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 To address the issues of fixed convolution kernel sizes and weak 

targeting of extracted features in the application of deep learning for fault 

diagnosis, this paper develops a fault diagnosis framework called 

Adaptive Signal Diagnostic Network(ASDN), which integrates 

Adaptive Temporal Convolutional Neural Networks (AT-CNN) with 

Ensemble Empirical Mode Decomposition (EEMD) and Singular 

Spectrum Analysis (SSA). During the adaptive preprocessing stage, 

improvements are made to EEMD for multi-scale signal decomposition, 

capture the transient changes of the signal adaptively. Concurrently, 

enhancements are applied to SSA for further extraction of fault trends 

and periodic components, optimizing the signal representation. In the 

adaptive deep learning stage, an innovative Temporal Convolutional 

Network (TCN) with a dynamic adjustment mechanism is developed. 

This network constructs a novel dynamic convolution kernel adjustment 

mechanism, enabling the neural network to adapt its convolution kernel 

size based on different frequency components, thereby accurately 

processing signals with varying frequencies. Validation on datasets from 

Case Western Reserve University and Xi'an Jiaotong University 

demonstrates that the proposed method achieves superior performance, 

with diagnostic accuracies of 100% and 97.42% on the two public 

datasets, respectively. 
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1. Introduction 

The vibration signals generated by rolling bearings typically 

exhibit significant nonlinearity and non-stationary 

characteristics. The noise interference and the mixture of 

complex frequency components in the signals make it 

challenging to extract effective fault features from them1. 

Although deep learning methods have distinct advantages in 

handling large-scale data and automatic feature learning, the 

features automatically learned during fault feature extraction 

often lack specificity and interpretability. Consequently, models 

may perform poorly when confronted with unknown or varying 
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fault characteristics. 

Traditional signal processing methods can offer more 

intuitive and interpretable data analysis, aiding in the extraction 

of key fault features from nonlinear and non-stationary signals[2-

4]. These methods can compensate for the limitations of deep 

learning approaches in fault diagnosis. 

By extracting key features of fault signals through signal 

processing and subsequently inputting these features into deep 

learning models for further processing, this hybrid approach can 

fully leverage the advantages of both techniques. This improves 

the accuracy and robustness of fault diagnosis. Not only does 

this enhance model performance, but it also increases its 

adaptability to changing conditions in industrial environments. 

Ensemble Empirical Mode Decomposition (EEMD), as an 

effective signal processing technique, can reveal subtle 

variations and dynamic characteristics within signals. Therefore, 

it exhibits outstanding performance in handling nonlinear and 

non-stationary signals [5-7]. Fang Dao [8] et al. proposed the 

Wavelet Thresholding and Ensemble Empirical Mode 

Decomposition (WT-EEMD) method for denoising acoustic 

vibration signals from hydro turbine runners under normal and 

sediment-laden flow conditions[8]. Feiyu Li et al. introduced  

a hybrid algorithm combining Ensemble Empirical Mode 

Decomposition (EEMD) and information entropy [9]. However, 

using EEMD alone has limitations in extracting the trend and 

periodic components of signals. The trend component typically 

reflects the long-term variations and evolution of signals, which 

may be related to bearing wear or gradually deteriorating fault 

conditions. Meanwhile, the periodic component can reveal 

features corresponding to the mechanical rotation period, such 

as specific damages or abnormalities in bearing components. 

Although EEMD is capable of capturing transient variations in 

signals, when dealing with complex time-series features with 

long-term trends and low-frequency components, it may 

overlook crucial time-series characteristics within signals, 

which are often key clues for predicting and diagnosing early 

faults. 

To address this shortcoming, Singular Spectrum Analysis 

(SSA) is employed to further process the output of Ensemble 

Empirical Mode Decomposition (EEMD) [10]. By constructing  

a trajectory matrix and applying Singular Value Decomposition, 

SSA is not only capable of clearly identifying and extracting the 

principal trends and periodic components of the signal, but also 

effectively separates and reconstructs the noise and trend 

elements within the signal. This results in the provision of more 

precise fault diagnosis information. 

Although EEMD and SSA each have theoretical advantages, 

their combined application is limited in practice due to the lack 

of an effective subcomponent selection optimization 

mechanism. In cases where signal characteristics are non-

stationary, developing an effective optimization mechanism will 

greatly enhance the complementary strengths of these two 

methods, achieving maximum diagnostic efficacy. Moreover, an 

improved preprocessing procedure that effectively eliminates 

noise and interference frequency components will enhance the 

generalization capability and diagnostic accuracy of subsequent 

models. 

