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Highlights  Abstract  

▪ This study uses extremal gradient 

enhancement to select the optimal feature 

subset. 

▪ This study uses graph convolutional neural 

network to extract the fault depth feature. 

▪ This technology utilizes Naive Bayes models 

for pre-diagnosis. 

 To solve the problem of upstream and downlink interference in cellular 

networks, a graph convolutional neural networks-based novel fault 

diagnosis method for semi-supervised cellular networks is proposed. In 

the research design method, the extreme gradient enhancement 

technique is first used to enhance the fault diagnosis feature data of 

cellular networks. Then, the graph convolutional neural network is 

used to train and learn the fault diagnosis feature dataset of cellular 

networks, achieving fault diagnosis prediction of cellular networks. In 

the process of training the cellular network fault diagnosis model, data 

augmentation techniques were used to enhance the training level of the 

model, while Bayesian networks were used for pre diagnosis to 

improve the diagnostic accuracy of the modified model. The 

experimental results show that the cellular network fault diagnosis 

model constructed in the study can achieve a classification accuracy of 

90% for training samples during training and testing, while other 

models can only achieve a maximum of about 85%. The model 

constructed by the research can achieve  

a diagnostic accuracy of over 90% in the practical application of 

cellular network fault diagnosis, while taking only 6 seconds. This 

algorithm can diagnose faults in complex cellular network 

environment, which has high accuracy and practicability, and can 

effectively improve user experience. 

  Keywords 

This is an open access article under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/)  

Fault diagnosis, Naive Bayes, Knowledge data fusion, Graph 

Convolutional Neural Network 

 

1. Introduction 

The 21st century is known as the era of information 

technology. After more than 30 years of rapid development, 

mobile communication technology has been broadly utilized 

in various corners of society and has had a great influence on 

social development [1]. With the rapid growth of 5G networks 

and the imminent arrival of 6G networks, future mobile 

communication networks will become unprecedentedly 

heterogeneous and complex [2]. In such a network 

environment, ensuring network service quality, achieving 

rapid network fault diagnosis (NFD) with minimal cost and 

time has become an urgent issue that requires in-depth 

research. The obvious growing in the amount of device access 

in 5G networks has led to dense deployment of network nodes, 

increased overlap of base station coverage, and corresponding 
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increase in interference phenomena. The diversity of 

underlying devices makes the configuration of base station 

parameters more complex [3]. In such a complex network 

environment, how to achieve fast and accurate NFD has been 

an urgent issue that needs to be addressed. To address this 

challenge, more and more research is beginning to introduce 

machine learning methods into the field of NFD. Even when 

the network environment changes, machine learning 

algorithms can be trained or updated through new datasets to 

adapt to network fault diagnosis (FD) in the new environment. 

At present, the commonly used Cellular Network Fault 

Diagnosis (CNFD) methods face problems such as insufficient 

fault correlation analysis, low security, and low prediction 

accuracy when dealing with high complexity and large data 

networks. R. Levie et al. raised a CNFD method, which has 

acquired critical progress in FD in low complexity networks. 

However, when facing highly complex networks, the accuracy 

of FD rapidly decreased [4]. To further improve the FD 

performance of cellular networks, Hong et al. proposed  

a learning method that combines supervised and unsupervised 

learning. This method reduced the sample size and the 

accuracy of FD [5]. D. Zhu et al. proposed a method that 

combines convolutional neural networks (CNNs) and image 

restoration techniques, effectively reducing the FD cost of 

existing CNFD methods. However, this method did not 

improve the FD accuracy [6]. In order to ensure the stability 

and security of cellular network operation, research proposes 

to improve the existing fault diagnosis methods for cellular 

networks. The study used Extreme Gradient Boosting 

(XGBoost) to reduce the dimensionality of the operational 

data of cellular networks, and then constructed a fault 

diagnosis model for cellular networks using Graph 

Convolutional Neural Networks (GCNs). At the same time, 

data augmentation techniques were used to supplement the 

training data of the cellular network fault diagnosis model to 

enhance its training effectiveness. 

The innovation of the research is to combine the XGBoost 

algorithm with the GCN algorithm, extract the fault 

characteristics of the cellular network by using the XGBoost 

algorithm, and then identify and extract the network fault 

parts through the GCN algorithm. The theoretical 

contributions of the research include innovation in FD 

methods: proposing a graph convolutional neural network 

(GCN)-based semi-supervised CNFD method, providing a 

new theoretical perspective. Feature selection (FS) and 

optimization: The XGBoost algorithm is used for FS, 

optimizing the feature subset and improving the diagnostic 

efficiency and accuracy of the model. Knowledge data fusion: 

A knowledge data fusion technology has been proposed, 

which enhances the model's understanding of complex data 

patterns by combining the pre diagnostic results of naive 

Bayesian models with domain expert knowledge. The 

technical contributions of the study include improvements to 

the GCN model, which improves the traditional GCN model 

by adjusting its structure and parameters to make it more 

suitable for CNFD tasks. Data augmentation technology: By 

applying GANs technology, the problem of insufficient 

labeled samples and uneven distribution of categories in real 

datasets has been solved. Practical application verification: 

The efficacy of the improved method was proved on real 

network datasets, demonstrating its high accuracy and 

practicality in actual CNFD. Algorithm efficiency and 

scalability: The merits of the raised method in efficiency and 

accuracy, as well as good scalability and repeatability, have 

been demonstrated through experiments on imbalanced 

datasets. 

The first part of the article introduces the relevant research 

on NFD and network data collection. The second part 

introduces the GCN-based NFD algorithm and its 

improvements. The third part exhibits experiments and 

outcomes of validating the effectiveness of the algorithm 

using simulated and real data sets. The fourth part displays a 

comprehensive summary, and then identifies limitations and 

prospects. 

