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Highlights  Abstract  

▪ Prototype networks were first applied to 

infrared thermal images for fault analysis. 

▪ A novel multi-scale module is constructed and 

incorporated into ProtoNet model. 

▪ The proposed MSPNet can solve the gearbox 

fault diagnosis with small samples. 

 To address the issues of low data quality and poor adaptability in deep 

learning methods for infrared image analysis in gearbox fault 

diagnosis, this paper introduces an enhanced deep prototype network 

model (MSPNet). This model employs a multi-scale strategy to 

improve fault diagnosis accuracy and algorithm generalization, 

especially with small sample sizes. First, infrared image data of six 

fault types under five operating conditions are collected using a 

rotating test bed. Gaussian noise is added to simulate real operating 

conditions. Next, the fault data are processed using a multiscale module 

to extract multiscale fault features and reduce feature value 

fluctuations. Finally, the proposed model is used to process the image 

data and is experimentally compared with five other algorithms. The 

experimental results demonstrate that the proposed method 

outperforms the other algorithms under various operating conditions. 
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1. Introduction 

The safety and reliability of mechanical equipment is crucial 

in industrial production, especially for equipment with 

complex structure and large scale [1]. As a kind of mechanical 

equipment widely used in various fields, the operational 

performance of gearboxes largely depends on the state of 

gears. Therefore, in order to avoid economic losses and safety 

hazards caused by gearbox failures, the development of 

intelligent and advanced fault diagnosis systems for 

monitoring and diagnosing the condition of gearboxes is and 

its necessary [2]. 

Current mainstream gearbox fault diagnosis techniques 

include vibration detection[3], acoustic detection[4], and 

infrared thermal image detection. Compared to vibration and 

acoustic detection, infrared thermal image analysis offers 

significant advantages. It requires no surface preparation of 

the gearbox and does not necessitate sensor installation, thus 

avoiding potential interference and damage[5]. In contrast, 

vibration analysis and acoustic analysis typically require that 
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the collected data be collected and analysed over a period of 

time, which may take longer to detect equipment failures. 

Therefore, infrared thermal image analysis is a promising 

technique for gearbox diagnosis and has attracted much 

attention in recent years[6]. 

Deep learning techniques have enabled the use of a wide 

range of models and algorithms across different fields[7-9]. 

Data-driven fault diagnosis methods have also emerged and 

are gradually being applied to gearbox fault diagnosis. 

However, the quantity and quality of data significantly impact 

the reliability of these techniques in practical applications. In 

real industrial environments, gearboxes typically operate 

normally, resulting in scarce and hard-to-obtain fault data[10, 

11]. This data limitation constrains the ability to capture fault 

characteristics, reducing diagnostic accuracy. The problem is 

even more pronounced in complex and extreme industrial 

scenarios, where the degradation of accuracy due to data 

limitations is more severe[12]. Therefore, developing effective 

fault diagnosis methods for small-sample data remains  

a significant challenge. 

To address this challenge, small sample methods based on 

transfer learning have received great attention in fault 

diagnosis. It is very popular for dealing with small sample 

problems in the fields of image classification and fault 

diagnosis. For example, Zhang et al. proposed a migration 

learning based approach to realize fault diagnosis of diesel 

engines [13]. Chen et al. made FRA slip phase and series 

migration learning methods to solve the fault problem of 

mechanical deformation of transformer windings [14]. 

Migration and sharing of knowledge by finding similarities or 

correlations between source and target domains is the reason 

why migration learning has shown excellent performance in 

fault diagnosis. However, in practice, this is difficult to do 

because it is hard to obtain enough auxiliary data to support 

the migration learning technique. 

Generative Adversarial Networks are also commonly used 

to deal with small sample problems. It consists of two neural 

networks: a generator and a discriminator. The purpose of the 

generator is to generate some samples similar to real data 

from a random noise vector, and the purpose of the 

discriminator is to distinguish whether the input data is real or 

fake generated by the generator. For example, Zhang et al. 

utilized a generative adversarial network for fault detection in 

hot strip rolling process conditions [15]. It is worth noting that 

the quality of the generated data may be poor, which leads to 

bias under the actual working of the model. 

