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Highlights  Abstract  

▪ Using DBN for lithium battery feature 

extraction solves the problem of difficulty in 

ex-tracting features from lithium batteries. 

▪ By adopting the concept of dual alternate 

learning, an SCKF-FB-KRLS fusion model is 

proposed for RUL prediction of the battery. 

▪ By combining the historical capacity data of 

lithium batteries, results can be obtained quick-

ly and accurately. 

 The Remaining Useful Life (RUL) of lithium batteries is vital for 

maintaining and safely operating the batteries, making precise RUL 

predictions highly significant. This paper introduces a method for 

predicting the RUL of lithium-ion batteries, utilizing a kernel adaptive 

filtering algorithm integrated with Deep Belief Networks (DBN). The 

method constructs a novel prediction model based on the Fixed-Budget 

Kernel Recursive Least Squares (FB-KRLS) algorithm. In this approach, 

the DBN extracts features from the original lithium battery data to 

reduce data complexity. The Square-root Cubature Kalman Filter 

(SCKF) is integrated with the FB-KRLS algorithm, employing a dual 

alternating learning strategy to improve the model's nonlinear fitting 

performance. The model was validated using NASA's lithium battery 

data, showing that the minimum values for the MAPE, RMSE and MAE 

were 0.102%, 0.0016 and 0.0014, respectively. Therefore, the proposed 

method demonstrates potential for application in predicting the RUL of 

lithium-ion batteries. 
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1. Introduction 

In recent years, libs are extensively employed in consumer 

electronics, electric vehicles, power storage systems, aerospace, 

and various other fields owing to their advantages, including 

low production cost, high energy density, long service life, 

compact size, and lightweight1-3. Battery capacity is an 

important metric for assessing battery performance. The life of 

a battery is considered to end when its State of Health (SOH) 

parameter falls to 70%. Therefore, SOH, which is related to 

battery capacity, has become the most commonly used indicator 

for evaluating battery performance4-5.  

Methods for forecasting the Remaining Useful Life of libs 

can generally be categorized into three types: model-based 

methods, data-driven methods, and hybrid prediction methods. 

The effectiveness of model-based approaches is significantly 

affected by the accuracy of the models constructed. In contrast 

to model-based methods, data-driven approaches provide more 

flexibility and practicality, and do not depend on the precision 

of physical battery models. Instead, they utilize actual battery 

measurement data to establish models for forecasting the RUL6-

8. Artificial intelligence methods are commonly used to 

establish prediction models, including Long Short-Term 

Memory (LSTM) neural networks9-10, Support Vector 
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Machines(SVM)11, Particle Filter(PF)12, and Kernel Adaptive 

Filter (KAF) algorithms. These methods have strong nonlinear 

approximation capabilities and have been successfully applied 

in the prediction of SOH and RUL for Libs. For example, Wang 

et al.10used an algorithm framework combining the self-

attention mechanism and LSTM to predict the remaining useful 

life (RUL) of lithium batteries, using the NASA lithium battery 

dataset. With a prediction starting point of 80 cycles, the lowest 

RMSE value achieved was 0.002. AI-Greer M et al.12 extracted 

coefficients directly related to the degradation phenomena of 

lithium batteries' RUL using a reduced-order single-particle 

model. The resulting data was processed using a smooth particle 

filter algorithm to obtain the RUL prediction results for the 

battery. DBN consists of multiple layers of Restricted 

Boltzmann Machines (RBM) forming a deep neural network. 

They can fully utilize large-scale, nonlinear, high-dimensional 

continuous detection data to effectively extract deep features of 

battery degradation. This allows for the abstraction of high-

dimensional raw detection data to lower-dimensional 

representations, thereby avoiding the inefficiencies and 

uncertainties of manual feature extraction. DBN receive data 

through the visible layer and extract data features through 

hidden layers13, thereby reducing the original complexity of the 

data. Liu et al14.harness the robust feature extraction capabilities 

of DBNs to examine battery characteristics, utilizing battery 

current, terminal voltage, and temperature as input parameters. 

On the other hand, KAF represents a nonlinear adaptive  

filtering algorithm based on kernel learning, which extends 

adaptive filtering algorithms into the Reproducing Kernel 

Hilbert Space. In KAF, utilizing kernel functions simplifies the 

original computational process by transforming a low-

dimensional nonlinear space into a high-dimensional linear 

space through the "kernel trick." This transformation provides  

a distinct advantage in solving nonlinear problems15-17. As 

nonlinear systems composed of time series become increasingly 

complex, the KAF distinguishes itself with its online prediction 

capabilities. Unlike methods such as LSTM and SVM, KAF can 

provide real-time outputs for complex time series predictions, 

resulting in better performance in time series forecasting. 

While time series prediction based on the KAF offers real-

time forecasting and tracking of time-varying features, there are 

still some shortcomings in the process. As new samples are 

added, the system's memory usage continues to increase, and 

the computational complexity escalates with the growing 

volume of samples. These advantages and disadvantages are 

particularly pronounced in the KRLS algorithm. 

To address the issue of increasing computational complexity 

in the KRLS algorithm, Van et al.18 introduced the Sliding 

Window Kernel Recursive Least Squares (SW-KRLS) 

algorithm. This method involves computing with a fixed-length 

sequence of samples, thereby reducing the dimensionality of the 

kernel matrix. Liu et al.19 introduced the Extended Kernel 

Recursive Least Squares (EX-KRLS) algorithm, which 

expresses state space models within the kernel space, thereby 

enhancing prediction accuracy. Chen et al.20 introduced the 

Quantization Kernel Recursive Least Squares (QKRLS) 

algorithm, which compresses input data through quantization 

operations, thereby limiting the matrix dimensions and 

enhancing prediction accuracy. Van et al.21 introduced the FB-

KRLS algorithm, which, similar to the SW-KRLS method, 

computes using a fixed-length sequence of samples. However, 

FB-KRLS differs in its selection process by retaining data 

samples with stronger relevance and discarding those with 

weaker relevance, thereby reducing data dimensions and 

improving prediction accuracy. 

