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Highlights  Abstract  

▪ A collaborative optimization method based on 

an improved NSGA-II algorithm is proposed. 

▪ Two types of coal-guiding drums are designed 

and analyzed. 

▪ An improved NSGA-II strategy based on 

spatial density is introduced. 

▪ This collaborative optimization method 

significantly enhances the reliability of the 

drum. 

 The structure of coal shearer drums significantly influences the coal-

loading efficiency and load fluctuations of thin seam coal shearers. To 

enhance drum efficiency and reliability, this paper proposes a 

collaborative optimization method based on an improved NSGA-II 

algorithm. Initially, using the Discrete Element Method (DEM), we 

analyze the impact of helical vanes on coal-loading performance and 

investigate novel designs for two types of coal-guiding drums. To 

optimize dynamic performance, concepts like spatial density and 

adaptive radius are introduced, proposing an NSGA-II enhancement 

strategy based on spatial density for the collaborative optimization of 

drum structure and motion parameters. Finally, the entropy-weighted 

TOPSIS method is used for subjective evaluation to select the optimal 

solution. Research findings demonstrate that this collaborative 

optimization method significantly enhances drum reliability, reduces 

load fluctuations by 46.34%, increases coal-loading efficiency by 

7.06%, and decreases coal-loading power by 27.31%. 

  Keywords 
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1. Introduction 

Coal is one of the most abundant fossil fuels on Earth, 

accounting for 30% of primary energy sources [1]. There are 

vast reserves of thin coal seams globally, and with 

advancements in technology and increasing market demand, the 

mining of thin coal seams has become an economically viable 

option. Due to the thickness of thin coal seams not exceeding 

1.5 meters, the diameter of the mining machine drum is limited 

by the working space, which affects the overall performance of 

the drum [2, 3]. 

In the actual coal-loading process, coal particles often 

experience blockage, significantly reducing the drum's coal-

loading performance [4]. In order to enhance the coal-loading 

performance of coal miner drums, scholars have studied the 

structural and kinematic parameters of the drums and analyzed 

the potential impact of these factors on the coal-loading 

performance. Sun compared the coal-loading performance of 
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coal mining machine drums and spiral conveyors, studying the 

effect of blade axial inclination angle on the coal-loading 

performance of the drum, and established the relationship 

between the coal-loading performance of coal mining machine 

drums and factors such as vane axial inclination angle, style, 

hub shape, and diameter [5]. Zhang studied two coal discharge 

methods, namely projection and extrusion, and obtained the law 

of the effect of drum diameter on the axial velocity, coal-loading 

velocity, and trough depth of coal particles [6].  

Conventional thin seam coal miner drums usually use 

relatively simple helical vanes. In the coal cutting stage, the 

picks are in contact with the coal wall and are subject to large 

loads, which are easy to wear out, but it is more convenient to 

replace the picks after wear. However, in the coal loading stage, 

the vanes are subjected to impact loads and wear severely, 

resulting in a significant decrease in the drum's coal-loading 

performance after its failure, and it is also more troublesome to 

replace and repair the vanes, which significantly reduces the 

overall production efficiency [7]. Wan, through the analysis of 

the dynamic response of cutting equipment, discovered that 

impact loads are the primary cause of drum vibration [8]. Meng 

proposed a mechanical-hydraulic co-simulation method to 

study the dynamic response of Chock-shield supports to impact 

loads. The research results indicate that this method can 

accurately identify the dangerous points of hydraulic support 

reliability[9]. Zhang designed a multi-point impact drum, and 

through discrete element coal breaking experiments, it was 

found that the multi-point impact drum could improve its 

performance by more than 20% in terms of both coal breaking 

capacity and reduction of unit energy consumption [10]. Gao 

proposed a double-stage differential rotation drum, and the 

study showed that the drum's coal-loading performance was 

optimized when the helix angle of the front drum was 18° and 

the helix angle of the rear drum was 30° [11]. 

Discrete Element Method (DEM) is currently a primary 

method used to address particle-related issues, where it 

simulates the movement of materials using particles, with 

particle motion and force complying with Newton's laws. P.A. 

Cundall first applied DEM to studies related to rock structures 

[12]. Liu analyzed the wear of mining machine vanes using 

EDEM discrete element simulation software, obtaining the wear 

patterns of the helical vanes [13]. 

On the other hand, multi-objective intelligent algorithms are 

increasingly applied in engineering to solve optimization 

problems with multiple interrelated objectives. Currently, there 

are many intelligent optimization algorithms and improvement 

strategies[14-16]. NSGA-II is one of the most mainstream 

multi-objective genetic algorithms, with advantages mainly in 

non-dominated sorting, diversity preservation, and strong 

adaptability [17-21]. When a problem has multiple interrelated 

objectives, NSGA-II can provide better performance and a more 

comprehensive solution set [22-26]. Liu established a multi-

objective optimization function with traction speed as the 

design variable and drum load, reduced specific energy 

consumption, and coal loading rate as comprehensive indicators. 

They used the NSGA-II optimization algorithm to obtain the 

optimal traction speed and experimentally validated the 

accuracy of the simulation[27]. Hao introduced adaptive 

balance parameters to improve the convergence and solution set 

diversity of the NSGA-II algorithm, and through benchmark test 

functions and practical applications, demonstrated the superior 

characteristics of the improved NSGA-II algorithm [28]. Chen 

validated the reliability of DEM simulations and obtained the 

optimal design parameters for the screw conveyor using the 

NSGA-II multi-objective optimization algorithm[29]. 

Past studies have mainly analyzed the performance of screw 

drums through theoretical, experimental, numerical analysis, 

and intelligent algorithms, achieving significant results [30-33]. 

However, these studies mainly focused on the existing structure 

of the drum, using single-factor control methods to investigate 

the effect of mining machine operating parameters on drum 

performance [34-37]. In terms of drum design, the research on 

drum performance is more insufficient. In this paper, the helical 

vane of the drum is taken as the research object from the design 

point of view. The influence of parameters such as helical angle, 

axial velocity of coal particles and mass flow rate on dynamic 

coal-loading performance is systematically studied. The 

structure of the drum is optimized, and the difference in coal-

loading performance and reliability with the traditional drum is 

analyzed qualitatively and quantitatively. Finally, the improved 

NSGA-II algorithm was used to co-optimize the drum to further 

improve the performance of the screw drum. 
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2. Methods and Models 

2.1. Collaborative Optimization Method 

To address the issues of low coal-loading efficiency and large 

load fluctuations in traditional shearer drums during coal 

particle coal loading, this paper proposes a collaborative 

optimization method, as illustrated in Figure 1. First, the helical 

angle that maximizes coal-loading efficiency is determined. 

