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Highlights  Abstract  

▪ A generalizable model based on multisource 

domain transfer RUL prediction is proposed. 

▪ An adaptive alignment mechanism is proposed 

for feature alignment. 

▪ The prediction model combines the TCN and 

DANN to make full use of the timing 

information in the degradation data. 

 Transfer learning enhances remaining useful life (RUL) predictions by 

addressing data scarcity and operational challenges. Nonetheless, when 

a significant disparity in degradation data distribution exists between 

source and target domains, single-source domain transfer learning risks 

misleading or negative transfer. Multisource domain transfer learning 

partially addresses these issues. However, it ignores substantial 

discrepancies in feature-label correlations, which would impair the RUL 

prediction accuracy. Thus, we propose to develop a multisource domain 

unsupervised adaptive learning method, which is powered by a temporal 

convolutional network. Using a multilinear conditioning strategy, we 

combine degradation data and subregion labels to construct input 

characteristics for the domain discriminator. Additionally, we design a 

feature extractor that produces label-related features, invariant across 

domains, effectively enhancing prediction precision. We evaluate our 

method using the publicly available C-MAPSS degradation dataset with 

a case study and ablation experiments. 
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1. Introduction 

Prediction and health management (PHM) refers to a system’s 

capability to accurately and promptly assess its present 

condition and the probability of malfunction within a designated 

time frame, providing decision recommendations for usage and 

maintenance activities. It is an essential component in the 

mechanical equipment industry, aimed at predicting and 

managing potential risks for the future, improving equipment 

safety and mission success, making sure that mechanical 

equipment operates safely and reliably, enhancing support 

efficiency, and reducing maintenance costs[1]. With the 

increasing development of the industrial era, enterprises have 

increasingly demanding requirements for the reliability of 

production systems, particularly critical components. Therefore, 

optimizing predictive health management is necessary and 

urgent. 

As a critical component of PHM, RUL prediction aims to 
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model, analyze, and determine the timing of equipment failures 

through monitoring the operating state and studying the failure 

mechanism during equipment operation. It has broad 

application prospects in manufacturing, aerospace, and other 

fields[2]. In the PHM process, RUL prediction is the first step 

in identifying impending equipment failures. Subsequently, 

PHM proceeds to the second phase of health management, 

which involves scheduling rapid and accurate maintenance to 

minimize financial losses resulting from failures and enhance 

the safety and dependability of systems. Therefore, RUL 

prediction is crucial throughout the entire PHM process. 

However, in real-world scenarios, the accuracy of RUL 

prediction can be influenced by various factors, including 

environmental dynamics, data collection noise, and insufficient 

historical data[3]. To mitigate the influence of these factors and 

enhance the robustness of RUL prediction, domestic and 

international scholars have been integrating multiple cutting-

edge technologies and continuously innovating RUL prediction 

methods. Consequently, RUL prediction has gained significant 

attention as a prominent research area in the field. Precise 

prediction of RUL for performance-degraded components has 

become an important issue in PHM. 

Traditional RUL prediction methods mainly involve 

constructing degradation models to capture the dynamic 

degradation characteristics of products. This method requires 

analyzing the degradation mechanism of the product and 

combining prior knowledge to construct or select a probability 

model that is as consistent with the real degradation path as 

possible. Currently, commonly used degradation models 

include stochastic process models, general process models, and 

other process models[4]. In the early stages of research, 

computer power had not yet reached the level that it has today, 

and self-regressive algorithms[5], Markov models/chains[6], 

and support vector machines[7] were widely used. However, 

they cannot be widely developed because of the limitations of 

these methods and the challenging feature extraction required 

for researchers’ knowledge reserves. 

Compared with traditional models, deep neural networks 

have stronger data processing capabilities. Theoretically, deep 

neural networks are capable of approximating complex high-

dimensional functions with great accuracy owing to their 

capability to approximate any continuous function with a high 

degree of precision. However, the challenges of gradient 

vanishing and explosion have limited the development of deep 

learning[8]. With the current optimizations of deep learning 

models, these issues have been significantly improved. 

Furthermore, the development of electronic component sensors 

and the exponentially increased computing power of computers 

have addressed the challenges of data acquisition, directly 

improving the predictive ability of mechanical system safety 

and reliability. With the abundance of collected signals, models 

can learn more accurately and comprehensively. Deep and 

complex models are crucial for achieving accurate RUL 

predictions. The availability of large-scale labeled data is also 

one of the key factors for the success of deep learning 

algorithms. Deep learning models, commonly referred to as 

data-driven approaches, possess the benefit of extracting 

features automatically. They are capable of extracting hidden 

features from the data, providing a more comprehensive 

representation of the degradation state at different operating 

stages, and establishing accurate mappings with labels. Data-

driven methods can effectively extract discriminative features 

from intricate signals and directly perform RUL prediction tasks. 

For instance, Soda[9] employed an artificial neural network to 

predict the RUL of bearings. Khelif et al. [10] used support 

vector regression (SVR) models for engine RUL prediction. 

Aggab et al. [11] proposed an SVR and adaptive neuro-fuzzy 

inference system for lithium-ion battery RUL prediction. 

However, learning the functionality of these models directly 

from the raw signals is challenging because their structures are 

shallow. 

On this basis, structurally more intricate deep neural 

networks have been further affirmed in the field of RUL 

prediction. Li et al.[12] studied a deep convolutional neural 

network (DCNN) model that had a longer training time than 

shallow networks did but achieved better results. Yang et al.[13] 

developed a dual-layer convolutional neural network (CNN) 

model that connected through intermediate reliability variables; 

the accuracy of RUL prediction using DCNNs can be enhanced 

by incorporating an additional convolutional layer. Lyu et al.[14] 

developed an LSTM-based RUL prediction method that, unlike 

traditional CNN models, used upper and lower bound 

estimation to increase the range of predictions. Deep neural 

networks are capable of handling complex systems. 
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Degradation data from complex systems often exhibit 

characteristics such as nonlinearity, hysteresis, and time-

varying parameters, which make it difficult to achieve good 

results when using a single neural network for RUL 

prediction[15]. 

Therefore, in the past few years, an increasing number of 

studies have started to use hybrid neural networks for RUL 

prediction. These studies combine CNN with other methods 

such as long short-term memory (LSTM)[16], bidirectional 

long short-term memory(BiLSTM)[17], gated recurrent unit 

(GRU)[18], and extreme gradient boosting (XGBoost)[19] to 

improve prediction performance. The advantage of these hybrid 

models is that they can leverage the time-related attributes of 

the network to adjust to the attributes of intricate systems such 

as nonlinearity, hysteresis, and time-varying parameters. 

However, excessive stacking of models may lead to excessive 

model complexity, which can impact the effectiveness and 

prediction accuracy of the model. This situation means that new 

hybrid models need to be explored, which can organically 

combine various neural network structures to improve the 

accuracy and reliability of RUL prediction without being too 

complex and resulting in low time benefits. Thus, additional 

investigation is required to explore the synergistic effect 

between different network structures so that the role of hybrid 

models can be better explained. 

The application of neural networks in the realm of RUL 

prediction has evolved from shallow to deep networks and then 

to hybrid networks, which has made feature extraction less 

challenging and facilitated the advancement of RUL prediction. 

However, despite the effective utilization of data, the issue of 

limited data availability in this domain remains unresolved. The 

model still has the problem of insufficient learning with the 

support of small amount of data. Limited data refers to the 

scarcity of extensive and accurately labeled degradation 

datasets, which poses challenges for comprehensive model 

training and validation. Data acquisition and measurement are 

difficult, and most open-source datasets have relatively small 

amounts of data. Various situations where no RUL label exists 

also occur in practical application scenarios. So we still need 

more diverse datasets to improve the robustness and 

generalizability of RUL prediction models. Furthermore, 

Transfer learning has good adaptability and can use similar 

domain data to make RUL prediction an important field. The 

cumbersome process of self-annotation can be reduced and the 

learning ability of the model can be enhanced by fully utilizing 

the previously annotated data and adapting to the domain 

through transfer learning. Zhang et al.[20]developed a transfer 

learning technique for estimating RUL using a BiLSTM 

recursive neural network, as described in their study, trained on 

a dataset that is associated with the target dataset, and finally 

fine-tuned it. Mao et al. [21] proposed a method for RUL 

prediction based on deep feature representation and transfer 

learning, and used transfer learning to assist in adjusting the 

characteristics of the bearing in question during the online phase.  

The above-mentioned transfer techniques for RUL 

prediction are relatively traditional, and they all train on a single 

source domain before transfer. The degradation characteristics 

of the source domain are basically relatively single because of 

the small amount of data. With a high degree of similarity 

between the source and target domains, the transfer effect is 

relatively strong. However, in the actual wear and tear of 

performance degradation components, only the working 

conditions, sensors, and other factors can be used to determine 

whether the source and target domains exhibit a significant level 

of similarity, and their similarity cannot be determined. The 

expected results may not perform well in source domains with 

low similarity. Multisource domain transfer can solve the above 

problems well. Lately, some studies have been conducted on the 

application of multisource domain transfer methods, but they 

are still very rare. Shen et al.[22] proposed a transfer method 

using an intermediate domain, adding a new domain between 

the source and target domains for two transfers. Zou et al.[23] 

designed a multisource domain autoencoder model, optimizing 

the difference in dimension features during transfer. Lyu et al. 

