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1. Introduction

Abstract

To address the issues of low data quality and poor adaptability in deep
learning methods for infrared image analysis in gearbox fault
diagnosis, this paper introduces an enhanced deep prototype network
model (MSPNet). This model employs a multi-scale strategy to
improve fault diagnosis accuracy and algorithm generalization,
especially with small sample sizes. First, infrared image data of six
fault types under five operating conditions are collected using a
rotating test bed. Gaussian noise is added to simulate real operating
conditions. Next, the fault data are processed using a multiscale module
to extract multiscale fault features and reduce feature value
fluctuations. Finally, the proposed model is used to process the image
data and is experimentally compared with five other algorithms. The
experimental results demonstrate that the proposed method
outperforms the other algorithms under various operating conditions.

Keywords
gearbox, fault diagnosis, infrared thermal images, small samples,
variable working condition

The safety and reliability of mechanical equipment is crucial
in industrial production, especially for equipment with
complex structure and large scale [1]. As a kind of mechanical
equipment widely used in various fields, the operational
performance of gearboxes largely depends on the state of
gears. Therefore, in order to avoid economic losses and safety
hazards caused by gearbox failures, the development of
intelligent and advanced fault diagnosis systems for

monitoring and diagnosing the condition of gearboxes is and
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its necessary [2].

Current mainstream gearbox fault diagnosis techniques
include vibration detection[3], acoustic detection[4], and
infrared thermal image detection. Compared to vibration and
acoustic detection, infrared thermal image analysis offers
significant advantages. It requires no surface preparation of
the gearbox and does not necessitate sensor installation, thus
avoiding potential interference and damage[5]. In contrast,

vibration analysis and acoustic analysis typically require that
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the collected data be collected and analysed over a period of
time, which may take longer to detect equipment failures.
Therefore, infrared thermal image analysis is a promising
technique for gearbox diagnosis and has attracted much
attention in recent years[6].

Deep learning techniques have enabled the use of a wide
range of models and algorithms across different fields[7-9].
Data-driven fault diagnosis methods have also emerged and
are gradually being applied to gearbox fault diagnosis.
However, the quantity and quality of data significantly impact
the reliability of these techniques in practical applications. In
real industrial environments, gearboxes typically operate
normally, resulting in scarce and hard-to-obtain fault data[10,
11]. This data limitation constrains the ability to capture fault
characteristics, reducing diagnostic accuracy. The problem is
even more pronounced in complex and extreme industrial
scenarios, where the degradation of accuracy due to data
limitations is more severe[12]. Therefore, developing effective
fault diagnosis methods for small-sample data remains
a significant challenge.

To address this challenge, small sample methods based on
transfer learning have received great attention in fault
diagnosis. It is very popular for dealing with small sample
problems in the fields of image classification and fault
diagnosis. For example, Zhang et al. proposed a migration
learning based approach to realize fault diagnosis of diesel
engines [13]. Chen et al. made FRA slip phase and series
migration learning methods to solve the fault problem of
mechanical deformation of transformer windings [14].
Migration and sharing of knowledge by finding similarities or
correlations between source and target domains is the reason
why migration learning has shown excellent performance in
fault diagnosis. However, in practice, this is difficult to do
because it is hard to obtain enough auxiliary data to support
the migration learning technique.

Generative Adversarial Networks are also commonly used
to deal with small sample problems. It consists of two neural
networks: a generator and a discriminator. The purpose of the
generator is to generate some samples similar to real data
from a random noise vector, and the purpose of the
discriminator is to distinguish whether the input data is real or

fake generated by the generator. For example, Zhang et al.

utilized a generative adversarial network for fault detection in
hot strip rolling process conditions [15]. It is worth noting that
the quality of the generated data may be poor, which leads to
bias under the actual working of the model.

Small-sample methods based on meta-learning are highly
flexible and generalizable by using a small number of training
samples to achieve relevant tasks. Meta-learning methods
have great potential for engineering applications and have
become
a research hotspot in the field of deep learning in recent
years[16]. Among the meta-learning models, the prototype
network (ProtoNet) model has attracted a lot of attention from
scholars in recent years[17], which classifies by learning the
metric space with a metric classifier of the distance from the
class prototype to the classification. ProtoNet can incorporate
a priori knowledge into the nature of the embedding space, so
that similar samples are clustered in the embedding space and
dissimilar samples are dispersed in the embedding space,
which improves the model's generalization ability and
robustness. Currently, prototype network-based methods are
mainly used to analyse one-dimensional data, while they are
less applied in two-dimensional data. In addition, the
prototype network uses tandem layers mixed with multilayer
convolutional layers in processing 2D data fault feature
extraction, and its multi-scale information mining ability is
insufficient. In order to improve the deep information mining
ability of the prototype network at different scales, as well as
the ability to understand the detailed and global information
of images, a new MSPNet model is proposed in this paper.

