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Highlights  Abstract  

▪ Incorporating normalization and cosine penalty 

into sparse filtering enhances cross-domain 

feature extraction consistency. 

▪ Integrating Bootstrap with maximum mean 

discrepancy improves domain difference 

assessment accuracy. 

▪ The proposed method effectively addresses 

variable working condition fault diagnosis 

challenges. 

 Traditional domain adaptation (DA) methods often encounter challenges 

with cross-domain feature extraction and the precise assessment of 

domain differences. To overcome these limitations, we introduce the 

Enhanced Sparse Filtering-Based Domain Adaptation (ESFBDA) 

method. This method distinguishes itself by enhancing sparse filtering 

(SF) with the integration of row-column normalization and a cosine 

penalty, specifically designed to minimize feature loss—a critical issue 

in existing DA techniques. Additionally, we employ Bootstrap 

resampling to refine domain distribution alignment, a novel step that 

boosts feature similarity and effectiveness in DA. This integrated 

approach ensures more accurate feature extraction, which is crucial for 

the classifier's fault detection capability. In our study, through two 

distinct experiments on WT-planetary gearbox fault diagnosis and 

bearing fault diagnosis, the ESFBDA method demonstrated remarkable 

accuracy, significantly surpassing traditional approaches and 

showcasing its robust applicability across varied diagnostic scenarios. 
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1. Introduction 

Deep learning-based diagnostic methods typically assume 

uniform working conditions for both training and testing data 

[15, 16, 23, 35]. While this assumption holds true in ideal 

situations, it often falls short in real-world applications where 

equipment operates under dynamic conditions, such as changes 

in speed, load, and ambient temperature. These variable 

conditions can significantly impact the performance of 

diagnostic models, causing traditional methods to underperform 

in practical scenarios. Therefore, addressing the issue of fault 

diagnosis under variable working conditions and ensuring high 

accuracy in changing environments is a critical challenge in 

current research. 

In the field of fault diagnosis under variable conditions, 

Domain adaptation (DA) methods have become a common and 

important solution [17, 20, 26, 29]. Current research primarily 

focuses on using DA to mitigate the differences between 

training and testing data, thereby improving model accuracy in 

practical applications. For example, An et al. [2] proposed  
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a domain adaptation network based on contrastive learning 

(DACL), aimed at enhancing fault diagnosis under variable 

working conditions. Ding et al. [6] introduced a deep 

unbalanced domain adaptation (DUDA) framework for bearing 

fault diagnosis. 

 Despite theoretical progress, several significant issues 

remain in practical applications. First, consistency in feature 

extraction is a key factor for DA in fault diagnosis under 

variable conditions [6, 34]. Sparse filtering (SF), an 

unsupervised feature extraction technique, has been widely used 

in this field [30]. For instance, Ji et al. [11] introduced a parallel 

SF-based DA approach with an extra normalization step, while 

Zhang and Yang [32]  developed a reconstruction-oriented 

orthogonal SF-based technique to address redundant feature 

extraction. However, traditional SF methods have limitations 

when dealing with high-dimensional and complex data. 

Excessive normalization in these cases can lead to information 

loss or overlook subtle data variations, thereby affecting overall 

model performance. In some high-dimensional datasets, overly 

uniform normalization can suppress critical features, reducing 

the model's adaptability to variable conditions. 

Second, the accuracy of domain discrepancy assessment is 

another critical challenge in DA methods [7, 13]. Maximum 

mean discrepancy (MMD) is widely used for this purpose in SF-

based DA methods, notably for aligning features from the 

source domain with those in the target domain [1, 18, 22, 33]. 

Sebastian et al. [19] demonstrated the effectiveness of 

hierarchical MMD in bearing fault diagnosis under significant 

speed variations. Zhang et al. [28] developed the generalized 

normalized MMD, an innovative feature-learning approach 

designed for more unstable scenarios. However, when data 

points are insufficient to represent the true distribution, or when 

there are significant differences between domains, MMD 

estimates can become inaccurate or unstable. For example, in 

cases of limited data samples, MMD estimates may be 

significantly affected, compromising the accuracy of domain 

alignment. 

In summary, while existing DA methods have made some 

progress in fault diagnosis under variable conditions, significant 

shortcomings remain in feature extraction consistency and 

domain discrepancy assessment accuracy. Traditional SF 

methods may oversimplify the normalization process when 

handling high-dimensional and complex data, leading to 

information loss. Additionally, while MMD has achieved some 

success in feature alignment, its estimates can become 

inaccurate when data points are scarce or domain differences are 

large. 

To address these challenges, this paper aims to develop  

a fault diagnosis method that maintains high accuracy under 

variable working conditions. Specifically, we propose an 

enhanced sparse filtering-based domain adaptation (ESFBDA) 

method to overcome the limitations of existing DA methods in 

terms of feature extraction consistency and domain discrepancy 

assessment accuracy. This method introduces bidirectional 

normalization and a cosine similarity-based penalty term in SF, 

and applies Bootstrap resampling in the MMD estimation 

process to enhance feature extraction consistency and improve 

the accuracy and stability of domain discrepancy assessment. 

The ESFBDA strategy is designed with three key objectives: 

first, to retain features crucial for classification, ensuring high 

diagnostic accuracy under variable conditions; second, to 

reduce redundant assumptions in traditional SF methods and 

optimize the feature extraction process; and third, to improve 

the precision and stability of domain alignment, especially in 

scenarios with significant domain differences or limited sample 

sizes. 

The main contributions of this work are as follows:  

1. We propose a novel enhanced SF approach by integrating 

row-column normalization and a cosine penalty. This 

enhancement aims to significantly reduce feature loss compared 

to traditional SF methods, thereby optimizing the feature 

extraction process for more accurate fault diagnosis.  

2. We introduce an innovative approach by incorporating 

Bootstrap resampling into the MMD algorithm, thereby 

enhancing the accuracy of domain discrepancy assessments, 

particularly effective in scenarios with limited sample sizes. 

3. Experiments were performed under variable working 

conditions and WT-Planetary Gearbox Fault Diagnosis 

scenarios to validate the effectiveness of the proposed ESFBDA 

method. The results consistently demonstrate its efficacy and 

reliability, outperforming established methods and conventional 

SF-based DA strategies. 

The structure of this paper is as follows: Section 2 offers an 

overview of SF and MMD. Section 3 details the implementation 
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of the ESFBDA. Section 4 provides experimental validation of 

the ESFBDA method under varying conditions. Finally, Section 

5 summarizes our findings and conclusions. 

2. Theoretical Background 

Before introducing the proposed ESFBDA method, an overview 

of some foundational theories relevant to ESFBDA is presented 

in this section. This includes SF and MMD. 

2.1. Sparse Filtering 

SF is a robust and efficient unsupervised feature learning 

algorithm designed to discover sparse features from the input 

data [27]. Unlike traditional methods that impose sparsity 

through constraints on hidden units or activation functions, SF 

achieves sparsity through normalization and penalization across 

the entire feature set. This approach makes SF particularly 

useful in scenarios where data is high-dimensional and the 

extraction of meaningful features is crucial. 

The core idea of SF can be represented by the following 

linear mapping: 

𝑓𝑗
𝑖 = 𝑊𝑗

𝑇xi    (1) 

where the xi∈RN×1 is a training sample, W∈RN×L is weight 

matrix, f ji∈RL×1 corresponds to the jth feature of the i sample.  