Small-sample methods based on meta-learning are highly 

flexible and generalizable by using a small number of training 

samples to achieve relevant tasks. Meta-learning methods 

have great potential for engineering applications and have 

become  

a research hotspot in the field of deep learning in recent 

years[16]. Among the meta-learning models, the prototype 

network (ProtoNet) model has attracted a lot of attention from 

scholars in recent years[17], which classifies by learning the 

metric space with a metric classifier of the distance from the 

class prototype to the classification. ProtoNet can incorporate  

a priori knowledge into the nature of the embedding space, so 

that similar samples are clustered in the embedding space and 

dissimilar samples are dispersed in the embedding space, 

which improves the model's generalization ability and 

robustness. Currently, prototype network-based methods are 

mainly used to analyse one-dimensional data, while they are 

less applied in two-dimensional data. In addition, the 

prototype network uses tandem layers mixed with multilayer 

convolutional layers in processing 2D data fault feature 

extraction, and its multi-scale information mining ability is 

insufficient. In order to improve the deep information mining 

ability of the prototype network at different scales, as well as 

the ability to understand the detailed and global information 

of images, a new MSPNet model is proposed in this paper. 

The main contributions of this paper are as follows: 

(1) Aiming at the data acquisition situation with small 

number of labeled samples, the prototype network is 

introduced for fault diagnosis of gearbox based on infrared 

images with small samples. 

(2) A multi-scale feature extraction module is introduced 

into the prototype network, which can simultaneously capture 

the details and global information of the image. By utilizing 

multi-scale module, the fault features in small samples can be 

more comprehensively extracted and analyzed. 

(3) Compared with other benchmark models, the proposed 

MSPNet model can finally realized high precision fault 

diagnosis of gearbox by using infrared thermal images with 
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small samples. 

2. Basic Theory of Prototype Network 

Prototype network, as a metric-based meta-learning method 

for small sample learning, can reduce the influence of 

overfitting problem on the model, and is an effective image 

classification network under small sample conditions, as 

shown in Fig.1. 

 

Fig. 1. Structure of the prototype network. 

First, a support set containing a small number of samples 

from each category and a query set containing the samples to 

be categorized are defined. Then, the support set is passed into 

the neural network for feature extraction to learn the nonlinear 

mapping position of the support set in space. According to the 

encoding function 𝑓𝜙(𝑥𝑖), the prototype representation of each 

category is shown (1).  

 𝐶𝑘 =
1

|𝑆𝑘|
∑ 𝑓𝜙(𝑥𝑖)(𝑥𝑖,𝑦𝑖)  (1) 

where, k is the class of the prototype. x is the data vector and y 

is the categorical label. Sk is the number of support sets. c is 

the position of the prototype of the class. 

The prototype of each class is obtained according to Eq.1. 

Finally, the query set can be passed into the encoding function 

to obtain the mapping position and calculate the probability 

that the sample belongs to category K. The calculation process 

is shown (2). 

𝑝𝜙(𝑦 = 𝑘|𝑥) =
𝑒𝑥𝑝(−𝑑(𝑓𝜙(𝑥),𝑐𝑘))

∑ 𝑘′ 𝑒𝑥𝑝(−𝑑(𝑓𝜙(𝑥),𝑐𝑘′))
  (2) 

where, K is the category, d is the Euclidean distance 

function.𝑓𝜑(𝑥𝑖) is the coding function to obtain the features of 

the sample. 

3. Methodology 

3.1. Multi-Scale Modules 

The convolution kernel of null convolution is a modification 

of the standard convolution kernel, by inserting null values 

between neighbouring parameters to obtain a larger sensory 

field, without additional computational parameters and 

computation. Assuming that the input feature map of the 

previous layer is X, the output feature map y after the null 

convolution operation can be derived from the following (3): 

 𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑑 ∙ (𝑘 − 1) ∙ 𝑤[𝑘]]𝐾
𝑘=1   (3) 

where, d is the null rate. w is the convolution kernel. w is the 

parameter. k is the size of the convolution kernel. 

The fault image data is set to 𝑋 = {𝑥1,1, 𝑥1,2, 𝑥1,3, ⋯ 𝑥𝑖,𝑗}, 

1 ≤ 𝑖 ≤ 𝐷, 1 ≤ 𝑗 ≤ 𝐻. 𝑥𝑖,𝑗is the pixel value at location (𝑖, 𝑗). 

The input feature map is divided into four branches and 

feature mapping is performed on each branch individually so 

that it slides back and forth to extract the local features of the 

image in a specific step size. As shown in (4). 