Drawing from the aforementioned literature, this paper 

presents an FB-KRLS algorithm rooted in the SCKF method, 

integrated with DBN for extracting features from raw data to 

predict the RUL of lithium batteries. FB-KRLS reduces the 

computational complexity of the KRLS algorithm by 

implementing a Fixed-Budget (FB) criterion. Compared to 

other kernel learning methods, the KRLS algorithm uses  

a recursive approach to update parameters, enabling it to 

process large batches of data online. This makes it particularly 

suitable for time series prediction. Integrating the SCKF method 

enhances the effectiveness of the FB-KRLS algorithm, allowing 

it to more accurately mimic the actual behavior of nonlinear 

systems. Moreover, employing a DBN for feature extraction on 

the dataset reduces its complexity, thereby improving the 

overall predictive accuracy of the algorithm. Under identical 

conditions, this study compares the proposed algorithm with 

various methods including LSTM, SVR, KLMS, KRLS, EX-

KRLS, SW-KRLS, Q-KRLS, FB-KRLS, SCKF-KRLS, CKF-

FB-KRLS and SCKF-FB-KRLS to validate the effectiveness of 
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the algorithm. 

2. Methodology 

2.1. DBN 

DBN are a type of semi-supervised learning method based on 

RBMs. RBM is an unsupervised learning algorithm based on 

artificial neural networks. The term "restricted" in RBM refers 

to the model structure where layers are fully connected between 

each other, yet there are no intra-layer connections. The RBM 

comprises two layers: a visible layer that inputs data and  

a hidden layer that learns the latent features of the data22,23. The 

network structure is depicted in Fig. 1.

h1 h2 h3

v3 v4v2 v5v1

W=(wij)mn

Hidden layer

Visible layer
 

Fig. 1. Structure of RBM model.

In this model,𝑉 = (𝑣1, 𝑣2, ⋯ 𝑣𝑚)𝑇  denotes the state vector 

of the visible layer, 𝐻 = (ℎ1, ℎ2, ⋯ ℎ𝑛)𝑇 denotes the state vector 

of the hidden layer, m denotes the number of neurons in the 

visible layer, n denotes the number of neurons in the hidden 

layer, and W=(wij)mn is the weight matrix connecting the visible 

and hidden layers. Given training data, V and H are transformed 

into each other through W. 
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Fig. 2. Structure of DBN model 

A complete DBN model is composed of two or more stacked 

RBM, where the quantity of neurons in each tier is dictated by 

the particular issue. The learning procedure of the framework 

includes two segments: unsupervised preliminary training and 

supervised fine-tuning24,25. The pre-training utilizes a greedy 

layer-by-layer unsupervised learning of numerous RBM layers, 

whereas the fine-tuning entails modifying the model parameters 

using the backpropagation algorithm. The detailed network 

configuration is illustrated Fig. 2. 

As depicted in the diagram, the initial layer in Fig. 2. is the 

visible layer for the input data, and the neuron count 

corresponds to the dimensions of the input data. The visible 

layer V0 and the hidden layer H0 together form RBM-1, which 

starts the layer-by-layer training to extract data features. The 

hidden layer of RBM-1 functions as the input layer for RBM-2, 

and this process continues in a similar fashion to complete the 

parameter initialization for the pretraining phase26. 

2.2. FB-KRLS  

The KRLS model was first introduced by Engle et al17, applying 

kernel methods to the Recursive Least Squares (RLS) algorithm 

for nonlinear applications. In this process, low-dimensional 

inputs are mapped into a high-dimensional space via a kernel 

function, which can be expressed as: 

𝝓: 𝑿 → 𝑭, 𝒙 → 𝝓(𝒙)   (1) 

In this model, X represents the original space, that is, the 

low-dimensional space, denoted as𝑿 = {𝑥𝑡} ∈ ℝ𝑁 . F denotes 

the mapped space, denoted as 𝑭 = {𝝓(𝒙)} ∈ ℝ𝑀 . Since 𝝓  is 

difficult to determine, a kernel function is used to assist in this 

process. Typically, the kernel function is chosen to be the 

Gaussian kernel, denoted as 𝜅(𝒙𝒊, 𝒙𝒕) = ⟨𝜑(𝑢𝑖), 𝜑(𝑢𝑡)⟩. Here, 
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⟨𝜑(𝑢𝑖), 𝜑(𝑢𝑡)⟩ = ⟨𝒖𝒊, 𝒖𝒕⟩ is referred to as the inner product. 

During the training phase, after obtaining n input-output 

pairs sequentially, the goal of the KRLS algorithm is to 

determine the optimal coefficient vector α through the least 

squares method, such that the loss function in Eq.(2) is 

minimized21, i.e. 

𝐽(𝛼) = 𝑚𝑖𝑛
𝛼

|𝑦 − 𝜥𝛼|2 + 𝜆𝜶𝑇𝜥𝜶  (2) 

In this context, y, K, and λ represent the vector containing 

outputs𝑦𝑖 , the kernel matrix, and the regularization parameter, 

respectively, where the components of the kernel matrix are 

𝜥𝑖,𝑗 = 𝑘(𝒔𝒊, 𝒔𝒋). The solution to Eq.(2) is: 

𝛼 = (𝚱 + 𝜆𝚰)−1𝒚   (3) 

I represents the identity matrix. 