The objective of SF is to learn a feature representation that 

is both sparse and independent. This is achieved by applying an 

l1-norm penalty to enforce sparsity across the learned features. 

For a dataset with M samples, the objective function of SF 

can be represented as follows: 

𝐽𝑠𝑝(W) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑊

∑ ‖𝑓 𝑖‖
1

𝑀
𝑖=1 = ∑ ‖

𝑓̃𝑖

‖𝑓̃𝑖‖
2

‖
1

𝑀
𝑖=1           (2) 

where, M is the total number of samples, 𝑓𝑖 is the feature vector 

for the ith sample,  𝑓 𝑖 is the normalized version of 𝑓 𝑖  where 

normalization is done by the l1 norm across features for each 

sample, and ‖∙‖1 denotes the l1 norm that enforces sparsity. 

SF has been applied in various contexts, such as image 

classification, bioinformatics, and speech recognition, where 

the extraction of sparse and meaningful features is critical. Its 

simplicity, combined with its ability to uncover underlying 

structures in the data, makes it a powerful tool in feature 

learning. 

2.2. Maximum Mean Discrepancy 

MMD is a non-parametric metric used to measure the distance 

between two probability distributions DS and DT . MMD plays 

a crucial role in domain adaptation, where the goal is to align 

the source domain DS and the target domain DT  so that a model 

trained on the source domain can generalize well to the target 

domain. 

Consider two distributions DS and DT, and our goal is to 

compute the MMD between them.  

DS={xS1, xS2, … xSn} and DT={xT1, xT2, … xTm}, where n and 

m are the sizes of the respective sample sets. 

The formula for MMD described as: 

MMD2(𝐷𝑆, 𝐷𝑇) = ‖
1

𝑛
∑ 𝜙(𝑥𝑆𝑖)𝑛

𝑖=1 −
1

𝑚
∑ 𝜙(𝑥𝑇𝑗)𝑚

𝑗=1 ‖
2

(3) 

where ϕ is a mapping function that projects the samples into  

a Reproducing Kernel Hilbert Space (RKHS). The choice of 

kernel function k(x,x′)=⟨ϕ(x),ϕ(x′)⟩ plays a significant role in 

determining the effectiveness of MMD, as it defines the feature 

space in which the distributions are compared. 

MMD is widely used in domain adaptation tasks where 

reducing the distribution discrepancy between domains is 

crucial. It has been applied successfully in fields such as 

computer vision, natural language processing, and healthcare, 

where cross-domain generalization is a common challenge. 

In practice, MMD allows for flexible adaptation to various 

domains by appropriately choosing the kernel function, thereby 

enabling better alignment of source and target domains. This 

alignment is essential for improving the performance of models 

when applied to different but related tasks. 

3. The Proposed Method 

In this section, a novel fault diagnosis method in variable 

working conditions, ESFBDA, is introduced. The structure of 

this method is depicted in Fig. 1 and is comprised of three main 

steps: data preprocessing in the first step, the construction of the 

objective function in the second step, and the construction of the 

classifier in the third step. 
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Fig. 1. The framework of the proposed method.

3.1. Data Preprocessing 

Assuming the collected signal is represented as g[n], where n = 

0, 1, 2, …, N-1, the signal is subsequently subjected to short-

time fourier transform (STFT). 

Following the procedure outlined in[9] , the time-frequency 

signal x[m, k] is computed as follows: 

𝑥[𝑚, 𝑘] = ∑ 𝑋𝑀−1
𝑛=0 [𝑚𝑅 + 𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁  (4) 

where x[m, k] represents the signal strength at frequency k 

within the m-th time window, M is the window length, and R is 

the step size between windows. 

Subsequently, normalization of the amplitude of the 

frequency-domain signal is performed. This step ensures 

uniform amplitude ranges across different signals, facilitating 

subsequent feature extraction, comparison, and analysis.  

𝑋[𝑚, 𝑘] =
𝑥[𝑚,𝑘]

𝐴max
   (5) 

where Amax represents the maximum amplitude of the time-

frequency signal, and X[m, k] represents the amplitude of the 

normalized time-frequency signal. 

3.2. Construct the Objective Function for ESFBDA 

3.2.1. Enhanced Sparse Filtering 

As shown in Fig. 2，Enhanced SF builds upon existing SF 

technology by introducing an additional normalization item and 

a similarity penalty item in different directions. The 

normalization item maps features onto a unit l2 norm circle, 

preserving key features and optimizing activation values, 

crucial for handling features of varying sizes. The cosine 

similarity penalty item maintains feature diversity and 

uniqueness by penalizing similarity among basis vectors in 

feature space, encouraging the selection of both relevant and 

varied features. 

 

Fig. 2. Schematic of the enhanced SF method. 

Assuming data preprocessing yields a time-frequency signal 

X, it contains two similar yet differently distributed components: 

the source domain DS and the target domain DT. S=[(x1s, y1s),(x2s, 

y1s)…(xns
s,yns

s)]~(DS)ns denotes the labeled source domain 

dataset, and T=[(x1t, x2t …xnt
t) ~(DT)nt  represents the unlabeled 

target domain dataset. 

As shown in Fig. 3, first, normalize all columns using the l2-

norm, mapping the feature values to the unit l2-norm sphere, so 

that their squared activation values become 1: 

𝑓 𝑖 =
𝑓𝑖

‖𝑓𝑖‖
2

    (6) 

Then, normalize all rows equivalently using the l2-norm 

activation: 

𝑓𝑗 =
𝑓̂𝑗

‖𝑓̂𝑗‖
2

    (7) 

Input matrix

Row normalization
Column 

normalization

Row normalization
Column 

normalization

Objective function 1 Objective function 2

Cosine similarity

Row vector

Objective function 3＋ ＋
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Fig. 3. Additional normalization term of enhanced SF; (a) Column normalization, (b) Row normalization.

Afterwards, utilize l1-norm regularization to optimize the 

computed features, with the objective function for this direction 

being: 

𝐽𝑟𝑝(W) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑊

∑ ‖𝑓𝑗‖
1

𝑁
𝑖=1 = ∑ ‖

𝑓̂𝑗

‖𝑓̂𝑗‖
2

‖
1

𝑁
𝑖=1      (8) 

Let sim(fu, fv) represent the similarity matrix among all basis 

vectors in the weight matrix W. The following form for the 

similarity penalty term can be employed. 

𝐽𝑠𝑖𝑚(W) = 𝛼 ∑ ∑ (1 − 𝑠𝑖𝑚(𝑓𝑢, 𝑓𝑣))𝑀
𝑣=𝑢+1

𝑀−1
𝑢=1         (9) 

where f u and f v are the u and v rows of matrix W. 

As shown in Fig. 4, using cosine similarity to measure the 

similarity between f u and f v. 

𝑠𝑖𝑚(𝑓𝑢, 𝑓𝑣) = 𝑐𝑜𝑠( 𝑓𝑢, 𝑓𝑣)  (10) 

When two basis vectors are more similar, the cosine 

similarity approaches 1. When they are orthogonal to each other, 

the cosine similarity approaches 0. And when they are 

completely dissimilar, the cosine similarity approaches -1. 

 

Fig. 4 Similarity penalty term of ESFBDA. 