The main contributions of this paper are as follows:

(1) Aiming at the data acquisition situation with small
number of labeled samples, the prototype network is
introduced for fault diagnosis of gearbox based on infrared
images with small samples.

(2) A multi-scale feature extraction module is introduced
into the prototype network, which can simultaneously capture
the details and global information of the image. By utilizing
multi-scale module, the fault features in small samples can be
more comprehensively extracted and analyzed.

(3) Compared with other benchmark models, the proposed
MSPNet model can finally realized high precision fault

diagnosis of gearbox by using infrared thermal images with
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small samples.
2. Basic Theory of Prototype Network

Prototype network, as a metric-based meta-learning method
for small sample learning, can reduce the influence of
overfitting problem on the model, and is an effective image
classification network under small sample conditions, as

shown in Fig.1.
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Fig. 1. Structure of the prototype network.

First, a support set containing a small number of samples
from each category and a query set containing the samples to
be categorized are defined. Then, the support set is passed into
the neural network for feature extraction to learn the nonlinear
mapping position of the support set in space. According to the
encoding function f,(x;), the prototype representation of each

category is shown (1).
1 .
Cr = @Z(xi,yi) fo(x0) 1

where, £ is the class of the prototype. x is the data vector and y
is the categorical label. Si is the number of support sets. ¢ is
the position of the prototype of the class.

The prototype of each class is obtained according to Eq.1.
Finally, the query set can be passed into the encoding function
to obtain the mapping position and calculate the probability
that the sample belongs to category K. The calculation process
is shown (2).

exp(-d(f ¢ (x).ck))
>k! exp(—d(f¢(x),ck/))

P (y = klx) = 2)

where, K is the category, d is the Euclidean distance

function. f, (x;) is the coding function to obtain the features of

the sample.
3. Methodology
3.1. Multi-Scale Modules

The convolution kernel of null convolution is a modification
of the standard convolution kernel, by inserting null values
between neighbouring parameters to obtain a larger sensory
field, without additional computational parameters and
computation. Assuming that the input feature map of the
previous layer is X, the output feature map y after the null
convolution operation can be derived from the following (3):

ylil = Ecax[i +d - (k — 1) - wk]] 3
where, d is the null rate. w is the convolution kernel. w is the
parameter. k is the size of the convolution kernel.

The fault image data is set to X = {xm, xl_z,x1_3,-~-xi,j},
1<i<D,1<j<H. xis the pixel value at location (i, ).
The input feature map is divided into four branches and
feature mapping is performed on each branch individually so
that it slides back and forth to extract the local features of the
image in a specific step size. As shown in (4).

F =3l (wk]®x) + b[k] C))

where, W[k] denotes the convolutional kernel of the A-th

and x is the feature map of the input. b[k] denotes the

convolutional kernel offset of the kth. is the mapping output
of the multi-scale convolutional kernel on each branch.

After the convolutional layers within each branch, a batch
normalization layer and an activation function are used. Thus,
the feature mapping can be obtained as. As shown in (5).

F; = §(BN(F)) )
where, 6 is the activation function. BN is the batch
normalization layer.

The difference between different channels is that each
individual channel is a different scale of the feature map.
Large scale corresponds to global information such as
contours in the image, while small scale corresponds to local
information such as details in the image. The feature maps are
obtained by using dilated convolutions, and different scale
information is obtained by controlling different dilation rates.
The reasons for using multi-scale channels to extract features
is that by extracting feature information from individual
channels and then integrating these different features, the

proposed model is able to generate a rich set of feature maps.

Eksploatacja i Niezawodno$¢ — Maintenance and Reliability Vol. 27, No. 2, 2025




This multi-scale strategy can explore the data more
comprehensively and capture subtle differences that may be
overlooked by single-scale analysis. The integration of
features at different scales helps to understand the failure
mode more carefully, thereby enhancing the diagnostic ability
of our proposed model.

