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Highlights  Abstract  

▪ Modeling of self-healing in a smart distribution 

network with integrated microgrids. 

▪ Restoration patterns and planning profiles 

patterns considering errors in microgrids. 

▪ Autonomous distributed restoration 

technology through a multi-agent system. 

▪ Reliable solver with low solution 

deviation,enhancing security in reconstruction 

process. 

▪ Flexibility in the smart distribution network for 

effective operation and management. 

 This paper presents a pioneering approach that integrates a Self-Healing 

System through a Smart Distribution Network, which employs a two-

step implementation of a comprehensive Energy Management algorithm 

and a multi-agent system with an autonomous distributed regeneration 

method. The novel method improves network operation through 

optimized management of local microgrids, which include diverse 

components comprising renewable energy sources, electric vehicle 

charging infrastructure, and energy storage systems. The first phase 

concentrates on minimizing network operation costs by adhering to 

system utilization restrictions and optimal load distribution, while the 

second phase addresses the optimization of regeneration processes, 

which decreases discrepancies between recoverable priority loads and 

switching operations. The evaluation introduces a stochastic 

programming approach to model and manage uncertainties, and utilizes 

the Kantorovich method and the roulette wheel mechanism to improve 

reliability. The proposed student psychology-based optimization 

algorithm ensures reliable solutions to complex non-linear problems. 

Numerical outputs highlight the effectiveness of the recovery strategy, 

which depicts successful management of line current and voltage 

through allowable limits, and a reduction in expected unsupplied energy 

from 108.48 kWh to 7.21 kWh. This approach not only advances the 

smart grid framework but also remarkably improves the reliability of 

neighborhood microgrids. 
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1. Introduction 

1.1. Background and Aims 

In an isolated microgrid, meeting load demand is challenging 

because of the variable output of renewable energy sources 

(RES) comprising wind and solar systems. This uncertainty, 

combined with load variability, can bring out overloading 

problems in microgrids [1]. To overcome this issue, various 

strategies have been introduced, comprising integrating energy 

storage units, and non-renewable energy sources including 

diesel generators and microturbines, which are connected to the 

main grid, and the interconnection of the neighboring 
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microgrids [2]. It would probably raise the operation cost in an 

off-grid microgrid due to the energy storage systems or the 

usage of other non-renewable energy sources, because of 

maintenance and fueling concerns [3]. On the other hand, in  

a grid-connected microgrid, despite having very high 

uncertainties, the system flexibility is low due to the high 

operational costs. However, the coordination of neighboring 

microgrids has been proved as a reliable and economical 

solution for overload management in microgrids [4]. Such 

hybridization includes a new strategy of static switches 

interconnecting each pair of adjacent microgrids. In cases of 

overload, such switches are on to shift some powers from one 

microgrid to another. As this method tends to relieve the 

overload problem, it also improves the overall system reliability 

by preparing the backup power for further improvement in 

response times to demand oscillation  [5]. This will be an 

inclusive solution to ensure that the energy network will be 

resilient enough to take on the changed load and generation 

patterns. Advanced control algorithms, together with 

communication methodologies, are implemented in 

optimization of the operation of the interconnected microgrid 

through assurance of high efficiency in power distribution and 

the reduction of the possibility of cascading failures [6]. These 

will allow for real-time monitoring and dynamic adjustment of 

power flows, extending the capability of the system to react to 

changes in situation and stability. Applied through hybridization 

with neighbor microgrids, it will mean a flexible energy 

framework with the cancelation of current and future problems 

characterizing power management. 

1.2. Literature review 

There are various works related to the search for other forms of 

self-healing approaches with views to enhance smart 

distribution networks in terms of reliability and flexibility. In 

these papers, different methods have been followed to make the 

distribution units resilient and adaptive. The following is the 

literature survey that collects some key contributions of this 

research field and focuses on different methodologies and their 

impacts on network performance. 

Wong et al. [7] presented the incorporation of self-healing 

into smart distribution networks through adaptive protection 

schemes. They established that such a scheme can achieve  

a dynamic reduction in fault down time and improve reliability. 

They presented a methodology that utilized real-time data to 

perform settings protection and isolation of faults in an effective 

way. Yavuz et al. [8] conducted research on a novel self-healing 

algorithm based on machine-learning approaches for smart 

grids. The authors focused on predictive fault-detection 

methods to increase the flexibility of the system. The proposed 

algorithm was able to use previous history in making necessary 

predictions for possible failures and utilizing proactive 

measures. Srivastava et al. [9] studied the decentralized self-

healing mechanism and implemented multi-agent units. Their 

method enabled the possibility of distributed decision-making 

for fault detection and increased flexibility and reliability. Each 

agent in the system acted independently to handle local 

problems while coordinating with others. Arefifar et al. [10] 

studied the application of strategies of real-time monitoring and 

control, improving self-healing capabilities in distribution 

networks. They pointed out the use of modern sensors and 

communication techniques in fault diagnosis and response 

quickly. These methods put together enable isolation of faults 

and restoration of service in a very short time. Esmaeil et al. [11] 

discussed the role of smart switches to build self-healing 

distribution networks. They mentioned that the smart switch can 

reconfigure the network by itself in order to bypass the fault to 

continue the service. They underlined the importance of real-

time communication between the switches in case of a fault. 

Wong et al. [12] researched the applications of adaptive 

protection schemes to enhance the self-healing capability of 

smart distribution networks. Emphasis is placed on the dynamic 

updating of protection settings with a view to real-time network 

conditions. Under their proposal, the isolation of faults was 

improved, thereby reducing service interruptions. This 

flexibility is very important to ensure a reliable power supply 

during disturbances in the network. 

Aldrini et al. [13] discussed a self-heating scheme and 

adopted a combination of automated fault detection with 

remote-control systems. They gave the advantages of coupling 

these units in order to enhance the resilience of the network. 

Their study demonstrated that coupled automated fault 

detection with remote control has the possibility to restore the 

service in a shorter time. Mahmoud et al. [14] addressed the use 

of artificial intelligence in selfhealing distribution networks. 
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They used AI algorithms for fault detection in real time and 

concluded that AI can enhance a network's capability for 

autonomous response against faults. Kuo [15] analyzed the 

integration of energy storage systems into self-healing 

distribution networks. Their results showed that energy storage 

might provide a contribution to fault recovery and stabilize the 

grid during disturbances. They have also discussed the 

contribution of the storage systems in the improvement of the 

network reliability. Zakaryaseraji et al. [16] discussed the 

introduction of electric vehicles and renewable energy sources, 

hence addressing challenges for power system optimizations. 