Then, based on this optimal helical angle, two types of coal-

guiding drums are designed. To further optimize the 

performance of the drums, the improved NSGA-II algorithm is 

utilized for the collaborative optimization of the drums' motion 

parameters. Finally, the optimized scheme is compared with the 

pre-optimized drums to evaluate the performance improvement. 

This systematic optimization method can significantly enhance 

the coal-loading efficiency of the drums and reduce load 

fluctuations.

 

Figure 1. Flowchart of the Collaborative Optimization Method. 

2.2. Establishment of the Discrete Element Model 

2.2.1. Selection of the Contact Model 

The Discrete Element Method primarily simulates the contact 

forces between particles by computing their forces and 

displacement relationships, deriving particle displacement and 

velocity information based on Newton's second law. The cutting 

and coal-loading process of coal-rock can be regarded as the 

fragmentation and transportation of the entire mass composed 

of a series of discrete coal particles under the action of the screw 

drum. To enhance computational accuracy, this study employs 

the Hertz-Mindlin (no-slip) contact model as the theoretical 

foundation, where the relationship between the forces and 

displacements among particles is expressed as Equation (1). 

{𝐹𝑛 =
4

3
𝐸∗(𝑅∗)

1

2𝛿𝑛

3

2

𝐹𝑡 = −𝑆𝑡𝛿𝑡

   （1） 

In the equations: 𝐹𝑛 represents the normal force, 

N; 𝐸∗ represents the equivalent Young's modulus, 

Pa; 𝑅∗ represents the equivalent radius, m; 𝛿𝑛 represents the 

normal overlap, m; 𝐹𝑡 represents the tangential force, 

N;𝑆𝑡 represents the tangential stiffness, N/m; and𝛿𝑡 represents 

the tangential overlap, m. 

Before the drum cuts the coal-rock, the Bonding-Particle 

model is chosen to simulate the stability of the particles, which 

generates adhesive forces within a certain radius range to bind 

the particles together. When the force on the particle reaches the 

maximum normal and tangential shear, the band bond breaks 

and the contact model changes from the Bonding-Particle model 

to the Hertz-Mindlin model, as shown in Figure 2.
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Figure 2. Discrete Element Model. 

2.2.2. Setting of Particle Parameters 

Based on the widespread application of bituminous coal in coal 

mining engineering and its complex physical properties, this 

study adopts bituminous coal sampled from a coal mine in 

Ordos City, Inner Mongolia, China, as the experimental object 

[38], with relevant parameters shown in Table 1 below.

Table 1. Coal Particle Parameters Table. 

Tensile strength 

(MPa) 

Compressive 

strength (MPa) 

Modulus of elasticity 

(MPa) 

Poisson's 

ratio𝜇 

Cohesive force 

(MPa) 

Angle of internal 

friction (°) 

Coefficient of 

robustness 𝑓 

1.08 17.71 4388 0.23 1.85 59 2 

The setting of Bonding has an important influence on the 

simulation of drum cutting, so the stiffness coefficient of 

Bonding is calculated as follows. According to the Mohr-

Coulomb strength theory, the shear stress on the coal-rock 

fracture surface is the sum of its cohesion and the friction force 

generated by the normal stress on the fracture surface, as shown 

in Equation (2). 

{
 
 

 
 𝜎 =

1

2
(𝛼1 + 𝛼3) +

1

2
(𝛼1 − 𝛼3) 𝑐𝑜𝑠 2 𝛼

𝜏 =
1

2
(𝛼1 − 𝛼3) 𝑠𝑖𝑛 2 𝛼

𝛼 =
𝜋

4
+

𝜑

2

  （2） 

𝜏 = 𝐶 + 𝜎 𝑡𝑎𝑛 𝜑   （3） 

In this equation: 𝜎 is the axial compressive strength, 

MPa; 𝛼1 is the maximum principal stress, MPa; 𝛼3 is the 

minimum principal stress, MPa;𝜏 is the damage surface shear 

stress, MPa; 𝛼 is the damage angle, °;𝜑 the internal friction 

angle, °;𝐶is the cohesive force, MPa 

According to the modified Griffith's formula 

{

𝜎1 = −
4𝜎𝑡

(1−
𝜎3
𝜎1
)√1+𝜇2−𝜇(1+

𝜎3
𝜎1
)

𝜎1

𝜎𝑐
=

𝜎3

𝜎𝑐
×
√1+𝜇2+𝜇

√1+𝜇2−𝜇
+ 1

  （4） 

In this equation:𝜎𝑡 is the tensile strength of the material, 

MPa;𝜇 is the friction coefficient between the cracks;𝜎𝑐 is the 

compressive strength of the material, MPa 

The stiffness coefficient is calculated using the formula 

{
𝑘𝑛 =

4

3
(
1−𝑣1

2

𝐸1
+

1−𝑣2
2

𝐸2
)−1(

𝑟1+𝑟2

𝑟1𝑟2
)−1/2

𝑘𝑠 = (1/2 ∼ 2/3)𝑘𝑛

  （5） 

In this equation: 𝑘𝑛 is the normal stiffness coefficient, 

N/m; 𝑣1 and 𝑣2 are the Poisson's ratio of the two 

particles;𝐸1 and𝐸2 are the modulus of elasticity of the two 

particles, Pa;𝑟1and𝑟2are the radius of the two particles, m;𝑘𝑠is 

the tangential stiffness. 

In the simulation experiments, the size and shape of coal 

particles significantly affect the simulation accuracy and 

computational efficiency. To accurately simulate the crushing 

and transportation process of coal, this study selected spherical 

particles with a diameter of 25 mm. The normal and tangential 

stresses on the rupture surface were calculated using the Mohr 

strength theory formula (2), and the normal and tangential 

stiffness coefficients were calculated using formulas (4) and (5). 

