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Highlights  Abstract 

▪ Fuzzy neural network is used to predict 

hydraulic motor faults. 

▪ The feature vector is output in the global 

mean pooling layer. 

▪ The dynamic cluster graph is obtained by 

fuzzy clustering. 

 When the hydraulic motor fault occurs, it is not easy to be detected, 

and the leakage degree will gradually increase. In order to avoid bigger 

accidents caused by the hydraulic motor fault, the accident is excluded 

in the embryonic stage, and the hydraulic motor fault prediction 

method based on fuzzy neural network is used to predict the hydraulic 

motor fault. The feature vector is output in the global mean pooling 

layer, and the feature vector matrix between the health state feature 

vector library and the samples to be measured is constructed. The 

dynamic cluster graph is obtained by fuzzy clustering, so as to realize 

the fault diagnosis of the hydraulic motor. The results show that the 

accuracy of training set, verification set and test set is higher than 

99.8%. The accuracy of diagnosis classification is 99.00%, which is 

better than other comparison models. In this study, the number of 

training samples can be appropriately increased or decreased according 

to the curve complexity of the detection target, so as to improve the 

feature extraction capability of the convolutional layer and increase the 

classification accuracy. 
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1. Introduction 

Hydraulic motor is the key power component of hydraulic 

system. Once an internal leakage fault occurs, it is difficult to 

accurately diagnose the cause of the fault without certain 

experience and fault diagnosis technology [1]. Therefore, for 

the failure caused by the leakage of the hydraulic system, the 

maintenance personnel can only blindly disassemble the 

hydraulic system if they cannot determine the cause of the 

fault, and even cause deformation or damage to the parts in 

the blind disassembly process, resulting in greater economic 

losses. The application of transfer learning and continuous 

learning in hydraulic motor fault diagnosis mainly involves 

using existing knowledge and data to solve new problems and 

improve the accuracy and efficiency of fault diagnosis. 

Transfer learning transforms and aligns the features extracted 

under different processes through domain adaptive methods, 

so that the process distributions of source domain and target 

domain are similar, thus improving the model's diagnostic 

capability in target domain [2]. Faced with the problem of 

reduced fault identification accuracy and small sample size 

caused by motor parameter changes, continuous learning can 

help the model adapt to these changes [3]. However, to make 

the prediction results more accurate for the existing model, it 
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is necessary to build a good model or have enough experience 

[4]. Transfer learning and continuous learning can predict the 

state of a device with enough data. However, the difference 

between healthy and sub-healthy states was small. There are 

few data about sub-health and faults, which cannot meet the 

parameter training requirements of general diagnostic models 

and the difficulty of sub-health identification [5-6]. In this 

paper, the advantages of fuzzy recognition that can complete 

classification without training and convolutional neural 

network (CNN) that can extract tiny features are used to 

collect the performance parameters of hydraulic system under 

the condition of hydraulic motor leakage fault, which provides 

data support for fault prediction research. Finally, based on 

fuzzy clustering, fuzzy logic theory and improved residual 

network, the hydraulic motor fault prediction and diagnosis 

model is constructed, and the hydraulic motor fault diagnosis 

and prediction can be completed with only a few data samples. 

The novelty of this research is shown as follows: (1) The 

fault prediction model based on T-S fuzzy neural network is 

established by using fuzzy model recognition algorithm. The 

fault diagnosis is realized. (2) The feature vector standard 

model library is established, which can complete the 

classification without data training, solving the less training 

data. It has strong adaptability and small sample size. (3) 

Global Average Pooling (GAP) layer is used to replace the 

fully connected network in improved residual network 

(Resnet). The fuzzy clustering is used to replace the 

classification layer of the Resnet. A small amount of data is 

used to train the parameters of GAP layer, which improves the 

feature extraction ability of the model. (4) The fully connected 

layer and classification layer are improved. The classification 

accuracy is increased by appropriately adding training 

samples. 

The contributions of this research are shown as follows: (1) 

The fault diagnosis of hydraulic motor can be completed 

without data training, which solves the less training data. It 

has strong adaptability and small sample size. (2) The 

performance monitoring and fault warning of hydraulic 

motors have been completed, saving maintenance resources 

and reducing lifecycle costs. They can also be used for fault 

research of other hydraulic components. 

The research is divided into four parts in total. The first 

part analyzes the current research on hydraulic motor fault 

prediction and diagnosis. The second part constructs a fault 

prediction and diagnosis model for hydraulic motors. The 

third part is to verify the performance of the predictive 

diagnostic model. The fourth part summarize the research. 

2. Related Works 

Information technology and artificial intelligence technology 

have driven the development of intelligent and advanced 

hydraulic motor fault prediction and diagnosis. In recent years, 

scholars at home and abroad have conducted extensive 

research on the working principle and fault prediction and 

diagnosis methods of hydraulic pumps. However, research on 

fault prediction and diagnosis of hydraulic motors is scarce 

[7-9]. Aiming at the difficulty of extracting representative 

fault features from mixed vibration signals in industrial 

applications, Long et al. applied visual word package and 

pyramid histogram cross kernel support vector machine to 

complete fault diagnosis and state recognition of related 

motors, thus effectively improving the fault diagnosis 

accuracy [10]. Lu et al. proposed a heterogeneous computing 

framework. An integrated embedded system was designed, 

aiming at the problems related to processing off-line signals in 

motor fault diagnosis. It provides a solution for on-site motor 

fault diagnosis on small, flexible, and convenient handheld 

devices [11]. For the analysis and processing of bearing fault 

signals, Ke et al. optimized the white noise amplitude in the 

comprehensive empirical mode decomposition using the 

global optimality of genetic algorithm, thus providing data 

theoretical support for improving the accuracy of hydraulic 

motor fault prediction [12]. The motor fault diagnosis method 

is easily affected by different working conditions. Therefore, 

Long et al. obtained fault states through statistical analysis of 

matching points and dictionary templates generated by normal 

and abnormal motor signals. This solves the changes in 

machine operating conditions and improves the accuracy of 

fault diagnosis [13]. 

For complex systems, it is often difficult to correctly 

describe the dynamics of the system due to many variables. 

Dai et al. analyzed the main technologies used in intelligent 

fault diagnosis and the research status of hydraulic system 

fault diagnosis. The important application prospects of deep 
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learning in intelligent fault diagnosis were proposed. The 

main ideas, methods, and principles of several typical deep 

neural networks were described [14]. Sun et al. proposed  

a fault diagnosis method for asynchronous motors based on 

deep neural networks. It used sparse auto-encoders to learn 

features and added partial damage to the input to improve the 

robustness of feature representation. To prevent over-fitting 

during training, the regularization method dropout was 

adopted to achieve better results in feature learning and 

classification in the induction motor fault diagnosis [15]. Soni 

et al. adopted a new method combining fuzzy logic controller 

with fuzzy clustering method. The expert system combined 

with key parameters such as dissolved gas analysis, water 

content, interfacial tension and polymerization degree to 

diagnose and predict early faults of power transformers, 

providing basis for asset management decisions [16]. Soni et 

al. introduced a new adaptive neural fuzzy inference system 

model. This model was based on the moisture content, IFT, 

harmonics, and temperature rise data within the insulation 

layer to analyze the insulation degradation of oil and paper. 