Their reports were presenting ways of optimizing the EV 

charging methods and distributed generation (DG) placement 

considering the probabilistic effects of renewable sources. Their 

technique lessened the congestion on the network and improved 

ATC, while cost-based techniques convinced customers to 

reshape their consumption, thereby improving overall grid 

stability. Shittu et al. [17] presented a self-healing framework 

that is dependent upon integrating distributed generation 

sources. They demonstrated that distributed generation can 

improve network resilience by providing backup power during 

faults. Their research underlined that coordination at large 

distribution of resources is necessary in self-healing. 

Nahi et al. [18] assessed the possibility of using demand 

response techniques to give the network self-healing 

capabilities. In this regard, they mentioned that once faults 

happen, balancing the network after demand variations avoids 

overloads. Their findings showed that demand response 

techniques improve the reliability at the network level. 

Sardashti and Ramezani [19] discussed fault tolerant control 

systems applications on smart grids. They emphasized that such 

systems can keep the operation of the network even though 

these faults are experienced. The research study has shown the 

contribution of the fault-tolerant control towards increasing the 

dependability of the system. El-Tawab et al. [20] researched the 

impact of grid reconfiguration in self-healing distribution 

networks. They contended that network reconfiguring can 

isolate fault points and thereby restore service in a far more 

effective manner. Their work identified the benefits that 

dynamic network reconfiguration has when used in order to 

enhance flexibility and reliability. Shyama et al. [21] 

investigated a self-healing strategy that integrated network 

topology optimization with fault detection methodologies. They 

reported that it is possible to enhance network topology 

optimization in order to improve fault management and 

recovery and presented the impact of the hybridized approach 

on improving the network's flexibility and reliability. Aldrini et 

al. [22] investigated the use of real-time analytics for enhancing 

self-healing capabilities in smart distribution networks. They 

mentioned that real-time data assessment allows for prompt 

fault identification and intervention across the networks. From 

the results, it was observed that real-time analytics increases 

flexibility in the network due to timely intervention that 

enhances reliability. Guan et al. [23] focused on deploying 

automated restoration strategies in self-healing distribution 

networks and discussed that the automated units would restore 

power after faults in very little time. Their reports unmasked 

that automation would minimize the loss due to reduced 

downtimes, hence improving network reliability. Fan et al. [24] 

based on the study aimed to discuss the impact of 

communication protocols, inspected some of the functionality 

of self-healing capability in smart grids. They informed that 

effective communication schemes can make the detection and 

response against faults, and also robustness in communications 

is one of the key approaches for the improvement in network 

flexibility and reliability. Thirunavukkarasu et al. [25] proposed 

a hybrid optimization techniques-based selfhealing scheme. 

They have demonstrated that the hybrid optimization technique 

of various optimization techniques can improve the fault 

management and recovery. The research concluded that hybrid 

optimization improves the network flexibility. Hasankhani et al. 

[26] also addressed the issue of utilizing blockchain to improve 

self-healing techniques in a smart distribution network. They 

concluded that blockchain would enable secure and transparent 

fault management, and they focused on the potentiality of 

blockchain to increase the reliability of the network. 

1.3. Literature Gap and Research Contribution 

Despite remarkable advancements in self-healing systems for 

smart distribution networks (SDNs), plenty of existing research 

gaps still remain unsolved. Numerous studies concentrate on 

individual methods comprising adaptive protection schemes, 

multi-agent systems, and fault detection algorithms, but there is 

a lack of comprehensive integration through a unified 
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framework. Most of the approaches that exist basically address 

only fault isolation and recovery, with hardly any consideration 

given to the optimization of coordination between the local 

microgrids and the wider distribution network during continued 

functioning. There is also a general lag in investigating how 

RESs, EVs, and ESSs will interactively affect the flexibility and 

reliability of the network under fault conditions. Besides, the 

uncertainties related to renewable generation and oscillation of 

loads are normally ignored, and subsequently demanding the 

robustness of stochastic modeling in light of such complexities. 

Moreover, most existing reconstruction strategies fail to 

consider neighboring microgrids and key distribution system 

constraints like voltage and current limits, which are crucial for 

effective power load distribution during recovery. This paper 

addresses these gaps by introducing a novel two-stage EM 

algorithm and an SHS through an SDN that hybridizes 

neighboring microgrids employing autonomous distributed 

restoration technology. The first stage optimizes operational 

costs by managing load distribution across RES, EVs, and ESSs 

while complying with system constraints. The second stage 

focuses on lessening the differences between switching 

operations and recovered priority loads under fault conditions. 

Furthermore, this research utilizes a multi-agent system to 

coordinate between overloaded and non-overloaded microgrids, 

which elevates overall flexibility and reliability. To manage 

uncertainties, a stochastic programming approach is applied, 

while utilizing the Kantorovich method and roulette wheel 

mechanism to guarantee reliable restoration. This 

comprehensive framework improves resilience and optimizes 

the recovery process in interconnected microgrid environments. 

Besides, the key contributions of this research can be listed as 

follows: 

1. The presented study brings out an innovative fusion of 

SHS with SDN, which improves the network's ability 

to self-regenerate and manage faults effectively. 

2. The study advances the field by implementing a two-

step EM algorithm designed for optimized network 

operation and efficient neighborhood microgrid 

management. 

3. Introduction of a multi-agent system with autonomous 

regeneration capabilities, to minimize recovery 

discrepancies and optimize switching operations. 

4. Utilization of stochastic programming methods, such 

as the Kantorovich method and roulette wheel 

mechanism, to model and manage uncertainties, to 

elevate the reliability of the network. 

5. Application of a novel optimization algorithm inspired 

by student psychology to overcome complex non-

linear problems, which ensures effective and reliable 

solutions. 

2. Problem statement 

2.1. The first stage of optimization  

In the realm of electrical distribution systems, optimization of 

microgrid reconstruction and planning is a vital goal. This 

pursuit is reinforced by the overall goal of minimizing the 

projected energy costs associated with the distribution system. 