[24]  developed a multisource domain transfer RUL prediction 

model that improves feature differences.  

With the existence of multisource domains, negative transfer 

may occur if only the overall difference in degradation features 

is minimized. In addition, with an increasing number of source 

domains, the data distribution of different domains differs, and 

the model’s independent learning and optimization do not 

provide significant gains for RUL prediction compared to  

a single-source domain. In summary, the fundamental principle 

of the cross-condition RUL prediction proposed in this paper is 
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to use an efficient multilayer neural network architecture to 

improve prediction efficiency, combined with transfer learning 

based on multisource domains to provide massive data support 

for the network. In terms of optimization, the need to improve 

the accuracy of features extracted from multiple source domains 

and align source and target domains that exhibit greater 

similarity must be taken into consideration. In this context, 

taking labels into account becomes essential. This study 

introduces an unsupervised multisource domain adversarial 

network (UMDAN), which utilizes data from various 

operational conditions as source domains for acquiring diverse 

degradation knowledge and transferring it to the target domain 

to effectively perform the task of cross-domain RUL prediction. 

RUL prediction is crucial for predictive maintenance and 

operational efficiency, yet it is hindered by the scarcity of 

extensive and accurately labeled degradation datasets. These 

limitations pose challenges for comprehensive model training 

and validation. Our approach leverages multisource domain 

transfer learning to enhance the model's ability to generalize 

across different domains and operational conditions, thereby 

improving prediction accuracy and reliability. The main 

innovations and contributions of this paper are summarized as 

follows: 

(1) Through efficient extraction of degradation features 

under multiple working conditions, the network will process 

data from multiple source domains in parallel. Then, the 

network undergoes additional optimization using adversarial 

learning techniques to enhance the model’s efficiency. 

(2) A mechanism for adapting features is developed to create 

domain-invariant features for each pair of domains. This 

mechanism aligns the features together. 

(3) UMDAN improves the domain-invariant feature 

alignment through multilinear conditioning in the adversarial 

network unlike existing multisource domain networks. The 

specific method is to fully utilize the actual labels of the source 

domain while predicting the labels of the target domain. The 

labels and features are then multiplied, combined, and input into 

the adversarial network for domain discrimination. This 

approach effectively improves the accuracy of domain 

adversarial discrimination and enhances the transfer matching 

between multisource domains, accomplishing alignment 

between the source domains and the target domain without 

supervision. 

(4) The proposed UMDAN model accomplishes prediction 

tasks across different conditions, enhancing the accuracy and 

adaptability of RUL prediction. We employ the publicly 

available NASA dataset CMAPSS to validate the proposed 

method. 

The rest of this paper is organized as follows. Section 2 

introduces the problem to be solved and the basic methods used. 

Section 3 provides a detailed description of the proposed 

network architecture and specific implementation methods. 

Section 4 describes the experimental process and result analysis. 

The final section summarizes the paper and proposes directions 

for future research. 

2. Proposed method 

2.1. Problem statement 

First, a known dataset is used for the study. The dataset includes 

different failure modes and operating conditions. On the basis 

of this dataset, the necessary condition for transfer is that all 

operations are within the same label space domain[25]. The 

source domain can be transferred to the target domain if the set 

of operating conditions and failure modes is consistent. The 

source domain dataset can be represented by the formula 

𝐷𝑆 = {𝐷𝑆𝑗}𝑗=1
𝑀 = {{(𝑥𝑆𝑗

𝑖 , 𝑦𝑆𝑗
𝑖 )}

𝑖=1

𝑛𝑆𝑗
}𝑗=1
𝑀 ,   

where 𝑆𝑗represents the j-th source domain. Moreover, the total 

set consists of M source domains, each of which is a subset 

representing different working conditions. The subset has 𝑛𝑆𝑗 

samples, 𝑥𝑆𝑗
𝑖   depicting the i-th datum from the j-th source 

domain and 𝑥𝑆𝑗
𝑖  representing the corresponding label of the j-th 

source domain for the i-th data sample. The target domain 

exhibits a comparable portrayal to that of the source domain, i.e., 

𝐷𝑇 = {𝑥𝑇
𝑖 }𝑖=1
𝑛𝑇  . However, the absence of RUL label y in the 

target domain is attributable to the fact that the model is tasked 

with predicting said RUL label. Unlike the source domain, only 

one target domain exists, which has 𝑛𝑇  samples, and 𝑥𝑇
𝑖  

represents the i-th sample. The dimension of each sample is 

determined by the sliding window. For the initial sample, given 

a time step t, we define function 

 𝜑𝑇𝑤 , 𝑖. 𝑒. 𝜑𝑇𝑤 (𝑥
𝑖 ) {(𝑥𝑡−𝑇𝑤

𝑖 , … , 𝑥𝑡−1
𝑖 )}

𝑡=𝑇𝑤+1

𝑇𝑖
 , which separates 

each sequence with a size of 𝑇𝑖  into consecutive time intervals 
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of specific magnitude 𝑇𝑤 . Therefore, a single-source domain 

sample is represented as 𝑥𝑆𝑗
𝑖 = 𝜑𝑇𝑤(𝑥𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑘 ), the data from the 

source domain is depicted as  

𝐷𝑆 = {{(𝜑𝑇𝑤(𝑥𝑆𝑜𝑢𝑟𝑐𝑒𝑗
𝑖 ), 𝑦𝑆𝑗

𝑖 )}
𝑖=1

𝑛𝑆𝑗
}𝑗=1
𝑀  , and the label is the true 

label. The data from the target domain are depicted as 𝐷𝑇 =

{𝜑𝑇𝑤(𝑥𝑇𝑎𝑟𝑔𝑒𝑡𝑗
𝑖 )}𝑖=1

𝑛𝑇 . The transition from the source domain to 

the target domain solely employs the adversarial learning 

technique, which may lead to the misalignment of adjacent 

features and labels, resulting in a reverse effect of the transfer 

learning. In an environment with multisource domains, an 

increase in the amount of data and the occurrence of this 

situation in each source domain-to-target domain transfer will 

cause a sharp increase in model error, resulting in poor overall 

performance. A feature extractor is used to extract data from 

both the source domain and the target domain. Subsequently, the 

extracted features are inputted into the DANN network for 

adversarial learning. 

As illustrated in Figure 1(a), the original aim of transfer 

learning is to synchronize the features of the source domain and 

target domain with the degradation process of RUL. However, 

the extraction of deep features is lacking because of insufficient 

degradation feature extraction in the underlying network of 

DANN. Therefore, in the adaptive process, mapping errors may 

occur, leading to incorrect transfer and resulting in negative 

transfer effects. As illustrated in Figure 1(b), the correct 

adaptive transfer should be m1, but the negative transfer 

phenomenon of m2 occurs due to the misalignment between the 

features and the RUL label.

 

Fig.1(a) Schematic diagram of the domain match.       Fig.1(b) Schematic diagram of the domain mismatch. 

 

             Fig.2(a) Detail diagram of the domain match.                 Fig.2(b) Detail diagram of the domain mismatch. 

According to the actual time period and its corresponding 

features, this mismatch phenomenon occurred because the 

features extracted from adjacent time periods are very similar, 

which greatly increases the likelihood of mismatch and 

consequently results in errors. As shown in Figure 2, the 

similarity of features in adjacent time steps leads to a non-

unique mapping relationship with the labels, forming a situation 

of multiple mappings. This condition is one of the causes of the 

mismatch phenomenon in deteriorating feature RUL labels. 

On the Figure 2(a) is a normal match and on the right is  

a mismatch, which fully demonstrate the mismatch 

phenomenon of the deteriorating feature RUL label. This issue 

is solved by considering the relationship between labels and 

features: the source domain has true labels, and the more source 
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domains there are, the more true labels there are. However, at 

the same time, the more source domains there are, the greater 

the impact of mismatch. Therefore, the focus is on the labels and 

features, where their true correlation can greatly improve the 

problem of mismatch. This paper uses multisource domains to 

solve the problem of learning a single problem and to address 

the impact of mismatch in multisource domains by combining 

labels and features. 

2.2. Main body of the network 

 

Fig.3 The overall architecture of the network. 

As shown in Figure 3, the overall network is divided into 

four components: feature generation network, RUL prediction 

network, subdomain classification network, and domain 

discrimination network. 

An accurate and efficient RUL prediction network is highly 

correlated with the main part of the network. On top of the main 

network, further optimizations can be made locally. Therefore, 

choosing a network that fits the current conditions is crucial. 