The newly proposed model was validated using various real 

data collected from industries and literature, with an 

efficiency of over 90% and an error of less than 1% [17]. 

From the research of domestic and foreign scholars, the 

current methods for diagnosing hydraulic motor faults are 

difficult to meet practical requirements in small samples. 

However, model fault diagnosis technology overly relies on 

the digitization of diagnostic objects, making it difficult to 

establish accurate digital models in practical applications due 

to the complexity of diagnostic objects. In addition, model 

fault prediction technology hassome limitations in practical 

engineering applications. It is difficult to form  

a comprehensive expert knowledge base in practical work 

using knowledge based fault prediction techniques. Especially 

when new fault phenomena occur, it is hard for existing expert 

knowledge bases to find corresponding rules. There may even 

be situations where there is no expert knowledge base for 

similar fault phenomena. Meanwhile, no research on hydraulic 

motor fault experiments and intelligent prediction diagnosis 

methods has been found. There is no method to combine the 

two for analysis. Moreover, the corresponding relationship 

between various types of hydraulic motor faults and vibration 

signals has not been explored. The effective training sample 

library is relatively insufficient. Based on this, the hydraulic 

motor fault prediction and diagnosis model based on the fuzzy 

clustering, fuzzy logic theory, and improved residual network 

is innovative. It innovatively implements the full life cycle 

state evaluation and analysis of hydraulic motors in theory, 

and solves the enterprise hydraulic motor testing relying too 

much on human experience in practice. It lays the data and 

method foundation for promoting the intelligent prediction 

and diagnosis of hydraulic motor faults. 

3. Full life cycle state assessment analysis of pre-fault 

prediction and post fault diagnosis for hydraulic 

motors 

Currently, the troubleshooting hydraulic motors in important 

hydraulic systems on airplanes mainly focuses on fault 

prediction and diagnosis, without a combined analysis for the 

two. Therefore, this section mainly uses fuzzy logic theory 

and improved Resnet to achieve full life cycle state evaluation 

of hydraulic motors. 

3.1. Pre-fault prediction and feature extraction analysis 

of hydraulic motors 

Simply diagnosing faults in hydraulic motors cannot obtain 

complete accuracy. There are malfunctions that cannot be 

diagnosed. The actual analysis of research focuses on fault 

diagnosis. However, to achieve a more comprehensive fault 

diagnosis effect for hydraulic motors, the fault prediction is 

carried out before fault diagnosis to evaluate the full life cycle 

operation status of hydraulic motors. Generally speaking, the 

fault prediction method based on models is more accurate than 

the fault prediction method using knowledge and data. 

However, the data fault prediction only requires sufficient 

data to achieve the equipment status prediction through data 

analysis. Therefore, considering the actual experimental 

environment and subsequent fault diagnosis needs, a hydraulic 

motor fault prediction method based on data is studied. 

Among them, in intelligent technology, fuzzy theory can only 

provide uncertain descriptions in known information. The 

results obtained by fuzzy methods are much better than those 

obtained by traditional quantitative analysis. Therefore, the 

fuzzy inference model in fuzzy theory is chosen as the basic 

algorithm for predicting hydraulic motor faults [18-19]. 
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The fuzzy reasoning model is proposed by Takagi and 

Sugeno, which is also known as the T-S model. For T-S type 

fuzzy systems, they are generally defined in the "if then" 

format. The fuzzy reasoning expression is shown in equation 

(1). 

𝐺𝑗: 𝐼𝑓𝑝1𝑖𝑠𝐵1
𝑗
, 𝑝2𝑖𝑠𝐵2

𝑗
, ⋯ , 𝑝𝑚𝑖𝑠𝐵𝑚

𝑗

𝑞𝑗 = 𝑥0
𝑗
+ 𝑥1

𝑗
𝑝1 +⋯+ 𝑥𝑚

𝑗
𝑝𝑚

  (1) 

In equation (1), Gj represents the rule. j is the number of 

fuzzy subsets, with a maximum value of o. p represents the 

input variable. B  represents a fuzzy set. q  represents the 

output variable. i  represents the actual number of input 

parameters, with a maximum value of m. The membership, 

ambiguity, and output values of the input variables are 

expressed in equation (2). 

When the known information can only be described with 

uncertainty, the results obtained by fuzzy methods are much 

better than those obtained by traditional quantitative analysis. 

The characteristics of phenomena usually described by fuzzy 

sets are relatively fuzzy. Fuzzy sets are a generalization of 

classical sets. A real number between 0 and 1 can be used to 

represent the membership degree, rather than just the 0 or 1 

that represents membership in classical sets. Equation (2) 

represents any mapping 𝜇𝐴 from 𝑋 to the closed interval [0,1]. 

{
𝜇𝐴: 𝑋 → [0,  1]

𝜇 → 𝜇𝐴(𝜇)
   (2) 

𝐴  is a fuzzy subset of 𝑋 . 𝜇𝐴  is called the membership 

function of the fuzzy subset. 𝜇𝐴(𝜇) is called the membership 

degree of 𝜇 to 𝐴. When the membership function is used to 

represent a fuzzy description, its essence is to eliminate the 

fuzziness of the fuzzy description. When the object to be 

measured is determined, for each category in domain 𝑋, only 

the membership function of the category needs to be used to 

find the membership degree with the object to be measured. 

There are 𝑛 fuzzy subsets on domain 𝑋 = (𝑥1,  𝑥2, ⋯ , 𝑥𝑛). 𝐴1, 

𝐴2, ..., 𝐴𝑛, constitutes the standard data model library. For any 

𝑥0 ∈ 𝑋 , 𝑘 ∈ {1,  2,⋯ , 𝑛}  satisfies formula 𝐴𝑘(𝑥0) =∨

{𝐴1(𝑥0), 𝐴2(𝑥0), ⋯ , 𝐴𝑛(𝑥0)} . Then the 𝑥0  is considered 

relative to 𝐴𝑘. 

However, the T-S model is constructed based on fuzzy 

logic. Therefore, it lacks adaptive learning ability and requires 

massive manual operations in the logical reasoning, resulting 

in slow inference speed and relatively low accuracy [20-22]. 

Neural networks perform calculations through parallel 

connections between multiple neurons, resulting in high fault 

tolerance and strong self-learning ability. However, neural 

networks have high accuracy for the required input 

information, which also cannot explain the learning process 

for uncertain objects. It is not suitable for processing rule-

based expert experience knowledge [23-24]. Therefore, the 

study combines the two and fully absorbs their advantages to 

construct a T-S fuzzy neural network model, as shown in 

Figure 1. 

Input layer

Fuzzification layer

Fuzzy rule computation layer

Output layer

Input variables

Blurring

Fuzzy rules

Output 

variables

 

Figure 1. Schematic diagram of the hierarchical architecture of T-S fuzzy neural network model. 

From Figure 1, the T-S fuzzy neural network model 

constructed in the study is divided into four levels, namely the 

input layer, blurring layer, fuzzy rule calculation layer, and 

output layer. The input layer passes the input variable 𝑝 =

[𝑝1,  𝑝2,  ⋯ , 𝑝𝑘] to the blurring layer. The number of input 

nodes inside it is equal to the number of dimensions of the 
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input variable. The fuzzy layer performs corresponding fuzzy 

processing on the actual values transmitted by the input layer. 