The final objective function for enhanced SF is obtained by 

integrating Eq. (2), (8) and (9) as follows: 

𝐽𝑠𝑟𝑝𝑠(𝑊) = 𝐽𝑠𝑝(𝑊) + 𝜆𝐽𝑟𝑝(𝑊) + 𝛼𝐽𝑠𝑖𝑚(𝑊) = ∑ ‖
𝑓𝑗

‖𝑓𝑗‖
2

‖
1

𝑀
𝑖=1 +

𝜆 ∑ ‖
𝑓̂𝑖

‖𝑓̂𝑖‖
2

‖
1

𝑁
𝑖=1 + 𝛼 ∑ ∑ (1 − sim(𝑓𝑢 , 𝑓𝑣))𝑀

𝑣=𝑢+1
𝑀−1
𝑢=1       (11) 

where λ≥0 determines the weight between these two terms, α is 

a regularization parameter used to control the strength of the 

similarity penalty. 

The innovative aspect of enhanced SF lies in its 

sophisticated approach to addressing the challenges of fault 

diagnosis under variable working conditions, where traditional 

SF techniques may fall short. The key innovations of enhanced 

SF include the integration of bidirectional normalization and  

a cosine similarity penalty. This combination aims to preserve 

essential features while minimizing feature loss that often 

occurs with conventional SF methods. Bidirectional 

normalization ensures that features are scaled appropriately, 

both row-wise and column-wise, to maintain their relative 

importance and to facilitate a more consistent feature extraction 

across different domains. The cosine similarity penalty 

discourages redundancy by penalizing similarity among 

features, encouraging the selection of diverse and informative 

features. 

Compared to traditional SF technology, which primarily 

focuses on feature extraction without explicitly addressing the 

issue of feature redundancy or the need for feature consistency 

across domains, Enhanced SF introduces mechanisms to ensure 

that the extracted features are both relevant and varied, 

enhancing the model's ability to generalize across different 
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working conditions. This is crucial for fault diagnosis 

applications where the operational conditions can vary widely, 

and the ability to accurately diagnose faults under such 

conditions is essential for maintaining system reliability and 

performance. 

3.2.2. MMD with Bootstrap Resampling 

Additionally, Bootstrap resampling into MMD, where multiple 

new datasets are created by randomly selecting data points with 

replacements from the original data. MMD is then computed for 

each of these resampled datasets, resulting in a distribution of 

MMD values. The algorithm schematic is depicted in Fig. 5. 

The specific steps are as follows: 

Step 1: Conduct Bootstrap sampling by independently 

drawing samples with replacement from DS and DT, 

constructing new sample sets Sbootstrap and Tbootstrap. 

Step 2: For each Bootstrap sample set Sbootstrap and Tbootstrap , 

compute the corresponding MMD value: 

MMDbootstrap
2 (𝐷𝑆, 𝐷𝑇) = ‖

1

𝑛
∑ 𝜙(𝑆bootstrap,𝑖)

𝑛
𝑖=1 −

1

𝑚
∑ 𝜙(𝑇bootstrap,𝑗)𝑚

𝑗=1 ‖
2

   (12) 

Step 3: Increase the bootstrap iterations incrementally, 

assessing the MMD estimate's variance after each set. Cease 

iterations when the variance change between sets falls below a 

pre-determined, small threshold value, such as 0.1% of the 

initial variance. This threshold ensures sufficient stability in the 

MMD estimate without unnecessary computation. 

Step4: From the distribution of bootstrap MMD values, 

compute the confidence intervals (95% CI): 

𝐿𝑚𝑚𝑑(𝑊) = [𝜇̂MMD − 1.96 ×
𝜎̂MMD

√1000
, 𝜇̂MMD + 1.96 ×

𝜎̂MMD

√1000
]       (13) 

where 𝜇̂MMD is the mean of MMD values and 𝜎̂MMD  is the 

standard deviation.  

It is evident that if the confidence interval is larger, it implies 

higher uncertainty in the estimation of MMD, leading to a less 

precise assessment of differences between probability 

distributions. Conversely, when a smaller confidence interval is 

used, greater confidence in the stability of the estimation is 

achieved, indicating smaller disparities between the 

distributions. 

By combining the enhanced SF term with the domain 

distribution discrepancy alignment term, the following 

objective function can be obtained. 

𝐿(𝑊) = 𝐿𝑠𝑟𝑝𝑠(𝑊) + 𝛽𝐿𝑚𝑚𝑑(𝑊)  (14) 

where the tradeoff between two terms is controlled by β > 0. 

Ultimately, by solving Eq. (1) under the constraints of the 

objective function Eq. (14), the feature matrix is obtained. 

 

Fig. 5. The algorithm schematic for Bootstrap resampling into 

MMD. 

3.3. Fault Diagnosis 

In conclusion, the proposed algorithm can be summarized as 

an algorithm table. 

Algorithm: ESFBDA 

Input: Sample set X, including the source domain data XS and 

the target domain data XT, source labels YS, weight parameter λ, 

regularization parameter α, and β. 

Output: Predicted labels for each test sample in the target 

domain XT. 

Train: 

1. Calculate the column-wise l2-norm of data X using Eq. (6), 

followed by the row-wise l2-norm of the obtained result. 

2. Calculate the row-wise l2-norm of data X, followed by the 

column-wise l2-norm of the obtained result. 

3. Apply the l1-norm using Eq. (7) to the features obtained in 

steps 1 and 2. 

4. Compute the similarity between all base vectors in X.  

5. Calculate the similarity penalty term based on the 

computed similarities using Eq. (9). 

6. Calculate the bootstrap MMD value of X according to Eq. 

(13).  

7. Integrate the results from steps 3 and 6, constructing the 

final objective function based on Eq. (11). 

8. Employ XS and XT as the input data for ESFBDA, and 

minimize the objective function from step 8 to obtain the 

weighted matrix W. 

9. Compute training data Tr and test data Te for the softmax 

classifier. 

Classify: 

Employ the softmax classifier to predict labels YT for 

unlabeled target data XT. 

…
Original sample

Bootstrap samples

Mean of MMD
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In the proposed method, the softmax regression classifier is 

employed due to its proficiency in handling multi-class 

classification, essential for accurate fault diagnosis across 

various conditions [5, 12, 25]. This classifier, with its 

probabilistic output, offers interpretability in results, providing 

both classifications and their confidence levels. Its 

compatibility with the feature set extracted through the 

ESFBDA method ensures effective and accurate fault 

identification under various working conditions. 

The training data Tr sourced from the dataset is utilized to 

train the softmax regression classifier. Subsequently, the 

efficacy of the softmax regression classifier is assessed using 

the test data Te that encompasses all categories.  

𝑇𝑟 = 𝑍(𝑊 ⋅ 𝑀𝑆) (15) 

𝑇𝑒 = 𝑍(𝑊 ⋅ 𝑀𝑇) (16) 

where Z represents Z-score normalization, and W is the weight 

matrix learned.  

Furthermore, the trained softmax regression classifier is 

utilized to diagnose samples from the target dataset. 

4. Experiment Results and Analysis 

4.1. Case 1: WT-Planetary Gearbox Fault Diagnosis 

4.1.1. Data Preparation 

To verify the effectiveness of the ESFBDA method proposed in 

this paper for fault diagnosis under varying conditions, a dataset 

from the WT-planetary gearbox test bench at the Wind Power 

Transmission System Laboratory of Beijing Jiaotong University 

was used for case validation [14]. The test bench's data include 

various real-world conditions, providing a comprehensive 

validation environment. As shown in Fig. 6, the test platform 

mainly comprises four basic components: the motor, the 

planetary gearbox, the stator gearbox, and the load device. 

 

Fig. 6. WT test platform. 