First, multisource domain RUL prediction needs to address 

several issues. The primary concern is that data sourced from 

multiple domains may have different time steps, as these data 

are collected under different operating conditions, leading to 

variations in failure modes. Therefore, using traditional RNN 

alone would require complex processing, adding to the intricacy 

of the task. In contrast, a temporal convolution network (TCN) 

can effectively handle data with different time steps. In addition, 

multisource domain RUL prediction involves data spanning 

across different domains. TCN can adaptively learn the feature 

relationships across domains, capturing trends and patterns in 

the data. Therefore, when performing multisource domain RUL 

prediction, TCN can handle data from multisource domains, 

improving the overall prediction accuracy of the model. Lastly, 

the inherent connections within multisource domain data are 

complex, with closely related features and labels, and cross-

relationships exist between different labels and features. TCN 

deep learning can discover these inherent connections and 

enhance the model’s generalization capability. 

TCN is a structural innovation built upon CNN[26]. CNN is 

constrained by the size of the convolutional kernel, where  

a small kernel lacks the ability to capture the global context, 

while a large kernel leads to model complexity. Therefore, TCN 

emerged as a crucial solution. It combines the advantages of 

multilayered convolution in CNN and the ability of RNN to 

capture long and short-term dependencies while avoiding 

problems such as gradient explosion and poor long-term 

memory[27]. In previous sequence modeling tasks, LSTM and 

GRU, among other RNN, were often employed[28]. 

Nevertheless, in the area of RUL prediction, with the limitations 

of the dataset and strong temporal dependencies, TCN 

demonstrates superior performance. TCN preserves more 

extended memory than LSTM can, has a reinforcing impact on 

RUL prediction, and achieves better results in sequence 

modeling tasks[29]. 

TCN utilizes a 1D fully convolutional network architecture. 

The size of each hidden layer is identical to the size of the input 

layer, and zero padding is applied to ensure consistent 

dimensions across subsequent layers. Nevertheless, during 

prediction, we want the model to only utilize past information 

to predict future remaining life span and not use future 

information to influence past predictions. Therefore, causal 

convolution is used to prevent any information leakage from 

future time steps to past time steps to generate the output at time 

t[30]. As illustrated in Figure 4, the input at time t and the input 

from a previous layer at an earlier time are used. Each hidden 

layer has the same length as the input layer, and zero padding is 

applied to ensure equal length in subsequent layers. 
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Fig.4. Schematic of causal convolution. 

The causal constraint implies that the TCN builds a mapping 

relationship for the input time step T sequence 

(x0, x1… , xT−1, xT) , such that yT = f(x0, x1… , xT−1, xT) and 

eventually obtains (y0, y1… , yT−1, yT) . During prediction, 

using data beyond time step t to predict the result at time step t 

is not allowed. In other words, yt = f(x0, x1… , xt−1, xt) cannot 

depend on data (xt+1, xt+2… , xT−1, xT)  beyond time step t to 

predict the result at the current time step. 

This condition also matches the real situation in bearing 

RUL prediction. Unlike in machine translation, complete 

sequential data can be used for RUL prediction. Bearing 

degradation data are generated according to the time axis in the 

forward direction. The future data cannot be obtained in the 

current prediction; otherwise, RUL prediction would obviously 

lose its meaning. This setting is more restrictive than that of the 

seq2seq model, but it is more in line with actual prediction. 

 

Fig.5. Schematic of dilated causal convolution. 

Another issue occurs when reviewing consecutive time steps 

in the network, that is, only the total count of layers in the 

network can be reviewed. This issue is addressed by using 

dilated convolutions[31] to acquire input from every d steps 

away from t:(xt−(k−1)d… , xt−2d, xt−d, xt) , where k represents 

the size of the kernel. Dilated convolutions allow the network 

to observe (k-1)d previous time steps, expanding the perceptive 

area of every layer d = O(2i) . By introducing dilation 

parameters, the convolution kernel can skip some data points in 

the input data to obtain a longer effective history, reducing the 

number of internal parameters while ensuring effective history, 

thus reducing the computational power and storage 

requirements of the model[32]. This approach greatly enhances 

the efficiency in the RUL prediction field. As shown in Fig. 5, 

one can view all the inputs reaching the bottom along the red 

line from top to bottom, which means that the prediction of the 

output (as an example at time T) uses all the inputs from the 

effective historical data.  

TCNs are designed to handle sequential data by capturing 

long-range dependencies with convolutional layers, which 

makes them suitable for time-series data like degradation 

signals. However, TCNs alone may not handle domain 

discrepancies well when the training and test data come from 

different operational conditions. 

2.3. Transfer learning network implementation 

Domain adaptation is the transfer learning approach in which 

the data distribution varies between the target and source 

domains, but the objective remains unchanged[33]. The 

objective of domain adaptation, also known as domain 

adaptation, is to adapt and reduce the differences in data 

distribution within the same feature space in a predefined source 

and target domain environment. Domain adaptation initially 

made breakthroughs in image classification tasks and has been 

widely applied in predictive domains as deep learning 

techniques continue to advance. Many domain adaptation 

techniques have achieved excellent results in different types of 

predictive tasks. In time series prediction tasks, domain 

adaptation techniques LSTM are widely employed[34]. The 

domain adversarial adaptation network (DAAN) is among the 

most commonly utilized domain adaptation approaches[35]. As 

shown in Figure 6, the proposed DAAN implementation is 

made up of four parts. The feature generation network 𝑁𝑓  is 

used to produce cross-domain invariant features, the domain 

discriminator network 𝑁𝑑 is utilized to differentiate whether the 

features come from the source domain or the target domain, the 

life prediction network 𝑁𝑝 is used to predict the target function, 

and the subdomain classification network 𝑁𝑐 is used to classify 

subdomains. The DAAN component is associated with 𝑁𝑓, 𝑁𝑑, 

and 𝑁𝑐. DAAN utilizes a domain discriminator to differentiate 
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whether the features from the feature generation network 

originate from the source domain or the target domain while 

simultaneously allowing for multilinear adjustments from the 

subdomain classification network. Adversarial learning, while 

powerful for aligning feature distributions between source and 

target domains, can have potential negative effects. One primary 

concern is the risk of negative transfer, which occurs when the 

alignment process misaligns adjacent features and labels. This 

misalignment can lead to incorrect feature-label associations, 

ultimately degrading the model's performance. For example, if 

the adversarial network forces features from different 

operational conditions to align too aggressively, it might 

overlook subtle yet critical differences between these conditions, 

resulting in poor generalization on the target domain. 

References that discuss similar challenges include Ganin and 

Lempitsky[36], and Tzeng et al. [37], which highlight the 

delicate balance required in adversarial training to avoid such 

pitfalls.

 

Fig.6. Domain adversarial adaptive network structure diagram.

The most important part of the DAAN network is the 

gradient reversal layer (GRL), which adopts the idea of 

adversarial learning and automatically reverses the gradient 

direction during backpropagation. During forward propagation, 

the GRL does not impact the input of the feature, acting mainly 

on backpropagation. During backpropagation, the gradient 

forwarded from the domain discriminator is multiplied by  

a factor and transformed to its negative value using GRL. 

Specifically, as shown in (2.1), both the domain classifier and 

RUL predictor take input from the feature extractor, but the 

domain classifier aims to maximize the domain classification 

loss by confusing the target domain data with the source domain 

data, while the RUL predictor aims to minimize the RUL 

prediction loss, and both losses are balanced through adversarial 

training[38]. 

𝜕𝐿𝑁𝑑
𝜕𝜃𝑁𝑑

𝐺𝑅𝐿
→  −λ

𝜕𝐿𝑁𝑑
𝜕𝜃𝑁𝑓

 （2.1） 

In this case, the loss function 𝐿𝑁𝑑 is reversed after passing 

through the GRL layer to optimize the parameters. The 

optimization process for the parameters is opposite: the domain 

discriminator network aims to minimize 𝐿𝑁𝑑, while after GRL, 

the optimization direction for the gradient of the feature 

generation network is towards increasing its value 𝐿𝑁𝑑 . This 

establishes a hostile connection between the two, and as a result 

of training, the feature generator has the ability to extract 

domain-invariant features. Furthermore, the discriminator is 

unable to differentiate the origin domain of the input features 

[39]. 

At the same time, the GRL parameter λ should dynamically 

change with the progress of the experiment. 𝛾 is a constant of 

10, and p is a dynamically changing indicator parameter 

expressing the proportion of the current iteration count to the 

total iteration count, as shown in Equation (2.2). 

In the DANN architecture, in order to help the model adapt 

to new data distributions faster and reach the optimal solution 

quickly, the learning rate 𝜇 also dynamically adapts the results, 
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as shown in Equation (2.3), where 𝜇0 is the initial learning rate, 

and 𝛼  and 𝛽  are defined as hyperparameters. Therefore, the 

objective function of DANN is a max-min function. 𝐿𝑁𝑑 refers 

to the domain discriminator’s loss, which needs to be minimized 

in Equation (2.4), and 𝐿𝑈𝑀𝐷𝐴𝑁  is the overall network loss. In 

Equation (2.5), the overall loss 𝐿𝑈𝑀𝐷𝐴𝑁 needs to be minimized. 