Due to the KRLS algorithm, there is an issue of unbounded 

growth of the kernel matrix K during the training phase as the 

number of input data continuously increases. To tackle this issue, 

researchers have suggested approaches such as the ALD 

criterion and "sliding window" techniques. The essence of these 

methods is to create a "dictionary" by extracting data that meets 

predetermined conditions, thereby reducing the dimensions of 

the kernel matrix and limiting its unbounded growth. The FB-

KRLS algorithm employs a fixed budget memory method, 

known as the FB criterion. This criterion only comes into effect 

when the dictionary's size surpasses a preset threshold M. As 

mentioned in the literature18, if the number of samples that meet 

the FB criterion is greater than M, the kernel matrix is managed 

according to Eq.(4) When a new sample meets the required 

conditions, less important data are discarded from the dictionary 

as outlined in Eq.(5) Conversely, if a new sample does not meet 

these conditions, it is not added to the dictionary, thus keeping 

the size of the dictionary unchanged. As new qualifying data are 

added, the least important data are removed to maintain the 

dictionary size. As mentioned in the literature21, to keep the 

dimensions of the kernel matrix constant, an error discarding 

criterion is considered as shown in Eq.(6). 

 𝜥̆𝑡
−1 = [

𝜥𝑡−1
−1 + 𝑔𝑒𝑒𝑇 −𝑔𝑒

−𝑔𝑒𝑇 𝑔
]  (4) 

𝜥̆𝑡
𝐿 = [

𝑎 𝑘𝑡−1(𝑢𝑡)𝑇

𝑘𝑡−1(𝑢𝑡) 𝑲𝑡
𝐿 ] , (𝜥̆𝑡

𝐿)
−1

= [
𝑒 𝒇𝑇

𝒇 𝑮
]

 
⇒ (𝑲𝑡

𝐿)−1 = 𝑮 − 𝒇𝒇𝑇 𝑒⁄                   (5) 

𝑑𝐿(𝒖𝒊, 𝑦𝑖) = 𝑚𝑖𝑛
𝑖

(
|𝜶𝑖|

[𝜥̆𝑡
−1]

𝑖,𝑖

)  (6) 

In this context, L represents the index of the least significant 

data in the memory dictionary. The term 𝜥̆𝑡
𝐿 refers to the kernel 

matrix after new rows and columns have been added. The 

variables 𝑒 = 𝜥𝑡−1
−1 𝑏 , 𝑔 = (𝑑 − 𝑏𝑇𝑒)−1 , 𝑏𝑇𝑓 + 𝑑𝑔 = 1 , 

𝜥𝑡
𝐿indicate the kernel matrix after the L-th row and L-th column 

have been excised. 𝜶𝑖represents the i-th element in matrix 𝜶. 

2.3. SCKF-FB-KRLS 

The FB-KRLS algorithm based on SCKF adopts the concept of 

dual alternating learning, and its structural diagram is illustrated 

in Fig. 3. From the diagram, it is evident that the entire 

algorithm comprises two sections: the FB-KRLS algorithm and 

the SCKF algorithm. The input data for the model is "(𝑢𝑡 , 𝑦𝑡) ". 

During the entire algorithm training, SCKF provides the FB-

KRLS algorithm with the necessary inputs for learning and 

training. In return, FB-KRLS provides SCKF with the 

measurement outputs required for state estimation. The two 

algorithms influence each other, and as the number of training 

iterations increases, the FB-KRLS algorithm refines the 

measurement equation of the nonlinear system with the help of 

SCKF, thereby making the overall algorithm more in line with 

the formal situation of the nonlinear system. 

FB-KRLS 

algorithm

SCKF

algorithm
-1tx tx

( ),t tyu

1t t
y

−

 

Fig. 3. Overall Implementation Framework of the FB-KRLS 

Method Based on SCKF 

Due to the need for square root calculations of the state 

covariance matrix in the Cubature Kalman Filter (CKF) during 

computation, if certain conditions are met, it can lead to 

interruptions in filtering, affecting the stability of the algorithm. 

Therefore, a square root variant of the Cubature Kalman Filter 

algorithm has been suggested27. The SCKF algorithm is an 

approximate Kalman filtering method established in the 

Gaussian domain, which calculates the statistics of random 
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variables after nonlinear transformation by generating cubature 

points28. The SCKF algorithm solves the problem of numerical 

stability and reduces computational load, thus offering better 

performance. This paper integrates the SCKF algorithm with the 

FB-KRLS algorithm to construct the SCKF-FB-KRLS 

algorithm. Here are the detailed steps of the algorithm: 

1) Initialize the regularization parameter λ, the noise 

covariance matrices 𝑸1 ,𝑅1 ,𝒙𝟏  of the inputs, the square root 

factor of 𝑷1  is 𝑺1 , where 𝑷1 is the filtering state covariance 

matrix. 

2) When 𝑡 = 1, initialize the measurement equation of the 

KRLS algorithm to obtain 𝛼1 = 𝜥1
−1𝑦1  and 𝜥1 = [𝜆 +

𝑘(𝒖𝟏, 𝒖𝟏)]. 

3）Calculate the cubature points𝑿̂𝑡−1
(𝑖)

. 

𝑿̂𝑡−1
(𝑖)

= 𝒙𝑡−1 + 𝑺𝑡−1𝜉(𝑖),    𝑖=1, … ,2𝑛，𝑡 = 2,3,4 …, (7) 

Here, 𝜉(𝑖)is the weight matrix for the cubature points, 𝜉(𝑖) =

{
√𝑛𝑒𝑖 , 

−√𝑛𝑒𝑖−𝑛,

      𝑖 = 1,2, … , 𝑛
𝑖 = 𝑛 + 1, 𝑛 + 2, … ,2𝑛

,𝑒𝑖 ∈ 𝑅𝑛 are the unit vectors 

in the positive direction along the coordinate axes. 

4) Calculate the propagation of cubature points. 