The calculation results are shown in Table 2. 
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Table 2. Coal block contact parameters. 

Component Value 

Normal stress/MPa 7.7e+09 

Tangential stress/MPa 4.47e+09 

Normal stiffness factor/

（N/m） 
2.615e+06 

Tangential stiffness factor/

（N/m） 
1.76e+06 

2.2.3. Establishment of the Drum 

The helical angle of vanes is a key design parameter affecting 

the coal-loading performance of the shearer drum, and its proper 

setting has a significant impact on improving the coal-loading 

effect of the drum. Four different drums with different helical 

angles were used in the test, and the rest of the structural 

parameters were the same, as shown in Figure 3 below. The 

specific parameters are shown in Table 3 below. 

Table 3. Drum specific parameters. 

Component Value 

helical angles 12°、18°、24°、30° 

Cylinder diameter (mm) 700 

Vanes diameter (mm) 1200 

Cylinder width (mm) 700 

Screw number 3 

 

Figure 3. Drums with Different helical Angles. 

This paper designs two kinds of coal-guiding drums with a 

helical angle of 18°. That is, a circular arc-shaped coal guide 

plate is added at the root of the helical vanes of the traditional 

drum, which is labeled as Structure 1#; a triangular coal guide 

plate continues to be added at the tail end of the Structure 1# 

drum, which is labeled as Structure 2#, as shown in Figure 4 

below. The specific parameters of the drum are shown in Table 

4. This design aims to significantly improve the coal-loading 

efficiency of the coal miner and reduce the load fluctuation 

during the coal-loading process in order to enhance the overall 

performance and working efficiency.

 

 

Figure 4. Structure of the Coal-guiding Drum (a) Structure 1# (b) Structure 2#. 
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Table 4. Specific Parameters of the Drum. 

Component Value Component Value 

Structure 1#  Structure 2#  

Cylinder diameter 

(mm) 
700 

Cylinder diameter 

(mm) 
700 

Vanes diameter (mm) 1200 Vanes diameter (mm) 1200 

Cylinder width (mm) 720 Cylinder width (mm) 720 

Helical angle (°) 18 Helical angle (°) 18 

Screw number 3 Screw number 3 

Number of circular 

arc-shaped coal guide 

plates 

3 

Number of circular 

arc-shaped coal guide 

plates 

3 

Number of triangular 

coal guide plates 
0 

Number of triangular 

coal guide plates 
3 

2.3. Establishment of the Motion Model 

The loading of coal particles primarily relies on the rotation of 

the coal mining machine drum, which forms a coal flow through 

the action of the helical vanes, with the velocity of the coal flow 

ranging between the minimum and maximum coal particle 

velocities. To understand the motion characteristics of the coal 

flow during the operation of the drum, individual coal particles 

are taken as the research object, and their motion is analyzed, as 

shown in Figure 5. It is assumed that there is no relative motion 

between the coal particles, and the velocity of the coal flow is 

equal to the velocity of the coal particles.

 

Figure 5. Motion Analysis of Individual Coal Particles. 

During the drum cutting process, the gravitational force 

acting on the coal chunks is relatively small compared to the 

compressive force. Therefore, in the velocity analysis, the 

weight of the coal chunks is neglected. The coal chunks move 

with an absolute velocity𝑣𝑚
′ = 𝑣𝑓

′ + 𝑣ℎ
′ , but due to the friction 

between the coal chunks and the helical vanes, a friction angle 

is generated, causing the absolute velocity to become𝑣𝑚 = 𝑣𝑓
′ =

𝑣ℎ. 

According to the velocity projection theorem, the absolute 

velocity of the coal chunk after the action of friction force: 

𝑣𝑚 = 𝑛𝐿cp
𝑐𝑜𝑠 𝛼cp

𝑐𝑜𝑠 𝜌𝑚
   （6） 

The pitch of the helical vanes: 

𝐿cp = 𝜋𝐷cp 𝑡𝑎𝑛 𝛼 cp 

In the equation: 𝑣𝑚
′  represents the absolute velocity before 

the action of friction force, mm/s; 𝑣𝑓
′  represents the traction 

speed, mm/s;𝑣ℎ
′ represents the relative velocity before the action 

of friction force, mm/s;𝜌𝑚represents the friction angle between 

the coal chunk and the helical vane, rad; 𝑣ℎ represents the 

relative velocity after the action of friction force, 

mm/s; 𝑛 represents the rotation speed of the drum, 

r/min; 𝛼cp represents the helix angle of the helical vane, 

(°);𝐷cprepresents the revolving diameter of the coal chunk on 

the vane, mm. 

The absolute velocity𝑣𝑚 is projected along the axial and 

tangential directions to obtain the axial velocity of the coal 

chunk: 

𝑣𝑝 =
𝜋𝑛𝐷cp 𝑠𝑖𝑛(𝛼cp+𝜌𝑚)

𝑐𝑜𝑠 𝜌𝑚
   （7） 

The tangential velocity of the coal chunk: 

𝑣𝑡 =
𝜋𝑛𝐷cp 𝑠𝑖𝑛 𝛼cp 𝑐𝑜𝑠(𝛼cp+𝜌𝑚)

𝑐𝑜𝑠 𝜌𝑚
  （8） 

From the formulas for the axial and tangential velocities of 

the coal chunk, it is evident that the axial velocity𝑣𝑝 and the 

tangential velocity𝑣𝑡are positively correlated with the rotation 

speed and the helix angle of the spiral blade. 
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3. Results and Discussion 

3.1. Study of the Optimum Helical Angle 

The axial velocity and mass flow rate of the coal stream serve 

as important indicators of the coal-loading performance of the 

drum, crucial for assessing the coal-loading performance of the 

shearer. In order to further study the mining effect of the shearer 

drum, the quality of coal particles discharged to the scraper 

conveyor, that is, the ratio of the total mass of coal block in the 

statistical area to the total mass of coal wall cut by the drum, is 

taken as the evaluation index of the drum coal-loading 

performance, and is defined as the coal-loading efficiency, as 

shown in Figure 6. Additionally, three-directional forces are set 

for the drum, where the X-direction primarily represents 

resistance from the forward direction of the drum, the Y-

direction denotes resistance from the measuring direction of the 

drum, and the Z-direction represents resistance from the bottom 

surface.