Therefore, the reversed 𝐿𝑁𝑑 needs to be maximized.  

𝜆 =
2

1 + 𝑒(−𝛾∙𝑝) 
− 1 （2.2） 

𝜇 =
𝜇0

(1 + 𝛼 ∙ 𝑝)𝛽
  （2.3） 

𝐿𝑁𝑑(𝜃𝑁𝑑) = ∑(𝐸
𝑥𝑆𝑜𝑢𝑟𝑐𝑒
𝑖 𝑙𝑜𝑔(𝑁𝑓(𝜑𝑇𝑤(𝑥𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑖 )) + 𝐸𝑥𝑇𝑎𝑟𝑔𝑒𝑡𝑙𝑜𝑔(𝑁𝑓(𝜑𝑇𝑤(𝑥𝑇𝑎𝑟𝑔𝑒𝑡)))

𝑀

𝑗=1

 （2.4） 

𝐿𝑈𝑀𝐷𝐴𝑁(𝜃𝑁𝑓 , 𝜃𝑁𝑑 , 𝜃𝑁𝑝 , 𝜃𝑁𝑐)

=∑ 𝑚𝑖𝑛
𝜃𝑁𝑓

,𝜃𝑁𝑑 ,𝜃𝑁𝑝 ,𝜃𝑁𝑐

𝛼 𝐸
(𝑥𝑆𝑜𝑢𝑟𝑐𝑒𝑗
𝑖 ,𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑖 )∈𝑆𝐷
𝐿𝑁𝑝(𝑁𝑝(𝑁𝑓(𝜑𝑇𝑤(𝑥𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑖 ))), 𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝑗
𝑖 )

𝑀

𝑗=1

+ 𝛽𝐸
(𝑥𝑆𝑜𝑢𝑟𝑐𝑒
𝑖 ,𝑔𝑠

𝑖 )∈𝑆𝐷
𝐿𝑁𝑐(𝑁𝑐(𝑁𝑓(𝜑𝑇𝑤(𝑥𝑆𝑜𝑢𝑟𝑐𝑒

𝑖 ))), 𝑔𝑠
𝑖) − 𝛾𝐿𝑁𝑑(𝜃𝑁𝑑) 

（2.5） 

 

DANNs aim to learn domain-invariant features by using 

adversarial training to reduce the discrepancy between source 

and target domain feature distributions. This approach is 

effective in transfer learning scenarios but might struggle with 

time-series data's temporal dependencies. 

3. Unsupervised multiple sub-domain adversarial 

network with temporal convolutional network 

If trained with several source domains, then the variances 

among them could be further magnified. If the feature extraction 

component is designed to be simple or shallow, then it may not 

capture the differential features pertaining to the data from the 

source domain adequately, resulting in a domain mismatch 

among the source and target domains. In addition to 

incorporating the domain classifier and domain adversarial loss 

strategy in the DANN network, considering the introduction of 

a label alignment strategy can enhance the effect of domain 

adaptation. Therefore, this article suggests a network for 

adversarial adaptation with multiple source and subdomains. 

Our method integrates TCN with DANN within a multisource 

domain transfer learning framework. This combination allows 

us to leverage TCN's ability to capture temporal dependencies 

and DANN's strength in reducing domain discrepancies. 

Additionally, the use of multiple source domains helps to further 

enhance the model's generalizability and robustness.

 

Fig.7. The network structure diagram of the UMDAN.
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The overall framework is illustrated in Figure 7. The 

acquired cross-condition dataset is built on the publicly 

available C-MAPSS dataset. Based on the requirements of 

cross-condition and the number of source domains, the dataset 

is divided into three different condition source domain data and 

one target domain data. As the main framework for cross-

condition transfer tasks, it is constructed by TCN, which is 

proficient in handling time-series data. The objective of this 

network is to achieve adaptive transfer from multisource 

domains to the target domain. The multisource domain data are 

divided into three source domains. Furthermore, the information 

from each source domain is optimized separately. The overall 

network is divided into four components: feature generation 

network, RUL prediction network, subdomain classification 

network, and domain discrimination network. First, the feature 

extraction network, which is the main TCN framework, takes 

all the data as inputs and serves as the common part of the entire 

framework, playing a crucial role. The RUL prediction network 

serves as the central component of the framework, and the 

network’s performance is ultimately judged based on its output. 

Subdomain classification network is used to divide the 

subdomains and align labels with features, and its output is 

combined linearly with the features of the input domain 

discrimination network instead of being directly outputted. The 

domain discrimination network incorporates an adversarial 

mechanism for adaptive transfer of data. A method using the 

subdomain classification network is proposed to reduce the 

training error of multisource domain data. This method 

optimizes the domain discrimination network to more 

accurately discriminate among source and target domain data in 

DANN, thereby reducing the occurrence of mismatch 

phenomena. The multisource domain network designed in this 

paper proposes a new type of DANN network when most 

existing multisource domain frameworks fail to address the 

mismatch error issue. The innovative part of the multisource 

domain network lies in the DANN part. In the traditional 

framework that adapts transfer through the back-propagation 

layer, if only features are used for domain discrimination, then 

it may be limited by the performance of the feature extraction 

network, resulting in shallow features and lack of a unique 

mapping relationship. Similar features between adjacent times 

may cause cross-mismatch or multiple mappings from features 

to labels. This situation is more severe in the multisource 

domain field with massive data, ultimately leading to increased 

transfer errors and poor predictive performance of the model. 

Therefore, the problem of overfitting can be discovered 

easily when referring to previous supervised learning methods, 

thus increasing the phenomenon of domain mismatch and 

elevating the proficiency of multisource domain models. 

Unsupervised learning networks can effectively solve the 

problem of overfitting[40]. Based on unsupervised learning, an 

unsupervised multisource domain subdomain adversarial 

network is designed, where optimizing the DANN network is  

a key part. The primary method is to optimize the input of the 

adversarial transfer part. Considering that a corresponding 

relationship exists between individual subdomains and features 

after subdomain partitioning, they are associated. This condition 

allows the domain discriminator to better identify the unique 

information in the domain when discriminating the features 

associated with the subdomain, reducing the transfer error of 

individual time steps. The following is a specific 

implementation. 

The idea of subdomain partitioning network is to initially 

separate the label space into RUL subdomain regions, where 

every subdomain region represents to a category. The entire 

process of device life span is divided into several substages, 

each representing a different degradation state, and then the 

corresponding features for each substage are established. The 

specific partitioning strategy is designed based on data features 

and application scenarios as follows (3.1). A crucial step is to 

observe that the choice of stages and the number of subdomains, 

especially the number of subdomains in the partitioning, should 

be reasonable.

𝑌𝑐 = 𝑢𝑛𝑖𝑞𝑢𝑒({𝑦𝑐
𝑖 = 𝑟𝑜𝑢𝑛𝑑𝑑𝑜𝑤𝑛(

𝑅𝑈𝐿𝑚𝑎𝑥 − 𝑡

𝑅𝑈𝐿𝑚𝑎𝑥
) ∗ 𝑛𝑐|0 ≤ 𝑡 ≤ 𝑅𝑈𝐿𝑚𝑎𝑥}) （3.1） 

 

The unique (·) function is utilized to eliminate duplicate 

values and merge duplicate subdomain partitions into a single 

category. 𝑅𝑈𝐿𝑚𝑎𝑥 represents the highest amount of remaining 

useful life, which is a fixed value. rounddown(·) is a floor 

function, and using floor rounding for RUL prediction is more 

consistent with preventative strategies before component failure. 
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The source domain has RUL labels; hence, subdomain 

partitioning can be performed directly. However, because the 

target domain does not have labels, partitioning needs to be 

performed through the network. The subdomain classification 

network is built using the features generated by the feature 

generation network as input. The network uses cross-entropy 

loss function to calculate the error in subdomain classification 

by using the following formula:

𝐿𝑁𝑐 =∑ ∑
1

𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑗
(−𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝑗𝑐

𝑖 𝑙𝑜𝑔𝑦̂𝑆𝑜𝑢𝑟𝑐𝑒𝑗𝑐
𝑖 − (1 − 𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝑗𝑐

𝑖 )𝑙𝑜𝑔(1 − 𝑦̂𝑆𝑜𝑢𝑟𝑐𝑒𝑗𝑐
𝑖 ))

𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑖=1

𝑥

𝑗=1

 （3.2） 

 

where 𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑗  denotes the overall count of training samples 

in the j-th source domain, and x denotes the overall count of 

source domains. This study considers both dual-source domain 

and tri-source domain settings. 𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝑗𝑐
𝑖   denotes the accurate 

subdomain classification label of the i-th sample in the j-th 

source domain, while 𝑦̂𝑆𝑜𝑢𝑟𝑐𝑒𝑗𝑐
𝑖   represents the predicted 

subdomain label. The parameters and weights of the subdomain 

classification network are optimized and updated using the 

backpropagation technique. The pre-trained subdomain 

classification model takes the target degradation characteristics 

produced by 𝑁𝑓  as input, yielding pseudo-labels 𝑌̂𝑐
𝑇  for 

subdomain categories. 