𝑿̂𝑡|𝑡−1
(𝑖)

= 𝑓(𝑿̂𝑡−1
(𝑖)

),   𝑖=1, … ,2𝑛  (8) 

5) Compute the predicted state 𝒙𝑡|𝑡−1: 

𝒙𝑡|𝑡−1 =
1

2𝑛
∑ 𝑿̂𝑡|𝑡−1

(𝑖)2𝑛
𝑖=1   (9) 

6) Compute the square root factor 𝑺𝑡|𝑡−1  of the predicted 

error covariance: 

𝑺𝑡|𝑡−1 = 𝑇𝑟𝑖𝑎([𝝌̂𝑡|𝑡−1   𝑺𝑄,𝑡−1])  (10) 

𝝌̂𝑡|𝑡−1   =
1

√2𝑛
[𝑿̂𝑡|𝑡−1

(1)
− 𝒙𝑡|𝑡−1 𝑿̂𝑡|𝑡−1

(2)
− 𝒙𝑡|𝑡−1 … 𝑿̂𝑡|𝑡−1

(2𝑛)
− 𝒙𝑡|𝑡−1]     (11) 

Here, 𝝌̂𝑡|𝑡−1  denotes the weighted mean matrix, 𝑺𝑄,𝑡−1  is the 

square root factor of the process noise covariance matrix, and 

𝑇𝑟𝑖𝑎(∙)signifies the triangularization of the matrix. 

7) Update the cubature points of the predicted state vector 

𝑿𝑖,𝑡|𝑡−1: 

𝐗t|𝑡−1
(𝑖)

= 𝐱t|𝑡−1 + 𝐒t|𝑡−1ξ(𝑖),    𝑖=1, … ,2𝑛 (12) 

8) Through the measurement equation, determine the 

propagation of the cubature points calculated by the FB-KRLS 

algorithm: 

𝒀𝑡|𝑡−1
(𝑖)

= 𝒌𝑡−1
𝑇 (𝑿𝑡|𝑡−1

(𝑖)
)𝜶𝑡−1,     𝑖 = 0, … ,2𝑛 (13) 

9) Obtain the output matrix 𝑦𝑡|𝑡−1 , the cross-covariance 

matrix 𝑷𝑥𝑦,𝑡|𝑡−1, and the predicted covariance matrix 𝑺𝑦𝑦,𝑡|𝑡−1. 

𝑦𝑡|𝑡−1 =
1

2𝑛
∑ 𝒀𝑡|𝑡−1

(𝑖)2𝑛
𝑖=1   (14) 

𝑺𝑦𝑦,𝑡|𝑡−1 = 𝑇𝑟𝑖𝑎([𝜸𝑡|𝑡−1    𝑺𝑅,𝑡])  (15) 

𝑷𝑥𝑦,𝑡|𝑡−1 = 𝝌𝑡|𝑡−1𝜸𝑡|𝑡−1
𝑇   (16) 

Here, 𝜸𝑡|𝑡−1
𝑇  and 𝝌𝑡|𝑡−1   are both weighted mean matrices, 

and 𝑺𝑅,𝑡is the square root factor of the process noise covariance 

matrix 𝑹𝑡. 

𝜸𝑡|𝑡−1 =
1

√2𝑛
[𝒀𝑡|𝑡−1

(1)
− 𝒚𝑡|𝑡−1 𝒀𝑡|𝑡−1

(2)
− 𝒚𝑡|𝑡−1 … 𝒀𝑡|𝑡−1

(2𝑛)
− 𝒚𝑡|𝑡−1]      (17) 

𝝌𝑡|𝑡−1   =
1

√2𝑛
[𝑿𝑡|𝑡−1

(1)
− 𝒙𝑡|𝑡−1 𝑿𝑡|𝑡−1

(2)
− 𝒙𝑡|𝑡−1 … 𝑿𝑡|𝑡−1

(2𝑛)
− 𝒙𝑡|𝑡−1]    (18) 

10) Compute the Kalman gain 𝑮𝑡, and the predicted error 

covariance matrix 𝑺𝑡, update the state matrix 𝒙𝑡. 

 𝑮𝑡 = 𝑷𝑥𝑦,𝑡|𝑡−1𝑷𝑦𝑦,𝑡|𝑡−1
−1    (19) 

 𝒙𝑡 = 𝒙𝑡|𝑡−1 + 𝑮𝑡(𝑦𝑡 − 𝑦𝑡|𝑡−1)  (20) 

 𝑺𝑡 = 𝑇𝑟𝑖𝑎([𝝌𝑡|𝑡−1 − 𝑮𝑡𝜸𝑡|𝑡−1 𝑮𝑡𝑺𝑅,𝑡]) (21) 

11) Construct the input vector 𝒛𝑡 = [𝒙𝑡
𝑇 𝒖𝑡

𝑇]𝑇and apply the 

FB-KRLS algorithm, with updates calculated using 𝒌𝑡−1(𝒛𝑡) =

[𝑘(𝒛1, 𝒛𝑡), 𝑘(𝒛2, 𝒛𝑡), … , 𝑘(𝒛𝑡−1, 𝒛𝑡)]𝑇 . 

𝜶𝑡 = 𝜥𝑡
−1𝒚𝑡    (22) 

12) Return to step 3) and repeat until the training is complete. 

2.4. RUL framework predictions 

Based on the algorithm mentioned above, the proposed 

framework for predicting the RUL of lithium-ion batteries is 

illustrated Fig. 4. This framework primarily consists of the 

following four parts: 

(1) Data Pre-processing. Features including discharge 

current, discharge voltage, and battery temperature, discharge 

time, which reflect the degradation trend of the RUL, are 

selected and subjected to normalization. 