Given the inherent characteristics of rolling bearing 

vibration signals—marked time dependency and periodic 

variations—this study selects the Temporal Convolutional 

Network (TCN) as the primary analytical tool[11]. TCN, through 

its unique dilated convolution architecture, can effectively 

capture long-term temporal dependencies, which is crucial for 

detecting periodic fault signals caused by subtle mechanical 

wear. Li Ding [12] proposed a novel method named "Self-

Attention Mechanism with Temporal Convolutional Network 

and Soft Thresholding Algorithm (SAM-TCN-ST)" for 

intelligent fault recognition in rotating machinery. Chao Zhang 

[13] introduced a new fault diagnosis approach—the Bayesian 

Augmented Temporal Convolutional Network (BATCN)—to 

filter raw signals for defect detection in wind turbine pitch 

bearings. However, TCN's fixed kernel size presents a limitation 

in adapting to dynamic signal characteristics when dealing with 

multi-scale fault signals, and it exhibits insufficient sensitivity 

and responsiveness to changes in signal features under varying 

operational conditions. 

To address this challenge, this paper proposes the Dynamic 

Adjustment Temporal Convolutional Network (DA-TCN) 

model, which introduces an innovative dynamic kernel 

adjustment mechanism. This mechanism enables the TCN to 

dynamically adjust its kernel size according to the actual 

frequency distribution of the signal. 

This paper addresses the issues of strong noise interference 

and frequency aliasing in rolling bearing signals by proposing  
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a novel fault diagnosis framework based on the mixture of the 

signal processing and deep learning. The specific contributions 

and innovations are as follows: 

(1) Dynamic convolutional Kernel Adjustment Mechanism : 

This study innovatively develops a dynamic adjustment 

mechanism based on the frequency characteristics of the input 

signal. Unlike traditional fixed kernel sizes, the convolutional 

kernel size of the DA-TCN can adaptively adjust according to 

signal frequency variations. This mechanism significantly 

enhances the model's adaptability and generalization to 

complex industrial signal changes. 

(2) SSA Subcomponent Reconstruction Strategy: By 

analyzing the w-correlation graph, singular spectrum 

components of the same period are selected and merged. The 

variance contribution rate of the merged components is then 

calculated, and subcomponents containing substantial fault 

signal energy and information are chosen for input into the DA-

TCN. 

(3) EEMD Signal Selection and Reconstruction: Utilizing 

statistical indicators such as variance contribution rate, 

correlation coefficient, and permutation entropy, the signals 

decomposed by EEMD are finely selected and reconstructed. 

This optimization of signal component selection significantly 

enhances the clarity of fault feature expression and the 

reliability of diagnosis. 

2. Proposed Approach 

The proposed ASDN (Adaptive Signal Diagnosis Network), as 

illustrated in Figure 1, consists of two main components: the 

preprocessing stage and the deep learning stage.  

In the preprocessing stage, EEMD and SSA are utilized for 

signal analysis. To enhance the accuracy and efficiency of signal 

processing, this study introduces an evaluation method for 

EEMD signal components based on variance contribution rate, 

correlation coefficient, and permutation entropy. Additionally, 

in the SSA process, a component selection and reconstruction 

strategy based on the w-correlation graph is incorporated. In the 

deep learning stage, dynamically Adjusted Temporal 

Convolutional Network (DA-TCN) is constructed innovatively. 

This model not only includes convolutional layers that can 

adaptively adjust their size based on the frequency 

characteristics of the input signal but also incorporates 

activation layers, normalization layers, and dropout layers to 

enhance the model's generalization capability and stability. The 

structure of the model is illustrated in the following diagram.
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Figure1. The network architecture of ASDN proposed in this paper. 

2.1. EEMD and Its Improvements 

The limitation of EMD lies in the occurrence of different 

oscillatory components coexisting within a single IMF 

(Intrinsic Mode Function), while very similar oscillations may 

exist in different IMFs, known as mode mixing. To address this 

issue, EEMD (Ensemble Empirical Mode Decomposition) was 

introduced. EEMD leverages the characteristics of Gaussian 
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white noise with a uniform frequency distribution and zero 

mean. It achieves this by introducing Gaussian white noise 

multiple times during the decomposition process to alter the 

extrema of the signal. Subsequently, the IMF components 

obtained from multiple EMD iterations are averaged to 

counteract the introduced Gaussian white noise, thereby 

suppressing the problem of mode mixing. The computational 

steps for a signal X(t) are as follows: 

(1) Adding Gaussian white noise to the original signal to 

obtain a series of new signals: 

 ( ) ( ) ( )i iX t X t n t= +  (1) 

Where ni(t) represents white noise signals of the same length as 

X(t), and i = 1, 2, ..., M , where M is the number of ensemble 

experiments. 

(2) Decomposing the obtained signals using EMD to obtain 

a series of IMF: 

 ( ) ( ) ( )
1

N

i ij i

j

X t c t r t

=

= +  (2) 

Where j=1,2, …, N, with N denoting the number of IMFs, cij(t) 

represents the IMFs (ci1, ci2，…，ciN), and ri(t) denotes the 

residual of the i th trajectory. 

(3) Performing ensemble averaging on the IMF components. 

 ( ) ( )
1

1
M

j ij

i

c t c t
M

=

=   (3) 

During the decomposition process of EEMD, although 

multiple components are successfully extracted from the 

original signal, these components exhibit significant differences 

in their physical significance and contributions. Therefore, this 

study introduces three statistical indicators—variance 

contribution rate, correlation coefficient, and permutation 

entropy—as quantitative tools to assess the importance of each 

component. This comprehensive evaluation strategy is based on 

each component's contribution to the total signal variance, the 

linear correlation between components, and the time series 

complexity of the components, determining their utility in 

subsequent analysis. 