 𝐹 = ∑ (𝑤[𝑘]𝑥) + 𝑏[𝑘]𝑀
𝑘=1  (4) 

where, W[k] denotes the convolutional kernel of the k-th 

and x is the feature map of the input. b[k] denotes the 

convolutional kernel offset of the kth. is the mapping output 

of the multi-scale convolutional kernel on each branch. 

After the convolutional layers within each branch, a batch 

normalization layer and an activation function are used. Thus, 

the feature mapping can be obtained as. As shown in (5). 

 𝐹𝑖 = 𝛿(𝐵𝑁(𝐹)) (5) 

where, 𝛿 is the activation function. BN is the batch 

normalization layer.  

The difference between different channels is that each 

individual channel is a different scale of the feature map. 

Large scale corresponds to global information such as 

contours in the image, while small scale corresponds to local 

information such as details in the image. The feature maps are 

obtained by using dilated convolutions, and different scale 

information is obtained by controlling different dilation rates. 

The reasons for using multi-scale channels to extract features 

is that by extracting feature information from individual 

channels and then integrating these different features, the 

proposed model is able to generate a rich set of feature maps. 
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This multi-scale strategy can explore the data more 

comprehensively and capture subtle differences that may be 

overlooked by single-scale analysis. The integration of 

features at different scales helps to understand the failure 

mode more carefully, thereby enhancing the diagnostic ability 

of our proposed model. 

By performing multi-level feature fusion on each output 

branch, richer and more diverse feature mappings can be 

generated. This feature refactoring strategy enables the 

extraction of new features, which significantly improves the 

overall feature description capability of the module. 

Specifically, fusing features at different levels enables the 

model to capture feature information at different scales and 

levels, as shown in (6): 

 𝑇𝑀 = {

𝑇1 = 𝐹1

𝑇2 = 𝐹1 + 𝐹2

𝑇3 = 𝐹1 + 𝐹2 + 𝐹3

𝑇4 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

, 𝑀 = 1,2,3,4 (6) 

where, F is the feature of each branch. T is the fused feature. 

M is the number of each branch. Concat is a feature fusion 

function. 

The acquired multi-level features are stitched together to 

form a new feature map, as shown in (7): 

𝐹𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡[𝑇1, 𝑇2, 𝑇3, 𝑇4]  (7) 

Where T1, T2, T3, T4 denotes the features of the first, second, 

third and fourth branches respectively. Foutput is the fused 

feature map. Since each level has the same importance, here, 

T1, T2, T3, T4 are given the same weight. 

Finally, the residual connection is added, as shown in (8): 

�̃�𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑑𝑑(𝐹𝑜𝑢𝑡𝑝𝑢𝑡, 𝐹)  (8) 

where, F is the original features of the previous layer. �̃�𝑜𝑢𝑡𝑝𝑢𝑡 

is the final output fused feature map, as shown in Fig.2.

 

Fig. 2. Diagram of the multi-scale module.

3.2. Activation Function 

In the multi-scale module, the activation function also has an 

effect on the features of the output, now in this paper 

Exponential Linear Unit (ELU) is an enhancement of RELU. 

ELU activation function is smooth and the negative part is in 

exponential form, which prevents neurons from dying, and 

also reduces the bias of the input distributions. ELU activation 

function does not saturate, the gradient does not disappear, 

and training is the formula of ELU is as (9): 

 𝑓(𝑥) = {
𝑎(𝑒𝑥 − 1) 𝑤ℎ𝑒𝑛(𝑥 ≤ 0)

𝑥                  𝑤ℎ𝑒𝑛(𝑥 > 0)
 (9) 
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3.3. Classification using Softmax 

The Softmax function is used to calculate the weights of the 

weighted multi-scale feature maps with the following formula. 

 𝛽𝑖 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥(Ρ𝑖) =
𝑒

𝑃𝑗

∑ 𝑒
𝑃𝑗𝑠

𝑗=1

 (10) 

 ∑ 𝛽𝑖
𝑠
𝑖=1 = 1 (11) 

Assuming that there are n classes in each randomly drawn 

sample, the output probability of calculating the class as j is x. 

Thus, the output x is the label of maximum probability. 

 𝑂𝑗 =
𝑒(𝜃(𝑗)𝑥)

∑ 𝑒(𝜃(𝑗)𝑥)𝑛
𝑗=1

, 𝑗 = 1,2,3, … 𝑛. (12) 

In the training sample, the continuously learned x is a 

learnable classification layer model parameter and ∑ 𝑂𝑗
𝑛
𝑗=1 =

1 is the sum of all output probabilities of 1. 