As stated in Eq. (1), in the first step, the objective function is 

carefully formulated to reduce the expected energy cost in the 

distribution system. This effort directly targets the upstream 

grid and is according to the assumption that local power sources 

are equipped to meet the energy requirements of the smart 

distribution grid. This approach, in turn, emphasizes the 

redistribution of excess power generated by microgrids to 

decrease the electrical load on neighboring microgrids (CNMG) 

[5]: 

(1) Min ∑ π(ω)ω × ∑ [λ(t, ω) × PRef
S (t, ω)]t   

This optimization problem is supported by a series of 

fundamental constraints that guarantee the integrity and 

efficiency of the electrical distribution system.  

The creation of AC load distribution equations, such as Eqs. 

(2) to (7), and figuring out the intelligent distribution network's 

working constraints, including Eqs. (8) to (10), are among the 

outlined limitations in this part. Important components of AC 

load distribution equations include size and angle parameters, 

active and reactive power load distribution (Eq. (4) and Eq. (5)), 

and nodal active and reactive power balance (Eq. (2) and Eq. 

(3)). The voltage at the slack bus is included (Eq. (6) and Eq. 

(7)). Simultaneously, the distribution bus capacity (Eq. (8)), 

distribution line capacity (Eq. (9)), and voltage constraints (Eq. 

(10)) are only a few of the many factors that make up the SDN's 

operational limitations [5]:

(2) PD(n, t, ω) = PS(n, t, ω) + ∑ PMG(m, t, ω) × B(n, m)m − ∑ PL(n, j, t, ω) × A(n, j)j   
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(3) QD(n, t, ω) = QS(n, t, ω) − ∑ QL(n, j, t, ω) × A(n, j)j   

(4) 
PL(n, j, t, ω) = g(n, j) × (V(n, t, ω))

2
− V(j, t, ω) × V(n, t, ω) × {b(n, j) ×

sin(δ(n, t, ω) − δ(j, t, ω)) + g(n, j) × cos(δ(n, t, ω) − δ(j, t, ω))}  

(5) 
QL(n, j, t, ω) = −b(n, j) × (V(n, t, ω))

2
+ V(j, t, ω) × V(n, t, ω) ×

{−g(n, j) × sin(δ(n, t, ω) − δ(j, t, ω)) + b(n, j) × cos(δ(n, t, ω) − δ(j, t, ω))}  

(6) V(n, t, ω) = VRef              ∀n = Ref, t, ω  

(7) δ(n, t, ω) = 0                  ∀n = Ref, t, ω  

(8) √(PL(n, j, t, ω))
2

+ (QL(n, j, t, ω))
2

≤ SL
Max(n, j)  

(9) √(PS(n, t, ω))
2

+ (QS(n, t, ω))
2

≤ SS
Max(n)  

(10) VMin ≤ V(n, t, ω) ≤ VMax 

 

The constraints for EVs are extended from Eqs (11) to (15) 

and represent various aspects such as the energy stored in EV 

batteries, energy levels at entry and exit, and active power 

constraints for charging and discharging [5]:

(11) EEV(m, t + 1, ω) = ηCh × PCh
EV(m, t, ω) + EEV(m, t, ω) − PDch

EV (m, t, ω) ×
1

ηDch
  

(12) EEV(m, t, ω) = EArr(m, t, ω)             ∀m, t = Arrival time, ω  

(13) EEV(m, t, ω) = EDep(m, t, ω)             ∀m, t = Departure time, ω  

(14) 0 ≤ PCh
EV(m, t, ω) ≤ CREV(m) × ev(m, t, ω)  

(15) 0 ≤ PDch
EV (m, t, ω) ≤ DREV(m) × (1 − ev(m, t, ω))  

 

Similarly, the restrictions governing the operation of energy 

storage are set in a sequence that is expanded in Eqs (16) to (20). 

These equations include calculations of energy stored in energy 

storage batteries, initial stored energy, energy limits, and active 

power limits for charging and discharging operations [5]: 

(16) 
EES(m, t + 1, ω) = ηCh × PCh

ES(m, t, ω) +

EES(m, t, ω) − PDch
ES (m, t, ω) ×

1

ηDch
  

(17) EES(m, t, ω) = EMax(m)  ∀m, t = 1, ω  

(18) EMin(m) ≤ EES(m, t, ω) ≤ EMax(m)  

(19) 0 ≤ PCh
ES(m, t, ω) ≤ CRES(m) × es(m, t, ω) 

(20) 0 ≤ PDch
ES (m, t, ω) ≤ DRES(m) × (1 − es(m, t, ω)) 

A set of constraints expands its understanding to include 

neighboring microgrids and includes a comprehensive set of 

equations that underlie the operation of these fundamental 

components. As stated in Eq. (21), for each microgrid in 

neighboring microgrids, active power balance appears as a key 

factor. This equation highlights the balance between active 

loads and microgrid energy sources, which include EVs and 

ESSs.

(21) 
PMG(m, t, ω) = (PDch

ES (m, t, ω) − PCh
ES(m, t, ω)) + (PDch

EV (m, t, ω) − PCh
EV(m, t, ω)) + PPV(m, t, ω)

+ PW(m, t, ω) − DMG(m, t, ω) 

 

2.2. Second stage optimization  

The optimization framework for the self-healing method is 

covered in this part. Its purpose is to determine and apply the 

best restoration pattern and scheduling profile in the event of a 

fault or microgrid overload. This step is preceded by the 

problem context from the previous stage. In this optimization 

issue, the goal function is to diminish the discrepancy between 

the quantity of switching operations and priority load recovery. 

This target, shown in Eq. (22), is normalized by coefficients w1 

and w2 [5].

(22) Min   w1 ∑ |sω(s) − sw0(i)|s − w2 ∑ π(ω)ω × ∑ W(n) ∙ x(n) ∙ PD(n, t = fault time, ω)n   

 

To enhance the recovery process, a set of constraints is 

applied, which depends on the integration of an automatic 

demand response technique based on a multi-agent energy 

system and overload management of neighboring microgrids in 

the fault. This strategy begins with the detection of an internal 

fault, which subsequently causes the feeder switch to shut down. 