2. RELATED WORK 

NFD aims to monitor various nodes deployed in the network, 

collect network data generated during operation, and analyze 

them to detect abnormal states of nodes. Nowadays, many 

studies have applied graph theory and machine learning to the 

field of NFD in computer networks. M. S. Riaz et al. raised  

a framework that integrates CNN and image restoration 

techniques, which can perform root cause analysis. It 

demonstrated robustness to sparse minimization reports, base 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

station locations, and fault types. Experimental results showed 

that this approach outperformed other learning-based models 

used in the test [7]. M. Chen et al. introduced an active 

learning-based FD approach that achieves excellent diagnostic 

performance while minimizing the need for labeled training 

samples, thereby reducing costs significantly. The key concept 

was to strategically choose the most informative unlabeled 

data for labeling and training purposes. Experimental results 

showed that to achieve the same diagnostic accuracy, this 

scheme only used fewer labeled training instances compared 

to existing non-active ones [8]. Y. Wang et al. reduced the 

need for labeled data by combining supervised and 

unsupervised learning. Experimental results showed that this 

method reduced the expensive cost of labeled data compared 

to traditional methods and achieved an FD accuracy of 99.08% 

based on simulation results [9]. K.M. Chen et al. introduced a 

diagnostic algorithm based on machine learning that leverages 

condition indicators. The algorithm ingeniously combined the 

original softmax network with SVM. Simulation outcomes 

denoted that the raised algorithm realized prominent 

diagnostic efficacy, surpassing traditional score-based 

methods [10]. M. S. Riaz et al. introduced an innovative 

framework that integrates CNN and XGBoost to diagnose 

multi-faults in base station networks. Performance assessment 

under realistic and extreme conditions revealed that the 

framework achieved an accuracy of 93%, surpassing existing 

FD solutions. Furthermore, it exhibited enhanced robustness 

in handling sparse reports [11]. To make sure the stable and 

safe operation of the lithium battery system, X. Hu et al. 

discussed the future development direction of the battery FD 

technology from the fault mechanism of the battery, the 

system sensor and the actuator. The findings denoted that the 

deep learning method was going to be the main method for 

FD of lithium battery systems [12]. 

Under the fast growth of the drive test, the collection 

process of real network data has become simple and 

convenient. However, the lack of a sufficient labeled data set 

for training FD models remains a challenging problem. A. 

Rizwan et al. proposed a data augmentation scheme [13]. R. 

W. L. Coutinho and A. Boukerche discussed transfer learning 

overcoming the need for massive high-quality data to train 

machine learning models in the Industrial Internet of Things 

(IoT). They also described the working principles and 

significant challenges faced by transfer learning systems in 

the industrial IoT. They divided the transfer learning systems 

in the industrial IoT into mechanical and network hierarchies 

and provided in-depth discussions on the design components 

and challenges of transfer learning systems in each proposed 

category [14]. L. Cerdà-Alabern et al. attempted to use 

anomaly detection technologies to detect hardware failure 

events. They applied four unsupervised machine learning 

methods based on different principles. Numerical results 

showed that all tested methods improved the performance in 

detecting gateway failures when non-traffic features were 

considered simultaneously [15].  

S. Han et al. proposed a weighted generalized learning system 

where the weight assigned to each class depends on its sample 

quantity. To further improve the classification performance, 

they introduced an improved differential evolution algorithm 

to automatically optimize the generalized learning system and 

newly generated weights and parameters. Experiment 

outcomes said that this method achieved greater classifying 

accuracy than other methods on 20 imbalanced classification 

problems [16].  

Y. Wang et al. proposed an ensemble learning-based self-

organizing heterogeneous NFD system and used a synthetic 

minority oversampling technique to handle data imbalance. 

Considering the cost-sensitivity, they used rescaling methods 

to help the classifier differentiate the importance of different 

samples to minimize the overall loss. Additionally, to address 

the sparse data in small areas and dense deployment in 

heterogeneous networks, the solution provided a distributed 

diagnosis system that reduces communication costs [17].  

T. Ahmad et al. found that the GCNs algorithm could realize 

the action recognition of the human body skeleton through 

multi-node or multi-lateral data. Therefore, the authors 

proposed an action recognition classification method based on 

GCN technology, and elaborated on the future development 

direction of GCN technology [18]. A. Z. Yonis et al. proposed 

a 5G communication network communication channel based 

on non orthogonal multiple access technology to improve the 

processing capability of wireless data stream large-scale data 

services in 5G communication systems. The findings denoted 

that the use of this technology can raise the anti-interference 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

ability of communication channels [19]. 

In summary, the academic community has discussed and 

researched network fault detection and diagnosis. Researchers 

have endeavored to incorporate cutting-edge technologies into 

the process of FD, yielding a series of solutions. Nevertheless, 

the growing uncertainty and intricacy of mobile 

communication networks render these solutions inapplicable 

to the present network environment. To better ensure the 

healthy operation of networks, a reliable and efficient NFD 

solution remains  

a research focus for future researchers. Thus, this study 

focuses on the precise diagnosis of 4G/5G network faults with 

limited labeled samples and proposes an improved CNFD 

supported by GCN. The application of this method in cellular 

networks is crucial as it not only demonstrates its necessity 

but also demonstrates the uniqueness and superiority of FD 

achieved through deep learning frameworks in the rapidly 

developing and diverse modern communication environment 

of network faults. 

3. CNFD-BASED IMPROVED GCN 

The study first proposes a CNFD based on GCN, which 

utilizes GCN for extracting graph data features and classifying 

nodes. To solve the problem of limited labeled samples and 

imbalanced class distribution in real data sets, the study 

further improves the GCN-based diagnostic method using 

knowledge and data fusion techniques. The improved method 

augments the real data set using Generative Adversarial 

Networks (GANs) to increase the sample size. Then, 

combining domain expert knowledge, the dataset is pre-

diagnosed using the Naive Bayes method, and the generated 

association graph is used as prior knowledge to guide the 

GCN training. At last, the original GCN has been enhanced to 

allow for the calibration of the influence of prior diagnostic 

knowledge and training dataset scale on the model accuracy 

during the training. 