(2) Feature Extraction. Utilize a 4-layer RBM structure of  

a Deep Belief Network to perform deep feature extraction on 

the existing dataset, obtaining deep features of lithium battery 

data and completing the unsupervised learning process. 

(3) Model Training. Set the prediction start point and use it 

as a delimiter to partition the dataset into training and testing 

sets. Use the deep features extracted by the optimized DBN as 

inputs and the corresponding capacity as outputs to construct 

the SCKF-FB-KRLS model. 

(4) RUL Prediction. Input the test dataset into the SCKF-FB-

KRLS model to obtain the predicted capacity for each cycle. 

Finally, calculate the RUL of the lithium battery using the 

termination threshold.
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Fig. 4. Structural Diagram for Lithium Battery RUL Prediction.

3. Experimental results and analysis 

3.1. Introduction to lithium battery datasets 

The dataset utilized in this article is an open battery dataset 

supplied by the Prognostics Center of Excellence at the NASA. 

The dataset includes experiments on 18650-type lithium cobalt 

oxide batteries, specifically models B0005, B0006, B0007, and 

B0018, conducted at an environmental temperature of 24°C. 

The charge and discharge experimental procedures for these 

batteries are as follows: 

(1) Charging: Charge in constant current mode at 1.5A until 

the battery voltage attains 4.2V, then switch to constant voltage 

charging until the charging current drops to 20mA. 

(2) Discharging: Discharge in constant current mode at 2A 

until the voltage of B0005, B0006, B0007, and B0018 decreases 

to 2.7V, 2.5V, 2.2V, and 2.5V respectively.  

Table 1. displays the parameters of the battery throughout 

the charging and discharging cycles, which include 

environmental temperature (ET), charging current (CC), 

discharging current (DC), end of discharge voltage (EOC), and 

end of life criterion (EOLC). The lifespan of the battery is 

deemed complete once its capacity declines to 70% of its 

nominal capacity. Fig. 5. illustrates the capacity degradation 

curves for batteries B0005, B0006, B0007, and B0018. It is 

observed that the battery capacity tends to diminish with an 

increasing number of discharge cycles. Nonetheless, some 

upward fluctuations are observed during this process, attributed 

to the phenomenon of internal capacity regeneration in the 

batteries. The first three sets of batteries each have data for 168 

cycle groups, while B0018 has data for only 132 cycle groups. 

 

Table 1. Battery Charge and Discharge Parameters. 

No. ET/℃ CC/A DC/A EOC/V EOLC/% 

B0005 

24 1.5 2 

2.7 

30 
B0006 2.5 

B0007 2.2 

B0018 2.5 

 

 

Fig. 5. Battery capacity degradation curve. 

3.2. Evaluation criteria for prediction accuracy of lithium 

battery RUL 

This paper adopts several evaluation metrics for RUL prediction 

issues, such as Mean Absolute Percentage Error (MAPE), Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE)and 

Relative Error (RE) to examine the predictive outcomes. As 

mentioned in in the literature12, the equations are presented 

below: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100%  (23) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1   (24) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1    (25) 

𝑅𝐸 = 1 −
|𝑅𝑈𝐿𝑝𝑟𝑒𝑑−𝑅𝑈𝐿𝑡𝑢𝑟𝑒|

𝑅𝑈𝐿𝑡𝑢𝑟𝑒 × 100% (26) 
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In the above formulas, n represents the total number of 

samples in the prediction dataset,𝑦𝑖  indicates the actual battery 

capacity, and 𝑦̂𝑖  refers to the estimated outcome from the 

prediction model.𝑅𝑈𝐿𝑝𝑟𝑒𝑑and 𝑅𝑈𝐿𝑡𝑢𝑟𝑒 represent the actual and 

predicted values of the remaining life, respectively. For the 

evaluation metrics MAPE, RMSE, and MAE, lower values 

indicate superior predictive performance. In contrast, a value of 

RE closer to 1 signifies enhanced prediction accuracy. 

3.3. Comparative experiment on the prediction effect of 

lithium battery RUL 

Using the experimental dataset mentioned, predictive models 

are trained using various algorithms including LSTM, SVR, 

KLMS, KRLS, EX-KRLS, SW-KRLS, Q-KRLS, FB-KRLS, 

SCKF-FB-KRLS, and DBN-SCKF-FB-KRLS, The 

effectiveness of each algorithm is then compared. The 

configuration details for many of the aforementioned algorithms 

are outlined below: in the LSTM algorithm, the parameters are 

set as follows: the LSTM layer has 100 neurons, and the fully 

connected layer has 15 neurons. For the SVR algorithm, the 

kernel function is set to Radial Basis Function (RBF), The 

coefficient parameter γ for the RBF kernel is set to 1, while the 

penalty coefficient is set to C=10, and the tolerance parameter 

epsilon=0.001. For the subsequent KRLS algorithm and its 

variants, the RBF is selected as the kernel function. The RBF 

kernel parameter is 𝜎 = 3, and the regularization parameter is 

𝜆 = 10−3 . For the EX-KRLS algorithm, the settings are as 

follows: the scale factor a=0.995, the forgetting factor 𝛽 = 0.9, 

and the noise factor 𝑞 = 1𝑒−4. In the FB-KRLS algorithm, the 

learning rate 𝜂 = 0.1. For both the SW-KRLS and FB-KRLS 

algorithms, the dictionary size is established at M = 200. Q-

KRLS algorithm quantization threshold 𝜀𝐹 = 𝜀𝑈 = 0.1. In the 

SCKF algorithm, Initial state covariance matrix 𝑷 = 0.09𝑰,I is 

the identity matrix, Noise covariance matrix 𝑸 = 0.01𝑰 ,𝑅 =

0.01 . The DBN used in here is composed of three layers of 

RBM. 