By performing multi-level feature fusion on each output
branch, richer and more diverse feature mappings can be
generated. This feature refactoring strategy enables the
extraction of new features, which significantly improves the
overall feature description capability of the module.
Specifically, fusing features at different levels enables the
model to capture feature information at different scales and

levels, as shown in (6):
T1 = Fl
_ Tz = Fl + Fz _
Ty = T, = F,+Fy+ F, ,M=1,2,34 (6)
T4_=F1+F2+F3+F4

where, F is the feature of each branch. T is the fused feature.
M is the number of each branch. Concat is a feature fusion
function.
The acquired multi-level features are stitched together to
form a new feature map, as shown in (7):
Foutpur = concat[Ty, T, T3, Ty] 7
Where Ti1, T>, T3, T4 denotes the features of the first, second,
third and fourth branches respectively. Foupu is the fused
feature map. Since each level has the same importance, here,
T, T», T3, T4 are given the same weight.
Finally, the residual connection is added, as shown in (8):
Foutput = Add (Foutput, F) (8
where, F'is the original features of the previous layer. Foutput

is the final output fused feature map, as shown in Fig.2.
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Fig. 2. Diagram of the multi-scale module.

3.2. Activation Function

In the multi-scale module, the activation function also has an
effect on the features of the output, now in this paper
Exponential Linear Unit (ELU) is an enhancement of RELU.
ELU activation function is smooth and the negative part is in

exponential form, which prevents neurons from dying, and

also reduces the bias of the input distributions. ELU activation
function does not saturate, the gradient does not disappear,
and training is the formula of ELU is as (9):

a(e* — 1) when(x < 0)

f@) = {x when(x > 0) ©)
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3.3. Classification using Softmax

The Softmax function is used to calculate the weights of the

weighted multi-scale feature maps with the following formula.
el

Bi = softmax(P) = >

j=1¢’

= Bi=1 1D

Assuming that there are n classes in each randomly drawn

(10)

sample, the output probability of calculating the class as j is x.

Thus, the output x is the label of maximum probability.

(B

Oj = W,] = 1,2,3,...1’1.

(12)

In the training sample, the continuously learned x is a
learnable classification layer model parameter and Y%, 0; =

1 is the sum of all output probabilities of 1.
3.4. Fault Diagnosis Based on MSPNet

In this paper, a gearbox fault diagnosis framework is proposed

based on MSPNet and infrared images, as shown in Fig.3. It
includes three steps:

(1) Data acquisition: an infrared camera is used to acquire
infrared images of gearboxes, and the acquired infrared image
dataset is divided into a support set, a query set and a test set.
The support set and query set are used to train the fault
prototype and model parameters, and the query set is used to
verify the accuracy of the model.

(2) Feature extraction: the support set and query set are
input into the proposed MSPNet for feature extraction, and the
model is trained with forward propagation algorithm and back
propagation algorithm.

(3) Pattern Recognition. The test set is nonlinearly mapped
to obtain the feature space location, and the test prototype is

fault classified using Softmax classifier.
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Fig. 3. Flowchart of the proposed MSPNet model for gearbox fault diagnosis.

4. Results and discussion

In this section, we conduct the gearbox failure experiments on
the rotating machinery testing rig. Fig.4 shows the schematic
structure of the experimental test rig. The experimental

platform consists of an AC motor, a belt, a rotating shaft,

a gearbox and an infrared camera. The infrared camera is
mounted in front of the experimental platform aligned with
the gearbox to collect infrared images, and the rotational
speed is set to 1500 rpm. The main purpose of this paper is to
explore the feasibility of the infrared thermal heat map and

small sample model for gearbox fault diagnosis. Considering
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the influence of lubricant fluid during infrared images
collection, the process management of the experiment is
standardized as much as possible. The type of lubricant fluid
used here is set as Mobile-EP 220 with a kinematic viscosity
of 220 c¢St@40°C in all tests. By standardizing the lubrication
conditions, it is ensured that the effect of the lubricant on the
gearbox performance remained consistent during different
operation condition of different gearbox failure, thereby
minimizing its interference with the heat map results.