3.1. GCN-BASED FAULT DIAGNOSIS 

The cellular network structure includes massive base stations, 

user devices, and other elements, with complex interactions 

and dependencies between them. GCN can effectively 

simulate the dynamic relationships between these devices and 

model the propagation and impact of faults. The data in 

cellular networks is usually not arranged in a regular manner, 

but forms a complex graphical structure. The non-Euclidean 

data processing capability of GCN makes it perform better in 

such applications. The node information transmission scheme 

of CGN network is mainly based on content addressing 

mechanism, which locates and retrieves data through content 

identifiers (CID), rather than relying on traditional IP 

addresses. This scheme utilizes  

a caching mechanism, allowing nodes to store content replicas 

locally, thereby reducing duplicate transmissions, improving 

efficiency, and supporting offline access. Meanwhile, CGN 

networks support multipath transmission, enhancing the 

reliability and efficiency of data transmission. In addition, the 

distributed storage characteristics of CGN networks ensure 

high availability and redundancy of content. The discovery 

and sharing of node information are achieved through 

broadcasting or multicast mechanisms, while encryption and 

authentication mechanisms ensure the security of information 

transmission. The adaptability of CGN networks allows for 

dynamic adjustment of information transmission strategies 

based on network conditions and user needs, optimizing 

overall performance. Therefore, the study proposes to design 

the FD model of cellular network. The study proposes a 

CNFD based on GCN. Firstly, the XGBoost algorithm is 

applied to conduct FS on the original network parameter 

dataset. Then, the reduced dataset is transformed to obtain 

graph data in the format required by GCN. Finally, GCN is 

used to diagnose network parameter data for FD. Although 

using XGBoost can improve the performance of the model, 

this method may introduce bias or over-fitting. To address this 

potential issue, cross validation and regularization techniques 

are used to evaluate the generalization ability of selected 

features and adjust the parameters of XGBoost to alleviate 

over-fitting. The workflow of the raised algorithm is denoted 

in Figure 1. The process shown in Figure 1 first includes 

feature selection and data standardization processing. In the 

processing stage, the XGBoost algorithm is used to perform 

feature selection on the original network parameter dataset, in 

order to reduce the feature dimension and optimize the 

diagnostic efficiency and accuracy of the model. After feature 

selection, the dataset is converted into the graph data format 

required by GCN. Subsequently, a feature matrix and a label 
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matrix are constructed, and adjacency matrices are generated 

by calculating similarity, which are collectively used to 

represent the topological relationships between network nodes. 

Next, the GCN model processes graph data through graph 

convolutional layers to aggregate and classify node features. 

In the training process of GCN, the cross entropy loss 

function is used to calculate the error, and the gradient descent 

method is used to optimize the model weights.  

Feature selection Feature normalization

XGBoost

Data preprocessing

Input

Preprocessed 

dataset

Graphic data 

conversion

Calculate 

similarity
Obtain A

Training set

Test Set

Training GCN
GCN 

convergence

Fault Diagnosis Based on GCN

Label of 

diagnostic results

Output

Original 

dataset

 

Figure 1. Flow chart of CNFD based on GCN. 

In addition, in order to improve the generalization ability 

of the model, cross validation and regularization techniques 

were applied to evaluate the generalization performance of 

selected features, and the parameters of XGBoost were 

adjusted to alleviate overfitting problems. XGBoost is adopted 

to build a decision tree of multiple [20-21] and evaluate 

feature parameters' importance, which are ranked by the 

importance in a descending pattern. The optimal number is 

determined with the best combination conditions. The 

XGBoost's function of objective is indicated in Equation (1). 

𝑂(𝑚) = ∑ (𝑦𝑖 , 𝑦̂𝑖
(𝑚))

2
𝑁
𝑖=1 + ∑ (𝛾𝑇 +

1

2
𝜆∑ 𝜔𝑗

2𝐶
𝑗=1 )𝑚

𝑘=1        (1) 

In Equation (1), (𝑦𝑖 , 𝑦̂𝑖
(𝑚))

2
 represents the loss function, 

which reflects the difference between the predicted network 

state labels 𝑦̂𝑖
(𝑚)

 and the true ones 𝑦𝑖 . 𝑖 represents the index 

number of the data label. 𝑁  is the amount of samples. 

∑ (𝛾𝐶 +
1

2
𝜆 ∑ 𝜔𝑗

2𝐶
𝑗=1 )𝑚

𝑘=1  is the regularization term that limits 

the number of leaf nodes. 𝜆means regularized parameter, and 

𝛾 means learn rate. 𝐶 means the amount of leaf nodes, and 𝜔𝑗 

is the weight on the 𝑗  -th leaf node. Assuming the model 

structure is determined, the weights are able to be obtained by 

taking the means of using the objective function derivative 

which is planned as 0. By transforming the traversal over 

samples in the objective function to a traversal over leaf nodes 

and substituting the weights, the final objective function 𝑂∗ 

can be obtained, as shown in Equation (2). 

𝑂∗ = 𝛾𝑇 −
1

2
∑

𝐷𝑗
2

𝐻𝑗+𝜆

𝐶
𝑗=1    (2) 

In Equation (2), a smaller value indicates a closer 

prediction to the true result. There are 𝐷𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
, and 𝐻𝑗 =

∑ ℎ𝑖𝑖∈𝐼𝑗
.𝑔𝑖 and ℎ𝑖 represent the first and second derivatives of 

the loss function for the 𝑖 -th sample in the (m-1)-th round of 

models. Assuming 𝑑 as the original parameters, and after FS, 

the feature parameters number is meant to be 𝑑0(0 < 𝑑0 < 𝑑). 

To prevent higher values from exerting undue influence over 

the entire training process of the GCN model, it needs to 

normalize them in the interval of [0, 1] using min-max 

normalization before using them. The proposed method 

requires mapping the reduced network parameter data set 

{
(𝑥1, 𝑦1), (𝑥2, 𝑦2),⋯

, (𝑥𝑙 , 𝑦𝑙), (𝑥𝑙+1, 0)⋯ , (𝑥𝑛 , 0)
} to an un-directed graph. 𝑙 is the 

number of labeled samples. In the data set, 𝑥𝑖 =

[𝐾𝑃𝐼𝑖,1, 𝐾𝑃𝐼𝑖,2, ⋯ , 𝐾𝑃𝐼𝑖,𝑑0] ∈ ℝ
𝑑0  represents the feature 

parameter vector under the condition that the current network 

state using 𝑑0  KPIs. 𝐿  represents the set of fault category 

labels for cellular networks, 𝑦𝑖  belongs to the set𝐿as class 

labels, and the label set 𝐿 = {1,2,⋯ , 𝑐} includes C network 

fault class labels. Assuming the first 𝑙 data points are labeled 

with𝑦𝑖 , and the left data points are unlabeled data with class 

label 𝑦𝑖  equal to 0. First, the feature matrix 𝑋 ∈ ℝ𝑛×𝑑0  is 

constructed from the data set, as shown in Equation (3). 