Then, the improvement of DANN is targeted, with the core 

idea of associating subdomains with features. Multilinear 

adjustment is used instead of directly connecting features to the 

obtained pseudo-subdomain labels. The multilinear 

conditioning strategy enhances the model's ability to learn 

complex relationships between features and labels across 

different domains. By integrating features and labels through 

multilinear transformations, this strategy captures higher-order 

interactions that are crucial for accurate RUL predictions. This 

approach ensures that the model can leverage information from 

multiple source domains more effectively, leading to improved 

prediction accuracy and efficiency. Multilinear adjustment can 

effectively model the relationships between multiple features 

and subdomains, capturing complex interactions between 

features. It can also better handle the complex relationships 

between multi-sensor data and labels. Multisource domains 

mean different sensor models and data collection methods, 

leading to different data storage formats and possibly different 

dimensions. However, for similar degrading components, their 

intrinsic nonlinear relationships are more difficult to build than 

linear relationships. The intrinsic connection between labels and 

multi-sensor data needs to be established by constructing  

a multilinear architecture. This way, the diverse structure 

underlying the intricate data distribution and the interactive 

multiplication between features and classifier predictions can be 

grasped[41]. The computation of the adjusted domain 

discriminator network input features is as follows: (3.3) 

represents the computation for the source domain, and (3.4) 

represents the computation for the target domain. The labels 

linked with the source domain and target domain must be 

dissimilar. The source domain has true labels, so the true labels 

are directly used for partitioning. 𝑦
𝑐(𝑎)

𝑆𝑜𝑢𝑟𝑐𝑒𝑗
 represents true labels 

belonging to category “a” in the j-th source domain. From 

another perspective, the target domain does not have true labels, 

so pseudo-labels are used. 𝑦̂𝑐(𝑎)
𝑇𝑎𝑟𝑔𝑒𝑡

  represents the pseudo-

subdomain label for category “a” in the target domain. 

H
i

𝑆𝑜𝑢𝑟𝑐𝑒𝑗
= 𝑁𝑓(𝜑𝑇𝑤(𝑥𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑖 ) ⊗ 𝑦
𝑐(𝑎)

𝑆𝑜𝑢𝑟𝑐𝑒𝑗
  （3.3） 

Hi
Target

= 𝑁𝑓(𝜑𝑇𝑤(𝑥𝑇𝑎𝑟𝑔𝑒𝑡
𝑖 ) ⊗ 𝑦̂𝑐

𝑇𝑎𝑟𝑔𝑒𝑡
  （3.4） 

The training set utilized in the RUL prediction network, 

located at the network’s core, consists of data from the source 

domain. In contrast, data from the target domain are employed 

as the test set. To begin with, RUL labels are available for the 

source domain, which are subsequently utilized to predict 

pseudo-RUL labels for the source domain data. The pseudo-

labels are continuously updated to iterate and optimize the 

network. The network uses the mean absolute error function to 

calculate the regression error, as shown in formula (3.5).

𝐿𝑁𝑝 =∑ ∑
1

𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑗
|𝑁𝑝(𝑁𝑓(𝜑𝑇𝑤(𝑥𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑖 ))) − 𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝑗
𝑖 |

𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑗

𝑖=1

𝑥

𝑗=1

 （3.5） 

 

Within this given context, the number of training samples in the j-th source domain, represented by 𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑗  , and the true 
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RUL label of the i-th sample, represented by 𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝑗
𝑖  , are of 

significance. The backpropagation technique is employed to 

optimize and update the parameters and weights of the fault 

classification network. 

The classification error of the domain discriminator network 

is calculated by utilizing the binary cross-entropy loss function 

to distinguish between the new hidden features that have been 

subjected to multilinear adjustments in the source and target 

domains. An exact mapping function relationship between the 

deteriorated features and RUL labels is achieved by using the 

root mean square loss function to quantify the prediction error 

of the label prediction network. 

𝐿𝑁𝑑 =∑−𝑑𝑖𝑙𝑜𝑔𝑁𝑑(𝐻𝑖) − (1 − 𝑑
𝑖)𝑙𝑜𝑔(1

𝑥

𝑗=1

− 𝑁𝑑(𝐻𝑖)) 

（3.6） 

In this context,  𝑑𝑖 represents its true class label,indicating 

whether the i-th new hidden feature belongs to the source or 

target domain. 𝐻𝑖   comprises features that are a multilinear 

combination of j source domains and the target domain. 𝑁𝑑(𝐻𝑖) 

ranges from 0 to 1, representing the origin of 𝑁𝑑(𝐻𝑖) belonging 

to either the source or target domain. The discriminator 𝐿𝑁𝑑 is 

optimized by minimizing its loss. At the feature extractor level, 

the overall loss is minimized through a GRL, which maximizes 

𝐿𝑁𝑑  and confuses 𝑁𝑑 , enabling adaptive adversarial transfer. 

Represented by the following formula is the method of 

adversarial domain adaptation, which captures min-max game: 

 min
𝑁𝑑
𝐿𝑁𝑑  

min
𝑁𝑓
𝐿𝑁𝑐 + 𝐿𝑁𝑝 − 𝐿𝑁𝑑 (GRL) 

max
𝑁𝑓
𝐿𝑁𝑑  

（3.7） 

The total objective function of the UMDAN network is 

composed of three components: sub-domain classification 

objective function, domain discrimination objective function, 

and RUL prediction objective function. It is represented as 

follows in the equation: 

𝐿𝑈𝑆𝐷𝐴𝑁(𝜃𝑁𝑓 , 𝜃𝑁𝑝, 𝜃𝑁𝑑 , 𝜃𝑁𝑐)

= 𝛼𝐿𝑁𝑝(𝜃𝑁𝑝) + 𝛽𝐿𝑁𝑐(𝜃𝑁𝑐)

− 𝛾𝐿𝑁𝑑(𝜃𝑁𝑑) 

（3.8） 

Whereas, 𝜃𝑁𝑓 , 𝜃𝑁𝑝 , 𝜃𝑁𝑑 , 𝜃𝑁𝑐 represents the parameters of the 

four networks in UMDAN. By applying the formula below, the 

tradeoff parameter 𝛾  smoothly shifts from 0 to 1. Here, p 

represents the linearly changing training progress ranging from 

0 to 1, ε is a constant set to 10, and The current iteration number 

and the total number of iterations are indicated by iteration and 

miteration respectively. 

𝛽 = 2/(1 + 𝑒−𝜀
 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑚𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) − 1 （3.9） 

𝛾 =
2

1 + 𝑒𝑥𝑝(−𝜀𝑝)
− 1 ∈ [0,1)  （3.10） 

To optimize the weight parameters of the UMDAN model, 

we employ the stochastic gradient descent algorithm. The 

direction of gradient optimization is determined during the 

backpropagation process. The following formula outlines the 

model parameter update, where the learning rate is represented 

by δ.  

{
 
 
 
 

 
 
 
 𝜃𝑁𝑓 ← 𝜃𝑁𝑓 − 𝛿

𝜕𝐿𝑁𝑝(𝜃𝑁𝑝) + 𝜇𝐿𝑁𝑐(𝜃𝑁𝑐) − 𝛾𝐿𝑁𝑑(𝜃𝑁𝑑)

𝜕𝜃𝑁𝑓

𝜃𝑁𝑝 ← 𝜃𝑁𝑝 − 𝛿
𝜕𝐿𝑁𝑝
𝜕𝜃𝑁𝑝

𝜃𝑁𝑑 ← 𝜃𝑁𝑑 − 𝛿
𝜕𝐿𝑁𝑑
𝜕𝜃𝑁𝑑

𝜃𝑁𝑐 ← 𝜃𝑁𝑐 − 𝛿
𝜕𝐿𝑁𝑐
𝜕𝜃𝑁𝑐

 （3.11） 

4. Experiment 

4.1. Dataset Description 

Table I. DESCRIPTION OF C-MAPSS DATASET. 

Subset FD001 FD002 FD003 FD004 

No. Of Training 

Engines 
100 260 100 249 

No. Of Test 

Engines 
100 259 100 248 

Operating 

Conditions 
1 6 1 6 

Fault Modes 1 1 2 2 

The commonly used C-MAPSS dataset was employed to 

demonstrate the feasibility of the approach[42]. The C-MAPSS 

dataset, which stands for Commercial Modular Aero-Propulsion 

System Simulation, is a widely used benchmark dataset for RUL 

prediction. It contains run-to-failure data for turbofan engine 

units under various operational conditions and fault modes, 

making it a suitable choice for validating our multisource 

domain transfer learning approach. The advantage of the C-

MAPSS dataset lies in its public availability, which has 

facilitated numerous experiments in this domain. It simulates 

the entire life cycle of aircraft engines and is divided into four 

subsets, facilitating the implementation of multisource domain 

transfer methods. Table I presents the fundamental details of the 

dataset, with each subset having different operating and fault 

conditions. For example, there are 100 training engines and 100 
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test engines in subsets FD001 and FD003, with few operating 

conditions and failure modes. The number is relatively small; 

therefore, these two subsets can be considered similar. Subsets 

FD002 and FD004 are more intricate than the previous subsets, 

with a larger number of training and test engines and six 

different operating conditions. Moreover, the maximum life 

cycles of the engines in the dataset vary. The training dataset 

includes the corresponding RUL values for each cycle, while 

the test dataset introduces random stoppages during the cycles. 