 

Figure 6. Coal Falling Zones. 

Under conditions where the rotational speed is 58.9 r/min, 

and traction speeds are 50, 60, 70, 80, 90, and 100 mm/s, the 

coal-loading efficiency of four different helical angle drums is 

depicted in Figure 7. 
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Figure 7. Influence of Helical Angle on coal-loading 

Efficiency. 

At the same helical angle, as the traction speed increases, 

coal blocks tend to become unstable, jump, and break, 

preventing them from effectively falling into the gaps between 

the helical vanes and being discharged efficiently with the 

rotation of the drum, thereby affecting the coal-loading 

efficiency of the drum. This phenomenon leads to a decrease in 

coal-loading efficiency with increasing traction speed. 

Additionally, when the helical angle is less than 18°, the 

coal-loading efficiency increases with the increase of the helical 

angle until it reaches the optimal coal-loading efficiency at 18°. 

However, when the helical angle exceeds 18°, the coal-loading 

efficiency decreases with the increase of the helical angle. 

Under the condition of a rotational speed of 58.9 r/min and 

a traction speed of 90 mm/s, the comparison of coal-loading 

efficiency, axial velocity, and mass flow rate for four different 

helical angle drums is shown in Figure 8.
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Figure 8. Relationship between Coal-loading Efficiency and Mass Flow Rate and Axial Velocity (a) Axial Velocity and Coal-loading 

Efficiency (b) Mass Flow Rate and Coal-loading Efficiency. 

With the continuous increase of the helical angle, the cutting 

efficiency of the drum improves, and the axial velocity and mass 

flow rate of the coal flow also increase, resulting in an increase 

in coal-loading efficiency. However, when the helical angle 

exceeds a certain optimal value, the spacing between the helical 

lines increases, accommodating more coal blocks, which 

prevents effective discharge of coal particles, leading to  

a decrease in the axial velocity and mass flow rate of the coal 

flow, and consequently reducing the coal-loading efficiency of 

the drum. 

It can be concluded that as the helical angle increases, the 

coal-loading efficiency of the drum gradually increases from 

73.31% to 76.56%. The optimal coal-loading efficiency is 

achieved when the helical angle reaches 18°. As the helical 

angle continues to increase from 18° to 30°, the coal-loading 

efficiency of the drum shows a negative correlation trend with 

the helical angle. 

3.2. Optimization Study of Vane Structure 

In the drum loading process, the design of the vane structure 

plays a key role in the coal flow guidance and coal-loading 

performance. The traditional vane design suffers from low coal-

loading efficiency and large load fluctuation, which affects the 

overall coal-loading performance. To solve these problems, the 

shape of the vane is optimized in this paper to better guide the 

coal flow and reduce the fluctuation, thus enhancing the coal-

loading performance. In this section, we will deeply analyze the 

mechanism of the vane's influence on coal loading efficiency, 

analyze the performance of the optimized design in the change 

of the direction of the coal flow velocity, and further explore the 

optimized load fluctuation and its improvement effect on the 

drum performance. 

3.2.1. Analysis of the Effect of Vane on Coal-loading 

Efficiency 

In traditional drum designs, coal particles initially cut are 

influenced by gravity, falling downward along the helical vanes 

and subsequently discharged as the helical vanes rotate. To 

demonstrate the effectiveness of the optimized drum,  

a comparison of the velocity direction of the coal flow in the 

drum at different times is depicted in Figure 9.
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Figure 9. Effectiveness of Coal-guiding Plates (a) Comparative Effectiveness of circular arc-shaped coal guide plates (b) 

Comparative Effectiveness of Triangular Coal-guiding Plates. 

As shown in Figure 9(a), the coal particles being cut 

experience an outward force from the arc-shaped coal guiding 

plate during the falling process, altering their trajectory and 

increasing their axial velocity. This makes them easier to 

discharge, thereby enhancing the coal-loading efficiency. As 

depicted in Figure 9(b), during the discharge process by the 

helical vanes, some coal particles may enter the inner side of 

adjacent helical vanes and, with the rotation of the helical vanes, 

be thrown to the rear of the drum, forming floating coal. By 

designing triangular coal guiding plates, the direction of coal 

flow can be adjusted, altering the velocity direction of some coal 

particles and thereby improving the coal-loading performance 

of the drum. 

To more intuitively demonstrate the coal-loading 

performance of the optimized drum, within the range of 

conventional operating parameters of the drum, three rotational 

speeds (43.3, 50.4, and 58.9 r/min) and three traction speeds (50, 

110, and 180 mm/s) were selected to study the coal-loading 

efficiency of the optimized coal mining machine, as shown in 

Figure 10.
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Figure 10. Coal-loading Effectiveness of Rollers Before and After Optimization (a) Coal-loading Efficiency Surface Plot (b) Traction 

Speed at 50 mm/s (c) Traction Speed at 110 mm/s (d) Traction Speed at 180 mm/s. 

The coal-loading efficiency of Structure 1# increased by an 

average of 9.54%, while that of Structure 2# increased by an 

average of 9.80%, indicating a significant improvement in the 

coal-loading performance of the optimized structures. After 

adding the arc-shaped coal guiding plate, as the traction speed 

increases, more coal particles are cut but cannot be promptly 

and effectively discharged. Consequently, the loading efficiency 

decreases with increasing traction speed. 

When the traction speed exceeds 110 mm/s, there are more 

coal particles in adjacent helical vanes. By further adding 

triangular coal guiding plates, some coal particles can be 

prevented from being thrown to the rear of the drum with the 

helical vanes, thereby enhancing the coal-loading efficiency of 

the drum. Therefore, when the traction speed exceeds 110 mm/s, 

the loading efficiency of Structure 2# is higher than that of 

Structure 1#. 

3.2.2. Analysis of the Effect of Vane on Load Fluctuation 

The shape of the helical vane is one of the key factors 

influencing the load fluctuation of the coal mining machine 

drum. By optimizing the structure of the s helical vane, the load 

fluctuation of the drum can be effectively improved. To 

quantitatively describe the load fluctuation of the drum, the load 

fluctuation coefficient is introduced: 

𝛿 =
1

𝐹
√∑ (𝐹𝑡−𝐹)

2𝑟
𝑡=1

𝑟
   （9） 

The average value of the drum load: 

𝐹 =
1

𝑟
∑ 𝐹𝑡𝑖

𝑟

𝑡𝑖=1

 

In the equation: 𝑡𝑖 represents the cutting time point of the 

drum, s; 𝑟represents the cutting end time point of the drum, s; 

𝐹𝑡 represents the instantaneous load of the drum at the 

corresponding time point, N. 