3.4. Fault Diagnosis Based on MSPNet 

In this paper, a gearbox fault diagnosis framework is proposed 

based on MSPNet and infrared images, as shown in Fig.3. It 

includes three steps: 

(1) Data acquisition: an infrared camera is used to acquire 

infrared images of gearboxes, and the acquired infrared image 

dataset is divided into a support set, a query set and a test set. 

The support set and query set are used to train the fault 

prototype and model parameters, and the query set is used to 

verify the accuracy of the model. 

(2) Feature extraction: the support set and query set are 

input into the proposed MSPNet for feature extraction, and the 

model is trained with forward propagation algorithm and back 

propagation algorithm. 

(3) Pattern Recognition. The test set is nonlinearly mapped 

to obtain the feature space location, and the test prototype is 

fault classified using Softmax classifier. 

 

Fig. 3. Flowchart of the proposed MSPNet model for gearbox fault diagnosis.

4. Results and discussion 

In this section, we conduct the gearbox failure experiments on 

the rotating machinery testing rig. Fig.4 shows the schematic 

structure of the experimental test rig. The experimental 

platform consists of an AC motor, a belt, a rotating shaft,  

a gearbox and an infrared camera. The infrared camera is 

mounted in front of the experimental platform aligned with 

the gearbox to collect infrared images, and the rotational 

speed is set to 1500 rpm. The main purpose of this paper is to 

explore the feasibility of the infrared thermal heat map and 

small sample model for gearbox fault diagnosis. Considering 
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the influence of lubricant fluid during infrared images 

collection, the process management of the experiment is 

standardized as much as possible. The type of lubricant fluid 

used here is set as Mobile-EP 220 with a kinematic viscosity 

of 220 cSt@40°C in all tests. By standardizing the lubrication 

conditions, it is ensured that the effect of the lubricant on the 

gearbox performance remained consistent during different 

operation condition of different gearbox failure, thereby 

minimizing its interference with the heat map results. 

In the whole experiment, loads of 0Nm, 2Nm, 3Nm, 

3.7Nm and 4.2Nm are added respectively. Considering that 

the temperature is also influenced by the load, heat dissipation 

speed, ambient temperature, etc., the load in each set of 

experiment is set as the constant value. Besides that, each 

experiment is conducted in a temperature-controlled 

laboratory with the ambient temperature setting to 18°C. The 

reasons for setting the ambient temperature to 18°C is to 

ensure the consistency of experimental conditions, reduce 

thermal noise interference, and optimize equipment 

performance. In each set of experiment, the load and thermal 

conditions are kept constant to avoid influences other than the 

fault. Besides that, In order to minimize the influence of the 

energy losses and the efficiency of heat transfer on the 

experimental results of this paper, all experiments are 

performed under equal conditions. The operation of each fault 

is at the same environment temperature. The infrared images 

of gearbox are collected after the gearbox runs for 30 minutes. 

The internal gear parameters of the gearbox are shown in 

Table 1. The experiments in this paper are implemented based 

on Windows 64 kernel system, PyTorch framework and 

Python 3.8. The GPU used here is Nvidia RTX3060. 

There are six types of gearbox faults including Driving 

Gear Tooth Break, Driving Gear Tooth Crack, Driving Gear 

Tooth Spalling, Driven Gear Tooth Break and Driven Gear 

Tooth Break, Driving Gear Tooth Spalling and Driven Gear 

Tooth Break, as well as a failure free (Gear without Failure). 

Gear infrared thermal images are acquired under five different 

operating conditions. The fault classification is shown in 

Table 3 below. In this paper, we randomly select some images 

under different loads to form the sample dataset. As shown in 

Table 4, under each operation condition, 20 images are 

selected as samples for each fault type, of which 16 samples 

are utilized as training data and 4 samples are utilized as 

testing data. In addition, noise is added into the images to 

conform to the actual engineering applications. An infrared 

thermal image gearbox fault dataset is formed, and the fault 

samples of the infrared dataset are shown in Fig.5. The 

temperature variation range of the faulty gearbox during 

experiments is shown in Table 2. The real images of the 

corresponding failure states are shown in Fig. 6. The training 

samples occupy 80% of the total number of samples. In this 

paper, a 5-way-5-shot sampling method is used. Each time 

from the six categories of species are not repeated randomly 

selected five classes, each class in the image from multiple 

working conditions in the aggregate randomly selected 5 

samples as the category prototype training samples multiple 

cycles of sampling training. 