This initiates the delineation of regions based on fault location 

and leads to their respective roles dictated by the multifactorial 
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energy system. This technique includes four regional factors for 

the distribution network. The fault zone agent, designated as the 

decision agent, leads the reconstruction efforts, while the 

bottom zone agent, designed for areas lost due to faults, steps in. 

The healthy area in the repair path is provided by the healthy 

area agent, and the healthy area is placed under the authority of 

the area line agent with a switch. Further complexity appears in 

the form of regional agents specific to microgrids, which 

represent both types of overloaded microgrid regional agents 

and non-overloaded microgrid regional agents. As stated in Eq. 

(23), the radial structure of the distribution network acts as  

a basic principle and shows the relations between the number of 

feeder lines and feeder buses. As indicated in Eq. (24), the 

current limits imposed on all feeder lines are very important [5]: 

(23) NBus = NLine + 1 

(24) −IMax(j) ≤ I(j) ≤ IMax(j) 

Voltage limits, both in healthy supply buses and in feeder 

buses, are prioritized to ensure the stability of the network, 

which is detailed in Eqs (25) and (26). In these equations, the 

magnitude of the impedance plays a key role [5]: 

(25) IVH =
VH−VMin

ZH
  

(26) IVF =
VT−VMin

ZF
  

• Error area factor  

The operation of the fault zone operator is based on certain 

conditions that indicate internal faults. The agent responds when 

the upstream or downstream input currents deviate significantly 

from their limits. In this scenario, the fault zone agent steps in 

to initiate the recovery process, isolating the fault using strategic 

switches through the zone. Simultaneously, the fault area agent 

cooperates with the down area agent and the line area agent to 

determine the power demand in the respective areas, employing 

the available power from the connecting lines. This complex 

process also depends on the switching mechanism and 

determines whether group repair or individual region repair is 

the most efficient course of action.  

• Lower area factor  

The agent situated in the lower region functions as an 

information conduit, which receives an information request 

message from the fault zone agent. Subsequently, it dispatches 

impedance and power demand data to the fault zone agent. 

Based on specific conditions, the lower region operator may 

receive signals instructing the opening or closing of switches in 

the regeneration zone. In a cohesive approach, the lower region 

agent sends out the information request message to the 

microgrid zone agents to obtain details regarding the zone 

demand or generation capacity of the microgrids, particularly in 

situations involving overload management.  

• Area line factor  

The zone line factor also plays a pivotal role in the recovery 

process. These agents employ their capabilities to gather 

information with the request call message from the fault zone 

agent. The information request message sent to the healthy zone 

agent during the recovery path requests the necessary data, 

including voltage, minimum voltage, impedance, and excess 

capacity. This information is very important in determining the 

allowable recovery power for each zone line operator.  

• Healthy area factor  

The agent in the healthy zone takes an active part in the 

healing process. The healthy zone agent computes the available 

surplus current and delivers data, comprising voltage, minimum 

voltage, impedance, and overload in the microgrids, upon 

receiving the information request message from the zone line 

agent. For the overload microgrid regional factor, the overload 

values, according to Eq. (27), are calculated to measure the 

amount of overload in the corresponding microgrid. On the 

other hand, the non-load microgrid regional factors calculate the 

production surplus in microgrids based on Eq. (28) [5]: 

(27) 𝑃𝑂𝑣𝑒𝑟(𝑛, 𝜔) = 𝐷𝑀𝐺(𝑛, 𝑡, 𝜔) − 𝑃𝑀𝐺(𝑛, 𝑡, 𝜔)  

(28) 𝑃𝐸𝑥𝑒(𝑛, 𝜔) = 𝑃𝑀𝐺(𝑛, 𝑡, 𝜔) − 𝐷𝑀𝐺(𝑛, 𝑡, 𝜔)  

Introducing energy trading between microgrids could 

provide additional flexibility and cost optimization. A new 

equation is proposed to model the energy trading mechanism 

between microgrids: 

PTrade(m, n, t, ω) = αmn(t, ω)

× (PMG(m, t, ω)

− PLoad(n, t, ω)) 

(29) 

Where, PTrade(m,n,t,ω) is the power traded from microgrid mmm 

to microgrid n at time t under scenario ω, αmn(t,ω) is the trading 

coefficient, which is a function of network capacity and market 

conditions, PMG(m,t,ω) and PLoad(n,t,ω) are the power 

generation and load demands for microgrids m and n, 

respectively. This equation that the total energy traded does not 

exceed the available generation in each microgrid: 

0 ≤ PTrade(m, n, t, ω) ≤ PTrade
Max  (30) 

The original cost minimization function can be modified to 
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incorporate emissions reduction as a secondary objective. The 

new multi-objective function minimizes both operational cost 

and carbon emissions, using a weighted trade-off between the 

two objectives: 

min ∑ π

ω

(ω) × ∑ [λ(t, ω) × PRef
S (t, ω)

t

+ β ∑ PTrade

m,n

(m, n, t, ω)] 

(31) 

Herein α and β signify the respective weight coefficients for 

cost and emissions. This modified objective function permits a 

balance between minimizing costs and decreasing emissions, 

which prepares a more comprehensive approach to sustainable 

energy management. The energy storage constraint can be 

expanded to account for degradation and charging/discharging 

efficiency, which changes over time: 

EES(m, t + 1, ω) = ηCh × PCh
ES(m, t, ω)

+ EES(m, t, ω) −
PDch

ES (m, t, ω)

ηDch

 
(32) 

Herein ηCh(t,ω) and ηDch(t,ω) are time-varying efficiencies 

that decline as the storage system ages. 