Under the operating conditions of a traction speed of 180 

mm/s and a rotation speed of 43.3 r/min, simulation experiments 

were conducted to study the load fluctuation of the optimized 

drum. The three-directional forces of the drum, as well as the 

average value and coefficient of fluctuation of the resultant 

force, are shown in Figure 11.
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Figure 11. Load Effectiveness of Rollers Before and After Optimization (a) X-axis (b) Y-axis (c) Z-axis (d) Overall Force. 

Experimental results show that Structure 1# significantly 

reduces the Y-directional load fluctuation of the traditional drum, 

while also decreasing the mean and fluctuation coefficients of 

the Z-directional and resultant forces, with the fluctuation 

coefficient of the resultant force reduced by 4.63%. This is 

because Structure 1# incorporates Circular curved guide plates 

at the root of the spiral blades, which can buffer the falling coal 

particles and reduce impact, thus lowering the load fluctuation 

of the drum and decreasing the risk of multiple coal particle 

breakages. 

In contrast, Structure 2# reduces the mean and fluctuation 

coefficients of the X, Y, Z-directional, and resultant forces of 

the traditional drum, with the fluctuation coefficient of the 

resultant force reduced by 22.59%. However, Structure  

2# exhibits increased mean and fluctuation coefficients in the  

Y-directional load compared to Structure 1#, as the addition of 

triangular coal guiding plates in Structure 2# causes some coal 

particles to change direction at the plates, leading to additional 

fluctuations and consequently increasing the mean and 

fluctuation coefficients of the Y-directional load. 

In summary, both optimized Structure 1# and Structure  

2# significantly improve the coal-loading efficiency of the coal 

mining machine and reduce the load fluctuation of the drum. 

While Structure 2# shows a lesser improvement in coal-loading 

efficiency compared to Structure 1#, its reduction in load 

fluctuation is more pronounced. 

3.3. Co-optimization of Drum Motion Parameters 

The optimization of the helical vane structure significantly 

improved the drum's coal particle coal-loading performance. 

However, the drum's coal-loading performance is a complex 

issue with multiple interrelated objectives. To further enhance 

its performance, it is necessary to perform a collaborative 

optimization of the drum's structure and motion parameters. 

This collaborative optimization method can comprehensively 

consider multiple related objectives, enhancing the overall 

performance of the drum. 

3.3.1. Establishment of the Objective Function 

In this section, motion parameters are optimized for structure 2# 

with better coal-loading performance. Selecting traction speed 

𝑣𝑞and rotation speed𝑛as design variables: 

𝑋 = [𝑣𝑞 , 𝑛]   （10） 

Establishing a multi-objective optimization function for the 

helical drum aims to maximize the coal-loading efficiency 𝜂 , 

minimize the load fluctuation 𝛿 , and minimize the loading 

power 𝐻𝑤 . In order to adapt to different working conditions, 
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three rotational speeds of 43.3, 50.4 and 58.9 r/min and three 

traction speeds of 50, 110 and 180 mm/s were selected to 

conduct simulation tests on the coal-loading efficiency, load 

fluctuation and loading power of Structure 2#, and the 

relationship between the design variables and optimization 

objectives was established, as shown in Figure 12 below.
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Figure 12. Relationship Diagram between Design Variables and Optimization Objectives (a) Relationship between Coal-loading 

Efficiency and Traction Speed and Speed (b) Relationship between Load Fluctuation and Traction Speed and Speed (c) Relationship 

between Loading Power and Traction Speed and Speed. 

As shown in Figure 12(a), the high-speed rotation of the 

drum applies greater centrifugal force to the coal particles, 

increasing their movement speed and facilitating their discharge 

towards the coal discharge port. Simultaneously, high-speed 

rotation reduces the contact time between the coal particles and 

the drum of the shearer, intensifying the force exerted on the 

coal particles, enhancing their crushing ability, and thus 

improving the coal-loading efficiency. Consequently, the coal-

loading efficiency of the shearer increases with the increase in 

rotational speed. 

When the rotational speed increases from 43.3 r/min to 50.4 

r/min, the coal-loading efficiency increases by an average of 

3.68%. Further, from 50.4 r/min to 58.9 r/min, the coal-loading 

efficiency increases by an average of 1.14%. However, as the 

rotational speed continues to increase, the rapid increase in the 

number of coal particles in the drum leads to congestion at the 

coal discharge port, slowing down the rate of improvement in 

coal-loading efficiency. Additionally, the coal-loading 

efficiency decreases with the increase in traction speed, 

consistent with the previously observed trend. 

As illustrated in Figure 12(b), under high-speed cutting 

conditions, the shearer's drum generates greater impact force, 

reducing its stability. The coal is crushed into smaller volumes, 

causing larger fluctuations in load. Consequently, load 

fluctuations increase with increasing rotational and traction 

speeds. 

As depicted in Figure 12(c), increasing the traction speed 

results in greater friction and resistance to the movement of coal 

particles on the drum, requiring more power to overcome these 

resistances. With the increase in drum rotational speed, the 

power required for cutting coal walls also increases. Hence, the 

loading power of the drum increases with the increase in 

rotational and traction speeds. 

Based on the experimental results, fitting the data of the 

objective quantity and design variables yields the objective 

function, as shown in Equation (11).
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{

𝜂 = −0.0001835𝑛2 − 0.0000004973𝑣𝑞
2 + 0.000009197𝑣𝑞𝑛 − 0.0005809𝑣𝑞 + 0.02005𝑛 + 0.2587

𝛿 = −0.0004493𝑛2 + 0.00002759𝑣𝑞
2 + 0.00007222𝑣𝑞𝑛 − 0.0062𝑣𝑞 + 0.05504𝑛 + 0.08838

𝐻𝑤 = −0.1125𝑛
2 − 0.0004585𝑣𝑞

2 + 0.003932𝑣𝑞𝑛 + 0.1863𝑣𝑞 + 13.32𝑛 − 370.2

 （11） 

Before optimization, the range of design variables is 

constrained. The traction speed was set between 50 and 180 

mm/s, while the rotational speed was set between 40 and 60 

r/min. 