Specifically, the fuzzy membership value is obtained from 

equation (3). 

𝛾
(𝐵𝑖

𝑗
)
= 𝑒𝑥𝑝 (−

(𝑝𝑖−𝑎𝑖
𝑗
)
2

𝑑
𝑖
𝑗 ) ,  𝑗 = 1,  2, … ,  𝑘;   𝑖 = 1,  2, … ,  𝑡  (3) 

In equation (3), 𝑎 represents the center of the membership 

function. 𝑑 represents the width of membership function. The 

fuzzy rule calculation layer mainly adopts the fuzzy 

continuous multiplication in equation (4) to calculate the 

fuzzy degree. Each node in it is a fuzzy rule. 

𝜛𝑗 = 𝛾(𝐵𝑖
1)(𝑝1) ∗ 𝛾(𝐵𝑖

2)(𝑝2) ∗ ⋯ ∗ 𝛾(𝐵𝑖
𝑚)(𝑝𝑚),  𝑖 = 1,  2, … ,  𝑡  (4) 

In equation (4), 𝛾  indicates membership degree. 𝜛 

indicates the membership product of input parameters. The 

final output layer mainly outputs the actual predicted output 

value of the fuzzy neural network. 

𝑞𝑗 =
∑ 𝜛𝑗𝑜
𝑗=1 (𝑞𝑗)

∑ 𝜛𝑗𝑜
𝑗=1

   (5) 

The core of fuzzy clustering algorithm lies in calculating 

membership degree, which divides each data point into 

different clusters. Each data point is assigned a membership 

value, indicating the degree to which the point belongs to each 

cluster. In general, the membership value is a real number that 

ranges from [0,1]. In the fuzzy clustering algorithm, each data 

point is assigned to a different cluster and assigned  

a membership value that describes the similarity between the 

point and the cluster. If the membership value is high, the 

point is closer to the cluster center, which belongs more to the 

cluster. The Gaussian membership function is used for 

analysis, considering the interference degree 𝐹𝑖 of 𝑖 input and 

the preceding fuzzy set 𝜇𝐹𝑖(𝑥𝑖)  in the fuzzy rule. The 

membership function shown in equation (5) is provided. 

𝜇𝐹𝑖(𝑥𝑖) = 𝑒𝑥𝑝 [−
(𝑥𝑖−𝑚𝐹𝑖

)
2

2𝜎𝐹𝑖
2 ]  (6) 

In equation (6), 𝜎 is the extension of the fuzzy set. If the 

value is large, the noise contained in the data will be even 

greater. Among them, the parameters that the T-S fuzzy neural 

network model actually needs to learn include the center and 

width of the membership function. They are calculated based 

on three steps, error calculation, neural network coefficient 

correction, and parameter correction. The error calculation is 

shown in equation (7). 

𝑤 =
1

2
(ℎ𝑒 − ℎ𝑓)

2
   (7) 

In equation (7), 𝑤 represents the error value between the 

expected output and the actual output. ℎ𝑒 and ℎ𝑓 represent the 

expected and actual output of the network. The network 

coefficient regularization corrects various parameters in the 

network based on the deviation between the expected output 

and the actual output, as expressed in equation (8). 

{

𝑠𝑖
𝑗(𝑚) = 𝑠𝑖

𝑗(𝑚 − 1) − ℑ
∂𝑤

∂𝑠
𝑖
𝑗

∂𝑤

∂𝑠
𝑖
𝑗 =

(ℎ𝑒−ℎ𝑓)𝜛
𝑗

∑ 𝜛𝑗𝑝𝑖
𝑚
𝑗=1

   (8) 

In equation (8), 𝑠𝑖
𝑗

 represents the neural network 

coefficient. ℑ represents the network learning rate. Finally, the 

parameter correction is shown in equation (9). 

{

𝑎𝑖
𝑗
= 𝑎𝑖

𝑗(𝑚 − 1) − 𝛼
∂𝑤

∂𝑎
𝑖
𝑗

𝑑𝑖
𝑗
= 𝑑𝑖

𝑗(𝑚 − 1) − 𝛼
∂𝑤

∂𝑑
𝑖
𝑗

   (9) 

In equation (9), 𝛼 represents a hyper-parameter. Based on 

the hydraulic motor fault pre-diagnosis, the main body and 

fault diagnosis in the entire lifecycle state assessment process 

are analyzed. 

Among the classical CNNs, there are mainly LeNet-5, 

AlexNet, VGGNet and ResNet. Compared with other network 

structures, the residual structure of ResNet can directly 

connect the input data information and transmit it to the 

output, which solves the gradient disappearing and accuracy 

decreasing with the increase of layers. The architecture of 

ResNet-18 artificial neural network is shown in Figure 2. 

ResNet-18 has been trained on millions of images, which has 

rich feature representation capabilities. Figure 2 shows 4 

residual blocks, each of which has two layers, each containing 

two 3*3 convolution layers. In addition to Conv1 and fully 

connected classification layers, there are a total of 18 layers. 

The explicit list of input and output parameters for ResNet-18 

is shown in Table 1. In the figure, the residual structure has 

two layers. The input is learned by residual to form residual 

function. When the number of channels changes from 64 to 

128, it is a dashed connection. At this time, the shortcut makes 

a linear change to x to adjust the dimension of the channel. 

From the residual network structure, the first 17 layers are 

feature extraction layers, and the 18th layer is classification 

layer. The fuzzy set defined for a single parameter includes N 
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types. 

The theory domain of the classified object is 𝑋 =

[𝑥1, 𝑥2, ⋯ , 𝑥𝑛] . Each object has an index 𝑎 to represent its 

properties, which is 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑗), 𝑖 = (1,2,⋯ , 𝑡). 

18-layers resnet

Image
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Maxpool,/2

3*3, conv, 64
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Figure 2. Resnet network structure. 

The corresponding fuzzy set matrix is shown in equation 

(10). 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑗
𝑥21 𝑥22 ⋯ 𝑥2𝑗
⋮ ⋮ ⋮

𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑗

]  (10) 

Table 1. Convolution layer input and output parameter details. 

Input 3*224*224 

/ 

64*112*112, k=7,s=2,p=3 

64*56*56, k=3,s=2,p=1 

Residual block 1 

64*56*56, k=3,s=1,p=1 

64*56*56, k=3,s=1,p=1 

64*56*56, k=3,s=1,p=1 

64*56*56, k=3,s=1,p=1 

Residual block 2 

128*28*28, k=3,s=2,p=1 

128*28*28, k=3,s=1,p=1 

128*28*28, k=3,s=1,p=1 

128*28*28, k=3,s=1,p=1 

Residual block 3 

256*14*14, k=3,s=2,p=1 

256*14*14, k=3,s=1,p=1 

256*14*14, k=3,s=1,p=1 

256*14*14, k=3,s=1,p=1 

Residual block 4 

512*7*7, k=3,s=2,p=1 

512*7*7, k=3,s=1,p=1 

512*7*7, k=3,s=1,p=1 

512*7*7, k=3,s=1,p=1 

Output 512*1*1 

The Resnet network is introduced to carry out the 

corresponding extraction to study the whole life cycle 

characteristics of hydraulic motors. The main reason is that 

the residual structure of Resnet can directly connect the input 

data information to the output, solving the gradient 

disappearance and accuracy declining with increasing layers. 