These datasets consist of rows representing samples, with 26 

columns for each row. The first column is engine ID, the second 

column represents the current cycle, and the third to fifth 

columns refer to the operating conditions. The remaining 21 

sensors’ values are stored in columns 6 to 26, but not all of them 

provide RUL prediction information. Among the sensors, S1, S5, 

S6, S10, S16, S18, and S19 maintain a relatively consistent 

value during the engine’s lifetime[43]. These constant values 

provide no positive feedback for training and may cause 

prediction errors. Therefore, the remaining columns, excluding 

the constant data, are extracted as training data. There are a total 

of 14 sensors with changing values, which are then labeled and 

normalized using min-max normalization as indicated in 

Equation 4.1. This step ensures that all features contribute 

equally to the model training process and improves convergence 

speed. 

𝑥𝑖
′ =

𝑥𝑖 −𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
 （4.1） 

where 𝑚𝑎𝑥(𝑥𝑖)  denotes the maximum value of the feature 

signal 𝑥𝑖  in data sample x, and  𝑚𝑖𝑛(𝑥𝑖)  symbolizes the 

minimum value. Therefore, the final normalized data range is 

𝑥𝑖
′∈ [0，1]. 

Determining the anticipated output value of the input data 

for RUL prediction problem is a challenging task. Assessing the 

precise health condition and estimating the RUL of a system at 

each time step in numerous industrial applications is often 

impractical because of the absence of an accurate physics-based 

model[44]. For the experimental setup dataset, segmented linear 

degradation models have been validated as appropriate and 

effective[45]. The segmented linear model divides the operating 

period of the working unit, with a focus on distinguishing the 

operational phases of the degrading unit. According to this 

theory, the operating process is divided into a constant operating 

period and a linear degradation period. In the early stages, no 

failures are assumed to occur, and the RUL value remains 

constant at its maximum value. After a certain time, linear 

degradation occurs until a failure event takes place. Furthermore, 

the maximum RUL value cannot be arbitrarily set, as it affects 

the prediction performance[46]. On the basis of extensive 

experiments using this dataset, the appropriate maximum RUL 

value is determined and set to 125. For each time cycle of the 

dataset, the corresponding label 𝑦𝑖  for the RUL can be obtained 

by using formula 4.2. Then, a technique known as the sliding 

time window is utilized to magnify the feature data for each time 

period, as shown in formula 4.3. This method helps the model 

to learn from both short-term and long-term degradation 

patterns. 

𝑦𝑖 = {
𝑅𝑈𝐿𝑚𝑎𝑥      𝑦𝑅𝑈𝐿 ≥ 𝑅𝑈𝐿𝑚𝑎𝑥
𝑦𝑅𝑈𝐿            𝑦𝑅𝑈𝐿 < 𝑅𝑈𝐿𝑚𝑎𝑥

 （4.2） 

𝜑𝑇𝑤 , 𝑖. 𝑒. 𝜑𝑇𝑤(𝑥
𝑖)={(𝑥𝑡−𝑇𝑤

𝑖 , … , 𝑥𝑡−1
𝑖 )}

𝑡=𝑇𝑤+1

𝑇𝑖  （4.3） 

4.2. Parameter Setting 

The setting of hyperparameters will be determined using grid 

search, which exhaustively searches within the given range of 

hyperparameters, records performance data, and ultimately 

selects the best combination[47]. The experimental setup 

includes a comparison section, where multiple methods will be 

used for performance comparison. Equivalent parameters will 

be used to make the comparative experiments effective and 

reliable. 

Figure 8 demonstrates this concept. The convolution kernel 

size is 3 with a count of 5 in the TCN model. TCN’s 

characteristic is to maintain consistent input and output, which 

is set to 40 in this experiment. In the TCN model, causal 

convolution is used with zero-padding on the left side to ensure 

that no future information is relied upon. At the same time, when 

the convolution kernel slides to the first position of the sequence, 

it can consider the zero values on both sides of the input 

sequence, ensuring that the length of the convolution output is 

consistent with the input sequence length. As shown in Equation 

4.4, the size is 3, 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 represents the convolution kernel, 

𝑛𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑧𝑒𝑟𝑜
𝑖   represents the number of left padding zeros, x 

represents the x-th hidden layer, and 𝑙  represents the dilation 

rate. 

𝑛𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑧𝑒𝑟𝑜
𝑥 = 𝑙𝑥 × (𝑛𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) （4.4） 

TCN is a sequence modeling method based on CNN, which 
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is commonly used for handling sequence data such as time 

series. It utilizes multiple convolutional layers and repeated 

residual blocks to effectively capture long-term dependencies in 

the sequences. However, in the TCN model, the convolutional 

layers have a large number of parameters, which can lead to 

overfitting if proper regularization methods are not applied. The 

risk of overfitting is mitigated by adding dropout layers after the 

TCN model, which randomly set a portion of the neuron outputs 

to 0, reducing the cooperation between neurons and enhancing 

the robustness and adaptability of the model.

 

Fig.8 Detailed network structure of UMDAN 

The network that is utilized to predict the RUL is made up 

of three linear layers, along with a dropout layer, and a ReLU 

activation layer is strategically placed after the first two linear 

layers to enable nonlinear transformations. This approach 

increases the flexibility and expressive power of the model, 

improves its capability to model complex features, and 

enhances its prediction performance. Moreover, the activation 

sparsity characteristic helps diminish overfitting and enhance 

the model’s capacity to generalize. The predicted outcome is the 

output of the last fully connected layer. The subdomain 

classification network has almost no difference in structure 

compared with the RUL prediction network, except for one less 

fully connected layer and the output dimension of the last fully 

connected layer changed to the number of subdomains. A new 

hidden feature is the input of the DANN portion, which 

comprises multilinear conditions. The size of its input 

dimension is determined by multiplying the linear expansion 

dimension of the degradation feature generated by the algorithm 

with the number of subdomains. 

The detailed parameter settings are outlined in Table II. We 

selected a convolutional kernel size of 3 to enhance 

convergence due to the relatively small dataset. This smaller 

kernel size accelerates model convergence and training while 

effectively capturing short-term anomalies. For the C-MAPSS 

dataset, the batch size is set to 32. Although a larger batch size 

could increase memory consumption, choosing 32 strikes  

a balance between training speed and memory efficiency. We 

adopted a learning rate of 0.0003, which is small enough to 

ensure smooth convergence and mitigate the risks of gradient 

explosion or vanishing gradients during training. This cautious 

learning rate enables the model to thoroughly explore the 

parameter space, reducing the likelihood of missing the global 

optimum or getting trapped in a local minimum. The model was 

trained over 180 epochs, allowing sufficient iterations to adapt 

to the patterns and features within the training data, ultimately 

enhancing prediction accuracy. The sliding window size was set 

to 30, a configuration well-suited to the C-MAPSS dataset 

where engine operating times are recorded at varying 

timestamps. 

Table II. Parameter Setting. 

Parameter Configuration 

Window size 30 

Learning rate 0.0003 

Epoch 180 

𝑅𝑈𝐿𝑚𝑎𝑥  125 

Batch size 32 

Optimizer Stochastic gradient descent 

In addition to the hyperparameters mentioned above, our 

study includes setting up a subdomain partitioning network, so 

the focus is more on finding the optimal subdomain partitioning 
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density. Therefore, various experiments were conducted 

utilizing diverse quantities of subdomains, with a thorough 

analysis of the empirical outcomes. The model performance 

does not have a positive correlation with the density of 

subdomain partitioning, as illustrated in Figure 9. The lowest 

performance was achieved when the number of subdomains was 

around 10. Therefore, further experiments were conducted, and 

the optimal partitioning was 11.

                      

           (a)Trends in RMSE of different numbers of subdomains   (b)Experimental results for the optimal number of subdomains 

Fig.9 The impact of the number of subdomains on model performance 

Another important factor in the proposed method is the size 

of the time window. The impact of the time window size on 

network performance and training time is shown in Figure 10. 