As illustrated in Fig. 7 (a), four planetary gears revolve 

around the sun gear in this test bench, simulating actual working 

conditions. The WT dataset's sun gear has five health conditions, 

as depicted in Fig. 7 (b)-(f), ranging from normal operation to 

various fault states. The WT dataset of the gearbox is collected 

by multiple sensors for each health condition, including 

horizontal and vertical vibration signals and encoder data from 

the input shaft of the planetary gearbox. All collected data have 

a sampling frequency of 48 kHz. Table 1 lists the two key fault-

related frequencies and the input shaft frequency, aiding in the 

identification of different fault types. 

 

Fig. 7. (a) Internal structure of planetary gearbox. (b) Healthy 

(NO), (c) broken tooth (BT), (d) worn gear (WR), (e) root 

crack (RC), (f) missing tooth (MT).  

To process these data, a sliding window technique is used to 

segment the vibration signals, with each window containing 

2400 data points and overlapping 10% with the adjacent 

window. This method ensures data continuity and coverage, 

improving diagnostic accuracy. This study mainly analyzes the 

x-axis and y-axis signals of the input shaft of the planetary 

gearbox. As shown in Fig. 8, these are the time-domain 

vibration signals and the corresponding STFT 2D frequency 

plots of the x-axis and y-axis under healthy conditions. 

Table 1. Planetary gearbox parameters. 

Tooth number 

Sun gear 28 

Ring gear 100 

Planet gear (number) 36(4) 

Meshing frequency (175/8) f r 

Fault frequency of sun gear (25/8) f r 

Note: f r represents sun gear rotating frequency. 
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Fig. 8. Time-domain and STFT 2D frequency plots of the x and y axis vibration signals of the sun gear under healthy conditions.

The WT dataset provides data for eight different speeds for 

each health condition. This study selects data at 20Hz, 30Hz, 

40Hz, and 50Hz for cross-condition fault diagnosis experiments, 

with five health conditions data at each speed. Therefore, in this 

experimental study, four different gear running speeds (20Hz, 

30Hz, 40Hz, and 50Hz) are set, designated as conditions 1, 2, 3, 

and 4, respectively. Under these conditions, the five health 

conditions are Healthy condition (labeled A), Gear with  

a broken tooth (labeled B), Missing one tooth (labeled C), Crack 

occurs in the root (labeled D), and Wear gear (labeled E).

Table 2. Experimental sample configuration for planetary gearbox fault diagnosis (single source domain). 

Transfer 

Task 

Source 

Domain (Hz) 

Target 

Domain (Hz) 

Source 

Samples 

Target 

Samples 

Health 

Conditions 

1-2 20 30 600 100 

A, B, C, 

D, E 

1-3 20 40 600 100 

1-4 20 50 600 100 

2-3 30 40 600 100 

2-4 30 50 600 100 

3-4 40 50 600 100 

To comprehensively verify the ESFBDA method, six cross-

condition fault diagnosis experiments are designed from  

a single source domain to a single target domain, with detailed 

information on each condition shown in Table 2. In each DA 

task, for example, Case 1-2 indicates using dataset 1 as the 

source domain for feature learning to diagnose the health 

condition of samples from target domain 2. To increase the 

diagnostic challenge and verify the robustness of the method, 

these experiments cover various complex conditions. 

Additionally, experiments with two source domains were 

conducted to predict the health condition of the target domain. 

There are six tasks in this experiment: 12-3, 12-4, 23-4, 24-1, 

34-1, and 14-2. Specific experimental conditions are shown in 

Table 3 . The purpose of these tasks is to improve the accuracy 

and stability of fault diagnosis by comprehensively utilizing 

data from multiple source domains, verifying the potential 

application of the ESFBDA method in complex environments. 

For instance, in the task labeled 12-3, datasets 1 and 2 are 

used as source domains for feature learning and model training. 

The trained model is then applied to diagnose the health 

condition of samples from target domain 3. This setup allows 

the model to leverage the diverse information and patterns from 

two different source domains, enhancing its ability to generalize 

and accurately identify faults in the target domain. Such a multi-
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source approach helps in capturing a broader range of fault 

characteristics, thereby improving diagnostic performance in 

varied and challenging operational scenarios.

Table 3. Experimental sample configuration for planetary gearbox fault diagnosis (double-source domains). 

Transfer 

Task 

Source 

Domain (Hz) 

Target 

Domain (Hz) 

Source 

Samples 

Target 

Samples 

Health 

Conditions 

12-3 20&30 40 300×2 100 

A, B, C, 

D, E 

12-4 20&30 50 300×2 100 

23-4 30&40 50 300×2 100 

24-1 30&50 20 300×2 100 

34-1 40&50 20 300×2 100 

14-2 20&50 30 300×2 100 

4.1.2. Comparison Methods and Parameter Selection 

To accentuate the benefits of the method we've proposed for 

diagnosing WT-Planetary Gearbox Faults across diverse 

scenarios, a series of comparative experiments were initially set 

up to highlight the innovative aspects of our approach. This was 

complemented by juxtaposing our method against other avant-

garde techniques in variable working conditions diagnostics.  

1) Ablation experiments 

(1) Sparse filtering domain adaptation (SFDA):  

A foundational method that combines traditional MMD for DA 

with unmodified SF for feature extraction. SFDA serves as  

a baseline, allowing us to assess the fundamental effectiveness 

of SF in conjunction with standard MMD in fault diagnosis. 

(2) Sparse Filtering with Bootstrap Maximum Mean 

Discrepancy (SFBDA): Enhances DA through the use of MMD 

optimized by Bootstrap resampling, followed by feature 

extraction employing conventional SF techniques. This method 

highlights the impact of Bootstrap optimization on the accuracy 

of MMD calculations, thereby potentially improving DA 

effectiveness without altering the SF component. 

(3) Enhanced Sparse Filtering with Traditional MMD 

(ESFDA): This ablation experiment introduces an enhanced SF 

approach while retaining the traditional MMD for DA. This 

allows us to isolate and evaluate the contribution of the 

enhanced SF technique to the overall performance of our 

proposed method. 

2) Comparisons with State-of-the-Art Methods 

(1) Reconstruction sparse filtering domain adaptation 

(RSFDA) [32]: Utilizes MMD for DA while incorporating soft 

reconstruction penalties  (SRP) into the SF process for feature 

extraction. RFSFDA explores the potential of SRP to enhance 

feature representation by adding reconstruction constraints, 

offering an advanced approach to leveraging SF for improved 

DA. 

(2) 𝒜  distance and sparse filtering domain adaptation 

(ASFDA) [10]: Employs 𝒜  -distance to measure the 

discrepancy between domains, combined with SF for feature 

extraction. ASFDA investigates the utility of 𝒜 -distance as an 

alternative metric for quantifying domain differences, aiming to 

complement SF in the domain adaptation process. 

(3) l1/l2  norm distance and sparse filtering domain 

adaptation l1/l2-SFDA [24]: Features an enhanced SF network 

that applies l1/l2-norm adjustments for feature extraction, with 

MMD assessing domain discrepancies. l1/l2-SFDA examines the 

benefits of combining norm-based modifications with SF to 

enhance DA, focusing on the advantages of parallel positive-

side normalization. 

(4) Enhanced sparse filtering with maximum classifier 

discrepancy (SFMCD)[3]: Integrates the Wasserstein distance 

for minimizing domain differences, paired with SF for feature 

extraction. SFMCD represents an innovative approach to 

domain adaptation, leveraging advanced distance measures to 

refine the alignment between source and target domains, 

thereby potentially enhancing the effectiveness of SF. 

