolutional neural network has
better feature extraction ability, uses a small number of
samples to train the parameters of GAP layer, establishes the
pre-trained model and fuses the fuzzy clustering algorithm.
The proposed fault diagnosis method has certain robustness.

Existing diagnosis methods based on expert systems have
low fault coverage and are difficult to identify new faults [34].
Compared with expert system, model-based fault diagnosis
has a wider application range and better diagnostic effect.
However, this method relies too much on the digitization of
diagnostic objects, which makes it difficult to establish an
accurate digital model in practical application [35]. The fault
diagnosis method based on data and machine learning is the
most widely used diagnosis technology at present. The fault
characteristics can be extracted by data analysis and
processing or the neural network can be trained by historical
fault data to effectively identify equipment faults. Compared
with the above methods, the Pearson correlation coefficient
after fitting the model proposed in this study is 0.9999,
indicating that the model has a good actual training effect. The
difference between the predicted value and the actual value in
the predicted results after fitting is less than 0.4%, and the
accuracy of the training set, verification set and test set after
model training are all higher than 99.8%, indicating that the
research model has strong feature extraction and fault
diagnosis capabilities. The accuracy of diagnosis classification
is as high as 99.00%, and the results obtained by the research
model with only 160 samples are higher than the results
obtained by the algorithm N with a total of 3050 samples,
which shows the superiority of the research model in small
samples. In summary, the research model has high
performance in hydraulic motor fault diagnosis.

6. Conclusion

The troubleshooting of hydraulic motors often focuses solely
on fault prediction or diagnosis. Therefore, a comprehensive
life cycle state evaluation method for hydraulic motors is
proposed by integrating fuzzy logic theory and improved
Resnet network. The effectiveness is verified. According to
the experimental results, the Pearson correlation coefficient
between the training value and the actual value was 0.9995,
which was 0.9999 after fitting, indicating that the model
training effect was good. The maximum relative error between
the fitted predicted value and the actual value was 0.334%,
with an average relative error of 0.257%. The fault prediction
accuracy was 96.15%, which was better than the comparison
models. In the verification of fault diagnosis model, the
accuracy of the training set, verification set and testing set
after model training was all higher than 99.8%, indicating that
the research method had higher practicability. The number of
training samples can be appropriately increased or decreased
according to the complexity of the detection targetcurve, so as
to improve the feature extraction capability of the
convolutional layer, increase the classification accuracy and
realize the detection of the target. In summary, the proposed
method combining hydraulic motor fault prediction and
diagnosis has high accuracy, which can complete
classification without data training, with self-adaptation and
small sample size. At the same time, the feature extraction
capability of the convolutional layer can be retained. A deeper
network can be selected according to the curve complexity of
the detection target and appropriate training samples can be
added to increase the classification accuracy. Extreme
temperature will make the parts of the hydraulic motor expand
or contract, resulting in increased friction and reduced
efficiency. In this study, only the fault causes of the hydraulic
motor were preliminarily located and analyzed, without
considering the influence of the extreme temperature working
environment. In the future, we can combine the power
characteristics of the hydraulic motor during operation and the
influence of the external environment to re-classify the health
grade. At the same time, considering the performance
degradation of the switch machine, the state degradation
characteristics are extracted, the real-time hydraulic motor

state evaluation system is established, the standard sample
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database is improved, the probability of misjudgment and the operating state of the hydraulic motor is realized.

missing judgment is reduced, and the real-time monitoring of

REFERENCE

1. Huang K, Wu S, Li F, Yang C, Gui W. "Fault diagnosis of hydraulic systems based on deep learning model with multirate data samples,"
IEEE Trans. Neural Netw. Learn. Syst., 2022; 33(11): 6789-6801, https://doi.org/10.1109/TNNLS.2021.3083401.

2. Qian Q, Luo J, Qin Y. "Adaptive intermediate class-wise distribution alignment: A universal domain adaptation and generalization
method for machine fault diagnosis," IEEE Trans. Neural Netw. Learn. Syst., 2024; 1-15, https://doi.org/10.1109/TNNLS.2024.3376449.

3. Zhou J, Qi J, Chen D, Qin Y. "Continuous remaining useful life prediction by self-guided attention convolutional neural network and
memory consciousness adjustment,” IEEE Internet Things J., 2024; 11(19): 31947-31958, https://doi.org/10.1109/J10T.2024.3421673.

4. Stojanovic V. "Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming,” Math. Model. Control, 2023;
3(3): 181-191, https://doi.org/10.3934/mmc.2023016.

5. Tang S, Zhu Y, Yuan S. "Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization," ISA
Trans., 2022; 129(3): 555-563, https://doi.org/10.1016/j.isatra.2022.01.013.