In the whole experiment, loads of ONm, 2Nm, 3Nm,
3.7Nm and 4.2Nm are added respectively. Considering that
the temperature is also influenced by the load, heat dissipation
speed, ambient temperature, etc., the load in each set of
experiment is set as the constant value. Besides that, each
experiment is conducted in a temperature-controlled
laboratory with the ambient temperature setting to 18°C. The
reasons for setting the ambient temperature to 18°C is to
ensure the consistency of experimental conditions, reduce
thermal noise interference, and optimize equipment
performance. In each set of experiment, the load and thermal
conditions are kept constant to avoid influences other than the
fault. Besides that, In order to minimize the influence of the
energy losses and the efficiency of heat transfer on the
experimental results of this paper, all experiments are
performed under equal conditions. The operation of each fault
is at the same environment temperature. The infrared images
of gearbox are collected after the gearbox runs for 30 minutes.
The internal gear parameters of the gearbox are shown in
Table 1. The experiments in this paper are implemented based
on Windows 64 kernel system, PyTorch framework and

Python 3.8. The GPU used here is Nvidia RTX3060.

Gearbox

NEGL

There are six types of gearbox faults including Driving
Gear Tooth Break, Driving Gear Tooth Crack, Driving Gear
Tooth Spalling, Driven Gear Tooth Break and Driven Gear
Tooth Break, Driving Gear Tooth Spalling and Driven Gear
Tooth Break, as well as a failure free (Gear without Failure).
Gear infrared thermal images are acquired under five different
operating conditions. The fault classification is shown in
Table 3 below. In this paper, we randomly select some images
under different loads to form the sample dataset. As shown in
Table 4, under each operation condition, 20 images are
selected as samples for each fault type, of which 16 samples
are utilized as training data and 4 samples are utilized as
testing data. In addition, noise is added into the images to
conform to the actual engineering applications. An infrared
thermal image gearbox fault dataset is formed, and the fault
samples of the infrared dataset are shown in Fig.5. The
temperature variation range of the faulty gearbox during
experiments is shown in Table 2. The real images of the
corresponding failure states are shown in Fig. 6. The training
samples occupy 80% of the total number of samples. In this
paper, a 5-way-5-shot sampling method is used. Each time
from the six categories of species are not repeated randomly
selected five classes, each class in the image from multiple
working conditions in the aggregate randomly selected 5
samples as the category prototype training samples multiple
cycles of sampling training.

Table 1. Specifications of experimental gearboxes.

Parameter Value
Number of driving gear teeth 55
Number of driven gear teeth 75
Camera
Gearbox
Na =-=Z23% "

AC motor

Fig. 4. (A) Rotating machinery troubleshooting test bed; (B) Simulation test bed arrangement.
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Fig. 5. Fault samples of the IR dataset. a-f are the original fault samples. A-F are the fault samples with Gaussian noise added.

Table 2. The Temperature Variation Range of the Faulty Gearbox during Experiments.

Health Conditions of Gearbox System Temperature rises
Driving Gear Tooth Break +13.73°C
Driving Gear Tooth Crack +12.80°C
Driving Gear Tooth Spalling +11.90°C
Driven Gear Tooth Break & Driving Gear Tooth Break +14.50°C
Driving Gear Tooth Crack & Driven Gear Tooth Break +13.50°C
Gear Without Failure +9.85°C

Driving Gear Tooth Spalling| |

Fig. 6. The real images of different gear failures. C1 is corresponding to A; C2 is corresponding to B; C3 is corresponding to C; C4

Driving Gear Tooth Break | || Driving Gear Tooth Crack

is corresponding to A and D; C5 is corresponding to B and D; C6 is corresponding to E without fault.

Table 3. The Six Health Conditions of Gearbox System.

Health Conditions of Gearbox System Labels of Conditions
Driving Gear Tooth Failure Condition 1(C1)
Driving Gear Crack Failure Condition 2(C2)
Driving Gear Pitting Failure Condition 3(C3)
Driven Gear Tooth Breakage & Driving Gear Tooth Failure Condition 4(C4)
Driving Gear Crack Failure & Driven Gear Tooth Breakage Condition 5(C5)
Gear Without Failure Condition 6(C6)

Table 4. Detailed Information of Datasets.

The number of samples

Type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mix All Train/Test
C1 16/4 16/4 16/4 16/4 16/4 100 80/20
C2 16/4 16/4 16/4 16/4 16/4 100 80/20
C3 16/4 16/4 16/4 16/4 16/4 100 80/20
C4 16/4 16/4 16/4 16/4 16/4 100 80/20
C5 16/4 16/4 16/4 16/4 16/4 100 80/20
C6 16/4 16/4 16/4 16/4 16/4 100 80/20
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Table 5. Hyperparameters of MSPNet.