The actual parameters in the fully connected layer of the 

Resnet network account for the majority of the total 

parameters in the entire network, which also lead to low 

training speed and easy fitting problems [25]. Therefore,  

a GAP layer is introduced to replace the fully connected layer, 
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thereby improving the Resnet network to obtain Resnet-GAP. 

The architecture of GAP and fully connected layer is shown in 

Figure 3. 

Fatten

… …

Fully Connected

…

GAP

 

Figure 3. Architecture diagram of GAP and fully connected 

layer 

From Figure 3, GAP can replace the fully connected layer 

to output features of any dimension as one-dimensional 

features. This enhances the feature extraction ability of the 

convolutional layer while retaining the spatial information 

extracted by the convolutional and pooling layers. At the same 

time, it can also adaptively adjust according to the feature 

dimensions and categories of hydraulic motor bearings, 

generating feature maps for each category in the classification 

after multi-layer perceptrons. Each feature map is globally 

averaged. An adaptive matrix is designed on the GAP 

structure. The size representation of the input feature map in 

the previous convolutional layer is shown in equation (11). 

𝐶𝑜𝑢𝑡 =
𝐶𝑖𝑛−𝐽

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1   (11) 

In equation (11), 𝐶𝑜𝑢𝑡  represents the size of the input 

feature map for the previous convolutional layer. 𝐶𝑖𝑛 

represents the size of the input feature map for the 

convolutional layer. 𝐽 represents the size of the convolution 

kernel. 𝑠𝑡𝑟𝑖𝑑𝑒  represents the step size. For the feature map 

input to GAP in the previous convolutional layer, the pooling 

core of GAP is automatically match with the number and 

dimension of convolutional cores. By pooling the feature map, 

a global mean equivalent to the fuzzy neural network is 

obtained, which is used as the feature value output by GAP. 

The operation expression of GAP is shown in equation (12). 

𝑍𝑎𝑣𝑔−𝑝𝑜𝑜𝑙
𝑙 =

1

𝜅
∑ ℜ1:𝑔,1:𝑓,𝑘

𝑙𝜅
𝑘=1   (12) 

In equation (12), 𝑍𝑎𝑣𝑔−𝑝𝑜𝑜𝑙
𝑙  represents the actual mean 

obtained by the 𝑙-th convolutional layer GAP. 𝜅 represents the 

number of neurons. ℜ1:𝑔,1:𝑓,𝑘
𝑙  represents the pixels in the 

actual mapping range of the output feature map corresponding 

to the mean pooling kernel, from the first row to the 𝑔 row, 

and from the first column to the 𝑓 column. 

3.2. Post fault diagnosis for hydraulic motors 

In this paper, Fuzzy Clustering Algorithm (FCA) is used to 

replace Softmax layer classification of Resnet-GAP network. 

The overall framework of hydraulic motor fault identification 

combining residual network and fuzzy clustering is shown in 

Figure 4. The power curve image of the switch machine is 

monitored and collected by microcomputer. The acquired 

image is input into the pre-trained Resnet-GAP model. The 

feature vector is output at the GAP layer to establish the 

typical power curve feature vector library of normal, sub-

healthy, faulty and serious faults. FCA is used to replace the 

classification of the full connection layer and Softmax layer to 

realize fault identification. 

Historical microcomputer 

monitoring database

Microcomputer monitoring 

database to be tested

Pre-train the ResNet-GAP model Pre-train the ResNet-GAP model

Eigenvectors in different 

operating states

Feature vector of the sample to 

be tested

Construct the original 

eigenvector matrix

Find the fuzzy equivalent matrix 

of the original matrix

A dynamic cluster graph is 

formed

Implementation of operational 

status assessment

Figure 4. General framework for hydraulic motor fault 

identification. 

On the basis of Resnet-GAP, the FCA in the fuzzy theory 
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used for fusion diagnosis prediction is studied to further 

optimize it for training with small sample data. Fuzzy 

clustering is an unsupervised learning method. The biggest 

advantage is that it does not require "learn" a large number of 

training samples. Similar objects can be gathered together 

through fuzzy operations alone [26]. This method introduces 

the concept of fuzzy mathematics in cluster analysis. On this 

basis, a similarity index is introduced. A fuzzy equivalence 

matrix is obtained by correcting the transfer closure method. A 

dynamic clustering graph is obtained when the elements in the 

transitive closure are from 0 to 1. The specific process is 

shown in Figure 5. 

Data 

standardization

Establishing Fuzzy 

Similarity Matrix

Establishing Fuzzy 

Equivalent Matrix

Cluster analysis

 

Figure 5. Schematic diagram of the clustering process of 

fuzzy clustering algorithm. 

From Figure 5, the dynamic clustering process of the FCA 

first involves standardizing the data, followed by constructing  

a fuzzy similarity matrix, then constructing a fuzzy 

equivalence matrix, and finally conducting clustering analysis. 

Among them, the data matrix obtained after data 

standardization operation is displayed in equation (13). 

𝑁 = [

𝑛11 𝑛12 ⋯ 𝑛1𝑣
𝑛21 𝑛22 ⋯ 𝑛2𝑣
⋮ ⋮ ⋱ ⋮

𝑛𝑏1 𝑛𝑏1 ⋯ 𝑛𝑏𝑣

]  (13) 

In equation (13), 𝑁 represents the data matrix. 𝑛 represents 

the internal elements of the matrix. 𝑏 represents the elements 

within the domain of the classified object, with a maximum 

value of 𝐿 . 𝑣  represents the indicator, that is, the behavior. 

After transforming the translation standard deviation of 

equations (12) and (13), the actual influence of dimensionality 

between data can be eliminated, but there are still some 𝑛𝑏𝜍
′  

that do not belong to (0,1). Therefore, a translation range 

transformation is also performed on them, as expressed in 

equation (14). 

𝑛𝑏𝜍
″ =

𝑛𝑏𝜍
′ − 𝑚𝑖𝑛

1≤𝑏≤𝐿
{𝑛𝑏𝜍

′ }

𝑚𝑎𝑥
1≤𝑏≤𝐿

𝑛{𝑛𝑏𝜍
′ }− 𝑚𝑖𝑛

1≤𝑏≤𝐿
{𝑛𝑏𝜍

′ }
  (14) 

In equation (14), 𝑛𝑏𝜍
″  represents the data 𝑛 after translation 

range transformation. After undergoing translation standard 

deviation and translation range transformation, all 𝑛𝑏𝜍
′  belong 

to (0,1), thus eliminating the influence of dimensionality. In 

response to the different dimensions caused by different data 

and the data requirements for adapting to fuzzy clustering, 

data 𝑛  is subjected to translation standard deviation and 

translation range transformations. The translation standard 

deviation transformation is expressed as equation (15). 