Specifically, the variance contribution rate measures the 

importance of each component in signal reconstruction.  

A higher variance contribution rate indicates that the component 

plays a crucial role in the overall signal. The correlation 

coefficient evaluates the linear correlation between the 

component and the target fault features. A higher correlation 

coefficient suggests a close association between the component 

and the fault state. Permutation entropy, as a nonlinear tool for 

measuring signal complexity, reveals the dynamic 

characteristics of the component's time series. High permutation 

entropy indicates that the component possesses high time series 

complexity and information content. By computing these three 

indicators and assessing their combined values, it is possible to 

effectively select the IMF components obtained from EEMD 

decomposition that are most informative for fault diagnosis. 

In the calculation of permutation entropy, the choice of 

parameters m and t affects the computation results. If the value 

of m is too small, there will be fewer probability patterns in the 

reconstructed sequences. Conversely, if m is too large, it will 

increase computation time and decrease efficiency. Typically, 

the value of m falls between 3 and 7. In this study, m is chosen 

based on validation. The value of t is usually set to 1 under 

normal circumstances. 

2.2. SSA and Its Improvements 

SSA is a model-free spectral estimation method that 

decomposes a given signal into interpretable components, 

including slowly varying trends, oscillatory components, and 

unstructured noise. It is considered a signal processing method 

based on time series analysis and multivariate statistical 

principles. SSA mainly consists of four steps: embedding, 

decomposition of the trajectory matrix, grouping, and signal 

reconstruction. 

(1) Embedding: For a time series X=[X1，X2，......，XN] 

with length N, an appropriate window length L is chosen. 

Typically, the selection of L falls within the range (1，N/2) 

based on empirical evidence. Let K=N-L+1. Then, the time 

series is lagged and arranged to form a trajectory matrix : 

 

1 2

2 3 1

1

K

K

L L N

X X X

X X X
X

X X X

+

+

 
 
 =
 
 
 

 (4) 

(2) Decomposition: Perform Singular Value Decomposition 

on the trajectory matrix. The formula for singular value 

decomposition is as follows: 

 T
m n m m n nA U V  =   (5) 
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However, directly decomposing the trajectory matrix can be 

challenging. Therefore, constructing a covariance matrix is 

done first: 

 TS XX=  (6) 

The trajectory matrix can be represented as follows after 

decomposing S to obtain eigenvalues λ1＞λ2＞......λL≥0 and their 

corresponding eigenvectors U=[U1，U2，......，UL]: 

 
1

L

T
i i i

i

X U V
=

=  (7) 

(3) Grouping: Divide all components into m mutually 

exclusive groups I1，I2，......，Im. Then, the composite matrix 

is given by: 

 
1 2 mI I IX X X X= + + +  (8) 

Where X represents the reconstructed time series. 

(4) Reconstruction: Also known as diagonal averaging, each 

matrix XIj in Equation (9) is transformed into a new sequence of 

length N, which represents the decomposed sequence. The 

reconstruction formula is as follows: 
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 (9) 

The sum of the time series yi equals the original time series. 

SSA decomposition may lead to the dispersion of signals 

with the same period into different subsequences, resulting in 

information loss and reducing the significance of the extracted 

fault features, thereby affecting the results of fault diagnosis. 

The application of w-correlation graphs allows for more 

accurate identification of the correlation between different 

frequency components present in rolling bearings, aiding in the 

selection of subsequences with the same period. This reduces 

information loss, making the final extracted components more 

complete and accurate, thereby enhancing the accuracy and 

reliability of fault diagnosis. As noise in signals appears random, 

it exhibits low correlation in w-correlation graphs, while signals 

with periodicity shows a strong correlation. Merging signals 

with the same period helps reduce the impact of noise on the 

final results, improving the separation of signals from noise. By 

merging signals with the same period, these fault features 

become more significant in the final results and are easier to 

detect. 

(5) Threshold 

The threshold is determined based on the calculation results 

of the mean square error. The formula for calculating the 

threshold is as follows: 

 
( )

2

1

N

i
i

X X
S

N

=
−

=


 (10) 

2.3. Dynamic Adjustment Temporal Convolutional Neural 

Network 

(1) Dynamic Adjustment Mechanism 

Traditional TCNs show certain limitations when dealing 

with time-varying signals, especially those with rich frequency 

characteristics. Firstly, in TCN models, the sizes of convolution 

kernels are predetermined and fixed, implying that the receptive 

field (i.e., the input data range covered by the convolution 

kernel) of each convolution layer remains constant. The size of 

the receptive field directly affects the network's ability to 

capture local features of the input data. When dealing with time-

varying signals containing multiple frequency components, 

fixed-size convolution kernels may not be sufficient to 

simultaneously capture short-term and long-term dependencies. 

For instance, smaller convolution kernels are more suitable for 

capturing high-frequency details, while larger convolution 

kernels are better at capturing low-frequency long-term 

dependencies. However, fixed-size convolution kernels struggle 

to adapt between these two aspects. 