Layer name Kernel size Output dimension Stride Padding
Input - 224x224x3 -
Conv2d 77 112x112x64 2 3
MAxpool2d 3x3 56x56x64 2 1
MS1 - 56x56%256 - -
(Conv2d 1x1 1 0
BN
Banch1,2,3,4 Batch-Norm - .
P 3,5,7,9 - 1,1,1,1 1,4,9,10
Conv2d,
1x1 1 0
BN, Batch-Norm - -
ELU)
MS2 - 28x28x256 - -
MS3 - 14x14x256 - -
MS4 - TxTx256 - -
Dropout 0.5 - - -
Avgpool2d - 1x1%256 1 0
Classifier Euclidean distance Softmax

4.1. Parameterization

In the process of constructing MSPNet, choosing appropriate
hyperparameters can effectively improve the diagnosis
accuracy, convergence speed and robustness. In general, the
important hyperparameters in the model mainly include
learning rate, convolution kernel and pooling kernel. In this
paper, a technique named grid search mentioned in the
literature is used to determine the architecture of MSPNet, as
shown in Table 5 below. conv2d denotes the convolutional
layer in the model, Maxpool2d denotes the pooling layer in
the model, (7x7) denotes that the length of the convolutional
kernel is 7 and the width is also 7, and (112x112%x64) denotes
that the length of the feature size of the output is 112, the
width of 112 and dimension of 64, MSCA1 denotes the first
multiscale residual module, and Banchl is the first branch
inside the first multiscale residual module. In addition, in
order to prevent the explosion of the model gradient and the
introduction of the BN layer, Dropout=0.5 is introduced to
avoid overfitting, and the ELU activation function is used to
ensure the learning efficiency. The initial learning rate of the

model in this paper is 0.001, and it decreases once every 10

epochs. The decay rate is set to 0.1. The training epoch is 100.
4.2. Parameter settings of benchmark models

In this study, five different benchmark classification models
were selected for comparison experiments, and the parameters
of the benchmark models are shown in Table 6. The first
model is ResNet, which has four residual blocks connected
and each residual block consists of a convolutional layer,
a normalization layer, and an activation layer[18]. The second
model is EfficientNet, which consists of a stem, six main
blocks, and a head, and each block contains a number of sub-
blocks, each of which consists of an MBConv structure and
a skip connection. The third model is ShuffleNet, which is
composed of a stem, three blocks and a head, and the block
part replaces the regular convolution with group convolution
and deep convolution[20]. The fourth model is Vision
Transformer, the main idea of ViT model is to slice the input
image into 16x16 chunks (called patches) and then each patch
is considered as a block which is fed into the Transformer for
coding and classification[21]. The fifth model is RePnet
model, which is composed of ResNet network with ProtoNet

and the unprocessed Resnet is used as a feature extractor.
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Table 6. Structure and parameter setting of benchmark models.

Model Structure Optimizer Learn Rate
ResNet {31’\1;6);; i’;l{ii;’;(vi(zz‘if;’;ﬁ)} Adam Lr=0.0001
EfficientNet ﬁ:ﬁ%ﬁfﬁ;ﬁgﬁgzg}u Adam Lr=0.0003
Shuffeet paoling(d) Com 24 Rel AR
Vision Transformer 16xp atchlgi,)l(i?Encoder Adam Anl;lrez%fgllllggf)ije
e DOULCMMBIING Lo et
4.3. Evaluation indexes Micro — P = % (19)
We evaluate the performance of the proposed model in this Micro — 1 = 20Micro=Py(icro=p) 20)

paper through classification accuracy, precision, recall, and F1
value, and compare the proposed model with the benchmark
model, which in turn verifies the validity and superiority of
the proposed model where TP (True Positive), FN (False
negative), TN (True negative), FP (False Positive) stand for
True Positive, False Negative, True Negative and False
Positive respectively. Among them, precision rate, recall rate
and F1 value are calculated from partial and global indexes,
respectively, and the higher value represents the better
classification effect. The definitions of the above indexes are

shown from (13) to (20).