𝑛𝑏𝜍
′ =

𝑛𝑏𝜍−𝑛̄𝜍

𝑠𝜍
   (15) 

In equation (15), 𝑛𝑏𝜍
′  represents the result of data 𝑛 

translation transformation. 𝑠𝜍  represents the translation 

standard deviation transformation result. 𝑛̄𝜍  represents the 

average value of indicator 𝜍 in data 𝑛.𝑠𝜍 and 𝑛̄𝜍 are shown in 

equation (16). 

𝑛̄𝜍 =
1

𝐿
∑ 𝑛𝑏𝜍
𝐿
𝑏=1 , 𝑠𝜍 = √

1

𝐿
∑ (𝑛𝑏𝜍 − 𝑛̄𝑏𝜍)

2𝐿
𝑏=1  (16) 

In addition, after data standardization, the corresponding 

fuzzy matrix can be obtained. However, to achieve further 

clustering, the similarity between samples is calculated. 

Therefore, the study constructs a fuzzy similarity matrix. The 

distance method determines the similarity between samples, 

as expressed in equation (17). 

𝑅𝑏𝑧 = 1 − 𝜓𝐶(𝑛𝑏 , 𝑛𝑧)   (17) 

In equation (17), 𝑅𝑏𝑧  represents the similarity between 

samples. 𝜓 represents a definite constant. 𝐶(𝑛𝑏 , 𝑛𝑧) represents 

the distance between two samples. 𝑧 represents the elements 

in the domain of the classified object that is not equal to 𝑏. 

The 𝐶(𝑛𝑏 , 𝑛𝑧) can be determined by Hamming distance and 

Euclidean distance, as shown in equations (18) and (19). 

𝐶(𝑛𝑏 , 𝑛𝑧) = ∑ |𝑛𝑏𝜍 − 𝑛𝑧𝜍|
Ψ
𝜍=1   (18) 

In equation (18), 𝛹 represents the number of indicators. 

𝐶(𝑛𝑏 , 𝑛𝑧) = √∑ (𝑛𝑏𝜍 − 𝑛𝑧𝜍)
2Ψ

𝜍=1  (19) 

After comprehensive consideration, the Euclidean distance 

method is chosen to determine the similarity between samples. 
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Finally, in cluster analysis, the similarity expression between 

the element samples in the transitive closure is shown in 

equation (20). 

𝑅𝑏𝑧(𝛿) = {
1, 𝑅𝑏𝑧 ≥ 𝛿
0, 𝑅𝑏𝑧 ≤ 𝛿

   (20) 

In equation (20), 𝛿 represents the element in the transitive 

closure. Finally, the entire life cycle state assessment process 

of the constructed hydraulic motor is shown in Figure 6. 

Historical microcomputer 
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curve image data

Power curve image data of the 

microcomputer monitoring 

database to be tested

Simulated experimental 

platform collects operating 

data of hydraulic motors

Pre trained T-S fuzzy neural 

network model

Eigenvectors under different 

operating states

Pre trained TL-ResNet-GAP 

model

Eigenvectors under different 

operating states

Pre trained TL-ResNet-GAP 

model

Test sample feature vector

Build the original+

feature 

vector matrix

Finding the Fuzzy 

Equivalent Matrix of 

the Original Matrix

Forming a 

dynamic 

clustering graph

Implement 

operational status 

assessment
 

Figure 6. Process for evaluating the full life cycle status of hydraulic motors. 

From Figure 6, real-time monitoring of the hydraulic 

motor operation process is achieved through the 

microcomputer monitoring technology in this process. The 

power curve and flow data curve of the hydraulic motor 

during operation are obtained. Then it is input into the pre-

trained Resnet-GAP model and T-S fuzzy neural network 

model, and output feature vectors in the GAP layer. Feature 

vectors under typical working conditions such as normal, sub 

healthy, faulty, and severe faults are constructed. The fuzzy 

clustering method is used to replace the complete connection 

layer and software maximum level classification, evaluating 

the hydraulic motor status. On this basis, the identification 

under sub healthy conditions is introduced. The parameters of 

the GAP layer are trained using small samples to improve the 

feature extraction ability, achieving effective operating status 

identification for hydraulic motors. In addition, to enhance the 

universality of the model, a dense connection network 

(Densenet) with a deeper network structure and stronger 

feature extraction ability is used for experimental verification. 

Pre-trained Fine-Tuning (TL) and GAP are used to replace 

fully connected layers. At the same time, FCM is used to 

replace the maximum softening classification layer in the 

network. An activation function is used when GAP proposes 

feature outputs to construct the TL-Densenet-GAP-FCM 

model. 

To monitor the pressure and flow of the hydraulic motor, 

the study adopts computer-aided testing technology to install 

pressure sensors and flow sensors in the hydraulic circuit. By 

monitoring the pressure and flow of the hydraulic circuit and 

the hydraulic motor, the differences between these parameters 

in the normal working state and the leakage fault state are 

compared. The changes in parameters are recorded. It 

provides data support for the training of hydraulic motor 

internal leakage fault prediction model. The prediction model 

based on fuzzy neural network is established in MATLAB. 

The output current of the magnetic powder brake controller is 

fixed at 0.1A and the load remains constant. The experimental 

data obtained by changing the throttle opening is used for 

fault prediction. 

4. Performance verification of T-S fuzzy neural 

network model and Resnet-GAP-FCM model 

To verify the actual effectiveness of the proposed T-S fuzzy 

neural network model in pre-fault prediction and the Resnet-

GAP-FCM model in post fault diagnosis, experiments are 

conducted in this section. 

4.1. Performance verification of T-S fuzzy neural 

network model 

The operating system used in this experiment is Ubuntu22.04. 

The development language is Python·3.8.0; The framework 
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is Pytorch 1.10.0-+ cuda.11.1, and the CPU is Intel·Xeon 

Gold-6138. The GPU is GeForce · RTX · 3090(24G). 

Memory 220G. The CY14-1B piston pump with rated 

pressure of 31.5Mpais selected as the power element of the 

simulation test bench. According to the torque that the motor 

can provide under the extreme working conditions, the model 

FZ100A-1 magnetic powder brake is selected. To ensure that 

the flow adjustment range is large enough and the action is 

sensitive when adjusting the throttle opening, the throttle 

valve model LA-H10L is adopted. To ensure that the 

hydraulic pressure does not exceed the maximum allowable 

value of 31.5MPa, the simulation test bench uses the direct 

acting relief valve model YP-L10H4, the pressure relay model 

HJCS-02N produced by Taiwan HDX Company, and the 

electromagnetic directional valve model D5-2B60B-D2 

produced by RISUNY Company. Finally, the NI USB-6008 

data acquisition card developed by the National Instruments 

Company of the United States is selected for data acquisition, 

and the acquisition accuracy is 12 bits. 

The open dataset of bearings from Case Western Reserve 

University in the United States is used to validate bearing 

fault diagnosis under the same model and operating conditions. 

7 types of bearing fault data including 12kHZ drive end, 

motor speed of 1797r/min, fault diameter of 0.007 and 0.021, 

inner ring fault, roller fault and normal state are taken as 

examples. There are 20 samples in each group, a total of 140 

groups, for experimental verification. The fuzzy logic 

controller takes 1000 continuous points from the time domain 

signal as samples to establish a standard data vector library, as 

shown in Table 2, D1, D2, D3, and D4 are the numbers of the 

data to be measured. 