Moreover, time-varying signals such as vibration data from 

rotating machinery often contain various frequency components 

ranging from low to high frequencies. These different frequency 

components reflect the motion states of different components of 

the machinery and possible fault patterns. When TCNs with 

fixed convolution kernel sizes handle such signals, some 

frequency components' features may be overlooked due to 

mismatches between the convolution kernel size and the signal's 

frequency characteristics. This oversight could impact the 

accuracy of fault diagnosis and the generalization capability of 

the model. 

The dynamic convolution kernel adjustment mechanism is 

based on the spectral analysis of the signal, utilizing the energy 
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distribution in the frequency domain to guide the selection of 

the convolution kernel size. Let X(t) denote the input time-

domain signal, which is transformed into the frequency domain 

representation X(f) through Fast Fourier Transform (FFT). The 

energy density function E(f) of the signal can be expressed as: 

Where X(f) represents the amplitude of the signal at 

frequency f. Based on the energy density function, we define a 

dynamic adjustment factor , which is computed as: 

 

( )

( )
max

0

high

low

f

f

f

E f df

E f df

 =



 (11) 

Here, 𝑓𝑙𝑜𝑤 and 𝑓ℎ𝑖𝑔ℎ are the lower and upper bounds of the 

considered frequency range, respectively, and 𝑓𝑚𝑎𝑥  is the 

maximum frequency of the signal. The dynamic adjustment 

factor 𝛼 reflects the proportion of energy of the signal within a 

specific frequency range and is used to adjust the size of the 

convolution kernel. 

Based on the dynamic adjustment factor 𝛼  the adjustment 

formula for the convolution kernel size k is as follows: 

 ( ) ( )min max min 1k k k k = + − −  (12) 

Where kmin and kmax are the minimum and maximum values of 

the convolution kernel size, respectively. This formula ensures 

that when the main energy of the signal is concentrated in high 

frequencies, smaller convolution kernels are used to capture 

detailed features at high frequencies. Conversely, when the 

energy is mainly concentrated in low frequencies, larger 

convolution kernels are employed to cover a wider time range, 

enhancing the model's perception of low-frequency changes. 

The dynamic convolution kernel adjustment mechanism 

proposed in this paper provides a new adaptive strategy for deep 

learning models in handling non-stationary time series data. By 

finely adjusting the convolution kernel size, this mechanism not 

only enhances the adaptability of the model to different 

frequency characteristics of the signal but also optimizes the 

accuracy of feature extraction and the responsiveness of the 

model. This theoretical innovation effectively addresses the 

shortcomings of traditional fixed convolution kernel models in 

handling complex industrial signals, demonstrating significant 

academic value and promising application prospects. 

(2) Convolution Module 

The convolution module of DA-TCN mainly includes causal 

convolution and dilated convolution. Causal convolution 

enables the network to effectively capture temporal features, 

while dilated convolution inserts zero values between 

convolution kernel elements, creating a distance between 

elements and expanding the receptive field of the convolution 

kernel. The residual module consists of two one-dimensional 

convolution units and one non-linear mapping unit. Each one-

dimensional convolution unit includes one-dimensional causal 

dilated convolution, weight normalization, ReLU activation 

function, and Dropout layer, as shown in Figure2. 

Dropout

Relu

WeightNorm

Dropout

Relu

WeightNorm

Dilated Causal 

Conv

Dilated Causal 

Conv

+

1*1Conv

(optional)

 

Figure 2. Structure of residual module. 

The computational equations of TCN can be described as 

follows: 

 ( ) ( )( ); ; ;g dy f x d g x  = =  (13) 

Where x represents the input time series data, y represents 

the corresponding output. θ denotes the network parameters, f 

represents the overall mapping function of TCN, g represents 

the mapping function of the convolution part of TCN, and d 

represents the output mapping function of TCN 

2.3. Diagnosis Flowchart Based on ASDN 

.
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Figure 3. The fault diagnosis process based on ASDN proposed in this paper. 

(1) Signal Preprocessing Stage: 

a) EEMD Decomposition and Subcomponent 

Selection: Perform ensemble empirical mode 

decomposition (EEMD) on the vibration signal to 

extract intrinsic mode functions (IMFs) 

effectively separating multi-frequency 

components. Utilize statistical indicators such as 

variance contribution rate, correlation coefficient, 

and permutation entropy to finely screen and 

reconstruct IMFs obtained from EEMD 

decomposition, selecting components with the 

most informative value for fault characteristics. 

b) SSA Decomposition and Merging: Decompose 

the signal processed by EEMD using singular 

spectrum analysis (SSA), utilize the w-

correlation graph to merge signals of the same 

period, and select the components with the 

highest information value based on variance 

contribution rate. 

(2) Deep Learning Stage: 

a) Divide the merged signal into training and testing datasets. 

b) Dynamic Adjusted Temporal Convolutional Network 

(DA-TCN): Introduce a dynamic convolution kernel adjustment 

mechanism, allowing the convolution kernel size to adaptively 

adjust according to the frequency characteristics of the signal, 

thereby optimizing the accuracy of feature extraction and the 

responsiveness of the model. The model comprises adaptive 

convolutional layers, activation layers, normalization layers, 

and Dropout layers to enhance the model's generalization 

capability and stability. 