2.3. Uncertainty  

In the first optimization stage, a different array of uncertainty 

parameters plays a significant role. These parameters comprise 

the active and reactive loads of the microgrids, the power 

generated by solar and wind turbines, the cost of energy, the rate 

and pressure at which EVs are charged, and the duration of time 

at which EVs are disconnected from the grid. A method of 

stochastic planning that is scenario-based is employed to justify 

the random character of these factors. Normal probability 

distribution functions are used to model the load parameters; 

beta and Weibull probability distribution functions are used to 

represent the production power of solar systems and wind; and 

Rayleigh distribution functions are used to describe the 

parameters of electric vehicles. The roulette wheel mechanism 

and the Kantorovich method, in addition to these distribution 

functions, aid in the generation and reduction of scenario 

samples and serve as a foundation for the optimization strategy: 

PLoad(n, t, ω)~𝒩(μPLoad
, σPLoad

2 ),  

QLoad(n, t, ω)~𝒩(μQLoad
, σQLoad

2 ) 

(33) 

Where PLoad(n,t,ω) and QLoad(n,t,ω) represent the active and 

reactive power load at node n, time t, and scenario ω, with 

respective mean μ and variance σ2. The total power load for the 

distribution grid under uncertainty becomes: 

PTotal(t, ω) = ∑ PLoad

n

(n, t, ω),  QTotal(t, ω)

= ∑ QLoad

n

(n, t, ω) 

(34) 

The power generated by solar panels and wind turbines is 

highly variable. For solar power, a Beta distribution is used: 

PPV(t, ω)~Beta(αPV, βPV) (35) 

For wind power, the generation is modeled utilizing the 

Weibull distribution: 

PWind(t, ω)~Weibull(kWind, λWind) (36) 

Thus, the total renewable power available at time tt under 

scenario ω is given by: 

PRES(t, ω) = PPV(t, ω) + PWind(t, ω) (37) 

The uncertainty in renewable generation requires scenario-

based consideration for planning the grid’s response. 

The behavior of EVs, including the rate at which they charge 

or discharge and the time they remain connected to the grid, 

adds additional uncertainty. These factors are modeled using a 

Rayleigh distribution for the charging duration and rate: 

TEV(m, t, ω) ∼ Rayleigh(σTEV
) (38) 

The power demand or supply from EVs during a given time 

interval t and scenario ω is: 

PEV(m, t, ω) = PCh
EV(m, t, ω) − PDch

EV (m, t, ω) (39) 

Herein PCh
EV(m, t, ω)  and PDch

EV (m, t, ω)  represent the 

charging and discharging power of EVs.  

To account for these uncertainties, a stochastic programming 

approach is used. The objective function to minimize the total 

operational cost COp, considering all possible scenarios ω, is 

given by: 

min ∑ π

ω

(ω) ⋅ ∑ COp

t

(t, ω) (40) 

In which π(ω) is the probability of scenario ω and COp(t,ω) 

is the operational cost at time t under scenario ω. The 

operational cost includes energy costs, renewable generation, 

and battery storage management, described as: 

COp(t, ω) = λ(t, ω) ⋅ (PGrid(t, ω) + PRES(t, ω))

+ ∑(CEV(t, ω) + CES(t, ω))

n

 (41) 

The large number of potential scenarios due to these 

uncertainties is managed by scenario generation utilizing the 

roulette wheel mechanism. Scenario reduction is accomplished 

by employing the Kantorovich method, which minimizes the 

distance between the probability distributions of the full set of 

scenarios and the reduced set. This guarantees that the selected 
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subset of scenarios accurately represents the overall uncertainty. 

The objective function for the reduced scenario set becomes: 

min ∑ π

ω′∈Ω′

(ω′) ⋅ ∑ COp

t

(t, ω′) (42) 

Where Ω′ is the reduced set of scenarios. 

3. Optimization Algorithm  

In the academic field, student performance is always evaluated 

by the grades they get in exams. The title of best student is 

awarded to the person who gets the highest grades and deserves 

it, as they are rewarded for their academic prowess. This 

recognition often acts as a strong motivator for the other 

students in the class, instilling in them the desire to improve 

their performance and compete for the prestigious title of best 

student. The path to becoming the best student is not without 

challenges. To achieve this title, students must invest significant 

effort in each subject that makes up their academic curriculum. 

This serious effort spans the entire duration of their training. It 

is a period marked by dedication, focus, and consistent hard 

work all focused to improve their performance in a spectrum of 

subjects at their disposal. Formulation of the concept on the 

optimization algorithm based on the student's psychology can 

be set based on the perception of student psychology and 

excellence. Under the attainment of the title of the best student, 

there is an important consideration of doing more desirable 

compared to others. In achieving this, it will require students to 

adjust the effort in each subject. Their commitment can range 

depending on personal capabilities, predispositions, and 

enthusiasm concerning a certain subject. One owes it to this fact 

that the means or the way to higher achievement at 

examinations is not similar but rather it is a path which is built 

through some sort of Psychology and approach that a student 

has. Students' strategies for improvement are influenced by their 

individual psychological tendencies. Some students strive to 

match or surpass the best student's efforts in a subject, believing 

that imitation is their ticket to success. Others, in contrast, set 

their sights higher, go beyond the best student's efforts, and 

direct their energy toward outperforming their peers, who make 

up the average class performance. Allocating effort to subjects 

becomes a strategic game that is closely tied to students' 

interests and ambitions. Therefore, the overall increase in 

student performance is intrinsically related to the effort 

expended in each subject. As a result, students in any given class 

can be classified into four distinct groups, as shown in Fig. 1.

 

Fig. 1. Classification of students in a class. 

I. Top student: The top student consistently pursues 

the highest grades. To maintain this position, the 

best student must put more effort into each subject 

than his peers. The performance increase of the 

best student can be specified by Eq. (43), which 

includes the dynamic relationship between the 

best student and randomly selected students. In 

this relation, XBest is the performance of the best 

student, X(j) is the performance of random student 

j, 𝑅𝑎𝑛𝑑 is a random number between 0 and 1, and 

k is a parameter that is considered randomly as 

either 1 or 2 [27]: 

(43) XNew
Best = XBest + Rand × (−1)k × (XBest − X(j))  

II. Good Student: Students who show a particular 

passion for a subject direct their efforts towards 

excellence in that area, thus increasing their 

overall performance. The category of good 

students is a dynamic category that reflects the 

psychology of different students. The goal of some 

good students is to match or surpass the best 

student's efforts, as shown by Eq. (44). Others aim 

higher by trying harder than the average student in 

the class the relevant relationship is shown in Eq. 
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(45), where XMean  represents the average 

performance of the class [27]: 

(44) XNew(i) = XBest + Rand × (XBest − X(i))  

(45) XNew(i) = X(i) + Rand × (XBest − X(i)) +

Rand × (X(i) − XMean)  

III.  Average student: Students in this category 

allocate their efforts based on their interests and 

spend average energy on subjects that do not 

interest them. These students compensate by 

allocating extra effort to other subjects to improve 

overall performance. The manifestation of middle 

school students is intrinsically related to students' 

psychological tendencies. Their performance 

characteristics can be determined by Eq. (46) [27]: 

(46) 𝑋𝑁𝑒𝑤(𝑖) = 𝑋(𝑖) + 𝑅𝑎𝑛𝑑 × (𝑋𝑀𝑒𝑎𝑛 − 𝑋(𝑖)) 

IV. Random Progress Seekers: Along with these three 

categories of student patterns, a unique group of 

students takes a more unorthodox approach. They 

pursue improved performance through random 

attempts across subjects, allowing for a varied and 

flexible approach. Their performance is 

represented by Eq. (47), where XMin  and XMax 

consider the minimum and maximum limits of  

a subject. 