Table 2. Standard database sample characteristics. 

Sample to be tested 1 2 3 … 1919 1920 

D1 -2.46 -2.50 8.23 … 0.43 -0.76 

D2 -2.56 -4.62 1.10 … 0.75 -0.34 

D3 -2.60 -9.92 -6.43 … -0.78 -0.26 

D4 -1.82 0.01 1.44 … -0.23 0.64 

Based on predictions and true labels, the samples are 

divided into four categories: True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN). 

The accuracy of hydraulic motor fault identification, recall 

rate and F1 value are calculated to verify the performance. 

The specific results are shown in Figure 7.  

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

2 6 10
Number of experiments

S
c
o

re
 (

%
)

4 8 12 140

Precision
Recall

0.94

0.95

0.96

0.97

0.98

0.99

1.00

F
1

F1

 

Figure 7. Hydraulic motor fault detection and classification 

accuracy analysis. 

The hydraulic motor fault identification model has good 

performance, which can accurately detect faults. The accuracy 

of each test was more than 96%, most of them reached 97% 

and 98%, and the highest even was 99.2%. The recall rate was 

more than 97%, and the highest was 99.2%. F1 value was 

relatively stable in many experiments, with each experiment 

above 0.98. The average value of 10 experiments was 0.989. 

The specific operation of the experiment is as follows. 14 data 

(numbered 1-1~1-14)are randomly selected from 144 actual 

data collected in this group to verify the prediction accuracy. 

The first 50, 60, 70, 80, 90, 100, 110, 120 and 130 data are 

used for the model training to compare the prediction 

accuracy under different combinations. 

To reduce the complexity of the study, different numbers 

of data samples are represented as 50-14, 60-14, ..., 130-14 

(represented by 1-9) for training and validating the prediction 

model. Among them, the model prediction results and relative 

error results are shown in Figure 8. 
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Figure 8. Model prediction results and relative error results.(a) Training results for the first 130 data points. (b) Predict ion results of 

the last 14 sets of data. (c) Relative error of prediction results. (d) Average relative error of each combination data prediction. 

From Figure 8 (a), the curve between the training values 

and the actual values was basically consistent. The Pearson 

correlation coefficient between two values was 0.9995, 

indicating a highly correlation between the two. The actual 

training effect of the model was good. From Figure 8 (b), the 

last 14 sets of predicted results showed that the predicted 

values were generally consistent with the actual value curve. 

From Figure 8 (c) and (d), the actual prediction error 

gradually increased with the increase of prediction 

compensation. The relative error was also relatively large in 

positions where there were significant fluctuations in the data. 

The maximum relative error of the actual prediction was 

0.38%. The average relative error of all 14 prediction results 

was 0.30%. Overall, after training with a large number of data 

samples, the prediction accuracy of the model is high. 

However, the accuracy improvement rate decreases 

significantly after exceeding 120 samples. Therefore, 120 

samples for model training has the best effect, but it also 

proves the effectiveness of the T-S fuzzy neural network 

model in hydraulic motor fault prediction. 

Large fluctuations in data may affect the training and 

prediction performance of the model, resulting in a significant 

deviation between the predicted results and the true values. 

Therefore, this study uses data fitting to smooth the 

experimental data, reducing areas with relatively large 

fluctuations in the data. In the experiment, the Smoothing 

Splines in the matrix laboratory fitting toolbox is used to fit 

the relevant parameters. The relevant parameters and the 

fitting curve results are shown in Figure 9 

From Figure 9 (a), there were 4 fitting parameters, namely 

residual sum of squares, determination coefficient, correction 

determination coefficient, and root mean square error, with 

values of 0.516, 0.877, 0.735, and 0.088, respectively. From 

Figure 9 (b), the fitting curve maintained the inlet pressure of 

the hydraulic motor between 0.5 and 1.15Mpa at the throttle 

threshold opening of 0 to 140, showing a fluctuating 

downward trend. Then the training and prediction results of 

the fitted model are shown in Figure 10. 
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Figure 9. Related parameter content and fitting curve results.(a) Fitting relevant parameters. (b) Fitting curve results. 
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Figure 10. Model training and prediction results after fitting.(a) Model training results after fitting. (b) Model prediction results after 

fitting. 

From Figure 10 (a), the Pearson correlation coefficient of 

the fitted model was 0.9999. The correlation between the 

fitting training values and the actual values was compared. It 

indicated that the actual training effect of the model was better. 

From Figure 10 (b), the difference between the predicted and 

actual values in the fitted prediction results did not exceed 

0.4%. The difference between inlet pressures was very small. 

The predicted relative error and average relative error are 

shown in Figure 11. 
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Figure 11. Relative error and average relative error predicted after fitting.(a) Relative error of predicted results after fi tting. (b) 

Predicted average relative error after fitting. (c)Comparison of average relative error before and after fitting. 

From Figures 11 (a) and (b), the maximum relative error 

between the predicted value and the actual value was 0.334%. 

The average relative error was 0.257%. There was  

a significant decrease compared with before fitting, indicating 

an improvement in the prediction accuracy. From Figure 10 

(c), compared with before fitting, the fitted model had a lower 

average relative error and higher prediction accuracy under 

the same training data samples. For the fitted data, the 

prediction accuracy of the model was improved by at least 15% 

compared to before fitting. Overall, the prediction model 

proposed in the study had effectiveness and high accuracy in 

predicting hydraulic motor faults. To further verify the results, 

CNN, the algorithm that integrates short-time Fourier and 

support vector machine, the algorithm that integrates extreme 

gradient boosting and long short-term neural network, and fast 

recurrent neural network algorithm are introduced for 

comparison. The comparison algorithms are represented by A-

D. The comparison results of fault prediction accuracy are 

shown in Table 3. 

Table 3. Comparison of fault prediction accuracy of hydraulic motors using different algorithms. 

- Accuracy (%) Precision (%) Recall (%) F1 value (%) 

A 64.99 65.16 64.99 65.09 

B 82.06 82.27 82.06 82.17 

C 85.77 85.87 85.76 85.82 

D 81.25 81.35 81.24 81.30 

Research model 96.15 96.17 96.15 96.16 

From Table 3, the accuracy of the research model in 

predicting hydraulic motor faults reached 96.15%. The 

precision was 96.17%, the recall rate was 86.15%, and the F1 

value was 96.16%, all of which were higher than the 

comparison models. Overall, the T-S fuzzy neural network 

model proposed in the study has high performance in 

hydraulic motor fault prediction. 