3.3.2. Multi-objective Optimization Algorithm Selection 

and Crowding Calculation Defects 

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 

is one of the most mainstream multi-objective optimization 

algorithms. Its primary advantage is the use of non-dominated 

sorting to rank individuals in the population, assigning each 

individual a specific rank. Within the same rank, individuals are 

sorted in ascending order based on their objective values, and 

the distance between adjacent individuals is calculated as the 

crowding distance value, with the sum of all crowding distance 

values across objectives calculated as the total crowding 

distance. For two sub-objectives𝑓1and𝑓2, the crowding distance 

of an individual𝑖 is the sum of the lengths and widths of the 

dashed rectangles, as shown in Figure 13. Thus, the total 

crowding distance of individual𝑖is calculated as follows. 

𝐷𝑖𝑗 = 𝐷𝑖𝑗 +
𝑓(𝑖+1)𝑗−𝑓(𝑖−1)𝑗

𝑓max𝑗−𝑓min𝑗
  （12） 

In the equation,𝑗represents the sub-objective index, 𝑗 = 1,2; 

 

Figure 13. Crowding Illustration. 

The crowding distance calculation method has some 

drawbacks when dealing with three or more objectives, leading 

to inaccurate crowding distance calculation for certain 

individuals. Taking three objectives as an example for 

illustration, as shown in Figure 14.
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Figure 14: Distribution Chart of Individuals with the Same Rank for Three Objectives(a)Isometric side diagram(b)Left view (c)Right 

view and (d)Top view 
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In the above figure, individuals a, b, c, and d are located in 

the same rank, and they are close to each other, so it is not 

suitable to use them as parents for further iterations. According 

to the NSGA-II method, when calculating the total crowding 

distance value of individual c, the fitness values of each 

individual on each objective are sorted. On objective𝑓3 , the 

neighboring individuals of individual c are individuals b and d; 

on objective𝑓2, the neighboring individuals of individual c are 

individuals b and g; on objective𝑓1, the neighboring individuals 

of individual c are individuals b and e. The accuracy of the total 

crowding is affected by the fact that individuals need to be 

reordered at each goal, resulting in individuals c having 

different neighboring individuals after a single goal ordering. 

3.3.3. NSGA-II Algorithm Improvement Strategy 

The analysis above shows that the NSGA-II algorithm, when 

calculating three or more objectives, tends to confuse 

neighboring individuals during the computation of crowding 

distance. This leads to inaccurate total crowding distance 

calculations, resulting in uneven population distribution and 

poor diversity of the Pareto front in the iterative process. To 

address these issues, this paper proposes an improved strategy 

for the NSGA-II algorithm based on spatial density, termed SD-

NSGA-II. This strategy mainly improves the crowding distance 

calculation method of the NSGA-II algorithm by defining the 

crowding distance through the number of individuals 

surrounding each individual. This avoids misidentification 

between individuals and more accurately calculates the degree 

of crowding between individuals, thereby increasing the 

uniformity of the population distribution and improving the 

diversity of the Pareto solution set. 

Taking individual c as an example, firstly, fitness of all 

individuals is calculated and sorted on one of the objectives. 

Then, a sphere is constructed with individual c as the center and 

radius𝑅𝑎 , as shown in Figure 15. The number of individuals 

falling within this sphere is counted, and this count is defined as 

the spatial density𝜌𝑠of individual c. Next, the spatial density of 

individuals in the same generation is calculated and sorted in 

ascending order, with smaller density values given priority for 

reproduction in the next generation. 

 

Figure 15. Spatial Density Diagram of Individual 5. 

By using spatial density instead of crowding distance 

calculation, the problem of uneven distribution of individuals 

caused by multiple sorting can be avoided. This method can 

more effectively describe the distribution of individuals in the 

search space, thereby providing more accurate calculations for 

solving multi-objective optimization problems. 

The selection of the spatial radius𝑅𝑎will affect the accuracy 

of the spatial density𝜌𝑠. An excessively large spatial radius can 

result in many identical spatial density values within the 

population, making it difficult to select superior offspring for 

reproduction. Conversely, an excessively small spatial radius 

will cause all individual spatial densities to be 1, making it 

impossible to distinguish excellent individuals. Therefore, 

whether the spatial radius is too large or too small will affect the 

true density values around individuals. 

This paper proposes the concept of an adaptive radius, which 

calculates the sum of the Euclidean distances of all individuals 

in each generation and determines the average Euclidean 

distance between individuals. This average distance is then 

multiplied by the radius coefficient𝐾𝑟  to obtain the adaptive 

radius𝑅𝑎for each generation, as shown in Equation (13). 

𝑅𝑎 =
𝐾𝑟

𝑁
∑ √(𝑥𝑖+1 − 𝑥𝑖)

2 + (𝑦𝑖+1 − 𝑦𝑖)
2 + (𝑧𝑖+1 − 𝑧𝑖)

2𝑁
𝑖=1 （13） 

In the equation, 𝐾𝑟  represents the radius 

coefficient,𝑁 represents the total number of individuals in the 

same generation. 

3.3.4. Implementation of SD-NSGA-II Algorithm 

Based on the improved NSGA-II algorithm, the multi-objective 

optimization flowchart is shown in Figure 16.
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Figure 16. Flowchart of the SD-NSGA-II algorithm. 

Step 1: Initialize the population. Randomly initialize 

individuals according to the constraint conditions, set the 

population evolution parameters, and set the generation number 

to Gen=1. 

Step 2: Determine if the first generation offspring population 

has been generated. If so, set the generation number to Gen=2; 

otherwise, perform non-dominated sorting on the initialized 

population and generate the first generation offspring 

population through selection, crossover, and mutation 

operations, then set the generation number to Gen=2. 

Step 3: Combine the parent population and offspring 

population into a new population. 