The RUL prediction model for lithium batteries, employing 

the DBN-SCKF-FB-KRLS method, is detailed in Eq.(27): 

𝑦(𝑡 + 1) = 𝑓(𝑥1(𝑡), 𝑥2(𝑡), ⋯ , 𝑥7(𝑡), 𝑥8(𝑡), 𝑦(𝑡 − 1), 𝑦(𝑡))       (27) 

In the model, 𝑥1(𝑡), 𝑥2(𝑡), ⋯ , 𝑥7(𝑡), 𝑥8(𝑡)  represents the 

feature input of the lithium battery processed by the DBN, and 

𝑦(𝑡 − 1), 𝑦(𝑡) represents the outputs at times 𝑡 − 1 and 𝑡during 

the prediction process.
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Fig. 6. Lithium battery prediction results based on the above algorithm (80 cycles). 
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Fig. 7. Lithium battery prediction results based on the above algorithm (60 cycles). 

 

Fig. 8. The fit between the predicted and actual values of battery B0005. (80 Cycle). 

 

Fig. 9. Error convergence curve of the algorithm. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 27, No. 2, 2025 

 

 

Fig. 10. The fit between the predicted and actual values of battery B0018. (60 Cycle).

In the NASA lithium battery dataset, except for battery 

B0018, which has a cycle life of over 130 cycles, the rest of the 

batteries have cycle lives exceeding 160 cycles. Moreover, the 

end of life for all batteries occurs after at least 80 cycles. 

Consequently, this study sets cycle 80 as the starting point for 

the prediction dataset to experiment with forecasting the 

remaining life of lithium batteries. Subsequently, to compare 

and validate the prediction effects of different algorithms under 

longer prediction cycles, cycle 60 is set as the new starting point 

for the prediction dataset in further experiments. 

With the prediction starting point is 80 cycles, the resulting 

RUL prediction outcomes are shown in Fig. 6. In the graph, the 

black curve depicts the actual capacity values of the lithium 

battery. The red dashed vertical line indicates the starting point 

of the prediction data (80 cycles), and the blue dashed horizontal 

line signifies that the battery has reached 70% of its capacity 

(1.4 Ah), marking the end of the battery's life. Given that battery 

B0007's capacity consistently exceeds 70% (1.4 Ah), the blue 

dashed line is elevated to the 1.5 Ah mark to enhance visibility 

of the prediction performance of the discussed models on the 

lithium battery's RUL. 

Observations from Fig. 6. (A-1),(B-1),(C-1),and(D-1) 

indicate that the discussed algorithms are somewhat effective in 

demonstrating the degradation trend of lithium battery capacity 

and in accurately detecting the capacity regeneration 

phenomenon. This evidence suggests that the algorithms 

analyzed in this study are effective. Close examination of the 

enlarged images in Fig. 6. clearly shows that the RUL prediction 

capabilities of the FB-KRLS algorithm are substantially 

enhanced with the integration of SCKF and DBN. Compared to 

other algorithms, the model trained using the DBN-SCKF-FB-

KRLS algorithm yields predictions that are closer to the actual 

values. Observing Fig. 6. (A-2),(B-2),(C-2),and(D-2), the 

prediction errors for lithium battery capacity fluctuate between 
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0.10 Ah and -0.06 Ah. Specifically, the prediction error for 

battery B0018 ranges from -0.04 Ah to 0.04 Ah. Compared to 

the LSTM and SVR methods, the error fluctuation is smaller 

with the kernel adaptive filtering techniques. Both the SCKF-

FB-KRLS and DBN-SCKF-FB-KRLS algorithms show  

a significant decrease in prediction errors for lithium battery 

capacity, with the error of the DBN-SCKF-FB-KRLS algorithm 

approaching zero. This underscores the appropriateness of this 

method for forecasting the RUL of lithium batteries. 

Adjusting the initial prediction starting point from 80 to 60 

cycles extends the model's forecasting period, with the resulting 

RUL predictions are displayed in Fig. 7. (A-1),(B-1),(C-

1)and(D-1). The comparison shows that under longer prediction 

cycles, the discrepancy between the predictions of various 

algorithms and the actual values tends to increase. However, the 

model developed with the DBN-SCKF-FB-KRLS algorithm 

produces predictions that align more closely with actual values, 

outperforming those generated by other training models. This 

highlights the effectiveness of the DBN-SCKF-FB-KRLS 

approach in achieving more accurate RUL predictions. Analysis 

of Fig. 7. (A-2),(B-2),(C-2)and(D-2) reveals that the prediction 

error for lithium battery capacity oscillates between -0.15Ah 

and 0.25Ah, with the specific error for battery B0018 ranging 

from -0.04Ah to 0.04Ah. This results from the fewer charging 

and discharging cycles of B0018, leading to a smaller dataset. 

Consequently, the training set selection comprises a larger 

proportion of the total dataset. 

Table 2. Prediction results of different models for B0005 (80 Cycle). 

No. Method RMSE MAE MAPE RE 

B0005 

LSTM10 0.0608 0.0348 2.530% 0.9556 

SVR11 0.0470 0.0254 1.840% 0.8889 

KLMS16 0.0319 0.0252 1.827% 0.9778 

KRLS17 0.0484 0.0263 1.900% 0.9556 

EX-KRLS19 0.0410 0.0257 1.841% 0.9556 

SW-KRLS18 0.0408 0.0239 1.750% 0.9556 

QKRLS20 0.0297 0.0237 1.702% 0.8889 

FB-KRLS21 0.0288 0.0244 1.747% 0.9556 

SCKF-KRLS 0.0233 0.0202 1.303% 0.9333 

CKF-FB-KRLS 0.0157 0.0136 0.984% 0.9556 

SCKF-FB-KRLS 0.0108 0.0071 0.509% 0.9778 

DBN-SCKF-FB-KRLS 0.0022 0.0037 0.262% 1.0000 

Table 3. Prediction results of different models for B0006 (80 Cycle) 