4.2. Performance verification of Resnet-GAP-FCM 

model 

To verify the diagnostic accuracy of Resnet-GAP-FCM model, 

the bearing open data set of Case Western Reserve University 

in the United Statesis used in this study. The bearing fault 

diagnosis under the same model and working condition is 

verified by the algorithm presented in this paper. 7 types of 

bearing fault data including 12kHZ drive end, motor speed of 

1797r/min, fault diameter of 0.007 and 0.021 are taken as 

examples for experimental verification. Taking 1000 

continuous points from time domain signal as samples,  

a standard database is established for fault simulation 

experiment. To ensure that the key parameters in the 

experimental environment are consistent with the real 

environment, the key parameters in the hydraulic motor 

modeling in the laboratory are consistent with the actual 

changes. The phenomenon and process in the experimental 

environment are verified by mathematical model and 

computer simulation. The experiment mainly evaluates 

whether the actual operation of the motor meets the 

requirements of rated power, theoretical speed, oil leakage 

capacity, vibration noise, etc. Meanwhile, it can simulate 
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faults such as wear of hydraulic motor rollers and stator rings, 

as well as cracks in rollers and stator rings. Firstly, the time-

domain analysis method is used to draw the vibration signals 

of hydraulic motors in different states, providing a basis for 

subsequent model diagnosis. When a composite fault occurs, 

the vibration signal results of the hydraulic motor are shown 

in Figure 12. 
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Figure 12. Vibration signals of hydraulic motors during composite faults. (a) Signal of roller wear plus wear of stator ring androller 

crack plus cracks in stator ring stator crack. (b) Signal of roller crack plus wear of stator ring and roller wear plus cracks in stator 

ring. 

From Figures 12 (a) and (b), when both the hydraulic 

motor roller and stator ring failed simultaneously, the impact 

characteristics were more pronounced compared to normal 

signals. Among them, the amplitude when both the roller and 

stator ring wear faults occurred simultaneously was ±0.6g, 

significantly higher than the normal signal. When both the 

roller and stator ring cracked simultaneously, the amplitude 

was ±0.6g. However, the actual vibration impact was more 

severe. The amplitude when roller wear and stator ring cracks 

occurred simultaneously was ±0.4g. When roller cracks and 

stator ring wear occurred simultaneously, the amplitude was 

±1.5g, and the impact characteristics were most significant. 

The vibration signals of hydraulic motors contain rich health 

status information. The time-domain indicators can 

quantitatively evaluate the health status of hydraulic motors. 

Therefore, after analyzing the kurtosis, peak, and pulse factors, 

the health status of hydraulic motors can be further evaluated. 

The specific content is shown in Table 4. 

Table 4. The kurtosis, peak value, and pulse factor results of normal and fault signals for hydraulic motors. 

- E F G H I - F+G H+I H+G F+I 

Q 2.87 14.45 4.71 168.04 84.51 Q 8.59 49.89 100.79 23.54 

Z 9.29 20.04 12.30 47.28 38.23 Z 21.11 36.53 40.17 25.83 

M 11.49 29.94 16.01 86.85 69.27 M 28.86 60.35 89.37 38.81 

In Table 4, E-I represent normal state, roller wear, stator 

ring wear, roller cracks, and stator ring cracks. Q, Z and M 

represent kurtosis, peak, and pulse factors. From Table 4, 

when the hydraulic motor rollers worn or cracked, their 

kurtosis coefficient, peak coefficient, and impulse coefficient 

all underwent significant changes. The kurtosis coefficient is 5 

times higher than the normal value. The peak coefficient was 

58 times higher than normal, indicating significant impact 

characteristics. In a single fault, the index of rolling crack 

fault in the time domain was the largest. The composite fault 

time domain index indicated that there was a significant 

variation in the time domain index of hydraulic motors with 

both roller cracks and stator ring wear, but its amplitude was 

much smaller. The proposed Resnet-GAP-FCM model is 

applied to the fault diagnosis of hydraulic motors. In this 

experiment, the data of each type of fault was integrated into  
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a group to expand the total fault samples, with the training set 

accounting for 50%, the validation set accounting for 25%, 

and the test set accounting for 25%. The content of the 

hydraulic motor experimental dataset and the confusion 

matrix for fault diagnosis are shown in Figure 13. 
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Figure 13. Content of hydraulic motor experimental dataset and confusion matrix for fault diagnosis.(a) The length and label of 

different types of faults. (b) Confusion Matrix for Hydraulic Motor Fault Diagnosis. 

From Figure 13 (a), the accuracy of the training, validation, 

and testing sets of the model after training was higher than 

99.8%, indicating that the proposed model had strong feature 

extraction and fault diagnosis capabilities. From Figure 13 (b), 

he research model had a high accuracy in diagnosing faults in 

hydraulic motors. Overall, the research model has high 

performance in hydraulic motor fault diagnosis. On this basis, 

the fault diagnosis results of hydraulic motors are visualized 

to assess the clustering and classification ability of the 

research model, as shown in Figure 14. 
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Figure 14. Visualization results of hydraulic motor fault 

diagnosis. 

In visual fault location, fault location can be divided into 

two stages. Before the failure stop loss, it is expected that the 

information can be quickly obtained for stop loss decision. 

The corresponding stop loss operation can be made to restore 

the service. After the fault stop loss, it is still necessary to 

further find the deep-seated cause of the fault, determine the 

root cause of the fault, and restore the online environment to 

normal state. From Figure 14, the improved model retained 

the feature extraction capability of the convolutional layer.  

A deeper level network can be selected based on the 

complexity of the detection target curve. Training samples are 

added appropriately to improve classification accuracy, so that 

the model can quickly detect changes that may cause faults. 

To further verify the diagnostic superiority of the proposed 

hydraulic motor, the Fusion Algorithm of Radial Basis 

Function and Support Vector Machine (FARF-SVM) [27], 

CNN and Support Vector Machine (CNN-SVM) [28], 

Classification and Regression Tree (CRT) algorithm [29], 

Artificial Neural Network algorithm (ANN) [30] and CNN 

[31] are introduced to compare the diagnostic classification 

accuracy. The results are shown in Table 5. 

https://www.baidu.com/s?rsv_idx=1&wd=V&fenlei=256&usm=4&ie=utf-8&rsv_pq=c14269e9003c62d3&oq=%E7%BD%97%E9%A9%AC5%E6%80%8E%E4%B9%88%E5%86%99&rsv_t=d868fwZUTL/wzW3NFPgIzHN612zhxZ5qgELMulv3X32JWapoMDEt6xxMgJ8&sa=re_dqa_dda&icon=1
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Table 5. Comparison of accuracy of different algorithms in diagnosing and classifying hydraulic motors. 

- Total number of training samples Iterations Accuracy (%) 

FARF-SVM 300.00 - 97.25 

CNN-SVM 500.00 140.00 97.51 

CRT 300.00 - 93.55 

ANN 490.00 1000.00 96.52 

CNN 3050.00 - 97.45 

- Total number of training samples Iterations Accuracy (%) 

Resnet-GAP-FCM 160.00 100.00 99.00 

TL-Densenet-GAP-FCM 160.00 100.00 99.05 

From Table 5, the diagnostic classification accuracy of the 

Resnet-GAP-FCM model proposed in the study was 99.00%, 

which was higher than the comparison algorithms. Meanwhile, 

to enhance the model universality, the improved TL-Densenet-

GAP-FCM model had a diagnostic classification accuracy of 

99.05, proving the certain universality. Overall, out of a total 

of 3050 samples, only 160 samples obtained by the research 

model were higher than the CNN algorithm, indicating the 

superiority of the research model in small samples. 