𝐗 =

(

 
 
 
 

𝐾𝑃𝐼1,1 𝐾𝑃𝐼1,2 ⋯ 𝐾𝑃𝐼1,𝑑0
⋮ ⋮ ⋱ ⋮

𝐾𝑃𝐼𝑙,1 𝐾𝑃𝐼𝑙,2 ⋯ 𝐾𝑃𝐼𝑙,𝑑0
𝐾𝑃𝐼𝑙+1,1 𝐾𝑃𝐼𝑙+1,2 ⋯ 𝐾𝑃𝐼𝑙+1,𝑑0

⋮ ⋮ ⋱ ⋮
𝐾𝑃𝐼𝑛,1 𝐾𝑃𝐼𝑛,2 ⋯ 𝐾𝑃𝐼𝑛,𝑑0 )

 
 
 
 

 (3) 

To facilitate the calculation of cross-entropy loss in a 

manner that is conducive to the backward weight update of 
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GCN, it is necessary to have a label matrix in place to indicate 

the various label categories. The encoded class labels can be 

obtained in Table 1. 

Table 1. Electronic hot encoding of some network fault types 

in the data set 

Class label Fault type Code 

1 uplink interference 010000 

2 Downlink interference 001000 

3 Air port failure 000100 

4 Base station failure 000010 

Class label Fault type Code 

5 coverage hole 000001 

6 Normal situation 100000 

The unlabeled data is assigned zero vectors as class labels, 

and these label vectors are then combined to form a label 

matrix 𝑌 ∈ ℝ𝑛×𝑐 encompassing all the data. Finally, an 

adjacency matrix 𝐹 ∈ ℝ𝑛×𝑛 is required for the representation 

of the edge relationships between nodes. This is done by 

calculating the similarity measure 𝑠𝑖,𝑗, as shown in Equation 

(4). 

𝑠𝑖,𝑗 = {
𝑒 (−

‖𝑥𝑖−𝑥𝑗‖2
2

2𝛿2
) , 𝑖 ≠ 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (4) 

In Equation (4), 𝛿  is the Gaussian bandwidth parameter. 

When 𝑠𝑖,𝑗  is greater than the manually set threshold 𝛼 , the 

corresponding element in the adjacency matrix 𝐴𝑖,𝑗 =1, 

otherwise it is set to 0. The specific value of the threshold 𝛼 

will be determined through experiments. The GCN-based 

NFD model treats CNFD as classifying tasks and uses GCN to 

classify the data samples. The GCN model’s structure is 

denoted in Figure 2.

Input

Input layer Output layer

ReLu

SoftMax

G_Conv_1 G_Conv_2

 

Figure 2. The graph convolutional neural networks model structure.

After obtaining the reduced network fault data set, the 

feature parameter vectors of the data samples in the dataset 

are first transformed as 𝑛 × 𝑑0-dimension matrix 𝑿. After this, 

an 𝑛 × 𝑛 -dimension adjacency matrix 𝐹 is built. 𝑿 and 𝐹 are 

used to be GCN input. The forward propagation in GCN is 

indicated in Equation (5). 

𝐴(𝑙+1) = 𝜎 (𝐸̃−
1

2𝐹̃𝐸̃−
1

2𝐴(𝑙)𝐽(𝑙))  (5) 

In Equation (5), 𝜎  means the representation of the 

activation function. 𝐼𝑁 means the identity matrix. The purpose 

of this operation is for feature attribute information 

aggregation and its neighboring nodes' aggregation through 

graph convolution. 𝐸̃ here is identified as 𝐴̃'s degree matrix. 

𝐹̃ = 𝐹 + 𝑰𝑁. 𝐴(𝑙) and 𝐽(𝑙) are the input node feature matrix and 

the matrix for trainable weight, respectively. The output of 

GCN is 𝑍 ∈ ℝ𝑛×𝑐 , which is recognized as a node feature 

matrix. Given that the research treats NFD as a node 

classification task, it is necessary for the final result to output 

a class label for every node. Accordingly, the network 

structure does not require the inclusion of fully connected 

layers, which are typical of traditional CNNs. It is sufficient to 

set the activation function on the final layer of graph 

convolutional layers (GCLs) to Softmax. The output node 

feature matrix is shown in Equation (6). 

𝑍 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐹̂𝐴(1)𝐽(1))  (6) 

In Equation (6), 𝐽(1)  means the representation of the 

second layer weight matrix of graph convolution. The 

representation of the output result matrix 𝑍 is similar to the 

label matrix 𝑌. The predicted label for the sample node 𝑎𝑖 is 

𝑦̃𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑗≤𝑐

𝑍𝑖,𝑗 . In GCN training, the cross-entropy loss 

function 𝐿𝑜𝑠𝑠  needs to be calculated based on the labeled 

samples, whose error is back-propagated to improve the 

weight values in every GCL, employing gradient descent as 

the optimization technique, as shown in Equation (7). 

𝐿𝑜𝑠𝑠 = −∑ ∑ 𝑌𝑖,𝑗 𝑙𝑛 𝑍𝑖,𝑗
𝑐
𝑗=1

𝑙
𝑖=1   (7) 
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3.2. Improvement Of Fault Diagnosis Method By 

Knowledge Data Fusion 

After improving GCN using XGBoost method and 

constructing a new model of CNFD, it was found that the 

model had poor training results due to the lack of real fault 

data during the training process. Therefore, in order to 

improve the applicability of the improved GCN model in 

practical CNFD applications, it is proposed to use knowledge 

data fusion technology to enhance the training dataset of the 

improved GCN model, in order to strengthen the training level 

of the improved GCN. During the training process of GAN, 

simulation data will be generated based on the model results 

to improve the authenticity of the model output results. 

Therefore, the study proposes using GAN technology to 

expand the real dataset of the improved GAN model to 

enhance the training level of the improved GCN. The 

framework structure of using GAN to expand the training set 

of improved GCN with real samples is shown in Figure 3[22-

23].