(3) Model Training and Testing: 

a) Model Training: Train the DA-TCN model using the 

training dataset, aiming to improve the model's fault diagnosis 

capability by optimizing the loss function. 

b) Model Testing: After completing the model training, the 

model is evaluated using an independent test dataset. The test 

dataset contains new samples that were not involved in the 

training and is used to verify the generalization ability of the 

model. 

3. Experimental Analysis of the Western Reserve 

University Rolling Bearing Data  

(1) Data Introduction 

This study utilizes data from the Case Western Reserve 

University (CWRU) Bearing Data Center for validation. The 

experimental setup includes a 2-horsepower motor, torque 

sensor, dynamometer, and accelerometer, with the latter 

installed at the fan end and drive end of the motor (sampled at 

12 KHz or 48 KHz). The data simulates bearing conditions, 

including normal states, faults in the rolling elements, inner race, 

and outer race, with faults of three different diameters (0.007, 

0.014, 0.021 inches). Focusing on the data sampled at 12 KHz, 

this study selects samples with faults in the inner race, outer race, 

and rolling elements, with a fault diameter of 0.007 inches, 

spanning a load range from 0Hp to 2Hp, covering 12 different 

bearing fault states labeled from 0 to 11. The types of faults and 

their corresponding category labels are listed in Table 1. The 

dataset is divided into 70% for training and 30% for testing to 

evaluate the performance of the proposed method in bearing 

fault diagnosis. This study aims to explore the effectiveness of 

the proposed approach in bearing fault detection, while 

examining the robustness of the model under strong noise 

conditions and its generalization performance on different 

datasets. 
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Table 1. Description of Each Fault Type in the CWRU Dataset. 

Load Annotation Fault Type Dataset Size 

0（1797r/min） 

0 Normal 97 

1 Inner Ring 105 

2 Rolling Element 118 

3 Outer Ring 130 

1（1772r/min） 

4 Normal 98 

5 Inner Ring 106 

6 Rolling Element 119 

7 Outer Ring 131 

2（1750r/min） 

8 Outer Ring 99 

9 Inner Ring 107 

10 Rolling Element 120 

11 Outer Ring 132 

Traditional time-domain analysis methods struggle to 

accurately characterize the types of faults in rolling bearings, 

thus compromising the qualitative analysis. Therefore, this 

paper utilizes the advantage that EEMD can capture the 

transient changes of the signal, and also combines the advantage 

that SSA can extract the main trend and period components of 

the extracted signal to realize the comprehensive extraction of 

vibration signal information. Furthermore, SSA is utilized to 

further suppress noise over-decomposition by EEMD, reducing 

its impact and enhancing result accuracy. The time-domain plot 

post EEMD-SSA denoising is illustrated in Figure 4 (using label 

1 as an example).
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Figure 4. The time-domain waveforms. 

From Figure 4, it can be observed that EEMD-SSA 

effectively eliminates noise while preserving the characteristics 

of the original signal. 

The dataset denoised by EEMD-SSA was trained and tested 

on DA-TCN. The loss curve and accuracy curve after 150 

iterations are shown in Figure 5.

 

           （a)                                                            （b） 

Figure 5. Model Fault Recognition Curves: (a) Fault Recognition Loss Curve (b) Fault Recognition Accuracy Variation Curve.  

The results depicted in the graphs show that after 150 

iterations, the accuracy of the training set reached 100%, while 

that of the test set reached 99.66%. The loss value of the training 

set approached zero, and that of the test set decreased to 0.0033. 

With the increase in the number of iterations, both the loss value 

curve and the accuracy variation curve tended to stabilize, 

indicating that the model reached a converged state, thus 

validating the effectiveness of the proposed method. 
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Visual comparison between the diagnostic results and the 

actual fault types is facilitated through a confusion matrix 

visualization (Figure 6), where the horizontal axis represents the 

diagnostic status and the vertical axis represents the actual fault 

status. 

 

Figure 6. Confusion Matrix. 

From Figure 6, it can be observed that the proposed method 

achieved 100% diagnostic accuracy. 

(2) Comparative experiments 

In order to evaluate the performance of the proposed method, 

this study primarily compares it with traditional MSCNN,TCN, 

BiTCN, AlexNet, and two advanced methods Attention-TCN[14], 

CA-MCNN[15] in terms of diagnostic rate. To ensure fairness, 

the aforementioned methods are all trained using the same 

settings. That is, the size of the intercepted frame of data used 

is 500, the motion step of the intercepted frame is also 500, the 

learning rate at the beginning is 0.001, the batch size is 32, and 

the optimizer is Adam. The main evaluation criterion is 

diagnostic accuracy, which represents the ratio of correctly 

diagnosed samples to the total number of samples, reflecting the 

overall performance of the evaluation method. To reduce the 

impact of randomness, each experiment is repeated five times. 