Table 6 summarizes the main test results of the proposed 

model. The prediction results of the model are compared with 

the remaining experimental data. The results indicated that if 

there were more data samples used for model training, the 

prediction accuracy is higher. Large data fluctuations could 

affect the prediction accuracy of the model. The original 

experimental data was fitted. Compared with the experimental 

data before fitting, and the same experimental data was used 

to verify the prediction accuracy before and after fitting to 

ensure the credibility of the verification results. After fitting 

the experimental data with the fitting method selected in this 

paper, if there were more training samples, the prediction 

accuracy of the model is higher. The prediction accuracy of 

the model was at least 15% higher than that before fitting. 

Table 6. Summary of main test results of the proposed model. 

The main test index of the model Result 

Maximum relative error of model prediction results 0.38% 

Average relative error value 0.30% 

The difference between the predicted value and the actual value after fitting <0.4% 

The average relative error between the predicted and actual values 0.257% 

Improvement of model prediction accuracy >15% 

Accuracy 96.15% 

Precision 96.17% 

Recall 86.15% 

F1 96.16% 

Diagnostic classification accuracy of ResNet-GAP-FCM model 99.00% 

5. Discuss 

In recent years, deep learning neural networks have been 

widely used in different fields, especially in image recognition, 

fault diagnosis, life prediction, etc., due to their strong ability 

of self-learning and feature information extraction [32]. 

Although the deep convolutional neural network can improve 

the classification accuracy to a certain extent, it will cause the 

gradient to disappear with the increase of the number of layers 

and cannot be trained. At the same time, a large amount of 

data is needed to train the model parameters during fault 

diagnosis. However, the fault data of hydraulic motors are few 

and difficult to obtain, which cannot meet the training 

requirements. Therefore, there are certain deficiencies in the 

fault diagnosis of hydraulic motors in practice [33]. Compared 

with the traditional method based on deep convolutional 

neural network, the most significant difference between the 

hydraulic motor fault diagnosis model built in this paper 

based on fuzzy clustering and improved Resnet network is 

that GAP layer is used to replace the fully connected network 

in Resnet, and fuzzy clustering replaces the classification 

layer of Resnet. Using a small amount of data to train the 

parameters of GAP layer, the feature extraction ability of the 

model is improved. It solves the problem of less training data 

and has the advantages of self-adaptation and small sample. 

Based on the results of Table 4, 5 and 6, the hydraulic 

motor fault diagnosis proposed by the research based on the 

improved Resnet network has high detection accuracy, good 

https://www.baidu.com/s?rsv_idx=1&wd=V&fenlei=256&usm=4&ie=utf-8&rsv_pq=c14269e9003c62d3&oq=%E7%BD%97%E9%A9%AC5%E6%80%8E%E4%B9%88%E5%86%99&rsv_t=d868fwZUTL/wzW3NFPgIzHN612zhxZ5qgELMulv3X32JWapoMDEt6xxMgJ8&sa=re_dqa_dda&icon=1
https://www.baidu.com/s?rsv_idx=1&wd=%E2%85%A5&fenlei=256&usm=4&ie=utf-8&rsv_pq=9c4ba581001d19dc&oq=%E7%BD%97%E9%A9%AC%E6%95%B0%E5%AD%976&rsv_t=5fdcVpWWTAoSVFsaR2/mNCTrRwjRs1TBbc/+O1bJ2Hq0uo/IZOJUasAbvBg&sa=re_dqa_dda&icon=1


EksploatacjaiNiezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

effect on fault signal processing, and high signal and noise 

after noise reduction. The fault features and the proposed 

automatic feature extraction method are used to extract the 

acoustic signal of synchronous hydraulic motor. Finally, the 

signal features are trained and classified by fuzzy clustering 

algorithm. The accuracy of the proposed fault diagnosis 

method based on the diagnosis results can reach more than 

99%, and the final fault diagnosis accuracy will be affected to 

some extent when the pre-processing noise reduction effect is 

not ideal. The improved convolutional neural network has 

better feature extraction ability, uses a small number of 

samples to train the parameters of GAP layer, establishes the 

pre-trained model and fuses the fuzzy clustering algorithm. 

The proposed fault diagnosis method has certain robustness. 

Existing diagnosis methods based on expert systems have 

low fault coverage and are difficult to identify new faults [34]. 

Compared with expert system, model-based fault diagnosis 

has a wider application range and better diagnostic effect. 

However, this method relies too much on the digitization of 

diagnostic objects, which makes it difficult to establish an 

accurate digital model in practical application [35]. The fault 

diagnosis method based on data and machine learning is the 

most widely used diagnosis technology at present. The fault 

characteristics can be extracted by data analysis and 

processing or the neural network can be trained by historical 

fault data to effectively identify equipment faults. Compared 

with the above methods, the Pearson correlation coefficient 

after fitting the model proposed in this study is 0.9999, 

indicating that the model has a good actual training effect. The 

difference between the predicted value and the actual value in 

the predicted results after fitting is less than 0.4%, and the 

accuracy of the training set, verification set and test set after 

model training are all higher than 99.8%, indicating that the 

research model has strong feature extraction and fault 

diagnosis capabilities. The accuracy of diagnosis classification 

is as high as 99.00%, and the results obtained by the research 

model with only 160 samples are higher than the results 

obtained by the algorithm N with a total of 3050 samples, 

which shows the superiority of the research model in small 

samples. In summary, the research model has high 

performance in hydraulic motor fault diagnosis. 

 

6. Conclusion 

The troubleshooting of hydraulic motors often focuses solely 

on fault prediction or diagnosis. Therefore, a comprehensive 

life cycle state evaluation method for hydraulic motors is 

proposed by integrating fuzzy logic theory and improved 

Resnet network. The effectiveness is verified. According to 

the experimental results, the Pearson correlation coefficient 

between the training value and the actual value was 0.9995, 

which was 0.9999 after fitting, indicating that the model 

training effect was good. The maximum relative error between 

the fitted predicted value and the actual value was 0.334%, 

with an average relative error of 0.257%. The fault prediction 

accuracy was 96.15%, which was better than the comparison 

models. In the verification of fault diagnosis model, the 

accuracy of the training set, verification set and testing set 

after model training was all higher than 99.8%, indicating that 

the research method had higher practicability. The number of 

training samples can be appropriately increased or decreased 

according to the complexity of the detection targetcurve, so as 

to improve the feature extraction capability of the 

convolutional layer, increase the classification accuracy and 

realize the detection of the target. In summary, the proposed 

method combining hydraulic motor fault prediction and 

diagnosis has high accuracy, which can complete 

classification without data training, with self-adaptation and 

small sample size. At the same time, the feature extraction 

capability of the convolutional layer can be retained. A deeper 

network can be selected according to the curve complexity of 

the detection target and appropriate training samples can be 

added to increase the classification accuracy. Extreme 

temperature will make the parts of the hydraulic motor expand 

or contract, resulting in increased friction and reduced 

efficiency. In this study, only the fault causes of the hydraulic 

motor were preliminarily located and analyzed, without 

considering the influence of the extreme temperature working 

environment. In the future, we can combine the power 

characteristics of the hydraulic motor during operation and the 

influence of the external environment to re-classify the health 

grade. At the same time, considering the performance 

degradation of the switch machine, the state degradation 

characteristics are extracted, the real-time hydraulic motor 

state evaluation system is established, the standard sample 
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database is improved, the probability of misjudgment and 

missing judgment is reduced, and the real-time monitoring of 

the operating state of the hydraulic motor is realized.
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