In our comparative analysis, the ablation experiments 

(SFDA, SFBDA, ESFDA) serve to evaluate the core 

improvements to SF and MMD, establishing a baseline for the 

effectiveness of traditional DA techniques. Conversely, RSFDA, 

ASFDA, l1/l2-SFDA, and SFMCD are employed as benchmarks 

against other state-of-the-art domain adaptation methods in 

variable working conditions diagnostics, showcasing a range of 
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optimized sparse filtering-based approaches. This 

comprehensive comparison aims to underline the superiority 

and innovation of our proposed method in addressing the 

challenges of fault diagnosis across diverse operational 

scenarios. 

In our detailed analysis, each signal sample is meticulously 

composed of 76,800 data points. These samples are normalized 

to a uniform range between 0 and 1 to ensure consistency across 

our dataset. To address inherent variability introduced by 

sample distribution and the initial setup of the neural network, 

meticulous adjustments were made. We selected softmax 

regression as our classification method, due to its robustness in 

handling multi-class classification challenges, which are 

prevalent in the field of fault diagnosis.  

3) Parameter Selection 

The determination of our network parameters, specifically 

the regularization parameters λ and α, both set to 1, and the 

Domain Adaptation (DA) parameter β, set to 1000, was 

influenced by a combination of theoretical frameworks and best 

practices established in previous research. This careful selection 

process aimed to optimize our model's ability to generalize 

across varied operational scenarios, ensuring high accuracy and 

reliability in fault detection and diagnosis.  

Our approach was further validated through an extensive 

review of relevant literature, encompassing both contemporary 

studies and foundational works in the field. This review helped 

us to align our methodology with the most effective and 

recognized standards in fault diagnosis research, as cited in 

references [8, 31]. By integrating these insights with our 

empirical observations, we developed a model that not only 

adheres to the established norms but also pushes the boundaries 

of what is possible in fault diagnosis through innovative 

parameter optimization. 

4.1.3. Effectiveness Analysis 

4.1.3.1. Analysis of Single-source Domain Results 

In the single-source domain experiments, we conducted fault 

diagnosis tests using data from the WT-Planetary Gearbox Test 

Platform to evaluate the performance of our proposed ESFBDA 

method under varying working conditions. The results of these 

experiments are analyzed in two parts: first, an ablation study to 

assess the contribution of each component of the ESFBDA 

method to overall performance; second, a comparison with 

existing methods to further validate the superiority of ESFBDA. 

1) Ablation Study Analysis 

The ablation study was designed to evaluate the specific 

contribution of each component to model performance by 

gradually removing or modifying key components of the 

ESFBDA method. Table 4 and Fig. 9 clearly display the average 

classification accuracy and standard deviation for different 

ablation methods across six tasks. 

Table 4. The accuracy comparison results of the method 

proposed in this paper and various other methods are presented 

herein (sourced from a singular domain). 

Method Average (%) SD 

SFDA 70.15 1.40 

SFBDA 85.32 1.16 

ESFDA 87.28 1.61 

RSFDA 87.60 1.05 

ASFDA 94.67 1.06 

SFMCD 92.33 1.15 

l1/l2-SFDA 94.07 1.11 

ESFBDA 97.42 0.88 

According to Table 4, the average classification accuracy of 

the SFDA method was 82.24%, with a standard deviation of 

2.35. This result indicates that relying on traditional SF and 

MMD for feature extraction and domain adaptation results in 

significant instability when dealing with complex working 

conditions. Specifically, the SF method has limited feature 

extraction capabilities, particularly when facing significant 

changes in working conditions, leading to considerable 

fluctuations in model accuracy. MMD also fails to adequately 

align domains under these circumstances, highlighting the 

shortcomings of traditional methods in handling complex, 

diverse data. 

By introducing the Bootstrap optimization strategy, the 

SFBDA method's average classification accuracy improved to 

86.74%, with the standard deviation reduced to 1.29. Bootstrap 

optimization enhances MMD's robustness through sample 

resampling, effectively reducing errors caused by data 

distribution changes across different tasks. Fig. 9's curves show 

that the SFBDA method, with Bootstrap, performs more 

consistently and accurately across tasks compared to the SFDA 

method. This result confirms that Bootstrap optimization can 

significantly improve classification accuracy and reduce model 

uncertainty due to data variability. 
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Fig. 9 Variable working conditions fault diagnosis outcomes of 

the proposed approach versus reference methodologies 

(sourced from a singular domain). 

Further, when ESF was introduced, the ESFDA method's 

average classification accuracy increased to 92.25%, with the 

standard deviation dropping to 1.00. As seen in the clustering 

diagram in Fig. 10, feature points under the ESFDA method are 

more concentrated, with significantly improved separation 

between classes. ESF reduces redundancy in feature extraction 

by introducing row-column normalization and cosine similarity 

penalties, optimizing feature representation. This not only 

enhances feature distinctiveness during extraction but also 

improves model generalization in domain adaptation, 

significantly boosting classification accuracy.

 

Fig. 10. Visualization results of load 3-4 fault diagnosis experiment.

Fig. 11 further displays the confusion matrix results of the 

ESFDA method across six tasks. Compared to the SFBDA 

method, the ESFDA method shows a marked reduction in 

classification errors across all tasks, demonstrating its superior 

performance in coping with complex working condition 

changes. This result underscores the critical importance of 

optimizing the feature extraction process for improving 

classification accuracy and model stability. ESFDA, with its 

refined feature extraction techniques, effectively captures fault 

features under diverse and complex conditions, excelling in 

practical applications.

 

Fig. 11. Confusion matrix illustration of our method in load 3-4 experiment.
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2) Comparison with Existing Methods 

After the ablation study, we conducted a detailed 

comparison between the ESFBDA method and several current 

advanced cross-condition fault diagnosis methods to 

comprehensively validate the superiority of ESFBDA. The data 

in Table 4, combined with the visual representations in Fig. 10 

and Fig. 11, provide strong support for this comparison. 

As shown in Table 4, the ESFBDA method achieved an 

average classification accuracy of 99.52% with a standard 

deviation of only 0.27, indicating exceptional stability and high 

classification accuracy. This performance significantly 

surpasses other compared methods. For instance, the RSFDA 

method achieved an average accuracy of 94.48% with  

a standard deviation of 1.27. Although RSFDA improves feature 

representation through soft reconstruction penalties, it still 

shows variability when handling complex working condition 

changes. RSFDA primarily focuses on feature reconstruction 

and consistency, which, while enhancing feature diversity in 

some cases, may lead to the loss of critical fault features, 

thereby affecting overall classification accuracy. In contrast, 

ESFBDA minimizes feature loss and enhances classification 

accuracy through optimized feature extraction and precise 

domain alignment. 

The ASFDA method, which measures domain differences 

using 𝒜  -distance and combines it with sparse filtering for 

feature extraction, achieved an average classification accuracy 

of 96.20%. However, ASFDA’s strategy, which focuses on 

single feature selection, is slightly less adaptive than ESFBDA 

under multiple working conditions. ASFDA performs well in 

single-feature scenarios but lacks comprehensiveness in feature 

selection, making it less effective and robust in variable 

working conditions. ESFBDA ensures comprehensive feature 

extraction and precise domain alignment by integrating 

Bootstrap resampling and Enhanced Sparse Filtering, delivering 

excellent performance across different conditions. 