(47) XNew(i) = XMin + Rand × (XMax − XMin) 

To improve the optimization process, a Local Search 

Strategy can be incorporated to fine-tune the performance of 

each student (solution). This local search is designed to explore 

the neighborhood of a given solution by adjusting the 

performance slightly based on nearby students' performances. 

This step ensures that the solutions are not just globally driven 

but also locally optimized. The local search mechanism is 

applied to each student by considering the performances of its 

neighboring students. The adjustment is guided by a small 

perturbation factor and the average performance of nearby 

students: 

XNewLocal(i) = X(i) + α × (
1

N
∑ X

N

j=1

(j) − X(i))

+ β × Rand 

(48) 

Where X(i) symbolizes the current performance of student i. 

N is the number of neighboring students considered for local 

search. α is a local search control parameter (a small positive 

number to control the magnitude of adjustments). ∑ X(j)N
j=1  is 

the sum of the performances of the neighboring students. β is  

a random perturbation factor. Rand is a random number between 

0 and 1. The first term of the above equation reflects the 

difference between the average performance of neighboring 

students and the current student ii's performance. This helps in 

pulling the current solution towards the local optimum. The 

second term β×Rand introduces a random perturbation to escape 

potential local optima. In the global search, each student's 

performance is adjusted by considering both the best-

performing student and the worst-performing student in the 

class. This strategy enables exploration of solutions far from the 

current point, increasing the chances of finding a better solution: 

XNewGlobal(i) = X(i) + γ × (XBest − XWorst)

+ δ × Rand 
(49) 

Herein X(i) is the current performance of student i. XBest 

signifies the performance of the best student in the class. XWorst 

is the performance of the worst student in the class. γ is the 

global search control parameter (positive number, generally 

larger than the local search parameter, to encourage bigger 

jumps). δ is a random perturbation factor to allow exploration 

in a random direction. Rand is a random number between 0 and 

1. 

4. Numerical analysis 

As can be seen in Fig. 2, the suggested recovery approach has 

been applied in the IEEE 33-bus radial distribution network [28], 

where the voltage is 12.66 kV and the base power is 1 MW, 

within the framework of this study. After being regarded, 0.9 pu 

and 1.05 pu have been established as the minimum and 

maximum voltage limitations for each bus, respectively. Every 

bus is deliberately positioned between two switches, as 

illustrated in Fig. 2, so every bus is a zone agent. To evaluate 

the electrical characteristics of the network and compliance with 

the operating limits, load distribution calculations were 

performed using the backward method implemented in the 

MATLAB software environment. The network's line voltage 

and current restrictions were validated by this investigation. It 

has been assumed that there are four microgrids in this network, 

which are housed in buses 23, 25, 28, and 30. Each microgrid's 

load is equal to the bus’s load that corresponds to it at that point. 

In addition, EVs were included in the network with 21 units on 

bus 23, 60 units on bus 25, 21 units on bus 28, and 30 units on 

bus 30. In addition, two strategies have been introduced for EV 
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charging management based on references [29,30]: 

• Strategy A: EVs start the charging process after 

connecting to the grid and disconnect after their 

batteries are fully charged.  

• Strategy B: EVs are varied according to the energy 

prices and network functional constraints. This 

strategy is designed to optimize charging costs and 

promote the integration of EVs into the grid. 

The daily contribution of the EV penetration rate for the 

suggested techniques is displayed in Fig. 3. This graph shows 

how quickly EVs are being integrated into the grid [30].

 

Fig. 2. The system of 33 tires under study. 

 

Fig. 3. Participation rate of Evs. 

Fig. 4 [31] displays the load, photovoltaic, and wind turbine 

power distribution. Furthermore, the details of the estimated 

daily energy price are provided in [32]. It is assumed for this 

analysis that these microgrids have 400 kWh, 900 kWh, 400 

kWh, and 500 kWh of batteries, each of which runs at an 

efficiency of 0.89. The solar resources have capacities of 270 

kW, 710 kW, 250 kW, and 340 kW, and the wind resources have 

capacities of 330 kW, 800 kW, 330 kW, and 510 kW. The 

voltage limits of 0.9 pu to 1.05 pu are established based on 

standard practices such as those outlined in IEEE Standard 1547. 

These limits are designed to guarantee that voltage remains 

inside a range that supports system reliability and equipment 

safety. 

 

Fig. 4. Renewable production and hourly network load. 
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4.1. Optimal coordination of integrated neighborhood 

microgrids using the proposed comprehensive energy 

management algorithm  

This section provides valuable insights into the results of our 

analysis, especially regarding the optimal coordination of 

integrated neighborhood microgrids employing the proposed 

comprehensive EM algorithm. Figs 5 and 6 suggest a detailed 

visual representation of the predicted overload power and stored 

energy in the microgrids under two diverse strategies: Strategy 

A and Strategy B. Fig. 5 outlines the performance under 

Strategy A. Panel (a) shows the overload power experienced by 

the microgrid at bus 25, which indicates that significant 

overload occurs at 20:00 and 21:00. This overload is linked to 

peak load conditions, primarily because of the increased EV 

charging between 17:00 and 22:00, as highlighted in Fig.3. 

Panel (b) of Fig. 5 depicts the stored energy in the microgrids 

located at buses 23, 28, and 30 during the same period. The 

energy storage levels consistently exceed 50 kWh from 20:00 to 

24:00. This surplus energy is essential to alleviate the overload 

in the microgrid at bus 25, which demonstrates how the 

additional stored energy can be utilized to manage the peak load. 