This result is obtained on the FD001 dataset. The graph 

distinctly demonstrates that an increased size of the time 

window results in superior RUL prediction. A larger time 

window size can include more historical observation data, 

which can provide richer information to reflect the changes in 

the device or system’s state[48]. By utilizing longer time series 

data, the prediction model can capture more trends and patterns, 

thereby making more precise predictions of the remaining 

useful life and mitigating the influence of noise. If the time 

window is too large, then it may result in the inclusion of 

excessive historical data in the model, introducing unnecessary 

complexity and computational burden. Therefore, when 

selecting the time window size, achieving a balance between 

prediction performance and model complexity needs to be 

considered. When the sliding window increases from 20 to 30, 

the RMSE parameter optimization is evident, while the training 

time increases only slightly. However, when the sliding window 

exceeds 30, the performance stabilizes without significant 

changes, but the training time increases significantly. Therefore, 

the size of the sliding window is configured as 30 to maximize 

the benefits and balance training duration with training 

effectiveness. 

 

Fig.10 The impact of the time window size on both prognostic 

performance and computing time during the training process 

on FD001 

4.3. Predictive process 

Figure 11 displays the flowchart depicting the proposed 

prediction method. To begin, we preprocess the C-MAPSS sub-

dataset by choosing 14 raw sensor measurement values and 

normalizing the corresponding data within the range of [−1, 1]. 

Then, we prepare the dataset for training and testing using a 

sliding window length to capture time series information within 

each sample. Notably, the 2D formatted normalized data are 

directly fed into the model as input, eliminating the need for 

manual signal processing features such as skewness and 

kurtosis. As a result, prior expertise in vibration and signal 

processing is not required to use our proposed method. 
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Following dataset preparation, we construct the UMDAN 

network for RUL estimation based on the specific signal 

processing problem and dataset information, and determine the 

network’s configuration, including the number of hidden layers. 

UMDAN takes the normalized training data as input and utilizes 

the labeled RUL values of the training samples as the target 

output of the network, with backpropagation learning updating 

the network weights. Each training epoch randomly divides the 

samples into multiple mini-batches, which are then fed into the 

training system. After optimization of the network, the model is 

ready for RUL estimation. 

 

Fig.11. Flow chart of the proposed method for prognostics. 

4.4. Method comparison and prognostic performance 

To assess the efficiency of the proposed approach, this study 

designed a total of eight cross-domain transfer tasks, as 

presented in Table 3. The C-MAPSS dataset consists of four 

sub-datasets, and each sub-dataset is used as a source task to 

transfer to the remaining sub-datasets. To holistically assess the 

model’s performance, the prediction performance, and 

experimental outcomes of the cross-domain transfer tasks, this 

study utilized two performance evaluation metrics, namely, root 

mean square error (RMSE) and mean absolute error (MAE), 

which are expressed as follows: 

𝑀𝐴𝐸 =
1

𝑀
∑|𝑅𝑈𝐿𝑝𝑖 − 𝑅𝑈𝐿𝑡𝑖|

𝑀

𝑖=1

 （4.5） 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑(𝑅𝑈𝐿𝑝𝑖 − 𝑅𝑈𝐿𝑡𝑖)

2
𝑀

𝑖=1

 （4.6） 

where 𝑅𝑈𝐿𝑝𝑖 and 𝑅𝑈𝐿𝑡𝑖 are the RUL benchmark value and the 

RUL predicted value, respectively. The value of M corresponds 

to the total number of test samples. A decreased MAE and 

RMSE signify improved post-prognostics performance of the 

approach. 

Four multisource domain transfer experiments were 

designed in this paper, and a series of same-method dual-source 

and single-source domain experiments was set up for 

comparison to validate the reliability of this method. As shown 

in the table, in single-source domain transfer, the working 

conditions in the dataset, failure modes, and engine numbers 

evidently show that the dataset FD001 is extremely similar to 

FD003, and the dataset FD002 is extremely similar to FD004. 

However, in real-world work scenarios, it is not known which 

data failure modes and other conditions are similar, so 

multisource domain transfer receives data from multiple 

domains and is not affected by these conditions. Therefore, in 

single-source domain transfer, similar domains will not be used 

for experiments. Detailed information regarding the design of 

the transfer tasks can be found in Table III. To fully investigate 

the impact of multi-condition data on model performance, we 

established three sets of transfer learning tasks based on the C-

MAPSS dataset: single-condition data transfer (ST1), dual-

condition data transfer (ST2), and triple-condition data transfer 

(ST3). Both ST1 and ST2 consist of eight subtasks, while ST3 

comprises four subtasks. These subtasks utilize the four sub-

datasets in C-MAPSS as source and target domains in an 

alternate fashion. 
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Table III. Design of transfer tasks based on the C-MAPSS 

dataset. 

Task Source Target 

ST1-1 FD002 FD001 

ST1-2 FD004 FD001 

ST1-3 FD001 FD002 

ST1-4 FD003 FD002 

ST1-5 FD002 FD003 

ST1-6 FD004 FD003 

ST1-7 FD001 FD004 

ST1-8 FD003 FD004 

ST2-1 FD003,FD004 FD001 

ST2-2 FD002,FD004 FD001 

ST2-3 FD001,FD003 FD002 

ST2-4 FD003,FD004 FD002 

ST2-5 FD001,FD004 FD003 

ST2-6 FD002,FD004 FD003 

ST2-7 FD001,FD002 FD004 

ST2-8 FD001,FD003 FD004 

ST3-1 FD002,FD003,FD004 FD001 

ST3-2 FD001,FD003,FD004 FD002 

ST3-3 FD001,FD002,FD004 FD003 

ST3-4 FD001,FD002,FD003 FD004 

Using the proposed method, this study successfully 

conducted cross-domain prediction tasks outlined in the table. 

The results of all subtasks for ST1, ST2, and ST3 are displayed 

in Table IV. From the data in the table, the design of multisource 

domains has a positive feedback effect on the experimental 

results. Multisource domain transfer exhibits enhanced average 

performance when compared with single-source domain 

transfer. 

Table Ⅳ. Experimental results of all transfer tasks onC-MAPSS 

dataset 

Task RMSE MAE Score 

ST1-1 17.6 14.1 2802 

ST1-2 20.4 16.5 2620 

ST1-3 39.7 33.7 19425 

ST1-4 36.6 30.1 17630 

ST1-5 43.6 36.1 23219 

ST1-6 37.3 24.3 18951 

ST1-7 42.1 37.2 16477 

ST1-8 47.1 40.5 25137 

ST2-1 18.2 13.5 1806 

ST2-2 22.6 19.0 1013 

ST2-3 33.5 26.9 10491 

ST2-4 19.1 13.7 2207 

ST2-5 27.2 22.7 4381 

ST2-6 39.2 33.2 26333 

ST2-7 41.7 36.0 5187 

ST2-8 43.6 37.7 8908 

ST3-1 19.9 15.8 1010 

ST3-2 25.7 21.2 2669 

ST3-3 23.6 18.7 997 

ST3-4 36.9 33.0 4921 

The average of various experimental result parameters is 

compared to further explain the impact of multisource domains 

on the experimental results. Given the lack of control over the 

influence of the source domain in the single-source domain, the 

results of all source-to-target domain transfer experiments in the 

single-source domain are summed and averaged. Similarly, the 

average of the performance of dual-source and multisource 

domains is compared to observe the overall performance trends, 

as depicted in Figure 12.

        

(a) RMSE         (b) MAE  

 

(c) SCORE 

Fig. 12. The comparison of RMSE, MAE and SCORE on ST1, ST2 and ST3 tasks. 
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The reduction of the three ST2 metrics by 13.8%, 12.76%, 

and 52.23%, respectively, as well as the reduction of the three 

ST3 metrics by 25.35%, 23.79%, and 84.78%, respectively, 

suggest that our proposed method, which employs data 

collected under multiple operational conditions for cross-

domain RUL prediction tasks, can enhance the precision and 

adaptability of predictions. The strength of our method is its 

ability to fully exploit existing datasets and enable target entities 

to acquire various forms of degradation feature representations. 

As the data of the target entity is unlabeled, the TL method aims 

to learn features that are invariant between the source and target 

domains and transfer the mapping of relationships between the 

features and labels from the source domain to the target domain. 

This approach enables the target entity to acquire multiple 

invariant representations of features, thus resulting in a mapping 

relationship with the RUL labels that is more accurate and 

robust compared with using a single feature representation. 

Furthermore, the emphasis of the scoring function is on 

penalizing positive errors, which means  that the model’s score 

increases as the model’s predicted RUL values surpass the 

actual RUL values to a greater extent. Practically, this condition 

results in reduced maintenance time for the system. Evidently, 

ST2 and ST3 exhibit considerably lower scoring function values 

in comparison to ST1. 

In comparison to the cross-domain prediction task ST1 using 

single-condition data, multi-condition data leads to a decline in 

the performance of ST2 and ST3 tasks in RMSE, MAE, and 

SCORE. ST3 has more abundant source domain data, covering 

various working conditions and failure modes, which is why its 

performance is superior to that of ST2. This outcome can be 

attributed to the fact that the enlarged source dataset boosts the 

number of training samples, and the diverse degradation 

features in the target domain can provide a more comprehensive 

representation of the degradation data. 