6. Manikandan S, Duraivelu K. "Fault diagnosis of various rotating equipment using machine learning approaches-A review," Proc. Inst.
Mech. Eng. Part E-J. Process Mech. Eng., 2021; 235(2): 629-642, https://doi.org/10.1177/0954408920971976.

7. Manikandan S, Duraivelu K. "Vibration-based fault diagnosis of broken impeller and mechanical seal failure in industrial mono-block
centrifugal pumps using deep convolutional neural network," J. Vib. Eng. Technol.,, 2023; 11(1): 141-152,
https://doi.org/10.1007/s42417-022-00566-0.

8. Askari B, Carli R, Cavone G, Dotoli M. "Data-driven fault diagnosis in a complex hydraulic system based on early classification," IFAC
Papersonline, 2022; 55(40): 187-192, https://doi.org/10.1016/j.ifacol.2023.01.070.

9. ShiJC, RenY, Tang HS, Xiang JW. "Hydraulic directional valve fault diagnosis using a weighted adaptive fusion of multi-dimensional
features of a multi-sensor," J. Zhejiang Univ.-Sci. A, 2022; 23(4): 257-271, https://doi.org/10.1631/jzus.A2100394.

10. Long Z, Zhang X, He M, Huang S, Qin G, Song D, Tang Y, Wu G, Liang W, Shao H. "Motor fault diagnosis based on scale invariant
image features," IEEE Trans. Ind. Inform., 2022; 18(3): 1605-1617, https://doi.org/10.1109/T11.2021.3084615.

11. Lu S, Qian G, He Q, Liu F, Liu Y, Wang Q. "In situ motor fault diagnosis using enhanced convolutional neural network in an embedded
system,” IEEE Sens. J., 2020; 20(15): 8287-8296, https://doi.org/10.1109/JSEN.2019.2911299.

12. Ke Z, Di C, Bao X. "Adaptive suppression of mode mixing in CEEMD based on genetic algorithm for motor bearing fault diagnosis,"
IEEE Trans. Magn., 2022; 58(2): 8200706.1-8200706.6, https://doi.org/10.1109/TMAG.2021.3082138.

13. Long Z, Zhang X, Song D, Tang Y, Huang S, Liang W. "Motor fault diagnosis using image visual information and bag of words model,"
IEEE Sens. J., 2021; 21(19): 21798-21807, https://doi.org/10.1109/JSEN.2021.3102019.

14. Dai J, Tang J, Huang S, Wang Y. "Signal-based intelligent hydraulic fault diagnosis methods: Review and prospects,” Chin. J. Mech.
Eng., 2019; 32(1): 75.1-75.22, https://doi.org/ 10.1186/s10033-019-0388-9.

15. Sun W, Shao S, Zhao R, Yan R, Zhang X, Chen X. "A sparse auto-encoder-based deep neural network approach for induction motor
faults classification," Measurement, 2016; 89(2): 171-178, https://doi.org/10.1016/j.measurement.2016.04.007.

16. Soni R, Mehta B. "Diagnosis and prognosis of incipient faults and insulation status for asset management of power transformer using
fuzzy logic controller & fuzzy clustering means,” Electr. Power Syst. Res., 2023; 220(14): 109256.1-109256.18,
https://doi.org/10.1016/j.epsr.2023.109256.

17. Soni R, Mehta B. "Condition based assessment and diagnostics of transformer in smart grid network using adaptive neuro fuzzy
inference system framework," Int. Manuf. Energy Sustainability, 2023; 372:139-150, https://doi.org/10.1007/978-981-99-6774-2_13.

18. Lima ALDD, Aranha VM, Nascimento EGS."Predictive maintenance applied to mission critical supercomputing environments:
remaining useful life estimation of a hydraulic cooling system using deep learning,” J. Supercomput., 2023; 79(4): 4660-4684,
https://doi.org/10.1007/s11227-022-04833-5.

19. Shi Q, Hu Y. "Review on intelligent diagnosis technology of electronically controlled fuel injection system of ME diesel engine," Acad.

J. Sci. Technol., 2022; 1(2): 69-75, https://doi.org/10.54097/ajst.v1i2.351.

EksploatacjaiNiezawodno$¢ — Maintenance and Reliability Vol. 27, No. 2, 2025



https://www.webofscience.com/wos/author/record/43643219
https://www.webofscience.com/wos/author/record/15327650
https://www.webofscience.com/wos/author/record/10903587
https://www.webofscience.com/wos/author/record/2514032
https://www.webofscience.com/wos/author/record/28636000

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Zhang Z, Li Z, Zhao C. "Research on condition monitoring and fault diagnosis of intelligent copper ball production lines based on big
data," IET Collab. Intell. Manufact., 2022; 4(1): 45-57, https://doi.org/10.1049/cim2.12043.