The specific results are shown in Figure 7 and Table 2. 

 

Figure 7. The accuracy of each method.

Table 2. The experimental results for the eight models. 

The experimental results demonstrate that the method 

proposed in this paper exhibits outstanding performance in 

terms of diagnostic accuracy, reaching as high as 100%, with 

the lowest accuracy still achieving 99.62%. This performance 

even surpasses the highest diagnostic accuracy of other models. 

Compared to traditional MSCNN, TCN, BiTCN, AlexNet, and 

advanced Attention-TCN, CA-MCNN, the proposed method 

achieves a significant improvement in diagnostic accuracy. 

Specifically, relative to these traditional methods, the diagnostic 

accuracy of the proposed method is increased by 5.02%, 

20.06%, 2.14%, 3.84%, 12.14%, and 3.74%, respectively. 

Furthermore, this method demonstrates the best stability, 

showing the smallest mean square error. These results highlight 

the reliability and effectiveness of the proposed method in the 

Model Highest Accuracy(%) Lowest Accuracy(%) Average Accuracy(%) 

Proposed Method 100 99.62 99.78±0.18 

MSCNN 96.18 93.92 94.76±0.77 

TCN 81.53 76.74 79.72±1.62 

BiTCN 98.26 96.88 97.64±0.55 

AlexNet 98.10 93.80 95.94±1.59 

Attention-TCN 93.40 84.38 87.64±3.13 

CA-MCNN 97.57 94.79 96.04±0.95 
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field of fault diagnosis. 

In terms of visual representation, the T-SNE algorithm is 

introduced to display the feature distribution of the eight models 

on the dataset. Different colors represent different health 

statuses of the devices. The results are shown in Figure 8

 

（a）                                                （b）                                              （c） 

 

 

（d）                                               （e）                                              （f） 

 

(g) 

Figure 8. Feature visualization using t-SNE (a) This paper (b) MSCNN (c) TCN (d) BiTCN  

(e) AlexNet (f)Attention-TCN (g) CA-MCNN. 

The results indicate that, apart from the method proposed in 

this paper, the feature distribution plots of the other seven 

methods are mixed, especially the TCN model, which is 

difficult to distinguish. In contrast, the feature distribution plot 

obtained by the proposed method exhibits greater discriminative 

capability, with features corresponding to the same health 

condition clustering together, while those from different health 

conditions are completely separated. This validates the 

advantage of the proposed method in feature extraction, 

effectively distinguishing various health states and thereby 

enhancing the accuracy and reliability of rolling bearing fault 

diagnosis. 

(3) Adding Signal-to-Noise Ratio 

In order to analyze the performance of the proposed method 

in strong noise environments, Gaussian white noise with 

different Signal-to-Noise Ratios (SNRs) was added to the 

original vibration signals to simulate real signals in industrial 

environments. Comparative evaluation with other learning 

models includes assessment criteria such as diagnostic accuracy 

and F-score, where the F-score reflects the performance of the 

evaluation method in each category. The final results are shown 

in Figure 9 and Table 3. 
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Figure 9. Diagnostic accuracy of eight models at various 

SNRs. 

Table 2. F-scores (%) of eight models at various SNRs. 

Model -6dB 2dB 4dB 6dB 8dB 10dB 

Proposed 

Method 
79.33 86.99 87.99 89.31 89.94 92.72 

MSCNN 21.43 71.79 79.52 87.81 89.85 92.34 

TCN 18.04 39.46 53.55 70.33 78.12 81.69 

BiTCN 2.46 13.03 29.14 64.76 68.81 73.92 

AlexNet 12.40 40.67 57.23 62.70 68.53 77.32 

Attention-

TCN 
3.51 24.99 43.16 47.60 68.81 69.25 

CA-MCNN 15.37 56.28 70.92 76.39 88.22 91.34 

By examining Figure 9, it is evident that the diagnostic 

accuracy of the proposed method surpasses significantly that of 

the other seven methods. Additionally, from Table 3, it can be 

observed that the F-scores of the proposed method consistently 

outperform those of the other methods across all SNR 

conditions, demonstrating its superior performance in high-

noise environments. This outcome underscores the high 

accuracy and robustness of the proposed method in strong noise 

environments. 

(4) Ablation Study 

In this study, ablation experiments were conducted to delve 

into the impact of each component of the proposed method on 

network performance. The study compared four network 

structures: a) without dynamic adjustment mechanism; b) 

without undergoing EEMD-SSA processing, directly inputting 

to DA-TCN; c) only processed by EEMD and then input into 

DA-TCN; d) replace DA-TCN with 1DCNN (its detailed model 

structure is shown in Table 4), and the original signal is directly 

input into 1DCNN; e) only processed by EEMD and then input 

into 1DCNN; f) The signal processed by EEMD-SSA is input 

into 1DCNN; g) the complete network structure proposed in this 

paper. The fault categories to be diagnosed include the 12 types 

mentioned in the experiment (labeled 0-11). Table 5 shows the 

diagnostic accuracy, F-scores, and loss rates of the final results. 

Table 4. 1DCNN model structure. 