Data 

preprocessing

Discriminator

Generator

Discriminatory 

results

random 

noise

Feedback 

results

Real 

dataset

 

Figure 3. Dataset augmentation framework for the GAN model. 

From Figure 3, GAN is a process that involves the 

interplay of two models, each competing with the other. 

During the training of GAN, there is a possibility that the 

generator may encounter difficulties due to gradient vanishing, 

particularly when the discriminator has already reached an 

optimal state. Without gradient information updates, the 

generator cannot further train, ultimately causing difficulties 

in the convergence of GAN [24-25]. To avoid weight 

restrictions on the discriminator network, the research uses the 

Wasserstein GAN-Gradient Penalty (WGAN-GP) algorithm, 

which introduces the Wasserstein distance and gradient 

penalty term (PT), to augment the data set. The loss function 

is displayed in Equation (8). 

𝐿𝑜𝑠𝑠𝐷 = 𝐸𝑥−𝑃𝑔[𝐷(𝑥̃)] − 𝐸𝑥−𝑃𝑑[𝐷(𝑥)] +

                   𝜌𝐸𝑥−𝑃𝑥[(‖∇𝑥𝐷(𝑥̂)‖2 − 1)
2]              (8) 

In Equation (8), 𝑃𝑔 means the distribution of the generated 

data by the generator, and 𝜌 ∈ 0,+∞)  means the penalty 

coefficient. 𝑃𝑥 represents the sampled data distribution in the 

PT, and the sample 𝑥̂ is got by linear interpolation sampling 

between 𝑥 and 𝑥̃, avoiding sampling the entire sample space. 

𝜌𝐸𝑥−𝑃𝑥[(‖𝛻𝑥𝐷(𝑥̂)‖2 − 1)
2]  means the PT, which forces the 

discriminator ‖𝛻𝑥𝐷(𝑥̂)‖2 to approach a gradient of 1 on the 

sampling point 𝑥̂ as much as possible during the training of 

WGAN-GP, making the discriminator network satisfy the 1-

Lipschitz constraint condition [26-27]. Before constructing 

the topological association graph, it is necessary to obtain the 

topological relationships between the data and calculate their 

similarities. However, the topological relationship graph 

constructed using clustering methods is currently rough and 

has little practical value in evolving the classification in 

accuracy of the GCN. In addition, this research also 

investigates the CNFD-based on the fusion of knowledge and 

data using actual network parameters to extend its application 

in dynamic network environments. The workflow of the 

improvement method is denoted in Figure 4.  

In Figure 4, the improved algorithm includes two stages. 

In the first stage, a combination of Naive Bayes methods and 

expert knowledge is utilized to pre-diagnose network fault 

samples. Although the use of Naive Bayes models is 

somewhat innovative, it may oversimplify the complexity of 
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handling cellular network data. Therefore, to overcome the 

limitations of Naive Bayes models in handling complex data, 

expert knowledge is introduced to more accurately capture 

and understand the patterns and features in cellular network 

data. In accordance with the outcomes of the preliminary 

diagnostic assessment, correlation graphs are employed to 

facilitate  

a supplementary pre-diagnosis of the GCN model. In stage 

two, the topological association graph generated in the 

preceding stage and the aforementioned training dataset are 

inputted into the GCN for the purposes of model training.  

The original GCN has been enhanced in order to address 

the potential influence of pre-diagnosis prior knowledge and 

the scale of the training dataset on the accuracy of the GCN 

model during the training phase. The improved algorithm still 

uses the XGBoost for selecting the optimal feature subset of 

the data set. Assuming the pre-processed network fault data 

set is represented as {(𝑥1, 𝑦1), (𝑥2, 𝑦2), , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥𝑖 =

[𝐾𝑃𝐼𝑖,1, 𝐾𝑃𝐼𝑖,2, ⋯ , 𝐾𝑃𝐼𝑖,𝑀] represents the feature parameter 

vector reflecting the network status under the current 

environment using 𝑀  KPIs. In the NFD scenario, taking 

network fault 𝑌 = {𝑦1, 𝑦2, ⋯ , 𝑦𝐿}  as the parent node of the 

Naive Bayes model, and after FS, the KPI feature parameter 

variables in the dataset are taken as the child nodes 

𝑋1, 𝑋2, ⋯ , 𝑋𝑀 . The principle of Naive Bayes is shown in 

Equation (9) [28-29]. 

𝑃(𝑦𝑖|𝑋) ∝ 𝑃(𝑦𝑖) ∏

𝑗=1
𝑀

𝑃(𝑥𝑗|𝑦𝑖)        (9) 

In Equation (9), 𝑃(𝑦𝑖|𝑋) means the posterior probability, 

and 𝑃(𝑦𝑖) is the prior probability. 𝑥𝑗  represents the specific 

value of the 𝑗  -th feature parameter in 𝑋 . 
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Figure 4. Flowchart of CNFD method based on knowledge and data fusion. 

In accordance with NFD theory, the Naive Bayes model 

calculates the posterior probability distributions using the 

learned model for each defined set of fault causes and then 

selects the network fault type that maximizes the posterior 

probability as the current network fault ℎ∗(𝑋). This is based 

on the input feature parameter vector that represents the 

network state. However, in practical situations, solving ℎ
∗(𝑋) 

involves multiplying multi-conditional probabilities. Thus, to 

prevent underflow errors, logarithmic form is used for 

calculation, as shown in Equation (10). 

ℎ∗(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥[∑ 𝑙𝑜𝑔 𝑃 (𝑥𝑗|𝑦𝑖)
𝑀
𝑗=1 + 𝑙𝑜𝑔 𝑃 (𝑦𝑖)]         (10) 

In Equation (10), the terms 𝑃(𝑥𝑗|𝑦𝑖) and 𝑃(𝑦𝑖) represent 

the evidence utilized in the Naive Bayes reasoning process. To 

prevent bias in probability calculation and the occurrence of 

zero probability values, the research uses Laplace smoothing 

to calculate the prior probability 𝑃(𝑦𝑖)  and conditional 
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probability 𝑃(𝑥𝑗|𝑦𝑖), as shown in Equation (11). 