Step 4: Determine if a new parent population has been 

generated. If not, calculate the objective function values of 

individuals in the new population, perform fast non-dominated 

sorting, calculate the spatial radius𝑅𝑎 of individuals in this 

generation, then calculate the spatial density𝜌𝑠 of individuals, 

rank the spatial density, and select individuals with smaller 

spatial density values according to the new population setting to 

generate the new parent population; otherwise, proceed to Step 

5. 

Step 5: Perform selection, crossover, and mutation 

operations on the generated parent population to produce the 

offspring population. 

Step 6: Check if Gen equals the maximum number of 

generations. If not, set Gen=Gen+1 and return to Step 3; 

otherwise, end the algorithm and output the Pareto front. 

3.3.5. Multi-Objective Optimization Results and Analysis 

In this study, the SD-NSGA-II multi-objective algorithm 

optimization program is implemented in MATLAB software, 

with a population size set to 100, Pareto solution set size set to 

100, and the number of iterations set to 50. And through 

multiple trials, it was found that the population distribution was 

optimal when the radius coefficient𝐾𝑟=2. 

To compare the effectiveness and practicality of this 

improved algorithm, the same parameters as the NSGA-II 

algorithm were selected. After running the program, the Pareto 

solution set distributions of the two algorithms were obtained, 

as shown in Figure 17 below.



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

 

Figure 17. Comparison of Pareto Solution Set Distribution (a) Pareto Solution Set of NSGA-II Algorithm (b) Pareto Solution Set of 

SD-NSGA-II Algorithm. 

Comparing the Pareto solution set distributions of the two 

algorithms, it can be observed that the distribution of the 

NSGA-II algorithm's solution set is uneven, with poor 

population diversity. This leads to high solution density in some 

regions and sparsity in others, resulting in a lack of optimal 

solutions in certain areas. In contrast, the spatial distribution of 

the solution set obtained by the SD-NSGA-II algorithm is more 

uniform, making the resulting solution set more representative 

and comprehensive. In practical applications, the solution set 

obtained by the SD-NSGA-II algorithm is more likely to contain 

more effective solutions, providing more space for selection and 

decision-making information, thereby improving the quality of 

problem-solving and decision-making reliability. 

Furthermore, by introducing the concept of adaptive radius, 

the SD-NSGA-II algorithm can dynamically adjust spatial 

density based on the distribution of solutions, further improving 

the algorithm's convergence speed and accuracy. This 

adaptability gives SD-NSGA-II an advantage in dealing with 

complex multi-objective optimization problems, enabling it to 

find a uniform Pareto solution set more quickly. 

3.3.6. Selection of Pareto Optimal Solutions 

In engineering applications, decision-makers often wish to 

select a set of optimal solutions from the Pareto solution set for 

the final decision. To achieve this, this paper adopts the Entropy 

Weight-TOPSIS method based on subjective judgment to obtain 

the Pareto optimal solution. This method first utilizes the 

entropy weight method to determine the weights of evaluation 

indicators, and then combines subjective weights for adjustment. 

Subsequently, the TOPSIS method is employed to analyze the 

new data. This approach comprehensively considers the 

similarity between the positive ideal solution and the negative 

ideal solution, thoroughly evaluating the merits of each solution 

and selecting the solution with the highest score as the optimal 

one. The following are the specific steps of the Entropy Weight-

TOPSIS method based on subjective judgment: 

(1) Determine the decision matrix: Based on the Pareto 

solution set, determine the decision matrix 𝑃. 

𝑃 = [

𝑝11···𝑝𝑎1···𝑝𝑏1
𝑝12···𝑝𝑎2···𝑝𝑏2
𝑝13···𝑝𝑎3···𝑝𝑏3

]   （14） 

In the equation, 𝑝𝑎𝑐represents the 𝑐𝑡ℎPareto solution in the 

𝑎𝑡ℎ objective, 𝑐 = 1,2,3 ; 𝑏 represents the total number of 

solutions for each objective.  

(2) Data Standardization: Standardize the dimensions and 

units of the three objectives, namely loading efficiency, load 

fluctuation, and shipping power, by normalizing the decision 

matrix, as shown in equation (15). 

𝑞𝑎𝑐 = {

𝑝𝑎𝑐−𝑚𝑖𝑛 𝑝𝑎𝑐

𝑚𝑎𝑥 𝑝𝑎𝑐−𝑚𝑖𝑛 𝑝𝑎𝑐
    1 ≤ 𝑎 ≤ 𝑏, 𝑐 = 1,3

𝑚𝑎𝑥 𝑝𝑎𝑐−𝑝𝑎𝑐

𝑚𝑎𝑥 𝑝𝑎𝑐−𝑚𝑖𝑛 𝑝𝑎𝑐
    1 ≤ 𝑎 ≤ 𝑏, 𝑐 = 2

 （15） 

In the equation, 𝑞𝑎𝑐 represents the 𝑎𝑡ℎ solution in 

the 𝑐𝑡ℎ normalized objective function; 𝑚𝑎𝑥 𝑝𝑎𝑐 represents the 

maximum Pareto solution in the 𝑐𝑡ℎ objective function, and 

𝑚𝑖𝑛 𝑝𝑎𝑐  represents the minimum Pareto solution in the 

𝑐𝑡ℎobjective function. 

(3) Calculate the entropy value𝐸𝑐 and weight𝑊𝑐 : for each 

objective to measure uncertainty and compute weights based on 

the entropy values. 
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𝐸𝑐 = −

∑ [
𝑞𝑎𝑐

∑ 𝑞𝑎𝑐
𝑏
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𝑙𝑛(
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∑ 𝑞𝑎𝑐
𝑏
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𝑊𝑜𝑐 =
1−𝐸𝑐

∑ (1−𝐸𝑐)
3
𝑐=1

    𝑐 = 1,2,3

𝑊𝑐 =
𝑊𝑠𝑐𝑊𝑜𝑐

∑ 𝑊𝑠𝑐𝑊𝑜𝑐
3
𝑐=1

      （16） 

In the equation, 𝑊𝑜𝑐 represents the entropy weight, and 

𝑊𝑠𝑐represents the subjective weight. 

(4) Calculate the weighted decision matrix: Multiply the 

standardized decision matrix by the corresponding weights to 

obtain the weighted decision matrix. 