No. Scale1 

1 Conv1(3×1×32) 

2 ReLU、BN 

3 Max pooling(2×1,2) 

4 Conv2(5×1×64) 

5 ReLU、BN 

6 Max pooling(2×1,2) 

7 Conv3(7×1×128) 

8 ReLU、BN 

9 Max pooling(2×1,2) 

10 FC 

11 Softmax 

Table 5. Different Models' Results. 

Model 
Average Diagnostic 

Accuracy/% 

Average F-

score /% 

Average Loss 

Rate 

a 96.11±2.83 96.01±2.98 0.1060 

b 97.53±0.45 97.53±0.47 0.1156 

c 99.08±0.17 99.08±0.17 0.0707 

d 76.94±3.71 76.58±3.89 1.2024 

e 81.94±1.42 82.06±1.27 0.6118 

f 94.66±1.06 94.66±1.04 0.3575 

g 99.78±0.18 99.78±0.18 0.0099 

Table 5 shows that removing either structure in the ASDN 

model results in a decrease in the model's performance. When 

there is no EEMD-SSA structure, the accuracy and F-score both 

decrease by 2.25%, proving the importance of EEMD-SSA in 

in noise suppression and signal purity enhancement. When 

replacing DA-TCN with 1DCNN, the accuracy decreased by 

3.29% and the F-score decreased by 2.87%; and when inputting 

the original signals into the two models, the results of 1DCNN 

decreased the accuracy by 22.84% and the F-score decreased by 

23.20% with respect to DA-TCN, which proved the superiority 

of DA-TCN in extracting features. When the signal is input into 

DA-TCN and 1DCNN after only EEMD processing, the 

accuracy and F score drop by 0.70% and 12.72% respectively 

compared with DA-TCN and 1DCNN after EEMD-SSA 

processing. Compared with DA-TCN, the accuracy and F score 

of 1DCNN drop by 17.14%, proving the importance of SSA in 

signal reconstruction and feature enhancement. According to 

the error, it can be seen that the stability of the model also 

decreases after removing some structures, which further verifies 
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the robustness and stability of the method proposed in this paper. 

4. Analysis of Rolling Bearing Data from Xi'an Jiaotong 

University 

(1) Data Introduction 

This study utilizes the XJTU-SY rolling bearing dataset to 

validate the proposed methodology. The experimental setup 

consists of an alternating current motor, a speed controller,  

a supporting shaft, bearings, among others. Vibration signals 

were collected using an LDK UER204 bearing and a PCB 

352C33 accelerometer at a sampling frequency of 25.6 kHz. 

The dataset is divided into 70% for training and 30% for testing, 

covering five bearings under three operating conditions as 

shown in Table 6. 

Table 6. Overview of the XJTU-SY Bearing Dataset 

Information. 

Operating 

Condition 
Annotation Dataset Fault Type 

1 
0 Bearing 1_1 Outer Race 

1 Bearing 1_4 Cage 

2 

2 Bearing 2_1 Inner Race 

3 Bearing 2_2 Outer Race 

4 Bearing 2_2 Cage 

3 
5 Bearing 3_1 Outer Race 

6 Bearing 3_3 Inner Race 

The time-domain waveform plot of the dataset after 

denoising with EEMD-SSA is shown in Figure 10 (taking label 

0 as an example).
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Figure 10. Time-domain waveform. 

By Figure10, it can be observed that EEMD-SSA effectively 

eliminates noise while preserving the characteristics of the 

original signal. 

(2) Comparative Experiment 

Compare the proposed method with traditional 

MSCNN,TCN, BiTCN, AlexNet, and two advanced methods 

Attention-TCN, CA-MCNN in terms of diagnostic rate. Each 

method is run five times to ensure the reliability of the 

experiment. Table 7 and Figure 11 summarize the results of all 

models. 

Table 7. Experimental Results of Eight Models. 

Model 
Highest 

Accuracy / % 

Lowest 

Accuracy / % 

Average 

Accuracy /% 

Average F-

score / % 

Proposed 

Method 
97.42 96.49 96.97±0.36 96.98±0.36 

MSCNN 83.70 76.09 80.44±2.54 80.33±2.65 

TCN 50.35 38.77 44.73±4.39 43.62±5.37 

BiTCN 98.55 94.93 96.45±1.59 96.44±1.60 

AlexNet 92.03 87.68 90.23±1.45 89.92±1.63 

Attention-

TCN 
89.49 75.72 83.48±4.58 83.25±4.98 

CA-MCNN 94.20 84.06 88.19±3.50 87.81±3.80 

 

Figure 11. Accuracy of Each Method. 

The experimental results indicate that the proposed method 

outperforms other models in terms of average diagnostic 

accuracy Additionally, its average F-score also surpasses that of 
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other models. Theis finding underscore the efficiency and 

superior performance of the model in fault diagnosis. Figure11 

illustrates the excellent performance stability demonstrated by 

our method. 