{
𝑃(𝑦𝑖) = (𝐷𝑦𝑖 + 1)/(𝐷𝑡 + 𝐿)

𝑃(𝑥𝑗|𝑦𝑖) = (𝐷𝑦𝑖,𝑥𝑗 + 1) /(𝐷𝑦𝑖 + 𝑆𝑗)
  (11) 

In Equation (11), 𝐷𝑡  represents the total training samples, 

𝐷𝑦𝑖 represents the total amount of samples in the training set 

under the condition of fault 𝑦𝑖 , and 𝐷𝑦𝑖,𝑥𝑗  represents the 

amount of samples with KPI parameter 𝑥𝑗 in 𝐷𝑦𝑖. 𝐿 represents 

the number of types of network failures, and 𝑆𝑗 represents all 

possible values of KPI. Then, based on the discretized KPI 

attributes, the training data set is divided properly to train the 

Naive Bayes classifier [30]. The trained Naive Bayes model is 

then applied to classify the remaining data, obtaining the 

overall diagnosis result label set 𝐶̂ = {𝑐1̂, 𝑐̂2, ⋯ , 𝑐̂𝑁} in the first 

stage, where 𝑁is the representation of data set total samples 

after augmentation using WGAN-GP. In the GCN-based FD 

method, spectral clustering is applied for the adjacency matrix 

of the dataset, but the topological correlation graph generated 

by this method is not completely accurate. Therefore, in the 

improved method, the study uses Naive Bayes combined with 

expert knowledge to obtain the pre-diagnostic outcome set 𝐶̂ 

to build a topological correlation graph, namely the adjacency 

matrix 

 𝑨. In set 𝐶̂, data associated with a given network fault type 

will be linked to each other, whereas the data associated with 

distinct network fault types will not exhibit such 

interconnectivity, as denoted in Equation (12). 

𝐴𝑖,𝑗 = {
1, 𝑐̂𝑖 = 𝑐̂𝑗 𝑖 ≠ 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (12) 

According to Equation (12), a data topology correlation 

graph is actually composed of a certain number of 

independent subgraphs. This particular graph structure can 

effectively incorporate the pre-diagnosis outcomes into the 

subsequent training of the GCN model and solve the problem 

of determining the graphic convolution layer number [31-32]. 

After defining the adjacency matrix, the GCN is improved 

based on the obtained topological association graph, and the 

improved GCN is used to complete the second stage of FD 

task, obtaining the final NFD result. 𝑫̃  means the 

representation of the degree matrix, where every element on 

the principal diagonal is the sum of all elements in the related 

row of 

 𝑨̃. Therefore, the formation of 𝑫̃ depends entirely on 𝑨̃. 𝑨̃ is 

determined directly by the adjacency matrix 𝑨 and the identity 

matrix. Therefore, 𝑫̃−
1

2𝑨̃𝑫̃−
1

2 = 𝑓(𝑨, 𝑰𝑛) is utilized to improve 

the forward propagation process of the original GCN, as 

shown in Equation (13). 

𝐇(𝑙+1) = 𝜎(𝑓(𝐀, 𝐈𝑛)𝐇
(𝑙)𝐖(𝑙))   (13) 

In the original GCN model theory, the matrix 𝑨 is found 

and identified via an identity matrix of the same size. In this 

research, a weight coefficient 𝛽  is added on this basis, as 

shown in Equation (14). 

𝐀̃ = A + 𝛽𝐈𝑛    (14) 

In Equation (14), 𝛽  represents a weight coefficient that 

exhibits a positive correlation with train size, and its definition 

is shown in Equation (15). 

𝛽 = 1 + 𝑟𝑒𝑟    (15) 

In Equation (15), the variable 𝑟  denotes the labeled 

training to the total sample ratio. The enhanced GCN model 

continues to employ the cross-entropy loss function for loss 

calculation and updates its network parameters using error 

back-propagation. Thus, in the second stage, the final NFD 

task is completed using the improved GCN. 

4. PERFORMANCE ANALYSIS OF IMPROVED GCN 

BASED FAULT DIAGNOSIS 

To assess the effectiveness of the improved GCN-based FD, 

the research first built a network environment using 

simulation software and collected data generated in the 

network. Then, the effectiveness of the GCN-based FD 

algorithm was validated on the simulated data set. The 

research also used a real network data set collected in a 

certain city and augmented the data set using WGAN-GP to 

verify the effectiveness of the improved FD algorithm that 

combines knowledge data fusion in practical applications. 

4.1. Graphic observations for thep erformance of gcn-

based fault diagnosis 

To assess the efficacy of the GCN-based FD method, a 

network environment was built using OPNET 18.6 network 

simulation software and collected data generated in the 

network. During  

a specific period of network operation, the simulation 

software set corresponding network faults and recorded the 
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network parameter data generated during this period, while 

labeling them with the corresponding fault types. Finally, 

these network parameter data collected under different 

network fault scenarios were saved in CSV files for 

subsequent algorithm program reading. The simulated data set 

used in the research included six network state categories with 

a relatively high proportion of data samples. There were 3258 

samples. First, the XGBoost algorithm was used to assign an 

importance score to each feature attribute, which were sorted 

from high to low according to their importance scores. The 

feature attributes in the data set included Handover Success 

Rate (HO), Handoff Delay (HO-d), Dropped Call Rate (DCR), 

Throughput_Up Link (TUL), Throughput_Down Link (TDL), 

and others. The highest score feature attributes obtained from 

sorting were selected as the dimension-reduced sample data 

attributes. This selection process ensured that the model 

accuracy remains relatively high. Figure 5 demonstrates the 

significance of feature attribute combinations and the 

predictive accuracy of the XGBoost model for varying 

attribute configurations.
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Figure 5. Impact of data features on fault diagnosis accuracy ((a) Impact of feature importance score, (b) Impact of feature quantity).