Consequently, utilizing prediction models that incorporate 

multi-condition data not only enhances the precision of RUL 

prediction but also generates RUL forecasts that closely align 

with real-world scenarios, thereby strengthening system 

dependability. This capability empowers the system to 

anticipate failures in advance during operation, consequently 

mitigating maintenance costs. 

In addition, Figure 13 illustrates the RUL predictions of the 

tested engine units in FD001 before their final recorded cycle. 

Three instances from a total of 100 experimental engine units in 

both the dual-source domain and multisource domain are 

provided, with unit numbers of 22, 35, and 85, respectively. 

During the initial phases of the three scenarios, the proposed 

method aims to approximate RUL values that are near a constant 

𝑅𝑈𝐿𝑚𝑎𝑥. Subsequently, the estimated values gradually decrease 

linearly with time until the available test samples are exhausted. 

Although some conspicuous discrepancies exist between the 

predicted values and the actual RUL values, the predictive 

accuracy remains considerably high, especially as the engine 

units approach failure. This characteristic has significant 

industrial significance because the late life stage of engine units 

is pivotal for health management. Effective assessment of the 

late-life condition of engines can enhance the reliability and 

safety of engine operation, reduce maintenance costs, and 

enhance the overall system performance. In addition, on this 

basis, the fitting effect of the multisource domain is evidently 

superior to that of the dual-source domain, and the volume of 

data in the multisource domain has a positive feedback effect on 

model fitting.
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Fig. 13. RUL predictions for unit 22,35and 85 in FD001. 

To evaluate the performance improvement of the 

multisource domain strategy over the single-source domain, this 

paper compares our proposed method with various transfer 

methods commonly employed in the realm of RUL prediction. 

The first method is LSTM-DAAN, which is a multisource 

domain RUL prediction method rooted in LSTM networks and 

domain adaptation. Similar to TL-DRR, LSTM-DAAN adapts 

to the target domain by training on multiple data sources to 

achieve RUL prediction through domain adaptation. It uses an 

adversarial loss function that considers domain adaptation and 

classification errors, which facilitates the preservation of 

disparate data distributions between the source and target 

domains. The second method is CNN-DAAN, which, similar to 

LSTM-DAAN, also uses an adversarial loss function and trains 

on multiple data sources to adapt to the target domain. CNN-

MMD is a multisource domain RUL prediction method based 

on CNNs and maximum mean discrepancy. It achieves domain 

adaptation by maximizing the MMD distance between the 

source and target domains. We compare our proposed 

multisource domain method with the above methods. 

As shown in Table V, our UMDAN approach demonstrates 

substantial performance gains over these methods with regards 

to the RMSE metric. In conclusion, the outstanding 

performance of the UMDAN method regarding the RMSE 

parameter can be proven to be attributed to its adoption of the 

multisource domain learning strategy. By training on multiple 

data sources and utilizing knowledge and feature 

representations from these sources, UMDAN can capture 

shared information between different devices more effectively, 

thus enhancing the precision of RUL estimation. 

 

Table Ⅴ. Experimental results of Single-source domain methods 

on C-MAPSS dataset 

Task 
LSTM-

DAAN 

CNN-

DAAN 

TL-

DRR 

CNN-

MMD 
Proposed 

ST1-1 28.1 47.4 34.6 42.4 
19.9(ST3-1) 

ST1-2 31.5 67.4 35.3 37.2 

ST1-3 48.6 50.3 43.4 49.4 
25.7(ST3-2) 

ST1-4 44.6 68.2 48.8 62.1 

ST1-5 37.5 40.8 43.2 43.6 
23.6(ST3-3) 

ST1-6 27.8 45.5 38.7 46.4 

ST1-7 43.8 87.0 45.1 52.5 
36.9(ST3-4) 

ST1-8 47.9 73.7 52.5 64.0 

The improvement of our method in the multisource domain 

was validated through experiments using other multisource 

domain methods on the CMAPSS dataset, comparing the target 

domains from FD001 to FD004. Two methods were designed, 

one being the baseline method and the other being a multisource 

domain transfer method based on DAAN adversarial transfer. 

To investigate the influence of multisource domain datasets on 

model performance, this experiment selected the subtask ST3 

for comparing experimental results, focusing on the RMSE 

parameter. The findings presented in Table VI indicate that the 

performance of the proposed UMDAN method surpasses that of 

the other two transfer methods by a considerable margin. The 

UMDAN method performs well whether in the relatively simple 

working conditions and failure modes in the FD001 and FD003 

domains or in the more complex environments of the FD002 

and FD004 target domains. Multisource domain datasets 

strengthen the learning capability of deep features but increase 

the likelihood of label mapping errors, leading to reduced 

prediction accuracy. Therefore, the proposed UMDAN method 

addresses such issues and achieves the lowest RMSE and the 

highest prediction accuracy. This finding also demonstrates that 
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the multisource domain adaptive transfer advocated in this 

paper can improve the precision of RUL prediction by 

minimizing label mapping errors. In conclusion, the UMDAN 

method achieves better predictive results, validating its 

effectiveness and superiority to other single-condition and 

multi-condition transfer methods. 

Table Ⅵ. Comparison of performance of different transfer 

learning methods on various transfer tasks of C-MAPSS dataset. 

Target Proposed Baseline DAAN 

To FD001 19.9 32.1 36.6 

To FD002 25.7 48.9 38.7 

To FD003 23.6 52.2 45.1 

To FD004 36.9 51.6 48.5 

On this basis, Figure 14 depicts the test results of the 

baseline, DAAN, and our proposed methods on the multisource 

domain target domain FD001. In the figure, the horizontal axis 

represents the quantity of engine units, while the vertical axis 

represents the RUL of the engine units. The yellow, gray, and 

green lines represent the RUL prediction values of UMDAN, 

DANN, and the baseline, respectively, utilizing input data from 

the multi-sensor information collected during the final time 

period of the experimental engine units. The true RUL values of 

the test engine units are depicted by the red line. Evidently, the 

UMDAN method, represented by the yellow line, fits the red 

line better than it fits the other colors.

 

Fig.14. RUL prediction results of three methods on the transfer task ST3-1. 

4.5. Ablation experiments 

The effectiveness of this approach was verified by designing 

two ablation experiments that did not fully utilize the proposed 

method. Method 1 considered only single-subdomain 

classification adaptive alignment without considering 

multisource domain transfer, while Method 2 used multisource 

domain transfer techniques without considering subdomain 

alignment. Method 3 is to remove the multilinear adjustment 

part based on method 1. As can be seen from Table VII, both the 

methods without multisource domain transfer and without 

subdomain alignment performed worse than the methods that 

included both, thereby suggesting the efficacy of the proposed 

experimental methodology. A comparison between the RMSE 

values of Single-Sub and Single-Multi shows that relying solely 

on multisource domain transfer without subdomain alignment 

significantly deteriorated the experimental results. The RMSE 

value of Single-Sub is significantly better than that of Single-

DAAN. This means that the gain to the model from multilinear 

adjustment is enormous. Although using only subdomain 

alignment had slightly better results than those of the method 

only using multisource domain transfer, it still performed much 

worse than the proposed method did. This finding demonstrates 

that multisource domain transfer methods are adopted for the 

generalizability of the model and solve the issue of data scarcity. 

However, the impact of label alignment errors is significant. 

Subdomain alignment is a remarkable solution to address 

multisource domain transfer errors. 

Table Ⅶ. RMSE of experimental results of ablation 

experiments on the CMAPSS dataset 

Method Single-Sub Single-Multi Single-DAAN Proposed 

RMSE 33.4 42.23 47.51 26.53 

5. Conclusion 

In this paper, a transfer model is introduced for cross-condition 

RUL prediction tasks, employing multisource domain adaptive 

alignment. By leveraging multiple source domains, the model 

addresses the limited availability of RUL prediction data and 

mitigates the potential adverse effects of negative transfer that 

could arise from relying solely on a single-source domain 

dataset for transfer learning purposes. By employing  

a condition-combining DAAN network, which differs from 

previous adversarial adaptive methods, it addresses the issue of 

feature and label mapping errors, enhances the integration of 

condition-aware adversarial domain adaptation, and improves 

the accuracy of RUL prediction. 
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It's difficult to accurately obtain source domain data that is 

exactly similar to the various situations of the target domain in 

the real production environment even though that it can 

dramatically improve the model training effect and prediction 

performance. The multisource domain data makes the 

experiment more practical in reality. Exhaustive experiments 

demonstrated significant advantages over popular multisource 

domain transfer methods in the RUL prediction domain. Still, 

there are some limitations, the main limitations include 

dependency on diverse datasets, sensitivity to data noise, and 

challenges in rapidly changing conditions. Future research 

should focus on robust noise-handling techniques, adaptive 

learning mechanisms and comprehensive datasets. Addressing 

these areas can enhance the model's robustness and applicability 

in various real-world scenarios.
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