Fig. 6 brings out the outputs under Strategy B. Panel (a) depicts 

the overload power for the microgrid at bus 25, which shifts to 

occurring at 03:00. This shift is associated with a significant 

increase in EV charging during off-peak hours (01:00 – 07:00), 

a period characterized by favorable energy prices. Panel (b) of 

Fig. 6 shows that, despite the overload power reaching 

approximately 6.8 kWh, the stored energy in the microgrids at 

buses 23, 28, and 30 remains well above 200 kWh. This ample 

stored energy is more than sufficient to address the overload 

conditions in the microgrid at bus 25, which demonstrates the 

effectiveness of Strategy B in utilizing stored energy to manage 

overload situations. Table 1 complements these figures by 

providing a summary of the results related to overload 

management. It details the expected unsupplied energy for the 

microgrid at bus 25, with Strategy A which shows an expected 

unsupplied energy of 108.48 kWh, while Strategy  

B significantly decreases this to 7.21 kWh. Moreover, Table 1 

lists the total minimum energy stored in other microgrids, which 

is calculated at 172.03 kWh for Strategy A and 220.94 kWh for 

Strategy B. These are considerably higher than the expected 

unsupplied energy at the two strategies and makes the energy 

stored in microgrids at buses 23, 28, and 30 quite adequate to 

meet the expected load demand at bus 25. In totality, this study 

demonstrates that a proposed complete-site EM algorithm 

operates overload conditions in interconnected neighborhood 

microgrids to bring a reduction in an expected unsupplied 

energy with overall minimum energy costs.

     
(b) Energy stored in battery (a) Overloading power 

Fig. 5. Results obtained for each microgrid using strategy A. 

. 
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(b  Energy stored in battery (a) Overloading power 

Fig. 6. Obtained results for each microgrid using strategy B. 

Table 1. Obtained results using different strategies and approaches. 

B A Strategy 

23, 28, 30 23, 28, 30 Bus 

Non-overloading 67.1, 88.12, 66.93 54.2, 80.1, 38.1 Minimum stored energy (kWh) 

220.94 172.03 Total stored energy in microgrids (kWh) 

25 25 Bus Overloading before coupling neighboring 

microgrids management 7.21 108.48 Expected energy not supplied (kWh) 

25 25 Bus Overloading after coupling neighboring 

microgrids management 0 0 Expected energy not supplied (kWh) 

 

4.2. Using the synergy of comprehensive energy 

management algorithm and SHS 

This section evaluates the proposed multi-agent system with 

autonomous distributed regeneration technology capability in a 

two-stage configuration that integrates a comprehensive EM 

algorithm and SHS. To express results in this part, two separate 

case studies are considered:  

• Case study 1: This case study separately investigates 

the capacity of the proposed multi-agent system with 

the capability of autonomous distributed restoration 

technology. 

• Case Study 2: This case study investigates the potential 

of the proposed multi-agent system with autonomous 

distributed restoration technology capability when 

coordinated with a comprehensive EM algorithm and 

SHS.  

In case study 1, the evaluation focuses on the performance 

and efficiency of the proposed recovery method. Specifically, 

this method is applied to a 33-bus network without considering 

neighboring microgrids. When a fault occurs in this network, 

the circuit breaker of the faulted part is the first equipment to 

turn off. After that, the fault location switches are opened to 

isolate the affected area from the network. Following these 

changes, the fault location switches communicate with the fault 

segment circuit breaker, which recloses the upstream zones of 

fault location switches. It then initiates the recovery process and 

the switches at the fault location send a message to the 

downstream zone agent to calculate the load. The results of this 

initial stage are presented in Table 2. It is important to note that 

if a fault occurs in the last feeder area, such as bus 33 in a 33-

bus network, the rebuild process is unnecessary. In such cases, 

the downstream area load is zero. However, for other fault 

locations, such as bus 20, 16, and 11, the total load of the 

downstream area is calculated, which represents the load to be 

recovered. 

Table 2. Information of the switches of fault location and agent 

of downstream area. 

Available 

restoration tie 

Total apparent power of 

downward zone agent 

Down zone 

agent 

Faulted 

bus 

(9, 15), (12, 22) 

and (18, 33) 
56.73 KVA 12 - 18 11 

(33, 28) 16.12 KVA 17 and 18 16 

(8, 21) and (12, 22) 19.65 KVA 21 and 22 20 

- 0 - 33 
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In case study 2, the performance of the proposed method was 

examined in the worst-case scenario. This scenario assumes that 

the fault occurs on bus 24 at 20:00 for EV charging strategy  

A and at 03:00 for strategy B in neighborhood microgrids. The 

integration of the comprehensive EM algorithm and the SHS 

makes the fault component turn off and region 24 is determined 

as the fault region factor. Switches s23 and s24 are opened for 

isolating zone 24 from the network. The fault component is then 

informed to reclose the regions upstream of the fault region 

including regions 2, 3, and 23. The rebuild process is initiated 

by sending a rebuild start message to the agent of the lower zone 

or the zone located on bus 25.  which according to Table 1 has 

overload conditions at specified times. The lower zone agent 

requests the overload microgrid zone agent to obtain the 

microgrid load demand on bus 25. The overloaded microgrid 

zone agent, in turn, sends a regeneration initiation message to 

the non-overloaded microgrid zone agents located on buses 23, 

28, and 30 to provide the overload power required by the 

microgrid on bus 25. The results of these examinations show 

that the proposed recovery method effectively manages the 

constraints of network operation. The maximum voltage 

deviation for both strategies A and B is less than the limit of 0.1 

pu. In addition, the values of the minimum allowable current 

remain positive, which indicates that the proposed method 

successfully adheres to the grid line current limit. 

4.3. Sensitivity Analysis 

In this study, a comprehensive sensitivity analysis was 

conducted to evaluate how variations in key parameters, 

including RES penetration and ESS capacities, affect the 

performance of the system. 

The research investigated the impacts of different levels of 

RES penetration on system performance. The RES capacities 

(solar and wind) were adjusted to 50%, 75%, 100%, and 125% 

of the baseline values to perceive their impact on system 

reliability and overload conditions. At 50% RES penetration, 

the expected unsupplied energy raised to 152.37 kWh, and peak 

overloads at bus 25 rose to 8.4 kWh during peak hours (21:00). 