(3) Ablation Study 

Conducting ablation studies to delve deeper into the impact 

of each structure of the proposed method on network 

performance. The study includes comparisons of four network 

structures: a) without dynamic adjustment mechanism; b) 

without undergoing EEMD-SSA processing, directly inputting 

to DA-TCN; c) only processed by EEMD and then input into 

DA-TCN; d) replace DA-TCN with 1DCNN, and the original 

signal is directly input into 1DCNN; e) only processed by 

EEMD and then input into 1DCNN; f) The signal processed by 

EEMD-SSA is input into 1DCNN; g) the complete network 

structure proposed in this paper. This experiment examines 

seven different fault types (labeled as 0-6). Table 8 summarizes 

the performance of these structures in terms of diagnostic 

accuracy, F-score, and loss rate. 

Table 8. Results of Different Models. 

Model 
Average Diagnostic 

Accuracy/% 

Average F-score 

/ % 

Average Loss 

Rate 

a 95.56±0.81 95.58±0.59 0.1406 

b 92.85±2.14 92.82±2.15 0.6583 

c 95.26±0.77 95.24±0.78 0.2367 

d 85.15±1.39 85.03±1.36 1.4554 

e 86.74±0.98 86.20±1.71 1.2062 

f 91.45±1.98 91.32±2.05 0.7332 

g 96.97±0.36 96.98±0.36 0.2157 

According to the results in Table 8, it is proved again that 

removing any structure in the ASDN model will lead to  

a decrease in the performance of the model. When there is no 

EEMD-SSA structure, the accuracy is 4.12% and the F score 

decreases by 4.16%. When replacing DA-TCN with 1DCNN, 

the accuracy decreased by 5.43% and the F-score decreased by 

5.66%; and when inputting the original signal into both models, 

the 1DCNN results decreased by 7.70% in accuracy and 7.79% 

in F-score relative to DA-TCN. When the signal is input into 

DA-TCN and 1DCNN after only EEMD processing, the 

accuracy decreases by 1.71% and 4.71% respectively, and the F 

score decreases by 1.74% and 5.12% respectively compared 

with DA-TCN and 1DCNN after EEMD-SSA processing. 

According to the error, it can be seen that the stability of the 

model also decreases after removing some structures, which 

further verifies the robustness and stability of the method 

proposed in this paper. 

5. Conclusion 

To address the issues of fixed convolution kernel sizes and weak 

specificity in feature extraction in the application of deep 

learning for fault diagnosis, this paper develops a fault diagnosis 

framework that combines Ensemble Empirical Mode 

Decomposition (EEMD), Singular Spectrum Analysis (SSA), 

and a Dynamically Adjustable Temporal Convolutional 

Network (DA-TCN). In the adaptive preprocessing stage, 

adaptive improvements are made to the EEMD and SSA 

algorithms, and the signal is decomposed on multiple scales and 

fault components are extracted to optimize signal representation. 

In the adaptive deep learning stage, this paper proposes  

a dynamic convolution kernel adjustment mechanism, enabling 

the neural network to dynamically adjust the convolution kernel 

size according to the different frequency components in the 

signal, thus accurately processing signals with different 

frequencies. The proposed method is validated using publicly 

available datasets from Case Western Reserve University and 

Xi'an Jiaotong University, yielding the following conclusions: 

(1) Adaptive Preprocessing Stage: Through adaptive 

improvements to EEMD and SSA, the limitations of EEMD in 

extracting signal trends and periodic components are 

successfully addressed. Time-domain waveform diagrams show 

that the signal processed with EEMD-SSA noise reduction 

effectively removes noise components and highlights fault 

characteristics. Ablation study results indicate that after 

adaptive EEMD-SSA processing, the fault diagnosis accuracy 

on the two datasets increased by 2.25% and 4.12%. 

(2) Dynamic Convolution Kernel Adjustment Mechanism: 

This paper innovatively develops a dynamic convolution kernel 

adjustment mechanism, addressing the lack of sensitivity and 

responsiveness of TCN to signal characteristic changes under 

different operating conditions. Ablation study experimental 

results show that adding this mechanism increased fault 

diagnosis accuracy on the two datasets by 3.67% and 1.41%. 

(3) Model Comparison: The proposed fault diagnosis 

framework is compared with existing methods including 

MSCNN, TCN, BiTCN, and advanced methods such as 

AlexNet,Attention-TCN and CA-MCNN. Results show that the 
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diagnostic accuracy on the two public datasets reached 100% 

and 97.42%, respectively, surpassing the accuracy of other 

models. Additionally, TSNE visualization of the classification 

results indicates that the proposed method exhibits the most 

distinct classification effect, clearly categorizing 12 fault types. 

(4)  Performance Validation in Noisy Environments: To 

verify the model's performance in noisy environments, 

Gaussian white noise with different Signal-to-Noise Ratios 

(SNR) (ranging from 2dB to 10dB) was added to the first dataset 

to simulate real industrial signals. Results show that, compared 

to the benchmark models, the proposed method achieved the 

highest diagnostic accuracy and F-score under various noise 

conditions. 

The above validations demonstrate that the proposed fault 

diagnosis framework excels in handling complex vibration 

signals and in real industrial applications, significantly 

improving the accuracy and reliability of fault diagnosis.
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