No. Method RMSE MAE MAPE RE 

B0006 

LSTM10 0.0472 0.0350 2.650% 0.9655 

SVR11 0.0451 0.0296 2.300% 0.8966 

KLMS16 0.0414 0.0322 2.448% 0.8966 

KRLS17 0.0400 0.0282 2.090% 0.8966 

EX-KRLS19 0.0389 0.0258 1.961% 0.9310 

SW-KRLS18 0.0370 0.0245 1.868% 0.9310 

QKRLS20 0.0291 0.0257 1.970% 0.8621 

FB-KRLS21 0.0285 0.0231 1.694% 0.8966 

SCKF-KRLS 0.0205 0.0179 1.365% 0.9655 

CKF-FB-KRLS 0.0157 0.0131 1.007% 0.9655 

SCKF-FB-KRLS 0.0089 0.0072 0.548% 1.0000 

DBN-SCKF-FB-KRLS 0.0016 0.0024 0.186% 1.0000 

Table 4.Prediction results of different models for B0007 (80 Cycle). 

No. Method RMSE MAE MAPE RE 

B0007 

LSTM10 0.0489 0.0296 1.980% 0.8977 

SVR11 0.0379 0.0231 1.550% -- 

KLMS16 0.0402 0.0258 1.731% -- 

KRLS17 0.0447 0.0272 1.830% 0.8523 

EX-KRLS19 0.0309 0.0201 1.334% 0.9432 

SW-KRLS18 0.0413 0.0204 1.355% -- 

QKRLS20 0.0433 0.0214 1.434% -- 

FB-KRLS21 0.0233 0.0181 1.191% 0.9545 
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SCKF-KRLS 0.0246 0.0199 1.205% 0.8977 

CKF-FB-KRLS 0.0129 0.0110 0.739% 0.9318 

SCKF-FB-KRLS 0.0118 0.0100 0.667% 0.9545 

DBN-SCKF-FB-KRLS 0.0018 0.0021 0.139% -- 

Fig. 8. shows the fitting effects of the model predictions 

compared to the actual values for battery B0005, starting from 

the 80th cycle. It is evident that among these four models, the 

fitting effect of SCKF-FB-KRLS is superior to that of KRLS 

and FB-KRLS, while DBN-SCKF-FB-KRLS shows an even 

better fitting performance than SCKF-FB-KRLS. Therefore, the 

DBN-SCKF-FB-KRLS algorithm has certain advantages in 

nonlinear prediction. Similarly, Fig. 10. shows the fitting effects 

of the four algorithms compared to the actual values for battery 

B0018, starting from the 60th cycle. The results are similar to 

those presented inFig. 8. .Fig. 9. shows the iterative error 

convergence curves for the model 

.

Table 5. Prediction results of different models for B0018 (80 Cycle). 

No. Method RMSE MAE MAPE RE 

B0018 

LSTM10 0.0469 0.0354 2.530% 0.8824 

SVR11 0.0299 0.0218 1.570% 0.9412 

KLMS16 0.0421 0.0235 1.684% 0.8824 

KRLS17 0.0307 0.0213 1.530% 0.8824 

EX-KRLS19 0.0168 0.0165 1.173% 1.0000 

SW-KRLS18 0.0198 0.0150 1.084% 0.7059 

QKRLS20 0.0289 0.0147 1.054% 0.8235 

FB-KRLS21 0.0202 0.0148 1.054% 1.0000 

SCKF-KRLS 0.0132 0.0113 0.813% 1.0000 

CKF-FB-KRLS 0.0104 0.0089 0.637% 1.0000 

SCKF-FB-KRLS 0.0084 0.0065 0.463% 1.0000 

DBN-SCKF-FB-KRLS 0.0019 0.0014 0.102% 1.0000 

Table 6. Prediction results of different models for B0005 (60 Cycle). 

No. Method RMSE MAE MAPE RE 

B0005 

LSTM10 0.0786 0.0523 3.750% 0.9846 

SVR11 0.0678 0.0426 3.040% 0.9846 

KLMS16 0.0437 0.0363 2.481% 0.8154 

KRLS17 0.0601 0.0334 2.390% 0.8308 

EX-KRLS19 0.0444 0.0279 1.956% 0.8308 

SW-KRLS18 0.0359 0.0294 2.065% 0.8154 

QKRLS20 0.0395 0.0278 1.955% 0.8154 

FB-KRLS21 0.0265 0.0224 1.559% 0.9538 

SCKF-KRLS 0.0271 0.0196 1.390% 0.9692 

CKF-FB-KRLS 0.0182 0.0127 0.883% 0.9538 

SCKF-FB-KRLS 0.0161 0.0100 0.691% 0.9692 

DBN-SCKF-FB-KRLS 0.0068 0.0049 0.353% 1.0000 

Table 7. Prediction results of different models for B0006 (60 Cycle). 

No. Method RMSE MAE MAPE RE 

B0006 

LSTM10 0.0759 0.0616 4.580% 0.8163 

SVR11 0.0657 0.0456 3.450% 0.9388 

KLMS16 0.0600 0.0403 3.021% 0.9388 

KRLS17 0.0473 0.0350 2.600% 0.9796 

EX-KRLS19 0.0462 0.0323 2.333% 0.9388 

SW-KRLS18 0.0415 0.0298 2.201% 0.8571 

QKRLS20 0.0363 0.0328 2.463% 0.8367 

FB-KRLS21 0.0330 0.0268 1.927% 0.9388 

SCKF-KRLS 0.0293 0.0249 1.872% 0.9388 

CKF-FB-KRLS 0.0213 0.0176 1.330% 0.9592 

SCKF-FB-KRLS 0.0143 0.0116 0.873% 0.9796 

DBN-SCKF-FB-KRLS 0.0097 0.0076 0.588% 0.9592 
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Table 8. Prediction results of different models for B0007 (60 Cycle). 