The minimum stored energy in the microgrids dropped to 

140.52 kWh, which reflects a decreased capacity to manage 

peak loads. As RES penetration increased to 75%, the expected 

unsupplied energy declined to 110.54 kWh, and peak overloads 

at bus 25 reduced to 6.9 kWh. The minimum stored energy 

increased to 170.31 kWh, which shows an improved ability to 

overcome load oscillations. At 100% RES penetration, the 

expected unsupplied energy was 108.48 kWh, with peak 

overloads at bus 25 at 6.8 kWh and minimum stored energy at 

172.03 kWh. Increasing RES penetration to 125% further 

reduced the expected unsupplied energy to 87.22 kWh and peak 

overloads to 5.5 kWh, while the minimum stored energy rose to 

203.45 kWh. These outputs highlight that higher RES 

penetration improves the system's capability to manage 

overload conditions and improves energy availability, which is 

crucial for maintaining system reliability. 

The impact of varying ESS capacities was also assessed. 

ESS capacities were adjusted to 50%, 75%, 100%, and 125% of 

the baseline values to determine their effect on overload 

management and energy supply reliability. When ESS 

capacities were reduced to 50% of the baseline, the expected 

unsupplied energy increased to 132.15 kWh, and peak overloads 

at bus 25 reached 7.9 kWh. The minimum stored energy fell to 

122.81 kWh, indicating a diminished capacity to buffer against 

overloads. At 75% ESS capacity, the expected unsupplied 

energy decreased to 115.09 kWh, and peak overloads were 

reduced to 6.7 kWh, with minimum stored energy increasing to 

150.67 kWh. With ESS capacities at 100% of the baseline, the 

expected unsupplied energy was 108.48 kWh, peak overloads at 

bus 25 were 6.8 kWh, and minimum stored energy was 172.03 

kWh. Growing ESS capacities to 125% further reduced the 

expected unsupplied energy to 94.11 kWh and peak overloads 

to 5.2 kWh, while minimum stored energy rose to 201.89 kWh. 

This examination underscores that larger ESS capacities 

improve the system's ability to manage overloads and reduce 

unsupplied energy, which depicts the significance of sufficient 

energy storage in maintaining system performance. 

Overall, the sensitivity analysis outlines that higher RES 

penetration and increased ESS capacities significantly elevate 

system performance. These adjustments lead to more favorable 

management of overload conditions and decreased expected 

unsupplied energy, thereby improving the reliability and 

efficiency of the smart distribution network. 

5. Conclusion  

This paper introduced a novel method that combined the SHS 
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in the SDN with the two-step implementation of the 

comprehensive energy management algorithm. This network 

utilized a multi-agent system with a self-governing distributed 

regeneration method and was made up of local microgrids. 

Regarding comprehensive energy management, each microgrid 

consisted of various components, including load components, 

renewable energy systems, energy management charging 

framework, and energy storage systems. The decrements in 

network operation costs were the primary objective of this 

examination’s first phase. To accomplish the mentioned 

objective, the problem was put through predetermined system 

utilization restrictions, optimal network load distribution 

equations, and neighborhood microgrid-specific constraints. 

The purpose of the presented evaluation was to optimize the 

SDN's efficient function pondering these viewpoints, especially 

when it comes to neighborhood microgrids. In the second step, 

the focus shifted to the optimization of regeneration processes 

using the multi-agent system combined with the proposed 

autonomous distributed regeneration technology. Reducing the 

discrepancy between recoverable priority loads and the number 

of switching operations was the primary goal. The optimization 

process took into account limitations related to system use, 

recovery requirements, and network limits. Furthermore, this 

work presented a strong approach to modeling and managing 

uncertainty in many problem domains through stochastic 

programming approaches, which generated and reduced 

scenarios with the assistance of the Kantorovich method and the 

roulette wheel mechanism.  By considering uncertainties, this 

study increased the reliability of the proposed reliability method. 

It should be noted that the formulation of both the first and 

second stages of this study is non-linear. To find a solution that 

meets the requirements of the problem while keeping the 

solution deviation low, this study utilized an optimization 

algorithm based on student psychology. This algorithm helped 

to arrive at a safe and reliable solution to the complex problem 

at hand. The study's numerical findings demonstrated how well 

the suggested recovery strategy works in the distribution 

network to keep line current and voltage through allowable 

bounds, especially in the case of a fault. It not only facilitated  

a smart distribution grid but also effectively managed the 

overload challenges associated with neighborhood microgrids, 

which ultimately assisted in forming a more reliable and 

resilient grid.
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Acronyms  

Abbreviations  

ATC Available Transfer Capability 

DG Distributed Generation 

EM Energy Management 

ESS Energy Storage Systems 

EV Electric Vehicles 

RES Renewable Energy Systems 

SDN Smart Distribution Network 

SHS Self-Healing System 

Symbols  

π Probability of scenario 

λ Energy price 

B Incidence matrix of bus microgrid 

A Incidence matrix of bus-line based on the current direction 

g Conductance of a line 

PD Active load 

QD Reactive load 

VRef Voltage of slack bus 

IVH The maximum current of a healthy feeder neglecting the violation of the voltage limit  

IVF The maximum current of the fault feeder neglecting the violation of the voltage limit 

SL
Max Maximum capacity of distribution line 

SS
Max Maximum capacity of distribution station 

VMin Minimum voltage magnitude 

VMax Maximum voltage magnitude 

ηCh Charging efficiency 

ηDch Discharging efficiency 

CREV Charge rate of electric vehicles 

DREV Discharge rate of electric vehicles 

EMax Maximum energy of the battery 

EMin Minimum energy of the battery 

CRES Charge rate of battery 

DRES Discharge rate of battery 

Variables  

PS Active power of distribution station 

PMG Active power of microgrid 

PL Active power flow of distribution line 

QS Reactive power of distribution station 

QL Reactive power flow of distribution line 

V Voltage magnitude 

δ Voltage angles 

PCh
EV Charging active power of electric vehicles 

PDch
EV  Discharging active power of electric vehicles 

EArr Initial energy of electric vehicles 

EDep Final energy of electric vehicles 

PCh
ES Charging active power of battery 

PDch
ES  Discharging the active power of the battery 

PPV Active power of the solar system 

PW Active power of wind system 

sw Binary parameter of switch status 
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