In Figure 5 (a), it can be seen that the Signal Noise Ratio-

Down Link KPI has the highest level of importance, with a 

score of 1408. From Figure 5 (b), when all KPI features were 

retained, the model accuracy was the optimal. From Figure 5 

(b), as the amount of feature attributes gradually decreased, 

the accuracy of the models lightly decreased. When the 

amount of features decreased to 11 or less, the accuracy of the 

model significantly decreased. In the sight of the trade-off 

between diagnostic accuracy and training complexity, the 

research chose the top 11 feature attributes from Figure 5(a) as 

the attributes for the dimension-reduced data set. Since the 

total number of defined network state categories in the data 

set was 6, the feature dimension here for the input of final was 

determined as 6. Consequently, the sizes of the convolutional 

filters were selected as 7 and 6, respectively. This meant that 

in the first GCL, 𝑾(0) ∈ ℝ11×7  had a size of 7, and in the 

second GCL, 𝑾(1) ∈ ℝ7×6 had a size of 6. For the over-fitting 

defect, a 0.25 probability dropout layer was added to the input 

data of each GCL. Therefore, the final structure parameters of 

the GCN are denoted in Table 2

Table 2. The structural parameters of the final GCN. 

Amount of layers 1 2 3 4 5 6 

Type Inputting layer Dropout layer 1 GCL 1 Dropout layer 2 GCL 1 Softmax layer 

Output feature scale 3258×11 3258×11 3258×7 3258×7 3258×6 3258×6 

Accuracy and Macro F1 were utilized as metrics to 

identify the efficacy of the FD model. To determine the value 

of the threshold and the depth of the GCN network, 

simulation experiments were conducted, and the results are 

shown in Figure 6. 
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Figure 6. Parameter settings for GCN model ((a) α Value, (b) Number of graph convolution layers).

Figure 6 (a) shows the performance of GCN as a function 

of α. The change in value could be seen in the α. When the 

value was greater than 0.80, the accuracy of the model would 

vary with α. As the value increased, it decreased. At α 0.95, 

the accuracy of the model was only 74%. At α less than 0.80, 

the accuracy of the model would vary with α. At α 0.70, the 

model’s accuracy was only about 84%, compared to α 0.80, 

where the model accuracy was the highest, reaching around 

88%, and the change in Macro F1 was consistent with the 

change in accuracy. Figure 6 (b) shows the variation of model 

performance with network depth. When the GCN depth was 

only two layers, the model performance was highest, with an 

accuracy of 88.64% and a Macro F1 of 77.45%. As the 

network depth continued to increase, the model performance 

began to decline. To assess the proposed one's effectiveness, 

this chapter compared the GCN-based CNFD model with the 

KNN model, decision tree model, RANK-SVM model, and 

improved BP neural network model through comparative 

experiments. Five sets of comparative experiments were 

performed. 
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Figure 7. Comparison and analysis of training results of different algorithms ((a) accuracy comparison results, (b) Macro F1 

comparison results). 

Each of them included a subset of sample data covering 

various possible state types for networks, while the remaining 

data in the dataset served as the test set for observing the 

model's performance. Considering real-world scenarios, FD 

datasets typically consisted of major unlabeled samples and 

minor labeled ones. Therefore, the comparative experiments 

did not include training sets with more than 512 labeled 

samples. Figure 7 illustrates the diagnostic accuracy and 

Macro F1 scores of each algorithm under different training 

sets. Figure 7 (a) shows the variation of model accuracy with 

the amount of training set samples. Regardless of the amount 

of training set samples, the accuracy of the improved GCN 

algorithm was always higher than the other four algorithms’ 

performance. Even with only 64 samples in the training set, 

improved GCN still achieved an accuracy of over 80%. Figure 

7 (b) shows the Macro F1 of the model. Similar to the results 
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in Figure 7 (a), the improved GCN algorithm had a much 

higher Macro F1 than the other four algorithms. Intuitively, 

improved GCN had higher diagnostic performance than other 

algorithms under 5 different training sets. Simulation 

experiments showed that improved GCN could achieve good 

NFD accuracy even with a small amount of training samples. 

4.2. Analysis of the practical application of GCN model 

in cellular network fault diagnosis 

To avoid the problem of overly idealized diagnostic results 

caused by training algorithm models with simulated data sets, 

the performance analysis of the improved algorithm used a 

data set collected in a real network scenario through data 

collection on the roadside. This data set consisted of real user-

side data collected by a enterprise in a certain city in August 

2021, and it contained 817 labeled data samples. The results 

of feature importance ranking and FS experiments are shown 

in Figure 8.
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Figure 8. Result of feature screening test ((a) feature importance score screening result, (b) feature quantity screening result). 

Figure 8 (a) shows the importance scores of each KPI. 

RSSI had the lowest score, with only 190 points. Except for 

RSRQ_1, the importance scores of other KPIs were all below 

500. The importance score of RSRQ_11 had reached over 700 

points. The importance of different KPIs varied significantly. 

From Figure 8(b), under selecting 13 and 8 features, the 

proposed one's diagnostic accuracy was good to be accepted. 

However, to achieve the goal of FS, in the subsequent 

experiments, only the top 8 KPI parameters in the ranking in 

Figure 8(b) were selected as the feature-selected KPI 

parameters. To generate simulated data that conformed to the 

distribution of real data and solved the problems of 

imbalanced sample distribution and insufficient labeled data 

in some categories in the real network parameter data set, 

WGAN-GP was applied to augment the data set. When fitting 

the real network data in the "large inter-site distance" network 

fault scenario in the original dataset using WGAN-GP, the 

discriminator’s loss function is denoted in Figure 9. 
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Figure 9. Loss function of the WGAN-GP fit to the real 

network data. 

From Figure 9, the discriminator loss initially exhibited 

significant oscillations and then small oscillations after 

quickly converging, indicating that the model was in the 

learning phase and had not yet found the best solution 

direction. After approximately 2,000 iterations of training, the 

discriminator loss function reached a point of stability, 

indicating that the model in question had converged. The 
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augmented data set was obtained through a process of 

integration, whereby generated simulation data was fused with 

the real data present in the original dataset, as demonstrated in 

Figure 10. 
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Figure 10. Data distribution of the expanded dataset using 

WGAN-GP. 

In Figure 10, the original real data set was increased in 

size by approximately threefold through the application of 

WGAN-GP, resulting in a total of 2657 labeled data samples. 

Accordingly, the discretized data set may be readily used to 

calculate a likelihood function through statistical counting, 

thereby facilitating the first-stage pre-diagnostic classification. 

This is achieved by considering the frequency of KPI values 

under different network fault states in the training data set. 