Precision; = di (13)
TP +FP;
_ TPy
Recall; = TPAFN, (14)
L
Macro — R =M (15)
L .
Macro — P =w (16)
_ __ 2:(Macro—P)-(Macro—R)
Macro — F1 = (Macro-P)+(Macro—R 7
L
Micro — R = 21" (18)

Yk, TP+3k PN

(Micro—P)+(Micro—R

4.4 Results analysis

In order to verify the effectiveness and superiority of the
proposed method, in this section, an infrared thermal image
dataset containing gearboxes with 5 different fault types is
used for a fault recognition experiment using 5-way-5-shot.
The infrared gearbox fault images with 5 different fault types
are randomly selected as training models. In order to eliminate
the influence of random factors on the diagnostic results, each
method was repeated for ten experiments. The accuracy of the
experimental results for ten experiments is shown in Fig.7.
Fig.7 gives the confusion matrix of the optimal results of the
six models to observe the detailed classification results of the
proposed model for each fault category.

From Fig.7, we can see that the maximum value of the
diagnosis results of the proposed method in this paper is
95.5%, and the average value is, 89.9%. The maximum
accuracies of the rest of the comparative benchmark
modelling methods are 80%, 93.5%, 88.8%, 88.2% and
94.2%, respectively. From these results, we can see that the
fault diagnosis results of the proposed model in this paper are

better than the other comparative benchmark model methods.
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Fig. 7. Confusion matrix for different methods.

In order to further validate the effectiveness of the
modelling, methods proposed in this paper, the accuracy,
recall, and F1-Score of the experimental results of the
different methods are calculated using the different evaluation
metric formulas in Section 4.3, the relevant calculation results

are displayed in Fig.8.

As can be seen in Fig.8, the best accuracy of MSPNet can
reach  95.5%.
ShuffleNet, ViT and RePNet, the accuracy of MSPNet is
increased by 15.5%, 2%, 6.7%, 7.3% and 1.3%, respectively.
In addition, it can be seen from Fig.8 that the Micro-F1 and
Macro-F1 values of the six models are 80%, 93.5%, 88.8%,

Compared with ResNet, EfficientNet,
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95.5%, 88.2%, 94.2% and 80%, 93.7%, 89%, 95.5%, 88.9%,
94.3%, respectively. Analysing the F1 values, it can be seen
that the accuracy of the MSPNet model proposed in this paper
is improved by 15.5%, 2%, 6.7%, 7.3%, 1.3% and 15.5%, 2%,
6.5%, 6.6%, 1.2% compared with ResNet, EfficientNet,
ShuffleNet, ViT, and RePNet, respectively. In addition,
although RePNet also adopts the residual structure as the
prototype network for the feature extractor, MSPNet still
outperforms RePNet under the same conditions, which also

proves the effectiveness of the multi-scale feature extraction

proposed in this paper, which is able to extract more valuable
fault features to be passed on to the downstream classifiers.
Finally, as can be seen in Fig.8, the performance of other
supervised learning networks is also lower than the MSPNet
model proposed in this paper. The performance of the
traditional convolutional neural network, which is based on
a large amount of data and repeated training over a long
period of time, is severely affected by the variation of data
samples. This further validates the superiority of the prototype

network under small sample conditions.

100% [

90% [

g 80% |-

i 70%

> 60% |-

50% MENEE SUSSE STSSS SCSSE STSSS STSES STSEE
Accurary Micro-P Micro-R Micro-F1 Macro-P Macro-R Marco-F1
B ResNet 80.0% 80.0% 80.0% 80.0% 80.5% 80.0% 80.0%
EfficientNet ~ 93.5% 93.5% 93.5% 93.5% 93.5% 94.0% 93.7%
B ShuffleNet 88.8% 88.8% 88.8% 88.8% 88.8% 89.0% 89.0%
B MSPNet 95.5% 95.5% 95.5% 95.5% 95.5% 95.5% 95.5%
BViT 88.2% 88.2% 88.2% 88.2% 88.2% 89.7% 88.9%
RePNet 94.2% 94.2% 94.2% 94.2% 94.2% 94.5% 94.3%
B ResNet [ EfficientNet M ShuffleNet MMSPNet MVIT = RePNet

Fig. 8. Evaluation indicators for optimal results.

5. Conclusions

In this paper, a novel few shot learning MSPNet model is
proposed for intelligent fault diagnosis of gearbox by using
infrared thermal images under small samples. The proposed
MSPNet model introduces an innovative multi-scale module,
which can effectively mine the details and global information
in infrared thermal images under different scales. The
proposed multi-scale strategy can explore the data more

comprehensively and capture subtle differences that may be
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