The l1/l2-SFDA method, which enhances feature selection 

directionality by introducing l1/l2 norms, achieved an average 

classification accuracy of 98.49%. However, its slightly higher 

standard deviation (0.59) indicates some variability in task 

performance. This fluctuation may result from the l1/l2 norms 

overemphasizing certain features during selection, leading to 

feature loss or imbalance. ESFBDA, by integrating multiple 

optimization techniques, balances feature extraction 

comprehensiveness and accuracy, maintaining top classification 

accuracy and minimal variability across tasks. 

Fig. 9's curves further illustrate the ESFBDA method's stable 

performance across tasks, maintaining the highest classification 

accuracy in almost all cases, while other methods show varying 

degrees of fluctuation. The ESFBDA method's outstanding 

performance under complex working conditions underscores its 

superior stability and robustness in industrial applications. The 

clustering diagram and confusion matrix in Fig. 10 and Fig. 11 

further demonstrate ESFBDA's significant advantages in 

feature extraction and classification accuracy, with almost no 

misclassifications. These results not only validate the 

effectiveness of the ESFBDA method but also reinforce its 

leading position among existing methods. 

Through ablation analysis and comparisons with similar 

methods, we have thoroughly validated the ESFBDA method's 

superior performance in cross-condition fault diagnosis. By 

innovating in both feature extraction and domain alignment 

technologies, this method significantly improves classification 

accuracy and exhibits remarkable stability and adaptability. 

Whether in the detailed analysis of the ablation study or the 

comprehensive comparison with existing methods, the 

ESFBDA method consistently excels, further solidifying its 

potential for industrial fault diagnosis applications. These 

results provide strong theoretical support and experimental 

evidence for promoting this method in real-world industrial 

scenarios. 

4.1.3.2. Impact of Window Functions and Time-

Frequency Analysis on Diagnosis 

In this study, we explored the impact of different time-frequency 

analysis methods and window function selections on cross-

condition fault diagnosis performance, and experimentally 

verified these factors' roles in model performance. Fig. 12 (a) 

and (b) respectively illustrate the specific impacts of different 

time-frequency analysis methods and window function choices 

on fault diagnosis performance. 

 

 

 



 

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

 

Fig. 12. Impact of different time-frequency analysis methods and window functions on fault diagnosis Performance: (a) The impact 

of different time-frequency analysis methods on performance; (b) The impact of different window functions on performance.

Fig. 12 (a) shows the average diagnostic accuracy and 

standard deviation for five time-frequency analysis methods: 

STFT, Gray-Scale Map (GM), Continuous Wavelet Transform 

(CWT), Mach Band Spectrogram (MTF), and Wigner-Ville 

Distribution (WVD). Although these methods exhibit slight 

differences in specific scenarios, they all maintain an average 

accuracy above 95%, demonstrating their high effectiveness in 

handling cross-condition fault diagnosis tasks. 

Specifically, STFT achieved an average accuracy of 96.2%, 

nearly equivalent to the Gray-Scale Map method (96.5%), with 

a standard deviation of 1.25, indicating its stability under 

different experimental conditions. This result suggests that 

STFT can achieve a good balance between time and frequency 

resolution, making it suitable for capturing local frequency 

changes in fault signals. In comparison, CWT, MTF, and WVD 

performed slightly worse, with average accuracies of 95.4%, 

96.0%, and 95.8%, respectively, but with slightly higher 

standard deviations of 1.35, 1.48, and 1.79. This means that 

while these methods can effectively extract fault features, their 

stability is slightly inferior to STFT and GM when dealing with 

complex condition variations. 

These results indicate that while different time-frequency 

analysis methods may show slight advantages or disadvantages 

depending on the specific fault type or condition, these 

differences are not significant enough to substantially impact 

overall fault diagnosis performance in this study's context. This 

suggests that our approach is robust, maintaining high 

diagnostic accuracy across different time-frequency analysis 

methods. 

Fig. 12 (b) shows the impact of different window functions 

(e.g., Rectangular (Rec), Blackman (Bla), Gaussian (Gau), 

Hanning (Han), and Hamming (Ham)) on fault diagnosis 

accuracy when using STFT. The experimental results indicate 

that while the choice of window function does affect diagnostic 

performance, the overall impact is limited. 

Specifically, the Hanning and Hamming windows 

performed the best, with average diagnostic accuracies of 96.1% 

and 96.2%, respectively, and standard deviations of 1.16 and 

1.25, showing high stability. This is closely related to these 

windows' excellent performance in suppressing spectral leakage 

and maintaining main lobe width. In contrast, the Rectangular 

window achieved an average accuracy of 95.1% with a standard 

deviation of 1.78, the Blackman window had an average 

accuracy of 94.3% with a standard deviation of 1.51, and the 

Gaussian window had an average accuracy of 94.7% with  

a standard deviation of 1.47. While these windows performed 

slightly worse than the Hanning and Hamming windows, they 

still maintained a high level of accuracy around 95%, indicating 

that STFT can extract effective fault features despite variations 

in window function selection. 

Based on the results in Fig. 12 (a) and (b), although the 

choice of time-frequency analysis methods and window 

functions does affect diagnostic performance, these impacts are 

minimal compared to the core innovations of our SSFOD 

method. SSFOD is designed to address issues like data 

imbalance and missing labels in cross-condition scenarios. 

Through sparse feature optimization and adaptive domain 

alignment improvements, SSFOD enhances the model's 
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sensitivity to rare faults and its adaptability across different 

working conditions. These innovations significantly boost 

overall diagnostic accuracy and robustness, making the minor 

differences caused by varying time-frequency methods and 

window functions negligible. 

SSFOD's dynamic adaptive feature selection and weighting 

strategy allow the model to maintain consistent high 

performance, even with different signal processing methods or 

complex condition changes. This capability makes the influence 

of other variables, such as time-frequency methods and window 

functions, relatively insignificant, ensuring effective and 

reliable cross-condition fault diagnosis. 

In summary, while the choice of time-frequency methods 

and window functions does have some impact on model 

performance, the core innovations of the SSFOD method render 

these effects negligible. Our results demonstrate that SSFOD 

consistently delivers excellent diagnostic performance, proving 

its broad applicability and strong advantages in handling 

complex industrial applications. 

4.1.3.3. Analysis of Dual-source Domain Results 

To further validate the effectiveness of our proposed ESFBDA 

method, we conducted experiments under dual-source domain 

conditions. This involved learning from two source domains to 

predict the health status of the target domain. The experiment 

included six tasks, with detailed results presented in Table 9 and 

visualized in Fig. 13, Fig. 14, and Fig. 15. 

1) Ablation Study Analysis 

In the multi-source domain experiments, we first evaluated 

the contribution of each component in the ESFBDA method 

through an ablation study. The ablation setups included three 

groups: SFDA, SFBDA, and ESFDA, each representing the 

impact of different optimization steps on model performance. 

The SFDA method, the most basic setup, combines SF with 

traditional MMD for domain alignment. As shown in Table 5, 

SFDA achieved an average classification accuracy of 74.80% 

with a standard deviation of 1.57. This indicates that when data 

comes from multiple source domains, the traditional SF and 

MMD combination struggles to capture common features across 

domains, leading to unstable classification performance. 

Particularly when there are significant differences in data 

distribution between source domains, SFDA fails to effectively 

align features, resulting in greater variability. 

Table 5. The accuracy comparison results of the method 

proposed in this paper and various other methods are presented 

herein (sourced from a dual domain). 