Table 1. Specifications of experimental gearboxes. 

Parameter Value 

Number of driving gear teeth 55 

Number of driven gear teeth 75 

 

Fig. 4. (A) Rotating machinery troubleshooting test bed; (B) Simulation test bed arrangement. 
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Fig. 5. Fault samples of the IR dataset. a-f are the original fault samples. A-F are the fault samples with Gaussian noise added. 

Table 2. The Temperature Variation Range of the Faulty Gearbox during Experiments. 

Health Conditions of Gearbox System Temperature rises 

Driving Gear Tooth Break +13.73°C 

Driving Gear Tooth Crack +12.80°C 

Driving Gear Tooth Spalling +11.90°C 

Driven Gear Tooth Break & Driving Gear Tooth Break +14.50°C 

Driving Gear Tooth Crack & Driven Gear Tooth Break +13.50°C 

Gear Without Failure +9.85°C 

 

Fig. 6. The real images of different gear failures. C1 is corresponding to A; C2 is corresponding to B; C3 is corresponding to C; C4 

is corresponding to A and D; C5 is corresponding to B and D; C6 is corresponding to E without fault.  

Table 3. The Six Health Conditions of Gearbox System. 

Health Conditions of Gearbox System Labels of Conditions 

Driving Gear Tooth Failure Condition 1(C1) 

Driving Gear Crack Failure Condition 2(C2) 

Driving Gear Pitting Failure Condition 3(C3) 

Driven Gear Tooth Breakage & Driving Gear Tooth Failure Condition 4(C4) 

Driving Gear Crack Failure & Driven Gear Tooth Breakage Condition 5(C5) 

Gear Without Failure Condition 6(C6) 

Table 4. Detailed Information of Datasets. 

Type 
The number of samples 

Train/Test 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mix All 

C1 16/4 16/4 16/4 16/4 16/4 100 80/20 

C2 16/4 16/4 16/4 16/4 16/4 100 80/20 

C3 16/4 16/4 16/4 16/4 16/4 100 80/20 

C4 16/4 16/4 16/4 16/4 16/4 100 80/20 

C5 16/4 16/4 16/4 16/4 16/4 100 80/20 

C6 16/4 16/4 16/4 16/4 16/4 100 80/20 
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Table 5. Hyperparameters of MSPNet. 

Layer name Kernel size Output dimension Stride Padding 

Input - 224×224×3 -  

Conv2d 7×7 112×112×64 2 3 

MAxpool2d 3×3 56×56×64 2 1 

MS1 - 56×56×256 - - 

(Conv2d 

BN 

Banch1,2,3,4 

Conv2d, 

BN, 

ELU) 

1×1 

Batch-Norm 

3,5,7,9 

1×1 

Batch-Norm 

- 

1 

- 

1,1,1,1 

1 

- 

0 

- 

1,4,9,10 

0 

- 

MS2 - 28×28×256 - - 

MS3 - 14×14×256 - - 

MS4 - 7×7×256 - - 

Dropout 0.5 - - - 

Avgpool2d - 1×1×256 1 0 

Classifier  Euclidean distance Softmax   

4.1. Parameterization 

In the process of constructing MSPNet, choosing appropriate 

hyperparameters can effectively improve the diagnosis 

accuracy, convergence speed and robustness. In general, the 

important hyperparameters in the model mainly include 

learning rate, convolution kernel and pooling kernel. In this 

paper, a technique named grid search mentioned in the 

literature is used to determine the architecture of MSPNet, as 

shown in Table 5 below. conv2d denotes the convolutional 

layer in the model, Maxpool2d denotes the pooling layer in 

the model, (7×7) denotes that the length of the convolutional 

kernel is 7 and the width is also 7, and (112×112×64) denotes 

that the length of the feature size of the output is 112, the 

width of 112 and dimension of 64, MSCA1 denotes the first 

multiscale residual module, and Banch1 is the first branch 

inside the first multiscale residual module. In addition, in 

order to prevent the explosion of the model gradient and the 

introduction of the BN layer, Dropout=0.5 is introduced to 

avoid overfitting, and the ELU activation function is used to 

ensure the learning efficiency. The initial learning rate of the 

model in this paper is 0.001, and it decreases once every 10 

epochs. The decay rate is set to 0.1. The training epoch is 100. 