The results of discretizing KPIs using expert knowledge are 

shown in Table 3. 

Table 3. The result of discretization operation on feature 

attributes. 

 1 2 3 4 5 

RSRP/dBm ≤-115 (-115,-105] (-155,-95] (-95,-85] >-85 

RSRQ/dB ≤-20 (-20,-15] (-15,-10] >-10 / 

RSSI/dBm ≤-100 (-100,-85] (-85,-70] (-70,-55] >-55 

SINR/dB ≤3 (3,10] (10,15] (15,25] >25 

GCNs are one of the most common variants of CNN, and 

it is widely used in many fields. K Guo et al. found that either 

the network depth was too deep or the number of iterations 

would lead to the model over-fitting phenomenon, and the 

value of learning rate and exit layer probability would directly 

affect the training result of the model [33-34]. According to 

the results of K Guo et al., in the comprehensive performance 

evaluation experiment of the FD model, the GCN model had a 

hidden layer depth of 2, the learning rate was 0.01, and the 

probability of exit layer was 0.25. The max training iteration 

times was set to 200, and the L2 regularization parameter was 

set to 110-5. Six experiments were performed with training set 

sizes of 32, 64, 128, 256, 512, and 600. Each experiment was 

repeated 10 times and the mean value was calculated to obtain 

the final result, as denoted in Figure 11.
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Figure 11. Performance comparison and analysis of different algorithms ((a) accuracy comparison results, 

 (b) Macro F1 comparison results). 

From Figures 11(a) and 11(b), the raised algorithm 

achieved the highest accuracy and Macro F1 values compared 

to others in all experimental groups. The improved algorithm 

outperformed both the GCN-based and Naive Bayes-based 

NFD algorithms. Taking 600 iterations as an example, the 

proposed algorithm improved the accuracy and Micro F1 of 

the pure GCN by 2.2% and 1.8%. The improved algorithm 

combined the merits of these two algorithms and effectively 

addressed their demerits in a complementary manner. To in 

depth analyze the reference of the raised CNFD method in 

practical scenarios, the study used the fault types of weak 

signal, frequency band mismatch, operator service fault, and 

network roaming problems, and the findings are indicated in 

Table 4 
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Table 4. A practical application analysis based on the improved GCN NFD. 

Type 
Number of failures 

(time) 

Detection frequency 

(time) 

Number of warnings 

(time) 
Detection success rate (%) 

Weak signal 50 100 48 96.0 

Frequency band mismatch 50 100 49 98.0 

Operator malfunction 50 100 50 100.0 

Network roaming failure 50 100 47 94.0 

In Table 4, the research based on improved CNFD of GCN, 

the carrier, the fault detection rate could reach 100%, the 

diagnosis effect of network roaming problem was poor but 

also kept the fault detection rate above 90%. In the face of 

weak signal and frequency mismatch, the fault detection rate 

remained above 95%. The method could effectively realize 

the FD of the cellular network. A CNFD method based on IoT 

was proposed in reference [3], reference [4] presented a 

CNFD method based on CNNs, and reference [5] raised a 

CNFD method with the original GCN. To identify the 

repeatability and scalability of the raised algorithm, a non-

equilibrium data set was constructed with the collected 2021 

relevant data. In this dataset, the raised algorithm was 

compared with the three methods, and the outcomes are 

denoted in Figure 12. 
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Figure 12. Comparison results of algorithm performance on 

imbalanced data sets ((a) comparison of fault diagnosis 

efficiency, (b) comparison of fault diagnosis accuracy). 

Figure 12 (a) shows a comparison of the diagnostic 

efficiency of the four methods on the unbalanced dataset. In 

the unbalanced dataset, the FD efficiency of this algorithm 

was always higher than that of the other three methods, 

regardless of the amount of the data tested. The proposed 

algorithm's FD completion speed was the highest in 5 seconds, 

while the other three methods were the highest in 12 seconds. 

Figure 12 (b) indicates the outcomes of comparing the 

troubleshooting accuracy of the four methods on the 

unbalanced datasets. With the increase of test data, the 

accuracy of the FD method proposed by the study was 

continuously improved, which can reach about 92%, while the 

highest diagnostic accuracy of the other four methods was 

only 85%. On the unbalanced data set, this method was better 

than the other three FD methods in terms of accuracy and 

efficiency. The raised FD method had high efficiency and 

accuracy on both balanced and imbalanced data sets, with 

good scalability and repeatability. The proposed method 

combined GAN technology and expanded the training data set 

through GAN technology, so the proposed CNFD method 

performed well in both balanced and non-balanced data sets. 

5. CONCLUSION 

In the current cellular network environment, NFD has become 

particularly critical due to the high complexity of network 

node deployment and the frequent occurrence of faults. A 

CNFD based on GCN was invented in this study. To achieve 

efficient and accurate FD in densely populated and 

structurally complex cellular network environments, the study 

further improved the diagnostic method by combining 

knowledge and data fusion techniques. On the simulated data 

set, the GCN-based method achieved an average accuracy of 

84.00%, which was significantly higher than the performance 

of other algorithms. In the real-world data set, the diagnostic 

method based on knowledge and data fusion improvement 

also achieved an accuracy of 84.33%. The experiment 

outcomes showed that the proposed one exhibited greater 

diagnostic accuracy and applicability compared to traditional 

methods, and could effectively cope with complex cellular 

network environments. The accuracy of the model has been 

improved after data expansion. In addition, the study also 

explored the impact of weight coefficients on diagnostic 
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accuracy and found that as the amount of training samples 

grew, the effectiveness of the GCN model steadily improved. 

The CNFD method based on improved GCN performed well 

in terms of accuracy and reliability, especially suitable for 

scenarios with limited data labeling. The research results not 

only provide new ideas for CNFD but also provide efficient 

support tools for network maintenance and fault prevention, 

which is greatly significant for raising the healthy operation of 

mobile communication networks. Although the study used 

real data in the validation experiment of the improved method, 

which can reflect the real network situation to some extent, 

the network failures are limited to the coverage faults because 

the data are measured by the user terminal. Future research 

can explore the construction of more comprehensive network 

fault data sets, which will allow for a wider range of fault 

types to be covered and further improve FD techniques to 

adapt to constantly changing network conditions.
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