Araste Z, Sadighi A, Jamimoghaddam M. "Fault diagnosis of a centrifugal pump using electrical signature analysis and support vector
machine," J. Vib. Eng. Technol., 2023; 11(5): 2057-2067, https://doi.org/10.1007/s42417-022-00687-6.

Zhang Y, Wang S, Shi J, Yang X, Zhang J, Wang X. "SAR performance-based fault diagnosis for electro-hydraulic control system: A
novel FDI framework for closed-loop system,” Chin. J. Aeronaut., 2022; 35(10): 381-392, https://doi.org/10.1016/j.cja.2021.06.001.
Shanbhag VV, Meyer TJJ, Caspers LW, Schlanbusch R. "Failure monitoring and predictive maintenance of hydraulic cylinder-state-of-
the-art review," IEEE-ASME Trans. Mechatron., 2021; 26(6): 3087-3103, https://doi.org/10.1109/TMECH.2021.3053173.

Chao Q, Gao H, Tao J, Wang Y, Zhou J, Liu C. "Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps
using multiple channels of vibration signals,” Sci. China Technol. Sci., 2022; 65(2): 470-4803, https://doi.org/10.1007/s11431-021-
1904-7.

Kosova F, Unver HO. "A digital twin framework for aircraft hydraulic systems failure detection using machine learning techniques,"
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 2023; 237(7): 1563-1580, https://doi.org/10.1177/09544062221132697.

Pei MC, Li HR, Yu H. "Degradation state identification for hydraulic pumps using modified hierarchical decomposition and image
processing," Meas. Control, 2022; 55(1-2): 21-34, https://doi.org/10.1177/00202940211064803.

Wang H, Wang J, Zhao Y, Liu Q, Liu M, Shen W. "Few-shot learning for fault diagnosis with a dual graph neural network," IEEE Trans.
Ind. Inform., 2023; 19(2): 1559-1568, https://doi.org/10.1109/T11.2022.3205373.

Zou L, Lam HF, Hu J. "Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery,” Struct. Health Monit.,
2023; 22(4): 2193-2213, https://doi.org/10.1177/14759217221122266.

Yan H, Sun J, Zuo H. "Anomaly detection based on multivariate data for the aircraft hydraulic system," Proc. Inst. Mech. Eng. Part I-J
Syst Control Eng., 2021; 235(5): 593-605, https://doi.org/10.1177/0959651820954577.

Yin X, Mou Z, Wang Y. "Fault diagnosis of wind turbine gearbox based on multiscale residual features and ECA-Stacked ResNet," IEEE
Sens. J., 2023; 23(7): 7320-7333, https://doi.org/10.1109/JSEN.2023.3244929.

Xu X, Li C, Zhang X, Zhao Y. "A dense ResNet model with RGB input mapping for cross-domain mechanical fault diagnosis,” IEEE
Instrum. Meas. Mag., 2023; 26(2): 40-47, https://doi.org/10.1109/M1M.2023.10083021.

Mishra RK, Choudhary A, Fatima S, Mohanty AR, Panigrahi BK, "A fault diagnosis approach based on 2D-vibration imaging for
bearing faults,” J. Vib. Eng. Technol., 2023; 11(7): 3121-3134, https://doi.org/10.1007/s42417-022-00735-1.

Groumpos PP. "A critical historic overview of artificial intelligence: Issues, challenges, opportunities, and threats,” Artif. Intell. Appl.,
2023; 1(4): 197-213, https://doi.org/10.47852/bonviewAlA3202689.

Xu L, Pan Z, Liang C, Lu M. "A fault diagnosis method for PV arrays based on new feature extraction and improved the fuzzy C-Mean
clustering," IEEE J. Photovolt., 2022; 12(3): 833-843, https://doi.org/10.1109/JPHOTOV.2022.3151330.

Peng J, Kimmig A, Wang D, Niu Z, Zhi F, Wang J, Liu X, Ovtcharova J. "A systematic review of data-driven approaches to fault
diagnosis and early warning,"” J. Intell. Manuf., 2022; 34(8): 3277-3304, https://doi.org/10.1007/s10845-022-02020-0.

EksploatacjaiNiezawodno$¢ — Maintenance and Reliability Vol. 27, No. 2, 2025



https://www.webofscience.com/wos/author/record/63557655
https://www.webofscience.com/wos/author/record/4809396
https://www.webofscience.com/wos/author/record/55698211
https://www.webofscience.com/wos/author/record/64132
https://www.webofscience.com/wos/author/record/13312986