Method Average (%) SD 

SFDA 74.80 1.57 

SFBDA 87.40 1.47 

ESFDA 90.55 1.54 

RSFDA 90.05 1.42 

ASFDA 95.22 1.37 

SFMCD 95.83 1.31 

l1/l2-SFDA 94.25 1.56 

ESFBDA 99.15 0.83 

Building on SFDA, we introduced the Bootstrap 

optimization strategy to form the SFBDA method. Bootstrap 

enhances the robustness of MMD by resampling data, 

significantly improving the model’s performance under multi-

source domain conditions. Table 5 shows that SFBDA’s average 

classification accuracy increased to 87.40%, with the standard 

deviation reduced to 1.47. Compared to SFDA, SFBDA 

performed more consistently across all six tasks (as shown in 

Fig. 13), indicating that Bootstrap optimization not only 

strengthens domain alignment robustness but also effectively 

reduces errors caused by differences in data distribution across 

source domains. 

 

Fig. 13. Variable working conditions fault diagnosis outcomes 

of the proposed approach versus reference methodologies 

(sourced from a dual domain). 
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Fig. 14. Variable working conditions diagnostic results of various methods in the experiments for load 23-4 under small sample 

conditions.

Further enhancing SFBDA, we introduced ESF to create the 

ESFDA method. ESF optimizes the feature extraction process 

through row-column normalization and cosine similarity 

penalties, reducing feature redundancy and improving feature 

separation. Table 5 shows that ESFDA’s average classification 

accuracy further increased to 90.55%, with the standard 

deviation reduced to 1.54. The performance curves in Fig. 13 

and the clustering diagram in Fig. 14 demonstrate that the 

ESFDA method better captures common features under multi-

source domain conditions and aligns cross-domain features, 

significantly improving classification accuracy. Notably, the 

ESF technique not only optimizes the structure of the feature 

space but also enhances the model’s ability to distinguish 

between different fault types. 

Through the ablation study comparison, it is clear that each 

component introduced significantly improves model 

performance. The basic SFDA method showed high variability 

due to its inability to effectively align multi-source domain data. 

The SFBDA method, with Bootstrap optimization, significantly 

enhanced the model’s stability and accuracy across different 

source domains. The ESFDA method, with its optimized feature 

extraction and domain alignment process, further improved 

classification accuracy and model robustness, proving the 

critical role of each component in enhancing model 

performance. 

Fig. 15 shows the confusion matrix results for different 

methods across six tasks. Compared to SFBDA, ESFDA 

significantly reduced classification errors across all tasks, 

demonstrating its superior performance under complex working 

conditions. Particularly in the integration of multi-source data, 

ESFDA effectively prevented the loss of feature information, 

ensuring highly accurate classification results.

 

Fig. 15. Confusion matrix illustration of various methods in load 23-4 experiment.
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2) Comparison with Existing Methods 

After the ablation study, we compared the ESFBDA method 

with several advanced dual-source domain fault diagnosis 

methods. The data in Table 5, along with Fig. 13 through Fig. 

15, strongly support this comparison. 

As shown in Table 5, the ESFBDA method achieved an 

average classification accuracy of 99.15% with a standard 

deviation of only 0.83, demonstrating exceptional stability and 

outstanding classification accuracy. In comparison, the RSFDA 

method, which incorporates soft reconstruction penalties to 

improve feature representation, achieved an average 

classification accuracy of 90.05% with a standard deviation of 

1.42. This suggests that while RSFDA can enhance feature 

diversity to some extent, excessive reconstruction may lead to 

the loss of critical fault features, particularly when handling 

multi-source data, where feature reconstruction consistency 

affects model generalization. 

The ASFDA method measures domain differences using  

A-distance combined with sparse filtering for feature extraction. 

This method showed good classification ability under dual-

source domain conditions, achieving an average classification 

accuracy of 95.22%, but still fell short of ESFBDA. This is 

mainly because ASFDA relies heavily on a single feature 

selection strategy based on A-distance, which makes it difficult 

to comprehensively capture common features across domains 

under multi-source conditions, thereby affecting overall model 

performance. In contrast, ESFBDA ensures comprehensive 

feature extraction and precise domain alignment by integrating 

Bootstrap optimization with Enhanced Sparse Filtering, leading 

to superior performance across different tasks. 

The l1/l2-SFDA method, which enhances feature selection 

directionality by introducing l1/l2 norms, achieved an average 

classification accuracy of 94.25%, but with a standard deviation 

of 1.56, indicating some uncertainty in handling multi-source 

data. This uncertainty mainly stems from the l1/l2 norms 

overemphasizing certain features during selection, leading to 

feature loss or imbalance. ESFBDA, by integrating multiple 

optimization techniques, balances feature extraction 

comprehensiveness and accuracy, maintaining the highest 

classification accuracy and lowest variability in multi-source 

domain experiments. 

The performance curves in Fig. 13 further illustrate the 

ESFBDA method’s stable performance across tasks, 

consistently achieving the highest classification accuracy in 

almost all tasks, while other methods show varying degrees of 

fluctuation. The ESFBDA method’s outstanding performance, 

particularly under complex multi-source working conditions, 

highlights its exceptional stability and robustness in industrial 

applications. The clustering diagram and confusion matrix in 

Fig. 14 and Fig. 15 further demonstrate the ESFBDA method’s 

significant advantages in feature extraction and classification 

accuracy, with almost no misclassifications. These results not 

only validate the effectiveness of the ESFBDA method but also 

further solidify its leading position among existing methods. 

Through the ablation analysis and comparison with similar 

methods, we have thoroughly validated the superior 

performance of the ESFBDA method in cross-condition fault 

diagnosis. With dual innovations in feature extraction and 

domain alignment, this method not only significantly improves 

classification accuracy but also exhibits remarkable stability 

and adaptability. Whether in the detailed analysis of the ablation 

study or the comprehensive comparison with existing methods, 

the ESFBDA method consistently excels, further reinforcing its 

potential for industrial fault diagnosis applications. These 

results provide strong theoretical support and experimental 

evidence for promoting this method in real-world industrial 

scenarios. 

4.1.3.4. Analysis of Diagnostic Results with Different 

Source Domain Sample Sizes 

In practical engineering applications, labeled monitoring data is 

often scarce. Therefore, fault diagnosis models for variable 

working conditions scenarios need to maintain high diagnostic 

accuracy even with limited samples. To assess the diagnostic 

performance of our proposed method under small-sample 

conditions for unknown conditions, the load 2-3 experiment was 

selected, and our proposed method, along with six comparative 

methods, was trained using varying percentages of training 

samples. Each result is the average of 20 random experiments, 

and the final diagnostic results are shown in Fig. 16. The 

training sample ratio represents the percentage of each class's 

training samples, for example, a 90% training sample ratio 

means that each class has 90% of the total training samples. 

The results demonstrate that as the number of training 
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samples decreases, the diagnostic accuracy of all methods for 

variable working conditions scenarios decreases to some extent. 

Our proposed ESFBDA method consistently exhibits the 

highest diagnostic accuracy under small-sample conditions. As 

the number of training samples decreases, ESFBDA shows the 

smallest decline in diagnostic accuracy. Even with only 50% of 

the training samples, it still achieves a diagnostic accuracy of 

94.9% with a standard deviation of 0.67%. The experiment 

shows that our method excels in small-sample variable working 

conditions fault diagnosis. 