4.2. Parameter settings of benchmark models 

In this study, five different benchmark classification models 

were selected for comparison experiments, and the parameters 

of the benchmark models are shown in Table 6. The first 

model is ResNet, which has four residual blocks connected 

and each residual block consists of a convolutional layer,  

a normalization layer, and an activation layer[18]. The second 

model is EfficientNet, which consists of a stem, six main 

blocks, and a head, and each block contains a number of sub-

blocks, each of which consists of an MBConv structure and  

a skip connection. The third model is ShuffleNet, which is 

composed of a stem, three blocks and a head, and the block 

part replaces the regular convolution with group convolution 

and deep convolution[20]. The fourth model is Vision 

Transformer, the main idea of ViT model is to slice the input 

image into 16x16 chunks (called patches) and then each patch 

is considered as a block which is fed into the Transformer for 

coding and classification[21]. The fifth model is RePnet 

model, which is composed of ResNet network with ProtoNet 

and the unprocessed Resnet is used as a feature extractor.
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Table 6. Structure and parameter setting of benchmark models. 

Model Structure Optimizer Learn Rate 

ResNet 
{3,4,6,3}x{Conv2d(1,3,1)} 

Maxpooling2d(2),Relu 
Adam Lr=0.0001 

EfficientNet 
6x{MBConvBlock(3,1)} 

Maxpooling(2),BN(),SiLU 
Adam Lr=0.0003 

ShuffleNet 
3x{Conv2d(1,3,1)},max 

pooling(3),Conv2d(7),Relu 
Adam 

Lr=0.01,Cosine 

AnnealingLR=0.1 

Vision Transformer 
16xpatches,12xEncoder 

Block, 
Adam 

Lr=0.01, Cosine 

AnnealingLR=0.1 

RePnet 
{3,3,3}x{Conv2d(1,3,1)},BN(). 

Maxpooling2d(),Relu 
Adam 

Lr=0.0003,The decline 

rate is 0.2 for every 10 epochs 

4.3. Evaluation indexes 

We evaluate the performance of the proposed model in this 

paper through classification accuracy, precision, recall, and F1 

value, and compare the proposed model with the benchmark 

model, which in turn verifies the validity and superiority of 

the proposed model where TP (True Positive), FN (False 

negative), TN (True negative), FP (False Positive) stand for 

True Positive, False Negative, True Negative and False 

Positive respectively. Among them, precision rate, recall rate 

and F1 value are calculated from partial and global indexes, 

respectively, and the higher value represents the better 

classification effect. The definitions of the above indexes are 

shown from (13) to (20). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑙 =
𝑇𝑃𝑙

𝑇𝑃𝑙+𝐹𝑃𝑙
 (13) 

 𝑅𝑒𝑐𝑎𝑙𝑙𝑙 =
𝑇𝑃𝑙

𝑇𝑃𝑙+𝐹𝑁𝑙
 (14) 

 𝑀𝑎𝑐𝑟𝑜 − 𝑅 =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑙

𝐿
𝑙=1

𝐿
 (15) 

 𝑀𝑎𝑐𝑟𝑜 − 𝑃 =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑙

𝐿
𝑙=1

𝐿
 (16) 

 𝑀𝑎𝑐𝑟𝑜 − 𝐹1 =
2∙(𝑀𝑎𝑐𝑟𝑜−𝑃)∙(𝑀𝑎𝑐𝑟𝑜−𝑅)

(𝑀𝑎𝑐𝑟𝑜−𝑃)+(𝑀𝑎𝑐𝑟𝑜−𝑅
 (17) 

 𝑀𝑖𝑐𝑟𝑜 − 𝑅 =
∑ 𝑇𝑃𝐿

𝑙=1

∑ 𝑇𝑃+∑ 𝐹𝑁𝐿
𝑙=1

𝐿
𝑙=1

 (18) 

 𝑀𝑖𝑐𝑟𝑜 − 𝑃 =
∑ 𝑇𝑃𝐿

𝑙=1

∑ 𝑇𝑃+∑ 𝐹𝑃𝐿
𝑙=1

𝐿
𝑙=1

 (19) 

 𝑀𝑖𝑐𝑟𝑜 − 𝐹1 =
2∙(𝑀𝑖𝑐𝑟𝑜−𝑃)∙(𝑀𝑖𝑐𝑟𝑜−𝑅)

(𝑀𝑖𝑐𝑟𝑜−𝑃)+(𝑀𝑖𝑐𝑟𝑜−𝑅
 (20) 

4.4 Results analysis 

In order to verify the effectiveness and superiority of the 

proposed method, in this section, an infrared thermal image 

dataset containing gearboxes with 5 different fault types is 

used for a fault recognition experiment using 5-way-5-shot. 