𝑦𝑎𝑐 = 𝑊𝑐𝑞𝑎𝑐    1 ≤ 𝑎 ≤ 𝑐, 𝑐 = 1,2,3 （17） 

(5) Determine the positive ideal solution and negative ideal 

solution: For each objective function, identify the maximum and 

minimum values among all solutions to form the positive ideal 

solution𝐴+and negative ideal solution𝐴−respectively. 

{
𝐴𝑐
+ = 𝑚𝑎𝑥 𝑦𝑎𝑐
𝐴𝑐
− = 𝑚𝑖𝑛 𝑦𝑎𝑐

   （18） 

(6) Calculate the distance between each solution and the 

positive ideal solution as well as the negative ideal solution: Use 

the Euclidean distance to compute the distance between each 

solution and the positive ideal solution, as well as the negative 

ideal solution. 

{
 

 𝐷𝑎
+ = √∑ (𝑦𝑎𝑐 − 𝐴𝑐

+)3
𝑐=1

2

𝐷𝑎
− = √∑ (𝑦𝑎𝑐 − 𝐴𝑐

−)3
𝑐=1

2

  （19） 

In the equation, 𝐷𝑎
+ represents the distance from the 

solution𝑎 to the positive ideal solution, and 𝐷𝑎
− represents the 

distance from the solution𝑎to the negative ideal solution. 

(7) Calculate the comprehensive score: Calculate the 

similarity score for each solution. 

𝐶𝑎 =
𝐷𝑎
+

𝐷𝑎
++𝐷𝑎

−     1 ≤ 𝑎 ≤ 𝑐  （20） 

The closer the score𝐶𝑎 is to 1, the better the solution𝑎 , 

therefore, the solution with the highest score in the Pareto set is 

chosen as the compromise optimal solution. 

The calculation of Pareto optimal solutions using the 

subjective judgment-based entropy-weighted TOPSIS method 

allows decision-makers to determine the importance of 

solutions according to their preferences and needs, better 

reflecting the real decision-making environment and 

requirements. Subjective weights can be chosen based on 

decision-maker preferences. Taking the subjective weight of 

𝑊𝑠𝑐 = [0.33,0.33,0.33] as an example, the entropy values and 

weights of the three objectives are calculated based on the 

Pareto solution set obtained by SD-NSGA-II, as shown in 

Figure 18 below. 
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Figure 18. Entropy Values and Weights of Three Objectives. 

Based on the weighted calculation, a comprehensive score 

was obtained, yielding the optimal motion parameters: a traction 

speed of 135.32 mm/s and a rotation speed of 56.37 r/min. To 

ensure the effectiveness and reliability of the optimized 

parameters, a performance comparison was conducted between 

the optimized drum (Structure 2#) and the traditional drum, as 

shown in Table 5 below.

Table 5. Comparison of Optimal Solutions Before and After Cooperative Optimization. 

 
Traction speed (mm·s-

1) 

Rotational speed

（r·min-1） 

Coal-loading 

efficiency(%) 

Load 

fluctuation𝛿 

Loading 

power(kW) 

Conventional roller 
135.32 56.37 

72.94 1.64 97.72 

Collaborative optimization after roller 78.09 0.88 71.03 

Compared to the traditional drum, the synergistically 

optimized drum achieved significant improvements across all 

three objectives. The coal-loading efficiency increased by 

7.06%, the load fluctuation decreased by 46.34%, and the 

loading power decreased by 27.31%. Moreover, the 

combination of the subjective-weighted TOPSIS method with 

the SD-NSGA-II algorithm not only considered the weight 

distribution of multiple indicators but also incorporated the 
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subjective judgments of decision-makers, enhancing the 

credibility and practicality of the optimization results and 

providing more reliable optimization solutions for decision-

making. In summary, these improvements resulted in  

a significant enhancement in the coal-loading performance and 

reliability of the drum, offering valuable references for the 

design of coal mining machine drums. 

4. Conclusion 

This paper presents a synergistic optimization design method 

for drum design and significantly enhances the coal-loading 

performance of coal mining machines based on the improved 

NSGA-II algorithm. The main conclusions are as follows: 

(1) According to the analysis of coal block movement, it was 

found that the coal block's speed is positively correlated with 

rotation speed and helical angle. By optimizing the helical angle 

of the dual-section differential rotation drum, Gao found that the 

best coal-loading performance of the drum was achieved at  

a helix angle of 18° for the front drum and 30° for the rear drum 

[11]. This study's findings are consistent with this, through 

simulation experiments under different helical angles and 

traction speeds, it was found that the coal-loading efficiency of 

the drum was highest when the helical angle was 18°. However, 

when the helical angle increased from 18° to 30°, both the axial 

speed and mass flow rate of the coal flow decreased, leading to 

reduced coal-loading efficiency. This further validates that coal-

loading performance is best at a spiral lift angle of 18°. 

(2) Based on the optimal helical angle, this paper designs 

two types of coal-guiding drums with a helical angle of 18°, 

adding arc-shaped and triangular coal-guiding plates. The arc-

shaped coal guide plate increased the axial speed by altering the 

coal particle trajectory, while the triangular coal guide plate 

reduced the generation of floating coal by adjusting the 

direction of the coal flow on the inner side of the vane. 

Simulation experiments showed that the coal-loading efficiency 

of the optimized helical vane drum increased by 9.94%, and 

load fluctuations decreased by 22.59%. Compared to Sun's 

modifications of the vane inclination angle [5], this paper 

achieves a more significant lifting effect by changing the vane 

shape, which significantly improves the coal-loading efficiency 

of the coal miner and reduces the load fluctuation of the drum 

from the perspective of structural optimization. 

(3) In order to further improve the performance of the drum, 

an improvement strategy based on the NSGA-II algorithm is 

proposed, aiming at optimizing the motion parameters of the 

coal-guided drum, and the improved algorithm has obvious 

advantages in terms of the diversity of spatial distributions and 

solutions of the solution set. The concept of spatial density and 

adaptive radius is introduced, and the optimal solution is 

obtained through the subjective-weighted TOPSIS method. The 

optimal traction speed is determined to be 135.32 mm/s, and the 

rotation speed is 56.37 r/min. Compared with the traditional 

drum, the coal-loading efficiency of the synergistically 

optimized drum increased by 7.06%, the load fluctuation 

decreased by 46.34%, and the loading power decreased by 

27.31%. 
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