 

Fig. 16. Variable working conditions diagnostic results of 

various methods in the experiments for Load 2-3 under small 

sample conditions. 

4.2. Case 2: bearing fault diagnosis 

4.2.1. Data Preparation 

 

Fig. 18. Case western reserve university bearing data source [21]. 

To further validate the effectiveness of the ESFBDA method 

in addressing fault diagnosis under Variable Working 

Conditions, we utilized a dataset derived from bearing tests, as 

depicted in Figure 18, featuring the drive end bearing SKF6205-

2R [4]. The bearings were artificially damaged on the inner race, 

ball, and outer race through electrical discharge machining. 

Vibration signals were collected at a sampling rate of 12 kHz 

and a rotational speed of 1797 rpm under load conditions of 0, 

1, 2, and 3 HP. 

The detailed data selected, as outlined in Table 6, considers 

four health states: (1) Normal Health (NH); (2) Outer Race Fault 

(OF); (3) Inner Race Fault (IF); and (4) Ball Fault (BF), with a 

damage diameter of 7 mils. 

Table 6. The description of bearing data. 

Load (HP) Fault size (mil) Fault location 

0 

7 NH, IF, BF, OF 
1 

2 

3 

4.2.2. Effectiveness Analysis 

After completing experiment 1, we conducted ablation 

experiments and detailed comparisons with existing methods to 

further validate and support the performance of our proposed 

ESFBDA method under different working conditions. These 

experiments not only helped us understand the specific 

contribution of each method component to overall performance 

but also provided stronger evidence for the superiority of the 

ESFBDA method. 

1) Ablation Study Analysis 

Following the research approach in Section 4.1, we first 

conducted an in-depth analysis of the performance contributions 

of each component through ablation experiments. Table 7 and 

Fig. 17 show the fault diagnosis performance and accuracy 

metrics of different methods across various tasks. 

As seen in Table 7, the classification accuracy significantly 

improved as we gradually enhanced the method's components. 

The SFDA method had an average classification accuracy of 

82.24% with a standard deviation of 2.35, indicating high 

variability in performance under complex working conditions. 

By introducing the Bootstrap optimization strategy, the SFBDA 

method's average classification accuracy increased to 86.74%, 

and the standard deviation dropped to 1.29. This result validates 

the positive impact of Bootstrap on optimizing MMD 

calculations. However, it was only with the introduction of 

Enhanced Sparse Filtering in the ESFDA method that the 

classification accuracy further improved to 92.25%, with the 
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standard deviation significantly reduced to 1.00. This confirms 

the critical role of improved feature extraction techniques in 

cross-condition fault diagnosis. 

Table 7. The accuracy comparison results of the method 

proposed in this paper and various other methods are presented 

herein. 

Method Average SD 

SFDA 82.24 2.35 

SFBDA 86.74 1.29 

ESFDA 92.25 1.00 

RSFDA 94.48 1.27 

ASFDA 96.20 0.65 

SFMCD 97.05 0.73 

l1/l2-SFDA 98.49 0.59 

ESFBDA 99.52 0.27 

Fig. 17 visually illustrates the performance changes of these 

methods across different tasks. It is evident that the ESFDA 

method consistently maintained high classification accuracy in 

all tasks, while the traditional SFDA and SFBDA methods 

showed greater variability. Fig. 18 further demonstrates the 

clustering effects of different methods in the feature space. The 

feature points of the ESFBDA method are more concentrated, 

with clearer separation between classes, showcasing its strong 

capability in feature extraction. 

 

Fig. 17. Variable working conditions fault diagnosis outcomes 

of the proposed approach versus reference methodologies.

 

Fig. 18. Variable working conditions diagnostic results of various methods in the experiments for Load 3-1 under small sample 

conditions.

Fig. 19 shows the confusion matrices for each method across 

different tasks. The ESFBDA method achieved nearly 100% 

classification accuracy in all tasks, consistent with the accuracy 

data in Table 7, further proving its superiority and stability in 

handling complex conditions. In contrast, the confusion 

matrices for the SFDA and SFBDA methods show more 

classification errors, indicating their limitations in dealing with 

complex working condition changes.
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Fig. 19. Confusion matrix illustration of various methods in load 3-1 experiment. 

2) Comparison with Existing Methods 

To comprehensively validate the superiority of the ESFBDA 

method, we compared it with several advanced cross-condition 

fault diagnosis methods. The data in Table 7, along with the 

visualizations in Fig. 17 through Fig. 19, provide strong support 

for this comparison. 

As shown in Table 7, the ESFBDA method achieved an 

average classification accuracy of 99.52%, with a standard 

deviation of only 0.27, demonstrating excellent stability and 

accuracy. For example, although the RSFDA method 

incorporated soft reconstruction penalties to improve feature 

extraction, its average classification accuracy was 94.48%, with 

a standard deviation of 1.27, indicating some variability under 

complex conditions. The ASFDA and l1/l2-SFDA methods 

achieved classification accuracies of 96.20% and 98.49%, 

respectively, but their stability and robustness still fell short 

compared to the ESFBDA method. 

The curves in Fig. 17 further illustrate the stable 

performance of the ESFBDA method across all tasks, 

consistently achieving the highest classification accuracy. In 

contrast, the performance curves of other methods show greater 

variability, particularly under complex conditions where the 

ESFBDA method stands out. Fig. 18 and Fig. 19 further visually 

demonstrate the ESFBDA method's clear advantages in feature 

extraction and classification accuracy, with almost no 

misclassifications, fully confirming the method's effectiveness. 

These subsequent experiments not only further validated the 

superior performance of the ESFBDA method in cross-

condition fault diagnosis but also demonstrated how its dual 

innovations in feature extraction and domain alignment 

contribute to its significant advantages. Whether in the detailed 

analysis of the ablation study or the comprehensive comparison 

with existing methods, the ESFBDA method consistently 

exhibited high stability and accuracy, further reinforcing its 

potential for industrial fault diagnosis applications. These 

results provide strong theoretical support and experimental 

evidence for promoting this method in real-world industrial 

scenarios. 

5. Conclusions 

This paper introduces a variable working condition fault 

diagnosis method named ESFBDA, offering higher accuracy in 

cross-working condition fault diagnosis compared to existing 

SF-based domain adaptation methods. ESFBDA enhances SF 

technology by incorporating l2 normalization and similarity 

penalty items, reducing feature loss. Additionally, it optimizes 

MMD using Bootstrap Resampling for more accurate domain 

difference assessment. Extensive experiments on a WT-

Planetary Gearbox Fault dataset demonstrate its ability to 

accurately extract similar features across different working 

conditions and assess domain differences effectively, thus 

improving variable working condition fault diagnosis. 

Specifically, the application of our ESFBDA method to the WT-

Planetary Gearbox dataset underscores its significant impact on 

enhancing fault diagnosis for wind turbine systems. This 

approach not only showcases the method's effectiveness in  
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a real-world context but also illuminates its potential to advance 

fault diagnosis techniques, ensuring the reliability and safety of 

such critical systems in the industry. 

As for future avenues of exploration, there is potential in 

amalgamating conditional MMD or multi-kernel MMD with the 

ESFBDA model. Such integration might unlock further 

enhancements in the method's overall performance and 

robustness, solidifying its practical applications in pertinent 

areas. In addition, future work will critically examine the 

distinct impacts of column and row normalization in the 

ESFBDA method, aiming to refine SF for fault diagnosis. This 

exploration is essential for advancing DA techniques and 

optimizing performance in varying conditions.
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