No. Method RMSE MAE MAPE RE 

B0007 

LSTM10 0.0778 0.0541 3.590% 0.9352 

SVR11 0.0658 0.0402 2.670% -- 

KLMS16 0.0773 0.0492 3.194% -- 

KRLS17 0.0574 0.0399 2.620% 0.9630 

EX-KRLS19 0.0402 0.0298 1.947% -- 

SW-KRLS18 0.0571 0.0303 2.020% 0.8704 

QKRLS20 0.0336 0.0311 2.059% -- 

FB-KRLS21 0.0331 0.0285 1.851% -- 

SCKF-KRLS 0.0307 0.0280 1.849% -- 

CKF-FB-KRLS 0.0265 0.0238 1.569% -- 

SCKF-FB-KRLS 0.0183 0.0145 0.954% -- 

DBN-SCKF-FB-KRLS 0.0029 0.0027 0.181% -- 

Table 9. Prediction results of different models for B0018 (60 Cycle). 

No. Method RMSE MAE MAPE RE 

B0018 

LSTM10 0.0644 0.0453 3.200% 0.8108 

SVR11 0.0528 0.0413 2.910% 0.7838 

KLMS16 0.0544 0.0373 2.606% 0.9189 

KRLS17 0.0510 0.0365 2.570% 0.9189 

EX-KRLS19 0.0278 0.0200 1.400% 0.9459 

SW-KRLS18 0.0344 0.0209 1.474% 0.9189 

QKRLS20 0.0224 0.0190 1.346% 0.8649 

FB-KRLS21 0.0229 0.0185 1.289% 0.9459 

SCKF-KRLS 0.0191 0.0164 1.156% 0.9459 

CKF-FB-KRLS 0.0138 0.0102 0.709% 0.9459 

SCKF-FB-KRLS 0.0121 0.0083 0.584% 0.9730 

DBN-SCKF-FB-KRLS 0.0052 0.0046 0.327% 0.9730 

Statistical analysis of prediction results when the prediction 

starting points are set at 80 cycles and 60 cycles, respectively, 

is shown in Table 2 - 9. The prediction outcomes for RUL from 

models trained using diverse algorithms across various lithium 

battery datasets are elaborated within. Particularly for battery 

B0007, if the predicted value falls short of the 70% failure 

threshold, the RE is denoted as "--". 

Table 2 – 5 provide the prediction results for four batteries 

at a prediction starting point of 80 cycles, along with detailed 

performance evaluation metrics like RMSE, MAE, MAPE, and 

RE, which describe the fitting performance of lithium battery 

RUL predictions. For battery B0005, the DBN-SCKF-FB-

KRLS method yielded an RMSE of 0.004, an MAE of 0.0037, 

and a MAPE of 0.26%. Additionally, predictive performance 

evaluations were conducted for batteries B0006, B0007, and 

B0018. The findings indicate that the DBN-SCKF-FB-KRLS 

approach consistently delivers lower error rates and superior 

accuracy relative to other methods. This underscores the 

effectiveness of the proposed method in this study for predicting 

the RUL of lithium batteries. 

Table 6 - 9present the prediction results for four batteries at 

a prediction starting point of 60 cycles, along with detailed 

evaluation metrics like RMSE, MAE, MAPE, and RE. These 

metrics evaluate the performance of lithium battery RUL 

predictions. Notably, shifting the prediction starting point from 

80 to 60 cycles results in a decrease in the accuracy of the 

lithium battery RUL forecasts. For battery B0005, the DBN-

SCKF-FB-KRLS method resulted in an RMSE of 0.0068, an 

MAE of 0.0049, and a MAPE of 0.353%. Batteries B0006, 

B0007, and B0018 also showed similar results. This reinforces 

the advantages of the method outlined in this study for 

accurately predicting the RUL of lithium batteries. 

4. Conclusions 

Forecasting the RUL of lithium-ion batteries enables effective 

monitoring of their safety status, thereby ensuring the powered 

devices operate safely and stably. This paper addresses issues 

such as difficulty in data feature extraction, low prediction 

accuracy, and poor convergence effects encountered in the 

process of predicting the RUL of lithium batteries. The study 

introduces a RUL prediction model for lithium-ion batteries 
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utilizing the DBN-SCKF-FB-KRLS methodology. The model 

leverages the strengths of DBN in deep feature extraction to 

extract features from the original dataset, thereby reducing the 

complexity of the data. SCKF exhibits significant advantages in 

handling nonlinear system issues, while FB-KRLS has certain 

limitations in dealing with nonlinear systems. Therefore, 

combining the two creates the SCKF-FB-KRLS method, which 

synergizes their strengths to improve performance in complex 

scenarios. This method has significant advantages in handling 

nonlinear issues. The SCKF and FB-KRLS algorithms 

synergize effectively, and as the number of iterations increases, 

this approach significantly improves the accuracy of predicting 

the remaining life of lithium-ion batteries. On the other hand, 

the kernel adaptive filtering algorithm itself uses recursive 

iteration for parameter updating, which gives the advantage of 

real time processing of the dataset, and thus the problem of 

computation time due to the minimization of the error is 

mitigated to a certain extent. 

The comparison of prediction results across different 

batteries and various starting points, alongside a review of 

existing literature, shows that the kernel adaptive filtering 

model DBN-SCKF-FB-KRLS presented in this paper enhances 

the prediction performance of lithium-ion batteries' remaining 

life, while maintaining stability. This ensures the safe and stable 

functioning of lithium-ion batteries.
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