The infrared gearbox fault images with 5 different fault types 

are randomly selected as training models. In order to eliminate 

the influence of random factors on the diagnostic results, each 

method was repeated for ten experiments. The accuracy of the 

experimental results for ten experiments is shown in Fig.7. 

Fig.7 gives the confusion matrix of the optimal results of the 

six models to observe the detailed classification results of the 

proposed model for each fault category. 

From Fig.7, we can see that the maximum value of the 

diagnosis results of the proposed method in this paper is 

95.5%, and the average value is, 89.9%. The maximum 

accuracies of the rest of the comparative benchmark 

modelling methods are 80%, 93.5%, 88.8%, 88.2% and 

94.2%, respectively. From these results, we can see that the 

fault diagnosis results of the proposed model in this paper are 

better than the other comparative benchmark model methods. 
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Fig. 7. Confusion matrix for different methods.

In order to further validate the effectiveness of the 

modelling, methods proposed in this paper, the accuracy, 

recall, and F1-Score of the experimental results of the 

different methods are calculated using the different evaluation 

metric formulas in Section 4.3, the relevant calculation results 

are displayed in Fig.8. 

As can be seen in Fig.8, the best accuracy of MSPNet can 

reach 95.5%. Compared with ResNet, EfficientNet, 

ShuffleNet, ViT and RePNet, the accuracy of MSPNet is 

increased by 15.5%, 2%, 6.7%, 7.3% and 1.3%, respectively. 

In addition, it can be seen from Fig.8 that the Micro-F1 and 

Macro-F1 values of the six models are 80%, 93.5%, 88.8%, 
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 (c) ShuffleNet method
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(d) ViT method
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 (f) MSPNet method
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(e) RePNet method
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 (c) ShuffleNet method
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(d) ViT method
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 (f) MSPNet method
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(e) RePNet method
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95.5%, 88.2%, 94.2% and 80%, 93.7%, 89%, 95.5%, 88.9%, 

94.3%, respectively. Analysing the F1 values, it can be seen 

that the accuracy of the MSPNet model proposed in this paper 

is improved by 15.5%, 2%, 6.7%, 7.3%, 1.3% and 15.5%, 2%, 

6.5%, 6.6%, 1.2% compared with ResNet, EfficientNet, 

ShuffleNet, ViT, and RePNet, respectively. In addition, 

although RePNet also adopts the residual structure as the 

prototype network for the feature extractor, MSPNet still 

outperforms RePNet under the same conditions, which also 

proves the effectiveness of the multi-scale feature extraction 

proposed in this paper, which is able to extract more valuable 

fault features to be passed on to the downstream classifiers. 

Finally, as can be seen in Fig.8, the performance of other 

supervised learning networks is also lower than the MSPNet 

model proposed in this paper. The performance of the 

traditional convolutional neural network, which is based on  

a large amount of data and repeated training over a long 

period of time, is severely affected by the variation of data 

samples. This further validates the superiority of the prototype 

network under small sample conditions. 

 

Fig. 8. Evaluation indicators for optimal results.

5. Conclusions 

In this paper, a novel few shot learning MSPNet model is 

proposed for intelligent fault diagnosis of gearbox by using 

infrared thermal images under small samples. The proposed 

MSPNet model introduces an innovative multi-scale module, 

which can effectively mine the details and global information 

in infrared thermal images under different scales. The 

proposed multi-scale strategy can explore the data more 

comprehensively and capture subtle differences that may be 

overlooked by single-scale analysis. The integration of 

features at different scales helps to understand the failure 

mode more carefully, thereby enhancing the fault diagnosis 

ability of the proposed MSPNet. Experimental results show 

that compared with other benchmark models, the proposed 

MSPNet can realize high precision fault diagnosis of gearbox 

under small samples. The proposed MSPNet model and the 

utilized infrared thermal images provide an effective tool for 

gearbox fault diagnosis under small samples.
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